%0 Journal Article %A Abramowski, A. %A Acero, F. %A Aharonian, F. %A Akhperjanian, A. G. %A Anton, G. %A Balzer, A. %A Barnacka, A. %A Becherini, Y. %A Becker, J. %A Bernloehr, K. %A Birsin, E. %A Steenkamp, R. %A van Eldik C. %A Reimer, O. %A Renaud, M. %A de los Reyes R. %A Rieger, F. %A Ripken, J. %A Rob, L. %A Rosier-Lees, S. %A Schwanke, U. %A Jamrozy, M. %A Rowell, G. %A Rudak, B. %A Stegmann, C. %A Bordas, P. %A Stinzing, F. %A Kossakowski, R. %A Schwarzburg, S. %A Schwemmer, S. %A Venter, C. %A Sheidaei, F. %A Kosack, K. %A Viana, A. %A Maxted, N. %A Stycz, K. %A Sushch, I. %A Zajczyk, A. %A Szostek, A. %A Maurin, G. %A Zdziarski, A. A. %A Khelifi, B. %A Vincent, P. %A Gast, H. %A Voelk, H. J. %A Brun, P. %A Volpe, F. %A Hofverberg, P. %A Bulik, T. %A Lopatin, A. %A Zech, A. %A Hampf, D. %A Zechlin, H-S. %A Montmerle, T. %A Gerard, L. %A Collaboration, HESS %A Klochkov, D. %A Buesching, I. %A Carrigan, S. %A Casanova, S. %A Holler, M. %A Cerruti, M. %A Chadwick, P. M. %A Harris, J. %A Charbonnier, A. %A Giebels, B. %A Lu, C-C. %A Chaves, R. C. G. %A Cheesebrough, A. %A Cologna, G. %A Kluzniak, W. %A Conrad, J. %A Dalton, M. %A Horns, D. %A Daniel, M. K. %A Hauser, M. %A Glicenstein, J. F. %A Davids, I. D. %A Degrange, B. %A Deil, C. %A Dickinson, H. J. %A Marandon, V. %A Djannati-Atai, A. %A Domainko, W. %A Kneiske, T. %A Drury, L. O. %A Jacholkowska, A. %A Glueck, B. %A Heinz, S. %A Dubus, G. %A Dutson, K. %A Dyks, J. %A Dyrda, M. %A Egberts, K. %A Eger, P. %A Espigat, P. %A Marcowith, A. %A Fallon, L. %A Goering, D. %A Komin, N. %A Heinzelmann, G. %A Jahn, C. %A Fegan, S. %A Feinstein, F. %A Fernandes, M. V. %A Fiasson, A. %A Fontaine, G. %A Foerster, A. %A Fuessling, M. %A Grondin, M-H. %A Gallant, Y. A. %A Garrigoux, T. %A Henri, G. %A Masbou, J. %A Hermann, G. %A Vasileiadis, G. %A Haeffner, S. %A Hague, J. D. %A Jung, I. %A Hahn, J. %A Kastendieck, M. A. %A Zacharias, M. %A Hillert, A. %A Hinton, J. A. %A Krayzel, F. %A Hofmann, W. %A Wierzcholska, A. %A Laffon, H. %A Brun, F. %A Katarzynski, K. %A Katz, U. %A Mayer, M. %A Kaufmann, S. %A Brucker, J. %A McComb, T. J. L. %A Vorobiov, S. %A Lamanna, G. %A Rulten, C. B. %A Lenain, J-P. %A Lennarz, D. %A Lohse, T. %A Tavernet, J-P. %A Medina, M. C. %A Biteau, J. %A Mehault, J. %A Skilton, J. L. %A Moderski, R. %A Mohamed, M. %A Sahakian, V. %A Moulin, E. %A Vorster, M. %A Naumann, C. L. %A Naumann-Godo, M. %A de Naurois M. %A Terrier, R. %A Nedbal, D. %A Nekrassov, D. %A Sol, H. %A Nguyen, N. %A Sanchez, D. A. %A Bochow, A. %A Nicholas, B. %A Niemiec, J. %A Nolan, S. J. %A Wagner, S. J. %A Ohm, S. %A Wilhelmi, E. D. O. %A Tluczykont, M. %A Opitz, B. %A Spengler, G. %A Santangelo, A. %A Ostrowski, M. %A Oya, I. %A Panter, M. %A Arribas, M. P. %A Boisson, C. %A Pekeur, N. W. %A Pelletier, G. %A Ward, M. %A Perez, J. %A Valerius, K. %A Schlickeiser, R. %A Stawarz, L. %A Petrucci, P-O. %A Peyaud, B. %A Pita, S. %A Puehlhofer, G. %A Punch, M. %A Quirrenbach, A. %A Raue, M. %A Bolmont, J. %A Reimer, A. %A Schulz, A. %A White, R. %D 2012 %T HESS observations of the Carina nebula and its enigmatic colliding wind binary Eta Carinae %U https://figshare.le.ac.uk/articles/journal_contribution/HESS_observations_of_the_Carina_nebula_and_its_enigmatic_colliding_wind_binary_Eta_Carinae/10109288 %2 https://figshare.le.ac.uk/ndownloader/files/18222734 %K acceleration of particles %K radiation mechanisms: non-thermal %K ISM: individual objects: Carina nebula %K ISM: individual objects: Eta Carina %K open clusters and associations: general %K X-rays: binaries %X The massive binary system Eta Carinae and the surrounding H ii complex, the Carina nebula, are potential particle acceleration sites from which very high energy (VHE; E≥ 100 GeV) γ-ray emission could be expected. This paper presents data collected during VHE γ-ray observations with the HESS telescope array from 2004 to 2010, which cover a full orbit of Eta Carinae. In the 33.1-h data set no hint of significant γ-ray emission from Eta Carinae has been found and an upper limit on the γ-ray flux of 7.7 x 10 [Superscript: -13] ph cm[Superscript: -2] s[Superscript: -1] (99 per cent confidence level) is derived above the energy threshold of 470 GeV. Together with the detection of high energy (HE; 0.1 ≤E≤ 100 GeV) γ-ray emission by the Fermi Large Area Telescope up to 100 GeV, and assuming a continuation of the average HE spectral index into the VHE domain, these results imply a cut-off in the γ-ray spectrum between the HE and VHE γ-ray range. This could be caused either by a cut-off in the accelerated particle distribution or by severe γ–γ absorption losses in the wind collision region. Furthermore, the search for extended γ-ray emission from the Carina nebula resulted in an upper limit on the γ-ray flux of 4.2 x 10 [Superscript: -12] ph cm[Superscript: -2] s[Superscript: -1] (99 per cent confidence level). The derived upper limit of ∼23 on the cosmic ray enhancement factor is compared with results found for the old-age mixed-morphology supernova remnant W28. %I University of Leicester