%0 Journal Article %A Soria, R. %A Fender, R. P. %A Hannikainen, D. C. %A Read, A. M. %A Stevens, I. R. %D 2012 %T An ultraluminous X-ray microquasar in NGC 5408? %U https://figshare.le.ac.uk/articles/journal_contribution/An_ultraluminous_X-ray_microquasar_in_NGC_5408_/10115231 %2 https://figshare.le.ac.uk/ndownloader/files/18231215 %K IR content %X We studied the radio source associated with the ultraluminous X-ray source in NGC 5408 (LX≈ 1040 erg s−1). The radio spectrum is steep (index ≈−1), consistent with optically thin synchrotron emission, not with flat-spectrum core emission. Its flux density (≈0.28 mJy at 4.8 GHz, at a distance of 4.8 Mpc) was the same in the March 2000 and December 2004 observations, suggesting steady emission rather than a transient outburst. However, it is orders of magnitude higher than expected from steady jets in stellar-mass microquasar. Based on its radio flux and spectral index, we suggest that the radio source is either an unusually bright supernova remnant, or, more likely, a radio lobe powered by a jet from the black hole (BH). Moreover, there is speculative evidence that the source is marginally resolved with a radius ∼30 pc. A faint H ii region of similar size appears to coincide with the radio and X-ray sources, but its ionization mechanism remains unclear. Using a self-similar solution for the expansion of a jet-powered electron–positron plasma bubble, in the minimum-energy approximation, we show that the observed flux and (speculative) size are consistent with an average jet power ≈ 7 × 1038 erg s−1∼ 0.1LX∼ 0.1LEdd, an age ≈105 yr, a current velocity of expansion ≈80 km s−1. We briefly discuss the importance of this source as a key to understand the balance between luminosity and jet power in accreting BHs. %I University of Leicester