%0 Journal Article %A Berge, D. %A Hinton, J. A. %A Konopelko, A. %A Reimer, O. %A Rowell, G. %A Aharonian, F. %A Benbow, W. %A Bernlöhr, K. %A Bolz, O. %A Braun, I. %A Djannati-Ataï, A. %A Espigat, P. %A Lemière, A. %A Maurin, G. %A Pita, S. %A Ferrero, E. %A Punch, M. %A Hauser, M. %A Pühlhofer, G. %A Rob, L. %A Schwemmer, S. %A Shalchi, A. %A Tam, P. H. %A Masterson, C. %A Wagner, S. J. %A Bühler, R. %A Feinstein, F. %A Fiasson, A. %A Gallant, Y. A. %A Jacholkowska, A. %A Reimer, A. %A Komin, N. %A Moulin, E. %A Spanier, F. %A Vasileiadis, G. %A Glück, B. %A Tluczykont, M. %A Stegmann, C. %A Henri, G. %A Carrigan, S. %A Pelletier, G. %A Schlickeiser, R. %A Saugé, L. %A Hoffmann, A. %A Horns, D. %A Steenkamp, R. %A Kendziorra, E. %A Santangelo, A. %A Schwarzburg, S. %A Costamante, L. %A Martineau-Huynh, O. %A De Naurois M %A Schröder, R. %A Tavernet, J. -. P. %A Vincent, P. %A Nedbal, D. %A Egberts, K. %A Funk, S. %A Hauser, D. %A Hermann, G. %A Schwanke, U. %A Brion, E. %A Hofmann, W. %A Chadwick, P. M. %A Hoppe, S. %A Khélifi, B. %A Kosack, K. %A Panter, M. %A Boisson, C. %A Van Eldik C %A Völk, H. J. %A Glicenstein, J. F. %A Akhperjanian, A. G. %A Sahakian, V. %A Dickinson, H. J. %A Bazer-Bachi, A. R. %A Borrel, V. %A Marcowith, A. %A Olive, J. -. P. %A Martin, J. M. %A Beilicke, M. %A Cornils, R. %A Heinzelmann, G. %A Goret, P. %A Raue, M. %A Ripken, J. %A Hadjichristidis, C. %A Füßling, M. %A Sol, H. %A Kerschhaggl, M. %A Lohse, T. %A Schlenker, S. %A Rolland, L. %A Latham, I. J. %A Brown, A. M. %A Le Gallou R %A McComb, T. J. L. %A Nolan, S. J. %A Noutsos, A. %A Orford, K. J. %A Osborne, J. L. %A Terrier, R. %A Rayner, S. M. %A Spangler, D. %A Ward, M. %A Büsching, I. %A Holleran, M. %A De Jager OC %A Raubenheimer, B. C. %A Venter, C. %A Chounet, L. -. M. %A Degrange, B. %A Drury, L. O. %A Dubus, G. %A Fontaine, G. %A Giebels, B. %A Lemoine-Goumard, M. %A Superina, G. %A Coignet, G. %A Lamanna, G. %A Ranchon, S. %A Emmanoulopoulos, D. %A Rosier-Lees, S. %A Vialle, J. P. %D 2012 %T Primary particle acceleration above 100 TeV in the shell-type supernova remnant RX J1713.7-3946 with deep HESS observations %U https://figshare.le.ac.uk/articles/journal_contribution/Primary_particle_acceleration_above_100_TeV_in_the_shell-type_supernova_remnant_RX_J1713_7-3946_with_deep_HESS_observations/10117196 %2 https://figshare.le.ac.uk/ndownloader/files/18234056 %K IR content %X Aims.We present deep HESS observations of the supernova remnant (SNR) RX J1713.7-3946 . Combining data of three years - from 2003 to 2005 - we obtain significantly increased statistics and energy coverage as compared to earlier 2003 and 2004 results. Methods.The data are analysed separately for the different years. Results.Very good agreement of the gamma-ray morphology and the differential spectra is found when comparing the three years. The combined gamma-ray image of the 2004 and 2005 data reveals the morphology of RX J1713.7-3946 with unprecedented precision. An angular resolution of $0.06\degr$ is achieved, revealing the detailed structure of the remnant. The combined spectrum of all three years extends over three orders of magnitude, with significant gamma-ray emission approaching 100 TeV. The cumulative significance above 30 TeV is $4.8\sigma$, while for energies between 113 and 294 TeV an upper limit on the gamma-ray flux of $1.6\times 10^{-16}~\mathrm{cm}^{-2}~\mathrm{s}^{-1}$ is obtained. Conclusions.The energy coverage of the HESS data is presumably at the limit of present generation Cherenkov telescopes. The measurement of significant gamma-ray emission beyond 30 TeV formally implies the existence of primary particles of at least that energy. However, for realistic scenarios of very-high-energy gamma-ray production, the Inverse Compton scattering of very-high-energy electrons and $\pi^0$ decay following inelastic proton-proton interactions, the measured gamma-ray energies imply that efficient acceleration of primary particles to energies exceeding 100 TeV is taking place in the shell of the SNR RX J1713.7-3946 . %I University of Leicester