Haeckl, Katharina Li, Hua Aldous, Iain M Tsui, Terrence Kunz, Werner Abbott, Andrew P Warr, Gregory G Atkin, Rob Potential Dependence of Surfactant Adsorption at the Graphite Electrode/Deep Eutectic Solvent Interface Copyright © 2019 American Chemical Society. Atomic force microscopy and cyclic voltammetry are used to probe how ionic surfactant adsorbed layer structure affects redox processes at deep eutectic solvent (DES)/graphite interfaces. Unlike its behavior in water, sodium dodecyl sulfate (SDS) in DESs only adsorbs as a complete layer of hemicylindrical hemimicelles far above its critical micelle concentration (CMC). Near the CMC it forms a tail-to-tail monolayer at open-circuit potential (OCP) and positive potentials, and it desorbs at negative potentials. In contrast, cetyltrimethylammonium bromide (CTAB) adsorbs as hemimicelles at low concentrations and remains adsorbed at both positive and negative potentials. The SDS horizontal monolayer has little overall effect on redox processes at the graphite interface, but hemimicelles form an effective and stable barrier. The stronger solvophobic interactions between the C16 versus C12 alkyl chains in the DES allow CTAB to self-assemble into a robust coating at low concentrations and illustrate how the structure of the DES/electrode interface and electrochemical response can be engineered by controlling surfactant structure. Science & Technology;Physical Sciences;Technology;Chemistry, Physical;Nanoscience & Nanotechnology;Materials Science, Multidisciplinary;Physics, Atomic, Molecular & Chemical;Chemistry;Science & Technology - Other Topics;Materials Science;Physics;SHAPE-CONTROLLED SYNTHESIS;ALKYL CHAIN-LENGTH;IONIC LIQUIDS;DOUBLE-LAYER;FORCE MICROSCOPY;ELECTRODEPOSITION;NANOSTRUCTURE;MIXTURES;NICKEL;MICA 2020-02-26
    https://figshare.le.ac.uk/articles/journal_contribution/Potential_Dependence_of_Surfactant_Adsorption_at_the_Graphite_Electrode_Deep_Eutectic_Solvent_Interface/11806449