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Abstract Software project scheduling is the problem of allocating employees to tasks in a software project. Due 

to the large scale of current software projects, many studies have investigated the use of optimization algorithms 

to find good software project schedules. However, despite the importance of human factors to the success of 

software projects, existing work has considered only a limited number of human properties when formulating 

software project scheduling as an optimization problem. Moreover, the changing environments of software 

companies mean that software project scheduling is a dynamic optimization problem. However, there is a lack 

of effective dynamic scheduling approaches to solve this problem. This work proposes a more realistic 

mathematical model for the dynamic software project scheduling problem. This model considers that skill 

proficiency can improve over time and, different from previous work, it considers that such improvement is 

affected by the employees’ properties of motivation and learning ability, and by the skill difficulty. It also 

defines the objective of employees’ satisfaction with the allocation. It is considered together with the objectives 

of project duration, cost, robustness and stability under a variety of practical constraints. To adapt schedules to 

the dynamically changing software project environments, a multi-objective two-archive memetic algorithm 

based on Q-learning (MOTAMAQ) is proposed to solve the problem in a proactive-rescheduling way. Different 

from previous work, MOTAMAQ learns the most appropriate global and local search methods to be used for 

different software project environment states by using Q-learning. Extensive experiments on 18 dynamic 

benchmark instances and 3 instances derived from real-world software projects were performed. A comparison 

with seven other meta-heuristic algorithms shows that the strategies used by our novel approach are very 

effective in improving its convergence performance in dynamic environments, while maintaining a good 

distribution and spread of solutions. The Q-learning-based learning mechanism can choose appropriate search 

operators for the different scheduling environments. We also show how different trade-offs among the five 



objectives can provide software managers with a deeper insight into various compromises among many 

objectives, and enabling them to make informed decisions. 
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1 Introduction 

With the rapid development of the software industry, software companies are confronted with a highly 

competitive market environment. In order to win the market, as well as to meet project requirements 

(deadlines, budget, etc.), efficient and effective software project schedules need to be adopted [29, 36]. 

Nevertheless, it is not uncommon for software companies to face software project failure due to 

inappropriate project schedules. For instance, it is reported that more than 40% of the software projects in 

China are unsuccessful due to incoherent scheduling of tasks and human resources [4]. Another example is 

NASA’s checkout launch control software project, which involved more than 400 people and had to be 

cancelled after having gone over budget [21]. 

The software project scheduling problem (SPSP) consists in allocating employees to tasks over a 

project timeline, so that the required objectives (project cost, duration, etc.) can be achieved subject to 

various constraints. This problem is particularly complex and challenging for large-scale software projects 

[27], which may involve dozens or even hundreds of software engineers cooperating to complete a large 

number of tasks. This is because the size of the search space of potential allocations of employees to tasks 

is extremely large for such projects. Scheduling large software projects manually can be very 

time-consuming and result in inefficient and unsatisfactory schedules. Given that software projects have 

become increasingly large, it is desirable to have methods to help project managers with the SPSP.  

With the development of search-based software engineering (SBSE) [18], many researchers have 

formulated SPSP as a search-based optimization problem, and employed evolutionary algorithms (EAs) 

[13, 15] to search the large decision space and provide near-optimal schedules, automating the task finding 

good allocations and helping the software manager to make a final decision.  

Real-world software projects often suffer working environment changes due to unpredictable events 

such as employees’ leave of absence, change of requirements, addition of high-priority tasks, etc. 

Moreover, the project activities are often subject to uncertainties. For example, the amount of effort 

required to develop tasks may have been underestimated or overestimated, and the number of resources 

required for completing a task may change due to variations of the task specification [31]. In such cases, an 

optimal schedule produced by a static scheduling method may get severely deteriorated during the project 

execution. It is thus of great importance to employ dynamic scheduling techniques to adapt schedules for 

dynamically changing environments, as well as to reduce the impact of uncertainties.   

So far in the literature, very few studies have dealt with dynamic software project scheduling in 

uncertain project environments. Proactive scheduling was used for software projects with uncertainties [5, 

16, 17, 20, 22], and dynamic resource rescheduling was designed to react to new project arrivals [43]. Our 

previous study [35] was the first research work dealing with the mathematical modeling and dynamic 



scheduling of the multi-objective dynamic software project scheduling problem (MODSPSP). This 

previous work addresses both uncertainties and dynamic events occurring during a project lifetime.  

Although a few interesting results have been reported by the above studies, difficulties still exist and 

need to be further addressed. One of the difficulties is that there is a gap between the constructed SPSP 

mathematical formulation and real-world software projects. Since human resources are one of the main 

project resources, software project managers have paid much attention to the influence of employees’ 

subjective properties on project success. However, only some basic properties of employees and tasks are 

considered by existing SPSP models [1, 2, 4, 27, 35], such as the specific skills possessed by each 

employee. In order to formulate a more practical model, more properties of human resources and tasks 

should be taken into account, as well as their possible variations. For example, a certain employee may 

have a strong willingness to take part in a specific task, and his/her skills proficiency can improve with 

experience. Besides, employees’ satisfaction for the allocation is an important criterion that a software 

manager often considers when scheduling, but it has never been regarded as an objective to be optimized 

in the existing models.  

Another difficulty is the lack of effective dynamic scheduling approaches for solving MODSPSP. In 

MODSPSP, the search space is large, and the project environment varies dynamically. However, the 

current search-based dynamic scheduling approaches for this problem find solutions based on fixed search 

operators, and lack self-learning mechanisms that could exploit the environment features to guide the 

search direction. Therefore, existing approaches have weak ability to adapt and may suffer from slow 

convergence speed and/or premature convergence. It is therefore hard for them to find optimal schedules in 

dynamically changing environments [24]. In particular, different environment conditions may require 

different search operators in order to find good solutions more efficiently and effectively. Existing 

approaches for MODSPSP are unable to deal with that. 

With the aim of covering the shortage of existing methods, this paper makes two main contributions: (i) 

It proposes a more realistic model of MODSPSP, highlighting the influence of employees’ subjective 

properties on project success. Different from previous work, our model considers several additional 

employee properties, namely the fact that their skill proficiency can be improved over time and that such 

improvement is affected by their motivation and learning ability and the skill’s difficulty. Moreover, it 

takes into account the impact of employees’ satisfaction by considering it as an extra objective in addition 

to project duration, cost, robustness and stability. (ii) It proposes a multi-objective two-archive memetic 

algorithm based on Q-learning (MOTAMAQ) to solve the formulated MODSPSP in a 

proactive-rescheduling way. The key idea of the approach is to learn the appropriate global and local 

search methods of MA adaptively in dynamically changing software project environments through 

Q-learning.  

To validate the effectiveness of our approach, 18 dynamic SPSP benchmark instances and 3 instances 

derived from real-world software projects were used in our experimental studies. Our results indicate that 

the introduction of self-adaptive learning mechanism based on Q-learning helps to improve the 

convergence performance of MOTAMAQ. By cooperating with the global search operators, the 

problem-specific local search operators enhance the local search ability of the algorithm. Besides, the 



maintenance of two archives that promote convergence and diversity separately can deal with the 5 

objectives in MODSPSP effectively.    

The remainder of this paper is organized as follows. Section 2 gives background information and an 

overview of related work. Our proposed MODSPSP mathematical model is presented in Section 3. In 

Section 4, our Q-learning-based proactive-rescheduling framework is presented, and the proposed 

rescheduling approach MOTAMAQ is introduced. Section 5 presents the experimental studies. 

Conclusions are drawn in Section 6.  

2 Background and related work 

2.1 Memetic algorithms and Q-learning 

 Memetic algorithm (MA) is a meta-heuristic approach that mimics the process of culture evolution, 

and imitates the mutation process supported by specialized knowledge through local heuristic search [28]. 

MA combines population-based global search with individual-based local search. Compared to traditional 

EAs, MAs can find high quality solutions more efficiently in many applications because local search 

abilities are enhanced [30]. Some multi-objective memetic algorithms have been used for solving 

multi-objective optimization problems [12, 25, 45]. However, environments change dynamically in 

MODSPSP. Therefore, MA is likely to exhibit distinct search performance if different global and local 

search operators are adopted for different environment states. Thus, if the algorithm can capture the state 

of the current environment, and learn the current best evolutionary operators by itself, the search efficiency 

of MA for solving MODSPSP will be greatly improved. 

Reinforcement Learning (RL) is an effective method to learn an optimal behavior by trial and error 

interactions between an agent and a dynamic environment [37, 41]. The agent can perceive the 

environment, select an action to execute in the current state, and then the environment feedbacks a reward 

or penalty signal to the action taken. The interactions iterate until the agent learns the action 

decision-making policy that maximizes the accumulated reward. The above process makes the learning 

strategy of RL have long-term effects. Q-learning [6, 19] is one of the famous RL approaches. Its goal is 

for an agent to learn the optimal long-term expected reward value Q(s, a) for each pair of state (s) and 

action (a). If the fitness value of an individual is regarded as a reward, then there is a high conceptual and 

structural compatibility between Q-learning and MA [32]. Based on the above analysis, if a self-learning 

multi-objective memetic algorithm is designed by combining both the merits of MA and Q-learning, it may 

have a great potential to solve complex dynamic multi-objective problems like MODSPSP. 

2.2 SPSP task-based models 

The task-based model is a very popular formulation of the SPSP in the search-based software 

engineering literature [27]. In this model, there are a group of employees and a set of tasks. Each employee 

has the properties of monthly salary, a set of skills, etc. An employee can perform several tasks 

concurrently during a working day. Each task also has some properties such as task effort and a set of 

required skills. Execution of the tasks should follow a task precedence graph (TPG), which provides 

information about the tasks that need to be completed before commencing new ones. The tasks and TPG 

are considered as the project to be scheduled. SPSP consists in determining which employees are allocated 



to each task, and specifying the dedication of each employee to the assigned tasks, with the objectives of 

minimizing project cost, duration and so on. Constraints of no overwork, required task skills, etc, are also 

considered [1].  

Many researchers have investigated task-based models in static environments. Chang et al. [2] 

proposed a task-based model in which overwork was regarded as an extra objective in addition to project 

duration and cost. Alba and Chicano [1] and Minku et al. [27] have employed similar models to the one 

specified in [2], where the total dedications of each employee to all active tasks were not allowed to exceed 

a predefined maximum value specified by the company rules. However, in both these works, overwork 

was treated as a constraint. Crawford et al. [7] established a construction graph according to the task-based 

model to adapt a Max-Min Ant system to solve SPSP. Wu et al. [42] proposed an evolutionary 

hyper-heuristic to solve the static SPSP, which adaptively chose both crossover and mutation operators 

during the search. Chicano et al. [5] and Luna et al. [24] formulated the SPSP as a multi-objective 

optimization problem where duration and cost were optimized simultaneously based on Pareto dominance. 

To make the allocation more flexible, a task-based model with an event-based scheduler was proposed by 

Chen and Zhang [4]. In this work, an original schedule was adjusted at events. To make the task-based 

model more practical, a time-line model that divided the task duration into various time slices was 

developed by Chang et al. [3]. Employees were allocated to tasks in discrete time slices iteratively, and the 

accumulated fitness values were evaluated for each solution. In this manner, more features such as 

re-assignment of employees, different skill proficiencies, distinct salaries for normal work and overtime 

work could be introduced. Nevertheless, too many subjective parameters need to be set and tuned to use 

this model, which could make it difficult for software managers to use. Besides, sensitivity of the 

algorithm’s performance to various parameters was unknown [27], and a large amount of system instability 

would be induced because the tasks were scheduled separately within different time slices [4].  

Considering that it is extremely challenging to obtain all the accurate information beforehand, in our 

previous work [35], we formulated software project scheduling as a dynamic scheduling problem with task 

effort uncertainty and three types of dynamic events (employee leaves, employee returns and new task 

arrivals). Then, we proposed a dynamic version of the task-based model, where both the efficiency related 

objectives (project duration and cost) and the objectives concerning dynamic environment (robustness and 

stability) are considered together.  

In most of the above-mentioned models, only some basic properties of employees and tasks are 

considered. Properties such as the ability and motivation of employees to improve their skills proficiency, 

and satisfaction with the generated schedule are not taken into account. This makes the existing models 

inconsistent with real cases. 

2.3 Software project scheduling approaches for dynamic environments 

A few studies have proposed approaches to deal with uncertainties in software projects. Most of them 

adopted proactive scheduling. Hapke et al. [17] translated a fuzzy scheduling problem into a set of 

deterministic problems by describing the uncertain activity parameters through L-R fuzzy numbers. To 

reduce the effect of uncertainties on project performance, the most appropriate remedial action was chosen 

according to the project goal using the simulation-based method provided by Lazarova-Molnar and 

Mizouni [22]. Gueorguiev et al. [16] adopted an MOEA to search the trade-off solutions between 

completion time and robustness to new tasks. Similarly, Chicano et al. [5] also used an MOEA to solve the 

http://www.sciencedirect.com/science/article/pii/0165011494902119


multi-objective SPSP that considered both the employee productivity in performing different tasks and 

robustness to the inaccuracies of task effort estimations. Harman [18] performed a number of Monte Carlo 

simulations according to a baseline schedule and an event list, so that a schedule under uncertainties was 

generated. Vasant et al. [39] considered a project with imprecise activity times and proposed ranking 

methods based on fuzzy mathematical techniques. 

In the existing literature, very few works have studied resource rescheduling in response to the 

dynamic events occurring during software development. Xiao et al. [43] considered one type of disruptive 

event, which stood for the addition of a new project, and implemented the rescheduling of three new 

project arrivals. To address both the uncertainties and dynamic events, in our previous work [35], we have 

proposed a proactive-rescheduling approach based on ε-MOEA [9] to solve the dynamic software project 

scheduling problem. A robust schedule is produced predictively with regard to the project uncertainties, 

and then the previous schedule is revised by the rescheduling approach in response to critical dynamic 

events. However, with our previous approach, the operators in the dynamic scheduling approach are fixed, 

and it is not possible to select appropriate search operators adaptively according to the current project state.  

To resolve this problem, in this paper, a more practical dynamic version of the task-based mathematical 

model for MODSPSP is formulated, which addresses the effect of several human factors on project success. 

For instance, the model considers improvement of employees’ skill proficiency over time, and includes an 

objective to take employees’ satisfaction into account, together with project duration, cost, robustness and 

stability. A multi-objective two-archive memetic algorithm is proposed to solve the formulated MODSPSP 

in a proactive-rescheduling way, which can learn the appropriate global and local search operators of the 

memetic algorithm adaptively in the dynamically changing project environment based on Q-learning. 

3 MODSPSP problem formulation and mathematical modelling  

The MODSPSP mathematical model constructed in this paper is an improvement of the one presented 

in our previous work [35]. Different from that work, it considers that the skill proficiency of each 

employee can be improved over time. It also considers the learning ability and the motivation of each 

employee to learn new knowledge, and the difficulty of each skill. Besides, the degree with which each 

employee is willing to engage with each skill (and thus in each task) is considered, leading to a new 

objective to represent employees’ satisfaction. This objective is considered in addition to the objectives of 

project duration, cost, robustness and stability considered in previous work [35]. 

3.1 The proactive-rescheduling mode 

   To address the dynamic features in software project scheduling, one type of uncertainty (the task effort 

uncertainty), and three dynamic events (new task arrivals, employee leaves and employee returns) are 

taken into account. Among them, urgent task arrivals, employee leaves and returns are considered as 

critical events, and regular task arrivals as trivial events. 

A proactive-rescheduling mode is employed. Initially, a robust schedule for all tasks and employees at 

the initial time 0
t  is produced by a proactive scheduling approach, considering the objectives of project 

efficiency (duration and cost), schedule robustness (sensitivity of the schedule to task effort uncertainty), 

http://link.springer.com/search?facet-author=%22Junchao+Xiao%22


and employees’ satisfaction (willingness of the employees to be allocated to tasks) together. To reduce the 

rescheduling frequency, a critical-event-driven mode is adopted. Once a critical event occurs, the 

rescheduling approach is triggered, optimizing the objectives of project efficiency, schedule robustness, 

system stability (deviations between the new and original schedules) and employees’ satisfaction, 

simultaneously. Trivial events (regular task arrivals) are not scheduled until the next critical event takes 

place. However, if the new regular task has to start before the occurrence of next critical event based on the 

TPG, a heuristic method is used to allocate it [35]. The time when a new schedule is regenerated is called 

the rescheduling point, and is denoted as l
t  ( 1,2,l  ). The unit of l

t  is month. Newly generated 

schedule is executed in the project until the next critical event occurred, at which time the above 

rescheduling approach is driven again. This process lasts until the entire project is finished.  

3.2 Skills’ properties 

Assume that the project to be scheduled requires in total S  skills. The degree of difficulty kSD  is 

attributed to the kth skill ( 1,2, ,k S ). A greater value of kSD  indicates that the kth skill is more 

difficult to be grasped. 

3.3 Employees’ properties 

Table 1 describes employees’ properties. Assume that M  employees could get involved in a project.  

The skills that an employee i
e  possesses at the rescheduling point l

t  are denoted by   

       1 2={ , , , }skills S

i l i l i l i l
e t pro t pro t pro t , where 1,2, ,i M  and   [0,C]k

i l
pro t   ( 1,2, ,k S ) is a 

fractional score which measures the proficiency of i
e  for the kth skill at l

t . If   0k

i l
pro t  , then i

e  

does not have the kth skill, and if   Ck

i l
pro t  , then i

e  totally masters the kth skill. To describe the 

proficiency in a more detailed way than in [35], C is set to be 100 here.  

According to interviews with software managers,  is assumed to be improved with the time t 

as follows:   

                      
   

   

0 0

0 0
0

tanh C= C

k k k k
i i i i

k k k k
i i i i

a t t I a t t I

k k k
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where, tanh(.) is the hyperbolic tangent function, the parameter 
k

i
a  describes the proficiency growth rate, 

t
0
 is the initial scheduling time, and I

i

k  is derived from the initial proficiency pro
i

k t
0( )  of the employee. 

More specifically, 

LA MO

k i i

i k

e e
a

SD


 , where 

LA

i
e  represents the learning ability factor of employee i

e . 

Greater values of 
LA

i
e  indicate better learning ability of . The learning ability includes the ability of 

 k

i
pro t

i
e



logic thinking, reasoning, understanding, data analysis, generation, abstraction, etc. The factor 
MO

i
e  is the 

motivation factor of employee i
e , which measures the internal drive of i

e  to improve skill proficiency. 

Motivation may be influenced by various aspects, such as individual interests, working attitude, habit 

formed through a long period of time, salary, sense of worthiness, family environment, company’s culture, 

etc. A greater value of 
MO

i
e  indicates a stronger general motivation of i

e  to master skills. In a software 

project team, different employees have different learning abilities and motivations, and for a mature 

employee, these two characteristics are relatively stable. The learning ability factor of an employee can be 

scored by the software manager and fellow team mates based on his/her performances in the previous 

projects. Meanwhile, from interviews with real-world software managers, the motivation factor can be 

measured by a specialized questionnaire, which has been adopted in many companies. Greater values of 

LA

i
e  and 

MO

i
e , and smaller values of kSD , lead to greater values of 

k

i
a , which means a faster 

improvement of the proficiency. The parameter 
k

i
a  can also be related to other factors, e.g. specialization. 

This will be further studied in our future work.  

Given the initial proficiency pro
i

k t
0( )  at the beginning of the project, the value of 

k

i
I  in (1) can be 

obtained using 

 0atanh( )
C

k

i

k

i k

i

pro t

I
a

 , which indicates the time span it takes for an employee i
e  to achieve 

the initial proficiency  0

k

i
pro t , and atanh(.) is the inverse hyperbolic tangent function. It is worth noting 

that 
k

i
I  is a fixed parameter once  0

k

i
pro t  and 

k

i
a  are given. The changing curve of  k

i
pro t  with 

time t  is illustrated in Fig.1. 

The degree with which each employee is willing to engage with each skill is denoted by

 1 2= , , ,ED S

i i i i
e ED ED ED , where [0,1]k

i
ED   ( 1,2, ,k S ) is a fractional score which measures the 

degree of i
e  for the kth skill. 0k

i
ED   means that i

e  is not willing to engage with the kth skill at all, 

and 1k

i
ED   means that i

e  is willing to engage with the kth skill fully. This property will be used to 

compute one of the objectives of MODSPSP (see section 3.5).  

We use 
( )

( )
C

j i

k

Proficiency i l

ij l

k req skill

pro t
e t

 

   to indicate the proficiency of i
e  for task j

T  at , where 

j
req  is the set of specific skills required by task j

T , and ( ) [0,  1]Proficiency

ij l
e t  . 

Each employee i
e  ( 1,2, ,i M ) also has a maximum dedication 

maxded

i
e  (maximum percentage of 

l
t



his/her time that can be spent on the project), a salary paid for normal working hours 
_norm salary

i
e , and a 

salary paid for overwork hours 
_over salary

i
e .  

During the execution of the project, i
e  may leave, and return later. ( )available

i l
e t  is used to indicate the 

availability of i
e . We use _ _ ( )

l
e ava set t  to denote the set of available employees at l

t , i.e., 

 _ _ ( ) |  ( ) 1,  1,2, ,available

l i i l
e ava set t e e t i M   . 

In summary, each employee has some time-invariant properties (
LA

i
e , 

MO

i
e , 

ED

i
e , 

maxded

i
e , 

_norm salary

i
e , 

_over salary

i
e ), and also some time-related properties  (  skills

i l
e t , ( )available

i l
e t , ( )Proficiency

ij l
e t ). Since  k

i l
pro t  can 

be improved over time, ( )Proficiency

ij l
e t , which means the proficiency of i

e  for task j
T  at , is also 

time-variant. 

It is worth noting that although the skill level improvement has been considered in [3], the model just 

took the training hours into account. In contrast, our model relates the skill proficiency growth rate to both 

the human factors (motivation, learning ability) and the skill difficulties, which is more appropriate for the 

real cases. Meanwhile, the “learning” mentioned here not only indicates the training course used in [3], but 

also includes other ways of study such as self-learning. 
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Fig. 1. Illustration of the changing curve of  k
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pro t  with time t. 
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Table 1  

Properties of each employee. 

name description 

LA

i
e  The learning ability factor of employee 

i
e . Greater values of LA

i
e  indicate better learning ability of 

i
e . 

MO

i
e  

The motivation of employee 
i

e . A greater value of MO

i
e  indicates a greater motivation of 

i
e  to improve skill 

proficiency. 

ED

i
e  

The degree with which each employee is willing to engage with each given skill is denoted by 

 1 2= , , ,ED S

i i i i
e ED ED ED , where [0,1]k

i
ED   ( 1,2, ,k S ) is a fractional score which measures the degree of 

i
e  

for the kth skill. 0k

i
ED   means that 

i
e  hopes not to have to engage with the kth skill at all, and 1k

i
ED   means 

that 
i

e  is willing to engage with the kth skill fully. 

maxded

i
e  

The maximum dedication of 
i

e  to the project, which means the percentage of a full-time job 
i

e  is able to work. 

1maxded

i
e   means 

i
e  can dedicate all the normal working hours of a month to the project. Part-time jobs or overtime 

working are allowed by setting maxded

i
e  to a value smaller or bigger than 1, respectively. For example, 1.2maxded

i
e   

indicates 
i

e  is allowed to work up to 120% of the normal working time. 

_norm salary

i
e  The monthly salary of 

i
e  for his/her normal working time. 

_over salary

i
e  The monthly salary of 

i
e  for his/her overtime working time. 

( )skills

i l
e t  The skill indicator set of employee 

i
e  at 

l
t  ( 0,1,2,l  ), 1 2( )={ ( ), ( ), , ( )}skills S

i l i l i l i l
e t pro t pro t pro t .  

i
skill  

The set of specific skills possessed by 
i

e . It can be converted from ( )skills

i l
e t ,  where 

{ | ( ) 0, 1,2, , }k

i i l
skill k pro t k S   . 

( )available

i l
e t  

A binary variable which indicates whether 
i

e  is available or not at 
l

t . ( ) 1available

i l
e t   means 

i
e  is available at 

l
t , 

and ( ) 0available

i l
e t   shows 

i
e  is unavailable at 

l
t . 

( )Proficiency

ij l
e t  

The proficiency of 
i

e  for task 
j

T  at 
l

t . 
( )

( )
C

j i

k

Proficiency i l

ij l

k req skill

pro t
e t

 

   (
j

req  is the set of specific skills required 

by task 
j

T ), and ( ) [0, 1]Proficiency

ij l
e t  .  

 

3.4 Tasks’ properties 

By l
t , assume  + ( )

I new l
N N t  tasks have been regarded as part of the project in total, among which 

I
N  tasks existed at the initial time of the project, and ( )

new l
N t  new tasks were released in the project 

one-by-one during the time span  0 , lt t . Properties of each task j
T  ( 1,2, , + ( )

I new l
j N N t ) are described 

in Table 2, where 
skills

j
T , j

req , 
_ _est tot eff

j
T  are considered as time-invariant, and ( )unfinished

j l
T t , ( )available

j l
T t , 

TPG are time-related. It is worth noting that, even though 
_ _est tot eff

j
T  is considered time-invariant, it may 

involve uncertainty. For example, the estimated effort may be inaccurate.
 
 

At l
t , it is possible that the task j

T  has finished (marked by ( )unfinished

j l
T t ), or j

T  is unfinished but 



unavailable (marked by ( )available

j l
T t ) because it cannot be implemented temporally due to one or several 

employees’ leaves resulting in at least one of the skills required by j
T  not being grasped by any of the 

remaining employees. The set _ _ ( )
l

T ava set t  denotes the set of available tasks at l
t , i.e., 

_ _ ( )
l

T ava set t   |  ( ) 1,  1,2, , + ( )available

j j l I new l
T T t j N N t  .  

TPG is updated at each rescheduling point l
t , considering the cases of completion of a task, new 

regular task arrival, or new urgent task arrival. One can refer to our previous work [35] for the details of 

TPG update. 

Table 2 

Properties of each task. 

name description 

skills

j
T  

The skill indicator set of task 
j

T .  1 2, , ,skills S

j j j j
T sk sk sk , where 1k

j
sk   ( 1,2, ,k S ) indicates the kth skill is 

required by 
j

T , and 0k

j
sk   means not. 

j
req  The set of specific skills required by 

j
T . It can be converted from skills

j
T , where { | 1, 1,2, , }k

j j
req k sk k S   . 

_ _est tot eff

j
T  

The initially estimated effort required to complete task 
j

T  in person-months. The task effort uncertainty of 
j

T  is 

assumed to follow a normal distribution ( , )
j j

N   , where 
j

  and 
j

  are the mean and standard deviation, 

respectively. Here, we set _ _est tot eff

j j
T  . 

( )unfinished

j l
T t  

A binary variable indicating whether 
j

T  has finished by 
l

t . ( ) 1unfinished

j l
T t   means that 

j
T  is unfinished at 

l
t , 

and ( ) 0unfinished

j l
T t   means that 

j
T  has finished by 

l
t . 

TPG 

An acyclic directed graph with tasks as nodes and task precedence as edges. TPG must be updated when a task 

finishes or a new task is added into the project. Here,  ( ), ( )
l l

G V t A t  is used to represent the TPG at 
l

t , where  

( )
l

V t  is the vertex set which includes all the arrived and unfinished tasks at 
l

t , i.e., 

 ( ) |  ( ) 1, 1,2, , + ( )unfinished

l j j l I new l
V t T T t j N N t   , and ( )

l
A t  is the arc set which indicates the precedence relations 

among the tasks in ( )
l

V t . 

( )available

j l
T t  

A binary variable indicating whether 
j

T  is available or not at 
l

t . ( ) 1available

j l
T t   shows 

j
T  is available at 

l
t , 

while ( ) 0available

j l
T t   means not. 

j
T  is regarded as available at 

l
t  if and only if the following three conditions are 

satisfied simultaneously: (1) 
j

T  is unfinished at 
l

t , i.e., ( ) 1unfinished

j l
T t  ; (2) for any skill required by 

j
T , at least 

one of the available employees at 
l

t  possesses the skill, i.e., if 
j

k req , then 

 ,  s.t. _ _ ( )  
i i l i

e e e ava set t k skill    ; and (3) all the unfinished tasks preceding 
j

T  in the TPG satisfy the above 

condition (2). 

 

3.5 Optimization variables and objectives 

   MODSPSP’s optimization variables and objectives at a specific rescheduling point are formulated in 

this section. At the rescheduling point l
t  ( 0l

t t ), considering all the current information gathered from 

the software project, which contains attributes of a set of available employees _ _ ( )
l

e ava set t , a set of 



available tasks _ _ ( )
l

T ava set t  with their remaining estimated task efforts, and the TPG ( ( ), ( ))
l l

G V t A t  

updated at l
t , MODSPSP consists in generating a new schedule     

 + ( )
X

I new l
l ij l M N N t

t x t


  representing 

the dedication matrix of each employee to each task by optimizing the following objectives:  

                 1 2 3 4 5
min  ( )=[ ( ), ( ), ( ), ( ), ( )]

l l l l l l
t f t f t f t f t f tF                         (2) 

where  ij l
x t  indicates the dedication of employee i

e  to task 
j

T  scheduled at time l
t . It measures the 

percentage of a full-time job which i
e  spends on 

j
T . The objectives 1

( )
l

f t , 2
( )

l
f t , 3

( )
l

f t , 4
( )

l
f t  

and 5
( )

l
f t  are related to the project duration, project cost, schedule robustness, stability of the project, 

and employees’ satisfaction, respectively. The formulae of each objective are given below. 

   1
{ | _ _ ( )}{ | _ _ ( )}

( ) max ( ) min ( )
j lj l

end start

l I j l j l
j T T ava set tj T T ava set t

f t duration T t T t


                (3) 

The duration measure 1
( )

l
f t  in (3) evaluates the maximum elapsed time required for completing the 

remaining effort of each available task rescheduled at l
t . The subscript I  in 

I
duration  represents the 

initial scenario, which assumes no task effort variances. ( )start

j l
T t  denotes the time at which the remaining 

effort of 
j

T  starts processing after l
t  based on the new schedule, and ( )end

j l
T t  is the finishing time of 

j
T  rescheduled at l

t .   

2

_ _ ( )

( ) _
l i l

l I i

t e e ava s

t

' et

'

tt

f t cost e cost
 

                            (4) 

 The cost measure 2
( )

l
f t  in (4) indicates the initial cost, which evaluates the total salaries paid to the 

available employees for their work on the available tasks at l
t , assuming no task effort uncertainties. Here, 

't  represents any month during which the project is being implemented after l
t , and _ t'

i
e cost  denotes 

the salaries paid to employee i
e  at the moment of time 't . _ t'

i
e cost  is calculated as follows: 

If 
_ _ ( )

 ( ) 1
ij l

j T acti t've set

x t


 , then 

                         
'

_ '

_ _ ( )

_ norm salary

i i ij l

j T active set t

t'e cost e t x t


                            (5) 

else if 
_ _ ( )

  1< ( ) maxded

ij l i

j T active set t'

x t e


 , then 

_ _

_ _ ( )

_ 1 ( ) 1norm salary over salary

i i i ij l

j T active s

t

et

'

t'

e cost e e xt' t' t


 
       

 
              (6)                                                                                                                                              



If i
e  works overtime at 't  (the total dedications of i

e  to all the active tasks at 't  are larger than 1), 

then the overtime salary 
_over salary

i
e  should be paid for the overtime working. The salary 

_norm salary

i
e  is paid 

for normal working time. 

                                   

2 2

3

1 1

( ) ( ) ( ) ( )1 1
( ) max 0, max 0,

( ) ( )

N N
q l I l q l I l

l

q qI l I l

duration t duration t cost t cost t
f t robustness

N duration t N cost t


 

       
           

      
  (7) 

The robustness measure 3
( )

l
f t  in (7) evaluates the sensitivity of a schedule’s efficiency quality to task 

effort variances based on a scenario-based approach. Here, 
I

duration  and 
I

cost  are the initial duration 

and cost obtained from (3) and (4), 
q

duration  and 
q

cost  are the corresponding efficiency objective 

values under the qth sampled task effort scenarios. N is the sample size, and   is a weight parameter. In 

our experiments, we set N=30, and 1  . 

1 1

4 -1

{ | _ _ ( ) _ _ ( )} { | _ _ ( ) _ _ ( )}

( )  ( ) ( )
i l l j l l

l ij ij l ij l

i e e ava set t e ava set t j T T ava set t T ava set t

f t stability x t x t
  

          (8) 

The stability measure 4
( )

l
f t  in (8) calculates the weighted sum of dedication deviations between the 

new and original schedules. It assists in preventing employees from being shuffled around too much, and is 

evaluated for all the available tasks at l
t  ( 0l

t t ) which are left from the previous schedule generated at

1l
t
 . We set the weight 

ij
  as shown in (9): 

                            

-1

-1

2     if ( )=0 and ( ) 0

= 1.5  if ( ) 0 and ( ) 0 

1     otherwise

ij l ij l

ij ij l ij l

x t x t

x t x t




 



                        (9) 

  

 
 

 

_ _ _ _

5

1

( )
_ _

j i

i l j l

k

i

k req skill

ij l

e e ava set t T T ava set t j i

l

l

ED

x t
req skill

f t satisfaction
e ava set t



 





 


 

            (10) 

The satisfaction measure 5
( )

l
f t  given in (10) evaluates the average degree of unwillingness of the 

employees to engage with the allocated tasks weighted by the dedication of employees to tasks. This 

objective is required to be minimized, as the other four objectives. The smaller the value of 5
( )

l
f t , the 

better the employees’ satisfaction with the generated schedule. 

The pseudo code for evaluating 1
( )

l
f t , 2

( )
l

f t , 3
( )

l
f t  and 4

( )
l

f t  is same as the one provided in our 

previous work [35], except that when calculating the objectives of project duration and cost, the 



proficiency ( )Proficiency

ij l
e t  of employee i

e  for task 
j

T  is updated at each l
t  according to 

LA

i
e , 

MO

i
e  and 

kSD . 

It is worth mentioning that at the initial time 0
t , only four of the objectives defined above (

I
duration ,

I
cost , robustness and satisfaction (without stability)) are optimized. 

3.6 Constraints 

In MODSPSP, the search space constraints at the rescheduling point l
t  are the following:  

1) No overwork constraints  

At the moment of time 't  after l
t , the total dedication of an available employee to all the active tasks 

that are being developed should not exceed his/her maximum dedication to the project, i.e.,  

 _ _ ( )
i l

e e ava set t  , l
t' t  ,  

_ _ ( )

_ ( )t'

i ij l

j T active set t'

e work x t


  , s.t. _ t' maxded

i i
e work e      (11) 

2) Task skill constraints 

All the available employees working together for one available task must collectively cover all the skills 

required by that task, i.e., 

 _ _ ( )
j l

T T ava set t  , s.t.  
_ _ ( )

| ( ) 0
i l

j i ij l

e e ava set t

req skill x t


                 (12)                                                                             

3) Maximum headcount constraints 

              _ _ ( )
j l

T T ava set t  , s.t.  min_
( ) max , ( )empnumteamsize maxhead

j l j j l
T t T T t                (13) 

where ( )teamsize

j l
T t  is the team size for accomplishing task 

j
T , 

min_
( )empnum

j l
T t  is the minimum number of 

available employees who should join 
j

T  in order to satisfy the task skill constraint, and 
maxhead

j
T  is the 

desired upper limit for ( )teamsize

j l
T t , aiming to reduce the communication overhead. Here, 

maxhead

j
T  is 

estimated as provided by the authors of [3]:    0.672
_ _max 1,   2 3maxhead est tot eff

j j
T round T . In (13), if 

( )teamsize

j l
T t  cannot be reduced to 

maxhead

j
T  without violating the task skill constraints (i.e., 

min_
( )empnummaxhead

j j l
T T t ), then ( )teamsize

j l
T t  can be relaxed up to 

min_
( )empnum

j l
T t . 

3.7 Discussion 

The MODSPSP model presented in our previous work [35] is an advanced version to that of the 

available ones in the literature. It captures more dynamic features of a real-world SPSP than previous 

models. When compared with our previous model, the superiorities of the improved MODSPSP model 

constructed in this paper are summarized as follows:  

(1) Consideration of employees’ properties on subjective initiative. Human resource is one of the main 



resources for any software project. To emphasize the effects of human factors on project success, more 

properties on employees’ initiative such as motivation, learning ability, and the degree with which each 

employee is willing to engage with each skill (and thus with each task), are introduced in the improved 

model.  

(2) Improvement of the skill level. To be more consistent with the reality, the proficiency of each 

employee on each skill is allowed to be improved over time. Upon investigating a real-world software 

project, in our current model, employees’ learning ability, motivation, and the skill difficulty are 

considered as the three most influencing factors on the skill proficiency growth rate. A relationship 

between these factors has been formulated and analyzed. In contrast, the skill level is regarded as 

time-invariant during the whole project in [35]. 

(3) Definition of the satisfaction objective. Based on the degree with which each employee is willing to 

engage with each skill (and thus with each task), the employees’ satisfaction with the generated schedule 

has been considered together with project duration, cost, robustness and stability, highlighting the fact that 

employees’ subjective initiative is paid more attention in modern software projects. In [35], the degree with 

which each employee is willing to engage with skills and the satisfaction of employees were not taken into 

account. 

4 A Q-learning-based proactive-rescheduling approach to solve the MODSPSP 

4.1 The Q-learning-based proactive-rescheduling framework 

4.1.1 Training agent to determine the appropriate scheduling approach using Q-learning 

   Q-learning is used to learn which scheduling approach is the most appropriate for the new project 

environment. The proposed Q-learning scheme for dynamic software project scheduling based on 

centralized control is shown in Fig.2. It is assumed that the agent is able to perceive information of the 

tasks and employees in the project environment, and make an appropriate decision about the action to be 

taken in the new environment. Here, the action refers to the use of certain global and local search methods 

in the MOTAMAQ-based scheduling approach. The software project is regarded as the environment for 

carrying out Q-learning. The MOTAMAQ-based scheduling approach follows the instructions of the agent. 

After a set of non-dominated scheduling solutions are generated by the specified scheduling approach, a 

signal is sent to the agent. Reward for the selected action is evaluated by the agent, and the corresponding 

state-action value is updated. The agent would give the instruction of the next action which is selected 

based on a predefined selection policy. Afterwards, for each state of the software project, the state-action 

value converges to an optimum value in iterative runs. 



agent in the Q-learning

software project scheduling environment

task1 task2 taskn

engineer1 engineer2 engineerm

the state s action

（the global and local search 

methods of MOTAMAQ）
reward to the actions taken

the current state

update of the state -action 

value Q(s,a)）

 

Fig. 2. Q-learning scheme for dynamic software project scheduling 

4.1.2 Procedure of the Q-learning-based proactive-rescheduling framework 

To handle both uncertainties and real-time events occurring during a software project, a 

Q-learning-based proactive-rescheduling framework is proposed for solving MODSPSP. Its pseudocode is 

depicted in Fig. 3. 

Procedure 1 The Q-learning-based proactive-rescheduling framework 

******** Initialization ********* 

1:  Set 0l  . 

2:  All the Q-values in the state-action pair table are initialized to be 0. 

3:  The initial state ( )
l

S t  of the project environment is perceived by the agent. 

4:  Select an arbitrary action ( )
l

A t . The global and local search methods of MOTAMAQ are selected based on the action ( )
l

A t . 

******** Proactive scheduling ********* 

5:  MOTAMAQ is triggered, and automatically generates a set of non-dominated solutions to optimize the four objectives, i.e., duration, 

cost, robustness, and employees' satisfaction, satisfying the three constraints defined by (11) - (13). 

6:  Calculate the HV value of the obtained non-dominated solution set, and set it as the reward ( )
l

r t . 

7:  The software manager selects one solution manually, or based on an automated decision making procedure. 
******** Rescheduling ********* 

8:  while the project is not completed 

9:    The new generated schedule is implemented in the current project. 

10:   if a critical dynamic event occurs 

11:      1l l  .  

12:      The skill level of each employee is updated. 

13:      The current state ( )
l

S t  of the project environment as the result of executing action 
1

( )
l

A t


 is perceived by the agent.   

14:      The value of 
1 1

( ( ), ( ))
l l

Q S t A t
 

 is updated according to (23) in Section 4.8. 

15:      An action ( )
l

A t  is chosen based on the selection policy given in Section 4.6. 

16:      The MOTAMAQ-based rescheduling approach determined by ( )
l

A t  is triggered and automatically generates a set of 

non-dominated solutions, which represent different trade-offs among the five objectives: duration, cost, robustness, stability 

and satisfaction, satisfying the three constraints defined by (11) - (13).  

17:      The reward value ( )
l

r t  is calculated to evaluate the performance of ( )
l

A t .  

18:      The software manager decides one schedule from the generated non-dominated solution set. 
19:   end if 

20: end while 

21: Exit. 

Fig. 3. Pseudo code for the Q-learning-based proactive-rescheduling framework. 

4.2 MOTAMAQ-based rescheduling method for MODSPSP 

Two_Arch2 [40] is a successful many-objective (4 or more objectives) optimization algorithm with low 

complexity. It maintains a convergence archive (CA) and a diversity archive (DA) to promote convergence 



and diversity separately. It adopts the I
   indicator [46] as the selection principle for CA to improve the 

convergence on many-objective optimization problems, and Pareto dominance for DA to promote diversity. 

In addition, it employs an Lp-norm-based distance (p < 1) to maintain diversity in DA. MODSPSP is a 

dynamic problem with five objectives. To solve it in an efficient way, our scheduling approach 

MOTAMAQ uses the general framework of Two_Arch2. Moreover, MOTAMAQ is also a memetic 

algorithm that employs both global and local search to generate child individuals. The appropriate global 

and local search methods in a specific environment are learned adaptively by the agent in Q-learning.  

At each rescheduling point l
t  ( 0l

t t ), a MOTAMAQ-based rescheduling approach is trigged to 

obtain a new schedule in the new environment. The pseudo code for MOTAMAQ is presented in Fig. 4. 

Procedure 2 MOTAMAQ at the rescheduling point 
l

t  (
0l

t t ) 

Input: 
pop

n - the population size. 
CA

n - the fixed size of the convergence archive ( )
l

CA t . 
DA

n - the fixed size of the diversity archive 

( )
l

DA t . Q - the number of uncertainty scenarios sampled. Lmax - the maximum number of iterations of the local search. NmbEvl - the 

maximum number of objective vector evaluations. ( )
l

A t - the action determined by Q-learning. 

Output: ( )
l

DA t , S- a selected solution. 

******** Initialization ********* 

1:  Generate an initial population ( )
l

P t  using heuristic strategies according to the updated project state at 
l

t . 

2:  Sample a set of task effort scenarios 
q

  at random according to the normal distribution, 1,2, ,q Q . 

3:  Evaluate each individual in ( )
l

P t . 

4:  All the Pareto non-dominated solutions are determined from ( )
l

P t  to form ( )
l

DA t . 

5:  Set ( )
l

CA t  as empty. 

6:  Set the counter of objective evaluation numbers ( )
l

ct P t .  

7:  while ct NmbEvl  

******** Variation ********* 

8:    Sample a set of task effort scenarios '

q
  at random according to the normal distribution, 1,2, ,q Q . 

9:    A certain global search method specified by ( )
l

A t  is employed on ( )
l

CA t  and ( )
l

DA t  to produce a child population 

1
( )

l
NPOP t . 

10:   Evaluate each individual in 
1
( )

l
NPOP t . 

11:   
1
( )

l
NPct ct OP t  . 

12:   A certain local search method specified by ( )
l

A t  is performed on the neighborhood of each individual in 
1
( )

l
NPOP t  for Lmax 

times, and a new child population ( )
l

NPOP t  is obtained.  

13:  
max 1

( )
l

NPOPct ct L t   . 

******** Update ( )
l

CA t  by the I
 

 indicator ********* 

14:   Find non-duplicated objective values of individuals in ( ) ( )
l l

CA NPOPt t , and set them as ( )
l

CA t .  

15:   if ( )
l CA

A tC n  

16:     The extra solutions are removed from ( )
l

CA t  according to the I
 

-based fitness value.  

17:   end if 

******** Update ( )
l

DA t  by Pareto dominance ********* 

18:   Find non-dominated solutions in ( ) ( )
l l

NPO t DA tP , and set them as ( )
l

DA t . 

19:   if ( )
l DA

DA t n    

20:     Set ( )
l

AD t  empty. 

21:     while ( )
l DA

AD t n  

22:        Select an appropriate solution from ( )
l

DA t  based on the Lp-norm-based (p < 1) distance. 



23:        Add it to ( )
l

AD t . 

24:     end while 

25:     )( ) (
l l

DA t AD t . 

26:   end if 

27: end while 

28: Select one solution S from ( )
l

DA t  as the schedule to be implemented based on a decision making procedure.  

29: Output ( )
l

DA t  and S. 

30: Exit. 

    means cardinality of a set 

Fig. 4. Pseudo code for MOTAMAQ at the rescheduling point 
l

t  (
0l

t t ). 

In line 1 of the pseudo code shown in Fig. 4, updated project state is obtained in the same way as 

explained in section 4.2.2 of [35]. If genetic algorithm (GA)-based global search is performed, heuristic 

constructions of the initial population are obtained in the same way as explained in section 4.2.3 of [35]. If 

angle modulated differential evolution (AMDE) [14]-based global search is adopted, the population 

initialization is described in the following section 4.4.1 of this paper. In line 8, the sampled task efforts 

vary from one generation to another, which increases the probability of obtaining robust solutions 

undergoing a variety of scenarios. The global and local search methods in line 9 and line 12 are introduced 

in sections 4.4.1 and 4.4.2 of this paper, respectively. Updates of CA (lines 14-17) and DA (lines 18-26) are 

the same as those explained in [40]. The decision making procedure shown in line 28 is explained in 

section 4.2.4 of [35]. For each candidate solution, the constraint handling methods and the objective 

evaluation procedure are explained in sections 5.2 and 5.3 of [35], respectively. 

It is worth noting that at the initial time 0
t , the proactive scheduling is also performed using the 

MOTAMAQ procedure shown in Fig. 4, except that the population is randomly initialized in line 1 instead 

of using heuristic initialization, and when evaluating an individual, only four objectives (without stability) 

are considered. 

4.3 State description 

In MODSPSP, once a dynamic critical event occurs, a rescheduling approach is triggered. The new 

environment after the occurrence of a critical event is perceived by the agent, and is considered as the state 

in Q-learning. Since employees and tasks are the two main elements in the software project, the 

MODSPSP environment state is described by the following two aspects:  

1) Effort ratio 

It is defined as the ratio of the sum of remaining efforts of all the available tasks to the total efforts of all 

the tasks that have ever appeared in the project until now. This ratio is mainly affected by the number of 

available tasks and their remaining efforts. 

                                                 

                         𝑓𝑎1 = 𝐸𝑓𝑓𝑜𝑟𝑡 𝑅𝑎𝑡𝑖𝑜 =
∑ 𝑇𝑗

𝑒𝑠𝑡_𝑟𝑒𝑚_𝑒𝑓𝑓
(𝑡𝑙)𝑗∈𝑇_𝑎𝑣𝑎_𝑠𝑒𝑡(𝑡𝑙)

∑ 𝑇
𝑗
𝑒𝑠𝑡_𝑡𝑜𝑡_𝑒𝑓𝑓(𝑁𝐼+𝑁𝑛𝑒𝑤(𝑡𝑙))

𝑗=1

                   (14) 

2) Proficiency ratio 



It is defined as the ratio of the sum of proficiencies of all the available employees for all the available 

tasks to the sum of the highest proficiencies (i.e., 1) of all the employees for all the available tasks. This 

ratio is mainly affected by the number of available employees and their respective proficiencies. 

                𝑓𝑎2 = 𝑃𝑟𝑜𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑅𝑎𝑡𝑖𝑜 =
∑ ∑ 𝑒𝑖𝑗

𝑃𝑟𝑜𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
𝑖∈𝑒_𝑎𝑣𝑎_𝑠𝑒𝑡(𝑡𝑙)𝑗∈𝑇_𝑎𝑣𝑎_𝑠𝑒𝑡(𝑡𝑙)

∑ ∑ 1𝑀
𝑖=1𝑗∈𝑇_𝑎𝑣𝑎_𝑠𝑒𝑡(𝑡𝑙)

             (15) 

Nine states are defined in our work. The criterion for the classification of the nine states is listed in Table 3. 

Table 3 

State classification. 

S1 S2 S3 S4 S5 

1
0 0.4fa   

2
0 0.6fa   

1
0 0.4fa   

2
0.6 0.9fa   

1
0 0.4fa   

2
0.9 1fa   

1
0.4 0.8fa   

2
0 0.6fa   

1
0.4 0.8fa   

2
0.6 0.9fa   

S6 S7 S8 S9  

1
0.4 0.8fa   

2
0.9 1fa   

1
0.8 1fa   

2
0 0.6fa   

1
0.8 1fa   

2
0.6 0.9fa   

1
0.8 1fa   

2
0.9 1fa   

 

 

4.4 Definition of actions 

MOTAMAQ is a memetic algorithm, which is composed of both global and local searches. Different 

combinations global and local search methods are regarded as different actions. 

4.4.1 Global search 

Two global search methods: GA-based and AMDE-based are designed. 

1) GA-based representations and variation operators 

In MOTAMAQ’s GA-based global search, binary encoding is used to represent individuals. The 

original solution of MODSPSP is a dedication matrix  
 + ( )

X( ) ( )
I new l

l ij l M N N t
t x t


 , where

( ) 0,  maxded

ij l i
x t e   . Here, nb  bits are employed to encode ( )

ij l
x t ; thus,

 ( ) 0, 1 , ,maxded maxded

ij l i i
x t e k e k k   , 2 1nbk   . The value of ( )

ij l
x t  should be searched only when i

e  

and 
j

T  are available at l
t ; in any other cases, ( ) 0

ij l
x t  . For the sake of simpler computation, only the 

values of  ( ) ( ) | ( ) 1 and ( ) 1available available

ij l ij l i l j l
x t x t e t T t    are encoded, such that the chromosome has a 

length of _ _ ( ) _ _ ( )
l l

e ava set t T ava set t nb   bits.  

When evaluating the objective values, each chromosome should be decoded into a dedication matrix. 

An illustration of a binary chromosome representation and its decoded dedication matrix is shown in Fig. 5, 

where there are two available employees 2
e  and 3

e , two available tasks 1
T  and 2

T , one leaving 

employee 1
e , one finished task 3

T , and . 

In the GA-based global search, a crossover operator designed for matrices [27] is employed. It 

3nb 



decodes the parent binary chromosomes into dedication matrices at first. Then either rows or columns in 

the two parent dedication matrices are exchanged with an equal probability of 0.5. Later, the matrices are 

once again transformed into binary chromosomes. The mutation operator is bit-flip mutation. 

 0 1  0      1 1 1      1 0 0      0 0 0
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Fig. 5. An illustration of chromosome representation and its dedication matrix. 

 The pseudo code of GA-based global search is shown in Fig. 6. When the global search operator is set 

to GA-based global search, the procedure shown in Fig. 6 is called from line 9 of MOTAMAQ in Fig. 4 in 

order to produce an offspring population 1
( )

l
NPOP t .  

Procedure 3 GA-based global search at the rescheduling point 
l

t  (
0l

t t ) 

Input: ( )lCA t - the convergence archive. ( )lDA t - the diversity archive. ( )
l

P t - the initial population. 
pop

n - the population size. 

Output: 
1( )lNPOP t   

********Crossover********* 

1: Set 
11( )lNPOP t  as empty. 

2: While 
11( ) 2*l popNP t nOP   

3:  If ( )lCA t  is empty 

4:    Select two individuals from ( )
l

P t  uniformly at random as the parents. 

5:  else 

6:    Select one parent individual from ( )lDA t  uniformly at random. 

7:    Select another parent individual from ( )lCA t . If ( ) 1lCA t  , then select the individual in ( )lCA t  as the parent individual. 

Otherwise, two individuals are picked up uniformly at random from ( )lCA t , and check the domination of each other. If one 

dominates the other, the former will be chosen. Otherwise, one of them is selected at random.  

8:  end if 

9:  Perform the crossover operator designed for matrices on the two parent individuals. Then two child individuals are generated and 

added into 
11( )lNPOP t . 

10: end while 

********Mutation********* 

11: Set 
12( )lNPOP t  empty. 

12: while 
12( )l poptNP nOP   

13:  if ( )lCA t  is empty 

14:    Select one individual from ( )lDA t  uniformly at random. 

15:  else  

16:    Select one individual from ( )lCA t  uniformly at random.  

17:  end if 

18:  Perform the bit-flip mutation on the selected individual, and a child individual is generated and added into 
12( )lNPOP t . 

19: end while 

20:
1 11 12( ) ( ) ( )l l lt tNPOP NPOP NPOP t . 

21: Output 
1( )lNPOP t . 

22: Exit. 

Fig. 6. Pseudo code for GA-based global search at the rescheduling point 
l

t (
0l

t t ). 

 

 



 

2) AMDE-based representations and variation operators 

AMDE is designed for solving binary-valued optimization problems through operations from the 

original DE. It converts a binary-valued problem into a 4-dimensional problem in a continuous-valued 

space using angular modulation. AMDE operates by evolving the values of the four coefficients a, b, c, 

and d of the bit string generating function given by (16).   

                    g(x) = sin(2𝜋(𝑥 − 𝑎) × 𝑏 × cos (2𝜋(𝑥 − 𝑎) × 𝑐)) + 𝑑                 (16)  

Hence, in our AMDE-based global search, 4-dimensional real number encoding has been used for 

individual representation, with the range of  1,  1  for each dimension [14]. 

In (16),  2,  2x   has been selected as shown in [14]. Similar to the GA-based global search, the 

binary chromosome has a length of 1 _ _ ( ) _ _ ( )l ll e ava set t T ava set t nb    bits. Thus, 1l  values for 

x are evenly sampled from  2,  2 . The decoding procedure is described as follows: when a new 

individual with 4 dimensions is evolved using differential evolution (DE) [26] operators, replace the 

coefficients a, b, c, and d from (16) by its values. The resulting function value is calculated for each of the 

1l  sampled values iteratively. If the result is positive, a bit-value of 1 is recorded; otherwise, a bit-value of 

0 is recorded. Thus a bit string with the length of 1l  is obtained, and then translated into a dedication 

matrix as shown in Fig. 5 and evaluated. The DE mutation operators used in this study are DE/rand/2 and 

DE/curr. to best/1 [26].  

If AMDE-based global search is used, the initial population in line 1 of Fig. 4 is constructed as follows: 

to use the history information of MODSPSP and speed up algorithm convergence, 20% of the initial 

population are formed with the historic scheduling solution (the individual in the continuous-valued space 

with 4 dimensions) from the last rescheduling point and its variants produced by polynomial mutation [10]. 

The remaining 80% of the population is filled with random individuals.  

The pseudo code of AMDE-based global search is shown in Fig. 7. When the global search operator is 

set to AMDE-based global search, the procedure shown in Fig. 7 is called from line 9 of MOTAMAQ in 

Fig. 4 in order to produce an offspring population 1
( )

l
NPOP t .  

Procedure 4 AMDE-based global search at the rescheduling point 
l

t  (
0l

t t ) 

Input: ( )lCA t , ( )lDA t , ( )
l

P t , 
pop

n , 
1

F , 
2

F , 
3

F -mutation factors, CR-crossover ratio 

Output: 
1( )lNPOP t   

******** DE/rand/2 mutation and binomial-crossover********* 

1: Set 
11( )lNPOP t  as empty. 

2: while 
11( ) 2*l popNP t nOP   

3:  if ( )lCA t  is empty 

4:    Select one individual from ( )
l

P t  uniformly at random as a target individual p. If ( ) 1
l

DA t  , select 
1r

p , 
2r

p  and 
3r

p  from 

http://www.baidu.com/link?url=imqW_0aOCzr0IOgbmAIsIS2T8zeJzg0N4cZu3Kx8-7Ka0pskGaRQ54WpRy-2dP0C71RnmmgduJTxRpUv8PNjphhl9rJgAP0cPEbYqrNvMBOJfk-LNzUPYyCztsg0nf8p


( ) \lP t p , and 
4r

p  and 
5r

p  from ( )lDA t  uniformly at random, respectively; else if ( ) 1
l

DA t  , select 
1r

p , 
2r

p , 
3r

p  and 
4r

p  

from ( ) \lP t p , and 
5r

p  from ( )lDA t  uniformly at random, respectively. 

5:  else 

6:    Select one individual from ( )lCA t  uniformly at random as a target individual p. If ( ) 3lCA t   and ( ) 1lDA t  , select 
1r

p , 

2r
p  and 

3r
p  from ( ) \lCA t p , and 

4r
p  and 

5r
p  from ( )lDA t  uniformly at random, respectively; else select 

1r
p , 

2r
p , 

3r
p , 

4r
p  and 

5r
p  from  ( ) ( ) ( ) \

l l l
CA t DA t P t p  uniformly at random. 

7:  end if  

8:  The DE/rand/2 mutation is performed on p, and a donor solution v is generated: 
1 2 3 4 51

( )
r r r r r

v p F p p p p     . 

9:  Check each dimension of v. If the value of a certain dimension is out of bounds, it is replaced by a random value within bounds. 

10:  Apply the binomial crossover operator on p and v, to obtain a trial solution u: 
   if  or 

   else

j j rand

j

j

v rand CR j j
u

p

 
 


，where 
ju , 

j
v , 

and 
j

p  are the jth dimension of u, v, and p, respectively, 1,2,3,4j  , and 
randj  is a value generated from  1,2,3,4  uniformly 

at random. 

11:  u is added into 
11( )lNPOP t . 

12: end while   

******** DE/curr. to best/1 mutation and binomial-crossover********* 

13: Set 
12( )lNPOP t  empty. 

14: while 
12( )l poptNP nOP   

15:  if ( )lCA t  is empty 

16:    Select one individual from ( )
l

P t  uniformly at random as a target individual p. Select 
2r

p  and 
3r

p  from ( ) \lP t p , and 
bestp  

from ( )lDA t  uniformly at random, respectively. 

17:  else 

18:    Select one individual from ( )lCA t  uniformly at random as a target individual p, and select 
bestp  from ( )lDA t  uniformly at 

random. If ( ) 2lCA t  , select 
2r

p  and 
3r

p  from ( ) \lCA t p  uniformly at random, else, select 
2r

p  and 
3r

p  from 

 ( ) ( ) \l lCA t P t p  uniformly at random. 

19:  end if 

20:  The DE/ curr. to best/1 mutation is performed on p, and a donor solution v is generated: 
2 32 3( ) ( )r r bestv p F p p F p p     . 

21:  Check each dimension of v. If the value of a certain dimension is out of bounds, it is replaced by a random value within bounds. 

22:  Apply the binomial-crossover operator on p and v, to obtain a trial solution u. 

23:  u is added to 
12( )lNPOP t . 

24: end while 

25:
1 11 12( ) ( ) ( )l l lt tNPOP NPOP NPOP t . 

26: Output 
1( )lNPOP t . 

27: Exit. 

Fig. 7. Pseudo code for DE-based global search at the rescheduling point 
l

t  (
0l

t t ). 

4.4.2 Local search 

To work with the GA-based global search (for which the individual is defined in the binary-valued 



space), two local search approaches are designed, which are denoted as 
1

bLS  and 
2

bLS . With 
1

bLS , the 

value of each entry in the dedication matrix X( )
l

t  of the considered individual is replaced by a different 

value selected uniformly at random from the set {0, 1 , , }maxded maxded

i i
e k e k k   with a probability Pm, 

where 1 ( _ _ ( ) _ _ ( ) )
m l l

P T ava set t e ava set t  . 
2

bLS  swaps two randomly selected rows or columns in 

X( )
l

t . It is worth noting that after performing the above local search, the heuristic operator is executed on 

the dedication matrix of the resulting solution, which sets the dedication of an employee for a task to 0 if 

he/she has none of the skills required by the task, i.e., if 0Proficiency

ij
e  , then set ( ) 0

ij l
x t  .  

To work with the AMDE-based global search (where the individual is defined in the continuous-valued 

space), two local search approaches are designed that are denoted by 
1

cLS  and 
2

cLS . In 
1

cLS , polynomial 

mutation is performed on each entry of the considered individual with a probability ' =1 4
m

P  (the length 

of an individual in AMDE is 4), whereas for 
2

cLS , uniform mutation is performed with a probability of '

m
P . 

The heuristic operator is also performed on the dedication matrix of the resulting solution. 

4.4.3 Four actions 

 A total of four actions are defined by combining the global search procedures described in section 

4.4.1 with the local search procedures described in section 4.4.2. These actions are listed in Table 4. 

Table 4 

The four MOTAMAQ actions. 

A1 A2 A3 A4 

GA+LS1
𝑏 GA+LS2

𝑏 AMDE+LS1
𝑐 AMDE+LS2

𝑐 

 

4.5 State-action pair table 

The state-action pair table is presented in Table 5. This table is used by Q-learning to decide which 

action to use for a given state as explained in section 4.6. Its Q-values are updated as explained in sections 

4.7 and 4.8. 

Table 5 

State-action pair table. 

         Action No. 

State No. 
A1 A2 A3 A4 

S1 Q(S1, A1) Q(S1, A2) Q(S1, A3) Q(S1, A4) 

S2 Q(S2, A1) Q(S2, A2) Q(S2, A3) Q(S2, A4) 

S3 Q(S3, A1) Q(S3, A2) Q(S3, A3) Q(S3, A4) 

…… …… …… …… …… 

S9 Q(S9, A1) Q(S9, A2) Q(S9, A3) Q(S9, A4) 



4.6 Action selection policy 

For the perceived environment state  l
S t , a selection policy   l

S t , is used by an agent to select 

an action. Here, the selection probability   ,
l i

P S t A  for each candidate action i
A  ( 1,2, ,i NA ,  

where NA is the number of candidate actions), is determined by the Q-values in the state-action pair table 

with the help of the softmax function:                                    

𝑃(𝑆𝑡𝑙
, 𝐴𝑖) =

𝑒𝑥𝑝(𝜃𝑄(𝑆(𝑡𝑙),𝐴𝑖) max
𝑖=1,2,⋯,𝑁𝐴

𝑄(𝑆(𝑡𝑙),𝐴𝑖)⁄ )

∑ 𝑒𝑥𝑝(𝜃𝑄(𝑆(𝑡𝑙),𝐴𝑖) max
𝑖=1,2,⋯,𝑁𝐴

𝑄(𝑆(𝑡𝑙),𝐴𝑖)⁄ )𝑁𝐴
𝑖=1

                 (17) 

where, 2  is used in this work. An action  l
A t  is then chosen from  1 2

, , ,
NA

A A A  according to 

the roulette wheel selection. 

4.7 Reward of an action 

The reward value is essentially served to reinforce the action and guide the agent to accomplish its goal. 

After executing  l
A t , a reward value  l

r t  is given to evaluate the performance of  l
A t  and also to 

update the state-action pair value ( ( ), ( ))
l l

Q S t A t . For multi-objective optimization, the hypervolume (HV) 

[47] is a commonly used metric mainly because of its ability to evaluate both the convergence and spread 

of the obtained non-dominated front. In our approach, HV is calculated as the reward  l
r t  for the 

selected action  l
A t . A larger  l

r t  value indicates a better convergence and a wider spread. 

The reference point for calculating HV is obtained by estimating the worst value on each objective in 

the current environment state , which is given as follows: 

 max max _ _

1
_ _ ( ) _ _ ( )

_ _ ( )

_ _

_ _ ( )
_ _ ( )

( ) ( ) min max

           7 ( ) min

i l j l
j l

i l
j l

est rem eff maxded

l I j l i j
e e ava set t T T ava set t

T T ava set t

est rem eff maxded

j l i
e e ava set t

T T ava set t

f t duration T t e k V

k T t e

 





 

 




       (18) 

In the worst case, tasks are processed one by one. The total dedication for each task is the minimum 

value 
_ _ ( )
min

i l

maxded

i
e e ava set t

e k


, and the cost driver value j
V  of each task j

T  takes the maximum value 7. 

max max _ _ _

2

_ _ ( ) _ _ ( )

( ) ( ) 7
i l j l

over salary est rem eff

l I i j l

e e ava set t T T ava set t

f t cost e T t
 

                  (19) 

In the worst case, all available employees are dedicated to all the tasks with individual overwork salary 

_over salary

i
e . Besides, the total dedication of each employee to each task j

T  is equal to the total effort 

 l
S t



required for the task 
_ _ ( ) 7est rem eff

j l
T t  , in which the maximum cost driver value of each task takes the value 

7.  
max max

3
( ) 10

l rob
f t robustness C                            (20) 

From experimental observations, it is noted that the robustness value of each scheduling solution is 

always a lot smaller than the constant . 

max max

4
_ _ ( )

( ) _ _ ( ) _ _ ( ) 2 max
i l

maxded

l l l i
e e ava set t

f t stability e ava set t T ava set t e


           (21) 

In the worst case, the dedication deviation of each available employee to each available task is

_ _ ( )
max

i l

maxded

i
e e ava set t

e


, and the weight ij
  always takes the maximum value of 2. 

                      max max

5
_ _ ( )

( ) _ _ ( ) max
i l

maxded

l l i
e e ava set t

f t SD T ava set t e


                     (22) 

In the worst case, the average dissatisfaction degree and the dedication of each available employee to 

each allocated available task are 1 and 
_ _ ( )
max

i l

maxded

i
e e ava set t

e


, respectively. 

4.8 Update of the Q-value 

During the learning process of the agent in Q-learning, the Q-value of the state-action pair 

1 1
( ( ), ( ))

l l
Q S t A t

   is updated as follows: 

   
 1 2

1 1 1 1 1
, , ,

( ( ), ( )) (1 ) ( ( ), ( )) ( ) max ( ( ), )
i NA

l l l l l l i
A A A A

Q S t A t Q S t A t r t Q S t A  
    



    
  

, 1t    (23) 

where 
 1 2, , ,
max ( ( ), )

i NA
l i

A A A A
Q S t A


 is the maximum state-action pair Q-value at the new perceived state ( )

l
S t  

after executing 1
( )

l
A t

 ; 0 1   is the learning rate; 0 1   is the discount rate, which indicates 

the influence of the future reward on the current situation. 

5 Experimental studies 

Considering the complex and dynamically changing environments of software projects, we perform 

experiments with the aim of providing software managers with a detailed insight on selecting a scheduling 

approach for solving MODSPSP. This insight should be supported by evidences demonstrating which 

scheduling approach is likely to behave better based on the performance indexes that may affect the 

software manager’s decision. Therefore, in this section, we compare our Q-learning based scheduling 

approach (MOTAMAQ) with seven other MOEA-based dynamic scheduling approaches in terms of 

convergence, distribution, and spread performance metrics. These performance metrics are often used to 

evaluate multi-objective optimization approaches. In addition, different trade-offs among the five 

objectives are analyzed by presenting the Pareto fronts of software projects. 

5.1 Dynamic software project simulation model and instances 

In order to validate the effectiveness and efficiency of our proposed model and approach, 18 

rob
C



MODSPSP instances derived from Alba and Chicano’s benchmarks [1], and 3 real-world instances derived 

from business software construction projects for a departmental store [4] are adopted in this work. All the 

experiments are implemented in MATLAB running on a personal computer with Intel core i5, 3.2 GHz 

CPU and 4 GB RAM.  

The 21 MODSPSP test instances generated here are similar to those used in our previous work [35]. 

The differences between them are summarized as follows: (1) Properties such as learning ability 
LA

i
e , 

motivation 
MO

i
e , and the degree with which employees are willing to engage with each skill 

ED

i
e  are 

attached to each employee i
e  ( 1,2, ,i M ), and the degree of difficulty kSD  is attributed to the kth 

skill ( 1,2, ,k S ). (2) The skill level of each employee can be improved with time according to Eq. (1) 

such that the proficiency of each employee for each task is also improved. The range of the proficiency 

score is [0, 100]. From interviews with real-world software managers, for most people, the learning ability 

and motivation factors are close to the average level, and the probability of possessing a higher or lower 

level decreases gradually. Thus, 
LA

i
e  and 

MO

i
e  are assumed to follow the normal distribution N(0.5, 

0.15), with a mean value of 0.5 and variance of 0.15. kSD  and 
ED

i
e  are sampled uniformly from [0, 1] 

at random, respectively. If an employee possesses one skill, the initial proficiency score is sampled 

uniformly from (0, 100] at random, otherwise it is set to 0. For all 21 test instances, 10 new tasks are added 

one by one following the Poisson distribution during the project implementation. Besides, employee leaves 

and returns are also assumed to follow the Poisson distribution.  

The 18 randomly generated MODSPSP instances are named as sT#1_dT#2_E#3_SK#4-#5, where sT#1 

represents the number of initial static tasks, dT#2 denotes the number of new arriving tasks, E#3 represents 

the number of employees, and SK#4-#5 denotes each employee possesses #4 to #5 skills. For example, 

sT20_dT10_E10_SK4-5 means that 20 tasks exist initially in the project; then 10 new tasks are added one 

by one dynamically. A total of 10 employees each of whom possesses 4-5 skills are available to take part in 

the project. The 3 real-world instances are named Real_1, Real_2 and Real_3, respectively. 

5.2 Parameter settings 

Parameter settings of our approach MOTAMAQ are presented in Table 6. For each independent run, 

the algorithm iterates until 15000 objective vector evaluations are performed. In order to decide which 

solution to adopt for a given rescheduling point, the decision-making procedure presented in [35] is 

adopted with the following pairwise comparison matrix for the five objectives: 

 1 5 5

1 1 2 2 2

1 1 2 2 2

C = 1 2 1 2 1 1 1

1 2 1 2 1 1 1

1 2 1 2 1 1 1

ij
c



 
 
 

  
 
 
  

. 



Thus, the corresponding weight vector for the objectives is: 

 
5  1

w [0.2857 0.2857 0.1429 0.1429  0.1429]T

i
w


  . 

 

Table 6 

Parameter settings of MOTAMAQ.  

pop
n - population size                                     100 

CA
n - the fixed size of ( )lCA t                                100 

DA
n - the fixed size of ( )lDA t                                100 

Q - the number of uncertainty scenarios sampled               30 

Lmax - the iteration number of local search                      5 

p - the parameter in the Lp-norm-based distance              1/4 in the proactive scheduling, 1/5 in the rescheduling procedure 

Crossover probability in GA-based global search                0.9 

Mutation probability in GA-based global search                 1/L, where L is the chromosome length   

CR - crossover ratio in AMDE-based global search               0.1 

1
F , 

2
F , 

3
F - mutation factors in AMDE-based global search     a random number sampled uniformly from [0.8, 0.9] 

maximum number of objective vector evaluations                15000 

5.3 Validating the effectiveness of the strategies designed in MOTAMAQ  

5.3.1 Introduction to the compared approaches 

In this section, the proposed Q-learning-based scheduling approach MOTAMAQ is compared with 

seven other MOEA-based dynamic scheduling approaches. These other approaches also used the 

framework of proactive-rescheduling, i.e., a robust schedule is generated initially by proactive scheduling 

with regards to project uncertainties, and then the previous schedule is revised by the rescheduling 

approach in response to critical dynamic events. The heuristic population initialization mechanism that has 

been validated as an effective dynamic optimization strategy [35] is also adopted in the rescheduling 

approach. The differences among the compared algorithms are in that the proactive scheduling and 

rescheduling approaches are based on different MOEAs.  

To validate the effectiveness of the many-objective handling strategy, the local search operators, and the 

Q-learning based learning mechanism employed in MOTAMAQ, the approach is compared to dε-MOEA 

(proposed as a rescheduling method in our previous work [35]), a MOEA/D-DE [23]-based rescheduling 

method, and a NSGA-III [8]-based rescheduling method. The dε-MOEA uses the ε-domination relation [9] 

and adopts efficient parent and archive update strategies. It has been validated as effective in producing 

good convergence and diversity compared to the state-of-the-art dynamic MOEA [35]. MOEA/D [44] is a 

promising algorithm which has gathered significant attention in recent years. It provides a new and general 

framework for solving multi-objective or many-objective problems based on decomposition. MOEA/D-DE 

is an improved version of MOEA/D, which employs a DE operator for generating new individuals. 

NSGA-III is a recently developed reference-point-based many objective evolutionary algorithm following 

the NSGA-II [11] framework. It maintains diversity based on a set of uniformly distributed reference 

points assigned in advance. The chromosome representations and variation operators in dε-MOEA and 

NSGA-III are the same as those in the GA-based global search, and the same parameter settings of 



MOTAMAQ are used with dε-MOEA. Parameter settings of NSGA-III are: in the proactive scheduling 

(four objectives are considered), the number of reference points is 165, and the population size is 168. In 

the rescheduling approach (five objectives are considered), the number of reference points is 210, and the 

population size is 212. The chromosome representations in MOEA/D-DE are the same as that in 

AMDE-based global search, and the DE operator is represented in the similar fashion as in [23]. Parameter 

settings of MOEA/D-DE are: T (the neighborhood size of each subproblem) is 5,   (the probability that 

the parent individuals in variation operators are selected from the neighborhood) is 0.9 and r
n  (the 

maximal number of individuals replaced in the neighborhood when updated) is 2 [23].   

To further investigate the influence of the self-adaptive learning mechanism based on Q-learning, 

MOTAMAQ has been compared to four additional algorithms without Q-learning. These algorithms use 

each of the four actions listed in section 4.4.3, respectively. In other words, the global and local search 

methods of these algorithms are fixed to a single action while executing the entire project, no matter how 

the project environment changes. The four algorithms are named as MOTAMA-GA- LS1
𝑏 , 

MOTAMA-GA- LS2
𝑏 , MOTAMA-AMDE- LS1

𝑐 , MOTAMA-AMDE- LS2
𝑐 , respectively. This group of 

comparisons can provide a software manager with an insight into whether it would be helpful to learn the 

features of different environments, and select the appropriate search operators adaptively according to the 

learned information. Parameter settings of the four algorithms are the same as those of MOTAMAQ (given 

in Table 6). Note that all algorithms will stop after 15000 objective vector evaluations in one run. 

5.3.2 Performance measures 

In multi-objective optimization, convergence, distribution and spread are the three main performance 

criteria used to evaluate the quality of the obtained Pareto front. If a Pareto front with good convergence, a 

uniform (in most cases) distribution and a wide spread can be found, the software manager can get a full 

picture of the various trade-offs among project duration, cost, robustness, stability, and satisfaction. Thus, 

he/she is able to make an informed decision or modify his/her own manual schedule on the basis of project 

requirements. 

In this work, four popular metrics are used to evaluate the algorithm performances. The first one is the 

hypervolume ratio (HVR) [38] which calculates the ratio of the size of the objective space dominated by 

the obtained Pareto front PFknown to that dominated by the reference Pareto front PFref. A larger HVR value 

indicates a better convergence and a wider spread of the generated Pareto front. The second one is the 

inverted generational distance (IGD), which evaluates how far PFref is from PFknown [23]. IGD can 

measure both convergence and diversity. A small IGD value means the obtained solutions are close to PFref 

and do not miss any part of the whole PFref. The third one is a distribution metric named Spacing, which 

evaluates the distance variance of neighbouring vectors in PFknown [33]. A smaller Spacing indicates a more 

uniform distribution of PFknown. The fourth one is the modified Spread [35], which evaluates the extent of 

spread that the obtained solutions achieve and how uniform PFknown distributes in problems with more than 

two objectives. A small Spread indicates a wide and uniform spread of solutions in PFknown. 

At each rescheduling point, the true Pareto front in the current environment is unknown in MODSPSP. 

Thus, PFref  is obtained by merging the solutions produced in all the independent runs from a total of eight 



algorithms, and then by determining the non-dominated solutions out of them. The reference point needed 

in HVR consists of the worst objective values obtained during all optimization runs. When deciding which 

algorithm to adopt, the convergence performance (HVR and IGD) of an algorithm should be considered 

first by the software manager, because better objective values are always vital. Out of two algorithms with 

equal amount of convergence, the one with a better distribution (Spacing) and spread (Spread) should be 

selected. 

5.3.3 Performance comparison procedure 

As previously mentioned, MOTAMAQ is compared with the seven other MOEA-based dynamic 

scheduling approaches in terms of the overall performance during the dynamic process of a project. For 

each MODSPSP instance, the procedure followed is described below: 

Step 1: At the beginning of the project, MOTAMAQ is used as the proactive scheduling approach to 

generate a set of non-dominated schedules. Then a schedule is chosen to be implemented based on the 

decision-making procedure explained in [35].  

Step 2: Once a critical dynamic event occurs, a rescheduling method is triggered. At each rescheduling 

point, the following sub-steps are carried out: 

Sub-step 2.1: 30 independent runs of each approach are replicated. The “robustness” value is 

recalculated for each solution obtained by the eight approaches using the same 100 randomly sampled task 

efforts. Following this, eight updated non-dominated sets are obtained for each run. 

    Sub-step 2.2: All the updated non-dominated sets produced by the eight approaches in the 30 runs are 

merged. The new non-dominated solutions are determined from them to form the reference Pareto front.   

Sub-step 2.3: For each approach in each of the 30 runs, the performance values (HVR, IGD, Spacing, 

Spread) are evaluated based on the reference Pareto front and its updated non-dominated set. Therefore, 30 

values of each metric are recorded for each approach. As shown in Fig. 8, at the rescheduling point lt , the 

30 values are: 
, ( )k i

j lmetric t , 1,2, ,30j  , where 
, ( )k i

j lmetric t  represents the ith performance metric 

value of the kth approach in the jth run at lt , k=1,2,3,4,5,6,7,8, 1,2,3,4i  , and HVR, IGD, Spacing and 

Spread are considered as the 1st to the 4th metric, and MOTAMAQ, dε-MOEA, MOEA/D-DE, NSGA-III, 

MOTAMA-GA- LS1
𝑏 , MOTAMA-GA- LS2

𝑏 , MOTAMA-AMDE- LS1
𝑐 , MOTAMA-AMDE- LS2

𝑐  are 

considered as the 1st to the 8th  approach, respectively. 

Sub-step 2.4: One solution is chosen from the reference Pareto front as the new schedule to be carried 

out in the project through the decision-making procedure explained in [35]. In this way, it will be ensured 

that, at each rescheduling point, the eight approaches are compared in the same project environment. 

Step 3: If the entire project is not finished, then move to the next rescheduling point and go to Step 2; 

otherwise, go to Step 4. 

Step 4: In order to compare the significance of the differences in the overall performances of the eight 

approaches across different runs and rescheduling points, Wilcoxon rank-sum tests with significance level 

of 0.05 are used in this work. For the jth ( 1,2, ,30j  ) run of the kth (k=1,2,3,4,5,6,7,8) approach, the ith 



( 1,2,3,4i  ) performance values are averaged over the second half of the rescheduling points, as 
,k i

jmean  

shown in Fig. 8 (there is a training process for the learning of our approach, and to eliminate transient 

effects, only the latter half of the rescheduling points are considered to calculate the statistical performance 

values in dynamic environments). The 30 mean values 
,k i

jmean  ( 1,2, ,30j  ) form the vector 
,k iVec . 

The 
,k i

jmean  values are averaged first (the results are summarized in Table 7). Then, for the ith metric, the 

pairwise comparisons between the vector 
1,iVec  of our approach and that of the other approach (

,k iVec , 

k=2,3,4,5,6,7,8) are performed by Wilcoxon rank-sum tests. The results of the statistical tests are given in 

Table 8, and summarized in Table 9.  

For the ith performance metric of the kth approach:
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Fig. 8. An illustration for the overall performance comparisons of eight dynamic scheduling approaches in one MODSPSP instance (L is the 

total number of rescheduling points in the considered instance, and different instances may have different values of L). 

 

Table 7 

Average performance values of eight approaches across rescheduling points and different runs on the 21 test instances (The best value is in 

bold). 

Metrics HVR IGD Spacing Spread HVR IGD Spacing Spread 

Instance sT10_dT10_E5_SK4-5 sT10_dT10_E10_SK4-5 

MOTAMAQ 0.8351 0.1306 0.0641 0.6216 0.8235 0.1522 0.0349 0.4838 

dε-MOEA 0.7668 0.1965 0.0782 0.5884 0.7148 0.1736 0.0340 0.4926 

MOEA/D-DE  0.7667 0.1987 0.0813 1.0672 0.3481 0.3889 0.0453 1.0112 

NSGA-III 0.7931 0.1600 0.0592 0.6473 0.7020 0.1611 0.0352 0.4812 

MOTAMA-GA-LS1
𝑏

 0.7397 0.1614 0.0691 0.6381 0.7561 0.1560 0.0396 0.4795 

MOTAMA-GA-LS2
𝑏

 0.7283 0.1719 0.0770 0.6468 0.7326 0.1540 0.0378 0.5018 

MOTAMA-AMDE-LS1
𝑐

 0.7106 0.1747 0.0787 0.6467 0.5724 0.3451 0.0370 0.5367 

MOTAMA-AMDE-LS2
𝑐

 0.6983 0.1905 0.0725 0.6553 0.5651 0.3538 0.0350 0.5332 

Instance sT10_dT10_E15_SK4-5 sT10_dT10_E5_SK6-7 

MOTAMAQ 0.8535 0.1425 0.0263 0.5042 0.8433 0.1193 0.0332 0.4414 

dε-MOEA 0.8087 0.1797 0.0351 0.5142 0.8460 0.1397 0.0389 0.4561 

MOEA/D-DE  0.3625 0.3634 0.0425 1.0411 0.4025 0.3212 0.0513 0.9792 

NSGA-III 0.7866 0.1770 0.0297 0.4976 0.7881 0.1567 0.0364 0.4190 

MOTAMA-GA-LS1
𝑏

 0.7200 0.1834 0.0326 0.5084 0.7673 0.1618 0.0377 0.4225 

MOTAMA-GA-LS2
𝑏

 0.7298 0.1914 0.0391 0.5482 0.7910 0.1531 0.0403 0.4410 

MOTAMA-AMDE-LS1
𝑐

 0.5728 0.3229 0.0332 0.6121 0.5600 0.2788 0.0433 0.4020 

MOTAMA-AMDE-LS2
𝑐

 0.5645 0.3343 0.0360 0.6204 0.5597 0.2889 0.0421 0.4113 



Instance sT10_dT10_E10_SK6-7 sT10_dT10_E15_SK6-7 

MOTAMAQ 0.8388 0.1359 0.0351 0.4545 0.8817 0.1564 0.0355 0.5054 

dε-MOEA 0.8142 0.1890 0.0379 0.4633 0.8486 0.1925 0.0300 0.5243 

MOEA/D-DE  0.5522 0.3505 0.0567 0.9667 0.2951 0.3920 0.0473 0.9285 

NSGA-III 0.8209 0.1299 0.0372 0.4913 0.8109 0.2016 0.0297 0.4803 

MOTAMA-GA-LS1
𝑏

 0.7649 0.2044 0.0382 0.4569 0.8351 0.1644 0.0322 0.4935 

MOTAMA-GA-LS2
𝑏

 0.7869 0.1781 0.0364 0.4601 0.8442 0.1672 0.0369 0.4865 

MOTAMA-AMDE-LS1
𝑐

 0.6931 0.3150   0.0458 0.4818 0.6745 0.2477 0.0357 0.5339 

MOTAMA-AMDE-LS2
𝑐

 0.6882 0.3321 0.0463 0.4884 0.6714 0.2534 0.0342 0.5301 

Instance sT20_dT10_E5_SK4-5 sT20_dT10_E10_SK4-5 

MOTAMAQ 0.8595 0.1372 0.0373 0.4475   0.8852   0.1982 0.0325 0.5252 

dε-MOEA 0.8671 0.1509 0.0361 0.4206 0.8525 0.2498 0.0297 0.5153 

MOEA/D-DE  0.4582 0.3046 0.0529 0.9450 0.2486 0.4730 0.0497 0.9631 

NSGA-III 0.8420 0.1608 0.0373 0.4288 0.8104 0.2437 0.0346 0.5292 

MOTAMA-GA-LS1
𝑏

 0.8208 0.1507 0.0386 0.4208 0.8201 0.2315 0.0377 0.5526 

MOTAMA-GA-LS2
𝑏

 0.8373 0.1478 0.0368 0.4359 0.8154 0.2320 0.0385 0.5190 

MOTAMA-AMDE-LS1
𝑐

 0.6804 0.2877 0.0396 0.4765 0.6320 0.3249 0.0357 0.4927 

MOTAMA-AMDE-LS2
𝑐

 0.6644 0.2942 0.0378 0.4830 0.6239 0.3153 0.0376 0.4821 

Instance sT20_dT10_E15_SK4-5 sT20_dT10_E5_SK6-7 

MOTAMAQ 0.8860 0.2428 0.0323 0.5610 0.8792 0.1473 0.0362 0.4441 

dε-MOEA 0.8520 0.2783 0.0339 0.5788 0.8417 0.1648 0.0340 0.4397 

MOEA/D-DE  0.2658 0.5692 0.0347 0.9743 0.3023 0.3905 0.0443 0.9514 

NSGA-III 0.8027 0.2913 0.0314 0.5620 0.8206 0.1740 0.0349 0.4119 

MOTAMA-GA-LS1
𝑏

 0.8119 0.2861 0.0262 0.5547 0.7936 0.1536 0.0368 0.4130 

MOTAMA-GA-LS2
𝑏

 0.8142 0.2737 0.0280 0.5619 0.8008 0.1510 0.0377 0.4085 

MOTAMA-AMDE-LS1
𝑐

 0.5103 0.4190 0.0364 0.6328 0.6591 0.2989 0.0338 0.5314 

MOTAMA-AMDE-LS2
𝑐

 0.5131 0.4326 0.0360 0.6371 0.6507 0.3095 0.0359 0.5267 

Instance sT20_dT10_E10_SK6-7 sT20_dT10_E15_SK6-7 

MOTAMAQ 0.8639 0.1832 0.0490 0.5593 0.8880 0.1879 0.0283 0.5309 

dε-MOEA 0.8272 0.2808 0.0277 0.4936 0.8573 0.2390 0.0274 0.5196 

MOEA/D-DE  0.2899 0.3710 0.0426 0.8918 0.2901 0.5454 0.0405 0.9158 

NSGA-III 0.8310 0.2371 0.0308 0.4943 0.8237 0.2491 0.0280 0.5122 

MOTAMA-GA-LS1
𝑏

 0.7795 0.2182 0.0326 0.4645 0.8293 0.2340 0.0300 0.5117 

MOTAMA-GA-LS2
𝑏

 0.7784 0.2223 0.0420 0.4778 0.8066 0.2283 0.0331 0.5061 

MOTAMA-AMDE-LS1
𝑐

 0.5718 0.2878 0.0454 0.5687 0.4905 0.3408 0.0369 0.6211 

MOTAMA-AMDE-LS2
𝑐

 0.5691 0.2858 0.0509 0.5802 0.4914 0.3431 0.0360 0.6263 

Instance sT30_dT10_E5_SK4-5 sT30_dT10_E10_SK4-5 

MOTAMAQ 0.7241 0.2040 0.0274 0.5286 0.8620 0.1877 0.0319 0.5166 

dε-MOEA 0.7318 0.2567 0.0343 0.5777 0.8888 0.2482 0.0329 0.4911 

MOEA/D-DE  0.3235 0.4799 0.0302 1.0215 0.5748 0.5532 0.0383 0.9574 

NSGA-III 0.7309 0.1973 0.0288 0.5397 0.8671 0.2080 0.0309 0.5078 

MOTAMA-GA-LS1
𝑏

 0.7077 0.2442 0.0293 0.5378 0.8371 0.2322 0.0315 0.4918 

MOTAMA-GA-LS2
𝑏

 0.7246 0.2281 0.0319 0.5453 0.7973 0.2352 0.0352 0.5172 

MOTAMA-AMDE-LS1
𝑐

 0.4549 0.4068 0.0280 0.5553 0.5955 0.3320 0.0328 0.6213 

MOTAMA-AMDE-LS2
𝑐

 0.4409 0.4217 0.0282 0.5548 0.5964 0.3400 0.0333 0.6147 

Instance sT30_dT10_E15_SK4-5 sT30_dT10_E5_SK6-7 

MOTAMAQ 0.8072 0.2505 0.0311 0.5433 0.8888 0.1617 0.0380 0.5186 

dε-MOEA 0.8151 0.2680 0.0306 0.5467 0.8903 0.2066 0.0356 0.4452 



MOEA/D-DE  0.4361 0.4917 0.0440 0.9368 0.1768 0.5711 0.0375 0.9775 

NSGA-III 0.7730 0.2801 0.0342 0.5582 0.8126 0.2201 0.0323 0.4617 

MOTAMA-GA-LS1
𝑏

 0.8170 0.2479 0.0287 0.5275 0.8004 0.2183 0.0378 0.4438 

MOTAMA-GA-LS2
𝑏

 0.7816 0.2498 0.0300 0.5468 0.8055 0.2284 0.0393 0.4592 

MOTAMA-AMDE-LS1
𝑐

 0.5901 0.5280 0.0393 0.6140 0.5830 0.4151 0.0381 0.4793 

MOTAMA-AMDE-LS2
𝑐

 0.5850 0.5251 0.0397 0.6213 0.5719 0.4208 0.0309 0.5953 

Instance sT30_dT10_E10_SK6-7 sT30_dT10_E15_SK6-7 

MOTAMAQ 0.8191 0.2100 0.0368 0.5372 0.8323 0.2026 0.0255 0.5121 

dε-MOEA 0.8533 0.2558 0.0271 0.5008 0.8069 0.2203 0.0291 0.5684 

MOEA/D-DE  0.2176 0.4838 0.0357 0.9495 0.2526 0.4755 0.0313 0.9181 

NSGA-III 0.8103 0.2486 0.0298 0.5196 0.7831 0.2320 0.0288 0.5599 

MOTAMA-GA-LS1
𝑏

 0.7756 0.2206 0.0305 0.4698 0.7472 0.2231 0.0257 0.5296 

MOTAMA-GA-LS2
𝑏

 0.7721 0.2256 0.0375 0.4783 0.7366 0.2201 0.0318 0.5145 

MOTAMA-AMDE-LS1
𝑐

 0.6175 0.2986 0.0343 0.4548 0.5697 0.3375 0.0423 0.7012 

MOTAMA-AMDE-LS2
𝑐

 0.6094 0.3010 0.0411 0.4498 0.5595 0.3410 0.0431 0.7000 

Instance Real_1 Real_2 

MOTAMAQ 0.9397 0.1009 0.0252 0.6647 0.9336 0.1127 0.0278 0.5210 

dε-MOEA 0.9163 0.1137 0.0246 0.6079 0.9063 0.1635 0.0268 0.6084 

MOEA/D-DE  0.6640 0.2331 0.0737 1.0125 0.6017 0.2524 0.0667 0.9764 

NSGA-III 0.8873 0.1198 0.0247 0.6518 0.8903 0.1322 0.0273 0.5430 

MOTAMA-GA-LS1
𝑏

 0.8900 0.1231 0.0233 0.6676 0.8867 0.1505 0.0261 0.5811 

MOTAMA-GA-LS2
𝑏

 0.9051 0.1179 0.0275 0.6561 0.9024 0.1347 0.0289 0.5487 

MOTAMA-AMDE-LS1
𝑐

 0.7552 0.1674 0.0457 0.5983 0.7393 0.1883 0.0545 0.5253 

MOTAMA-AMDE-LS2
𝑐

 0.7577 0.1695 0.0494 0.6158 0.7393 0.1920 0.0504 0.5175 

Instance Real_3 

 

MOTAMAQ 0.9209 0.1035 0.0205 0.5432 

dε-MOEA 0.9429 0.1141 0.0221 0.6095 

MOEA/D-DE  0.6472 0.2435 0.0542 0.9685 

NSGA-III 0.9187 0.1239 0.0202 0.5316 

MOTAMA-GA-LS1
𝑏

 0.8859 0.1252 0.0198 0.6201 

MOTAMA-GA-LS2
𝑏

 0.8894 0.1134 0.0296 0.5849 

MOTAMA-AMDE-LS1
𝑐

 0.7488 0.1759 0.0440 0.4877 

MOTAMA-AMDE-LS2
𝑐

 0.7370 0.1782 0.0477 0.4993 

 

Table 8  

Statistical test results for comparing the eight approaches across rescheduling points on the 21 test instances (The sign of ‘+/−/=’ in A vs. B 

indicates that according to the metric considered, algorithm A is significantly better than B, significantly worse than B, or there is no 

significant difference between A and B based on the Wilcoxon rank sum test with the significance level of 0.05). 

Metrics HVR IGD Spacing Spread HVR IGD Spacing Spread 

Instance sT10_dT10_E5_SK4-5 sT10_dT10_E10_SK4-5 

MOTAMAQ vs. 
dε-MOEA 

p-value 
sign 

0.0224 
+ 

0.0493 
+ 

0.2089 
= 

0.7227 
= 

1.86E-6 
+ 

0.1537 
= 

0.0519 
 = 

0.7283 
= 

MOTAMAQ vs. 
MOEA/D-DE 

p-value 
sign 

0.0046 
+ 

0.0045 
+ 

0.0075 
+ 

2.55E-9 
+ 

7.39E-11 
+ 

7.38E-10 
+ 

2.84E-4  
+ 

3.02E-11 
+ 

MOTAMAQ vs. 
NSGA-III 

p-value 
sign 

0.1206 
= 

0.0836 
= 

0.3081 
= 

0.2108 
= 

2.06E-6 
+ 

0.0288 
+ 

0.1023 
= 

0.9234 
= 

MOTAMAQ vs. 

MOTAMA-GA-LS1
𝑏 

p-value 
sign 

8.12E-4 
+ 

0.2198 
= 

0.9764 
= 

0.8130 
= 

3.99E-4 
+ 

0.7394 
= 

0.2772 
= 

0.2519 
= 

MOTAMAQ vs. 

MOTAMA-GA-LS2
𝑏 

p-value 
sign 

0.0021 
+ 

0.0668 
= 

0.7394 
= 

0.6574 
= 

1.34E-5 
+ 

0.7394 
= 

0.6309  
= 

0.3403 
 = 

MOTAMAQ vs. 
p-value 

sign 
8.56E-4 

+ 
0.0444 

+ 
0.1260 

= 
0.6789 

= 
3.69E-11 

+ 
9.92E-7 

+ 
0.9587 

= 
0.0224 

+ 



MOTAMA-AMDE-LS1
𝑐 

MOTAMAQ vs. 

MOTAMA-AMDE-LS2
𝑐 

p-value 
sign 

5.26E-4 
+ 

0.0141 
+ 

0.1188 
= 

0.7562 
= 

3.34E-11 
+ 

1.21E-8 
+ 

0.2458 
= 

0.0451 
+ 

Instance sT10_dT10_E15_SK4-5 sT10_dT10_E5_SK6-7 

MOTAMAQ vs. 
dε-MOEA 

p-value 
sign 

4.35E-5 
+ 

4.22E-4 
+ 

1.11E-6 
+ 

0.1669 
= 

0.2009 
= 

0.0037 
+ 

4.71E-4 
+ 

0.3711 
= 

MOTAMAQ vs. 
MOEA/D-DE 

p-value 
sign 

3.02E-11 
+ 

3.02E-11 
+ 

3.82E-10 
+ 

3.02E-11 
+ 

5.57E-10 
+ 

1.09E-10 
+ 

6.51E-9 
+ 

3.02E-11 
+ 

MOTAMAQ vs. 
NSGA-III 

p-value 
sign 

4.06E-5 
+ 

3.83E-4 
+ 

0.1903 
= 

0.2308 
= 

6.62E-4 
+ 

0.0040 
+ 

1.32E-4 
+ 

0.3001 
= 

MOTAMAQ vs. 

MOTAMA-GA-LS1
𝑏 

p-value 
sign 

1.64E-5 
+ 

0.2905 
= 

8.29E-6 
+ 

0.6627 
= 

4.71E-4 
+ 

0.0011 
+ 

0.0030 
+ 

0.2226 
= 

MOTAMAQ vs. 

MOTAMA-GA-LS2
𝑏 

p-value 
sign 

4.22E-4 
+ 

0.1087 
= 

2.92 E-9 
+ 

0.0122 
+ 

7.70E-4 
+ 

0.0044 
+ 

8.15E-5 
+ 

0.9470 
= 

MOTAMAQ vs. 

MOTAMA-AMDE-LS1
𝑐 

p-value 
sign 

7.38E-10 
+ 

5.97E-9 
+ 

8.48E-7 
+ 

7.12E-9 
+ 

4.99E-7 
+ 

6.01E-6 
+ 

1.17E-4 
+ 

0.0215 
− 

MOTAMAQ vs. 

MOTAMA-AMDE-LS2
𝑐 

p-value 
sign 

2.61E-10 
+ 

1.31E-8 
+ 

2.37E-7 
+ 

5.00E-9 
+ 

7.77E-7 
+ 

1.20E-6 
+ 

2.13E-5 
+ 

0.0271 
− 

Instance sT10_dT10_E10_SK6-7 sT10_dT10_E15_SK6-7 

MOTAMAQ vs. 
dε-MOEA 

p-value 
sign 

0.1373 
= 

0.0035 
+ 

0.1858 
= 

0.4553 
= 

0.0099 
+ 

9.21E-5 
+ 

8.56E-4 
− 

0.4464 
= 

MOTAMAQ vs. 
MOEA/D-DE 

p-value 
sign 

7.12E-9 
+ 

1.15E-7 
+ 

6.01E-8 
+ 

3.02E-11 
+ 

3.02E-11 
+ 

3.02E-11 
+ 

1.61E-6 
+ 

3.02E-11 
+ 

MOTAMAQ vs. 
NSGA-III 

p-value 
sign 

0.2188 
= 

0.1203 
= 

0.2002 
= 

0.0116 
+ 

0.0032 
+ 

6.73E-5 
+ 

7.83E-4 
− 

0.3111 
= 

MOTAMAQ vs. 

MOTAMA-GA-LS1
𝑏 

p-value 
sign 

0.0067 
+ 

2.83E-4 
+ 

0.3329 
= 

0.7283 
= 

0.0170 
+ 

0.2226 
= 

0.0519 
= 

0.2458 
= 

MOTAMAQ vs. 

MOTAMA-GA-LS2
𝑏 

p-value 
sign 

0.0110 
+ 

0.0451 
+ 

0.9234 
= 

  0.6952 
= 

0.0339 
+ 

0.5201 
= 

0.6414 
= 

0.1055 
= 

MOTAMAQ vs. 

MOTAMA-AMDE-LS1
𝑐 

p-value 
sign 

1.17E-4 
+ 

4.44E-7 
+ 

4.98E-4 
+ 

0.0315 
+ 

4.31E-8 
+ 

1.21E-10 
+ 

0.9470 
= 

0.1120 
= 

MOTAMAQ vs. 

MOTAMA-AMDE-LS2
𝑐 

p-value 
sign 

3.18E-4 
+ 

3.01E-7 
+ 

2.39E-4 
+ 

0.0261 
+ 

5.09E-8 
+ 

1.96E-10 
+ 

0.3953 
= 

0.2707 
= 

Instance sT20_dT10_E5_SK4-5 sT20_dT10_E10_SK4-5 

MOTAMAQ vs. 
dε-MOEA 

p-value 
sign 

0.3136 
= 

0.2833 
= 

0.4508 
= 

0.0811 
= 

0.0679 
= 

0.0023 
+ 

0.0963 
= 

0.3478 
= 

MOTAMAQ vs. 
MOEA/D-DE 

p-value 
sign 

4.06E-10 
+ 

7.25E-9 
+ 

8.01E-6 
+ 

5.31E-10 
+ 

3.02E-11 
+ 

3.02E-11 
+ 

1.20E-8 
+ 

3.02E-11 
+ 

MOTAMAQ vs. 
NSGA-III 

p-value 
sign 

0.2743 
= 

0.0218 
+ 

0.6682 
= 

0.0917 
= 

0.0213 
+ 

0.0088 
+ 

0.0878 
= 

0.7790 
= 

MOTAMAQ vs. 

MOTAMA-GA-LS1
𝑏 

p-value 
sign 

0.1030 
= 

0.3121 
= 

0.9058 
= 

0.1433 
= 

0.0150 
+ 

0.0207 
+ 

0.0392 
+ 

0.0484 
+ 

MOTAMAQ vs. 

MOTAMA-GA-LS2
𝑏 

p-value 
sign 

0.1360 
= 

0.2695 
= 

0.8825 
= 

0.8592 
= 

0.0594 
= 

0.0327 
+ 

9.52E-4 
+ 

0.6735 
= 

MOTAMAQ vs. 

MOTAMA-AMDE-LS1
𝑐 

p-value 
sign 

1.18E-6 
+ 

6.61E-9 
+ 

0.3912 
= 

0.0604 
= 

3.65E-8 
+ 

1.01E-8 
+ 

0.3555 
= 

0.0049 
− 

MOTAMAQ vs. 

MOTAMA-AMDE-LS2
𝑐 

p-value 
sign 

5.55E-7 
+ 

2.13E-9 
+ 

0.9906 
= 

0.0287 
+ 

3.20E-9 
+ 

6.01E-8 
+ 

0.0099 
+ 

0.0117 
− 

Instance sT20_dT10_E15_SK4-5 sT20_dT10_E5_SK6-7 

MOTAMAQ vs. 
dε-MOEA 

p-value 
sign 

0.0307 
+ 

0.0392 
+ 

0.1669 
= 

0.9352 
= 

0.0421 
+ 

0.2009 
= 

0.2707 
= 

0.7172 
= 

MOTAMAQ vs. 
MOEA/D-DE 

p-value 
sign 

3.02E-11 
+ 

6.70E-11 
+ 

0.0615 
= 

3.02E-11 
+ 

3.34E-11 
+ 

1.46E-10 
+ 

0.0032 
+ 

3.02E-11 
+ 

MOTAMAQ vs. 
NSGA-III 

p-value 
sign 

2.08E-4 
+ 

1.33E-4 
+ 

0.1532 
= 

0.8702 
= 

0.0073 
+ 

0.1760 
= 

0..2291 
= 

0.1906 
= 

MOTAMAQ vs. 

MOTAMA-GA-LS1
𝑏 

p-value 
sign 

0.0051 
+ 

0.0224 
+ 

0.0392 
− 

0.6309 
= 

0.0019 
+ 

0.4643 
= 

0.6735 
= 

0.1413 
= 

MOTAMAQ vs. 

MOTAMA-GA-LS2
𝑏 

p-value 
sign 

0.0070 
+ 

0.0424 
+ 

0.1413 
= 

0.9000 
= 

0.0468 
+ 

0.7506 
= 

0.3555 
= 

0.0824 
= 



MOTAMAQ vs. 

MOTAMA-AMDE-LS1
𝑐 

p-value 
sign 

1.20E-8 
+ 

9.53E-7 
+ 

0.0378 
+ 

1.03E-6 
+ 

7.70E-8 
+ 

5.09E-8 
+ 

0.2519 
= 

4.64E-5 
+ 

MOTAMAQ vs. 

MOTAMA-AMDE-LS2
𝑐 

p-value 
sign 

5.46E-9 
+ 

1.03E-6 
+ 

0.0905 
= 

1.73E-6 
+ 

1.20E-8 
+ 

1.70E-8 
+ 

0.7845 
= 

1.78E-4 
+ 

Instance sT20_dT10_E10_SK6-7 sT20_dT10_E15_SK6-7 

MOTAMAQ vs. 
dε-MOEA 

p-value 
sign 

0.0260 
+ 

4.57E-9 
+ 

3.35E-8 
− 

4.74E-6 
− 

0.0401 
+ 

9.52E-4 
+ 

0.5395 
= 

0.6309 
= 

MOTAMAQ vs. 
MOEA/D-DE 

p-value 
sign 

3.02E-11 
+ 

6.07E-11 
+ 

0.1120 
= 

3.02E-11 
+ 

3.02E-11 
+ 

3.02E-11 
+ 

1.86E-6 
+ 

3.02E-11 
+ 

MOTAMAQ vs. 
NSGA-III 

p-value 
sign 

0.0378 
+ 

3.80E-4 
+ 

3.17E-6 
− 

6.12E-6 
− 

0.0093 
+ 

1.03E-5 
+ 

0.7033 
= 

0.3174 
= 

MOTAMAQ vs. 

MOTAMA-GA-LS1
𝑏 

p-value 
sign 

0.0051 
+ 

0.0044 
+ 

7.74E-6 
− 

3.65E-8 
− 

0.0122 
+ 

0.0080 
+ 

0.6309 
= 

0.2905 
= 

MOTAMAQ vs. 

MOTAMA-GA-LS2
𝑏 

p-value 
sign 

0.0064 
+ 

0.0076 
+ 

0.0468 
− 

3.01E-7 
− 

1.49E-4 
+ 

0.0451 
+ 

0.0024 
+ 

0.2170 
= 

MOTAMAQ vs. 

MOTAMA-AMDE-LS1
𝑐 

p-value 
sign 

3.50E-9 
+ 

2.49E-6 
+ 

0.3329 
= 

0.1761 
= 

8.48E-9 
+ 

3.96E-8 
+ 

9.21E-5 
+ 

3.83E-6 
+ 

MOTAMAQ vs. 

MOTAMA-AMDE-LS2
𝑐 

p-value 
sign 

6.53E-8 
+ 

6.05E-7 
+ 

0.5011 
= 

0.8534 
= 

1.70E-8 
+ 

1.47E-7 
+ 

6.91E-4 
+ 

1.29E-6 
+ 

Instance sT30_dT10_E5_SK4-5 sT30_dT10_E10_SK4-5 

MOTAMAQ vs. 
dε-MOEA 

p-value 
sign 

0.2993 
= 

0.0011 
+ 

0.0241 
+ 

0.0287 
+ 

0.5201 
= 

8.56E-4 
+ 

0.9823 
= 

0.2282 
= 

MOTAMAQ vs. 
MOEA/D-DE 

p-value 
sign 

4.99E-9 
+ 

4.68E-9 
+ 

0.1023 
= 

3.66E-10 
+ 

3.02E-11 
+ 

3.02E-11 
+ 

0.0091 
+ 

3.02E-11 
+ 

MOTAMAQ vs. 
NSGA-III 

p-value 
sign 

0.1846 
= 

0.2173 
= 

0.6930 
= 

0.1766 
= 

0.8902 
= 

0.1243 
= 

0.2208 
= 

0.2787 
= 

MOTAMAQ vs. 

MOTAMA-GA-LS1
𝑏 

p-value 
sign 

0.0617 
= 

0.2413 
= 

0.2837 
= 

0.1983 
= 

0.0670 
= 

0.0635 
= 

0.3790 
= 

0.1809 
= 

MOTAMAQ vs. 

MOTAMA-GA-LS2
𝑏 

p-value 
sign 

0.0720 
= 

0.9412 
= 

0.2282 
= 

0.0868 
= 

0.0043 
+ 

0.0555 
= 

0.6309 
= 

0.7172 
= 

MOTAMAQ vs. 

MOTAMA-AMDE-LS1
𝑐 

p-value 
sign 

1.80E-6 
+ 

1.46E-5 
+ 

0.9941 
= 

0.0434 
= 

2.39E-8 
+ 

7.70E-8 
+ 

0.7062 
= 

2.78E-7 
+ 

MOTAMAQ vs. 

MOTAMA-AMDE-LS2
𝑐 

p-value 
sign 

6.87E-7 
+ 

1.28E-6 
+ 

0.8302 
= 

0.0227 
= 

1.87E-7 
+ 

1.87E-7 
+ 

0.8303 
= 

5.19E-7 
+ 

Instance sT30_dT10_E15_SK4-5 sT30_dT10_E5_SK6-7 

MOTAMAQ vs. 
dε-MOEA 

p-value 
sign 

0.7618 
= 

0.0150 
+ 

0.8534 
= 

0.8073 
= 

0.9470 
= 

0.0076 
+ 

0.2226 
= 

0.0905 
= 

MOTAMAQ vs. 
MOEA/D-DE 

p-value 
sign 

5.49E-11 
+ 

2.78E-7 
+ 

1.11E-6 
+ 

3.02E-11 
+ 

3.02E-11 
+ 

4.50E-11 
+ 

0.2643 
= 

5.07E-10 
+ 

MOTAMAQ vs. 
NSGA-III 

p-value 
sign 

0.0203 
+ 

0.0026 
+ 

0.0074 
+ 

0.6109 
= 

0.0416 
+ 

0.0033 
+ 

0.0746 
= 

0.0892 
= 

MOTAMAQ vs. 

MOTAMA-GA-LS1
𝑏 

p-value 
sign 

0.5692 
= 

0.1761 
= 

0.3632 
= 

0.3632 
= 

0.0327 
+ 

0.1413 
= 

0.0963 
= 

0.0773 
= 

MOTAMAQ vs. 

MOTAMA-GA-LS2
𝑏 

p-value 
sign 

0.0877 
= 

0.2398 
= 

0.9000 
= 

0.8650 
= 

0.0905 
= 

0.0242 
+ 

0.0271 
+ 

0.2282 
= 

MOTAMAQ vs. 

MOTAMA-AMDE-LS1
𝑐 

p-value 
sign 

4.69E-8 
+ 

1.73E-7 
+ 

2.01E-4 
+ 

2.60E-5 
+ 

2.83E-8 
+ 

1.56E-8 
+ 

0.8534 
= 

0.1322 
= 

MOTAMAQ vs. 

MOTAMA-AMDE-LS2
𝑐 

p-value 
sign 

5.53E-8 
+ 

1.16E-7 
+ 

2.13E-4 
+ 

3.09E-6 
+ 

1.17E-9 
+ 

3.50E-9 
+ 

0.2707 
= 

0.0017 
+ 

Instance sT30_dT10_E10_SK6-7 sT30_dT10_E15_SK6-7 

MOTAMAQ vs. 
dε-MOEA 

p-value 
sign 

0.3953 
= 

0.0044 
+ 

1.04E-4 
− 

0.0993 
= 

0.0484 
+ 

0.0436 
+ 

0.0099 
+ 

1.11E-6 
+ 

MOTAMAQ vs. 
MOEA/D-DE 

p-value 
sign 

4.62E-10 
+ 

7.38E-10 
+ 

0.4918 
= 

3.02E-11 
+ 

3.02E-11 
+ 

6.70E-11 
+ 

0.0292 
+ 

3.02E-11 
+ 

MOTAMAQ vs. 
NSGA-III 

p-value 
sign 

0.7026 
= 

0.0182 
+ 

0.0081 
− 

0.1346 
= 

0.0311 
+ 

0.0117 
+ 

0.0196 
+ 

8.36E-6 
+ 

MOTAMAQ vs. 
MOTAMA-GA-LS1

𝑏 
p-value 

sign 
0.0468 

+ 
0.2226 

= 
0.0051 

− 
0.0023 

− 
0.0468 

+ 
0.0453 

+ 
0.8883 

= 
0.0850 

= 

MOTAMAQ vs. 
MOTAMA-GA-LS2

𝑏 
p-value 

sign 
0.0112 

+ 
0.1715 

= 
0.9587 

= 
0.0112 

− 
0.0016 

+ 
0.0403 

+ 
5.97E-5 

+ 
0.6520 

= 

MOTAMAQ vs. 
MOTAMA-AMDE-LS1

𝑐 
p-value 

sign 
6.53E-7 

+ 
2.53E-4 

+ 
0.0773 

= 
4.71E-4 

− 
3.82E-9 

+ 
5.60E-7 

+ 
1.85E-8 

+ 
3.02E-11 

+ 



MOTAMAQ vs. 
MOTAMA-AMDE-LS2

𝑐 
p-value 

sign 
1.60E-7 

+ 
6.55E-4 

+ 
0.6735 

= 
5.27E-5 

− 
2.61E-10 

+ 
1.03E-6 

+ 
4.44E-7 

+ 
3.02E-11 

+ 

Instance Real_1 Real_2 

MOTAMAQ vs. 
dε-MOEA 

p-value 
sign 

0.0303 
+ 

0.0468 
+ 

0.1224 
= 

0.0053 
− 

0.0067 
+ 

1.11E-4 
+ 

0.5201 
= 

0.4740 
= 

MOTAMAQ vs. 
MOEA/D-DE 

p-value 
sign 

1.33E-10 
+ 

3.20E-9 
+ 

3.82E-10 
+ 

8.99E-11 
+ 

1.78E-10 
+ 

5.97E-9 
+ 

5.07E-10 
+ 

3.02E-11 
+ 

MOTAMAQ vs. 
NSGA-III 

p-value 
sign 

2.71E-4 
+ 

0.0086 
+ 

0.1266 
= 

0.1120 
= 

0.0086 
+ 

0.0921 
= 

0.9722 
= 

0.0967 
= 

MOTAMAQ vs. 

MOTAMA-GA-LS1
𝑏 

p-value 
sign 

6.91E-4 
+ 

0.0029 
+ 

0.2340 
= 

0.3017 
= 

7.70E-4 
+ 

0.0624 
= 

0.9117 
= 

2.84E-4 
+ 

MOTAMAQ vs. 

MOTAMA-GA-LS2
𝑏 

p-value 
sign 

0.0163 
+ 

0.2519 
= 

0.2398 
= 

0.1316 
= 

0.0025 
+ 

0.0411 
+ 

0.2707 
= 

0.0701 
= 

MOTAMAQ vs. 

MOTAMA-AMDE-LS1
𝑐 

p-value 
sign 

1.55E-9 
+ 

5.61E-5 
+ 

0.0903 
= 

0.0026 
− 

3.35E-8 
+ 

3.39E-5 
+ 

2.23E-9 
+ 

0.6952 
= 

MOTAMAQ vs. 

MOTAMA-AMDE-LS2
𝑐 

p-value 
sign 

2.23E-9 
+ 

2.43E-5 
+ 

0.0619 
= 

0.0093 
−= 

8.89E-10 
+ 

5.26E-5 
+ 

2.67E-9 
+ 

0.7731 
= 

Instance Real_3 

 

MOTAMAQ vs. 
dε-MOEA 

p-value 
sign 

0.2282 
= 

0.0176 
+ 

0.8766 
= 

0.0991 
= 

MOTAMAQ vs. 
MOEA/D-DE 

p-value 
sign 

2.61E-10 
+ 

3.96E-8 
+ 

1.09E-10 
+ 

3.34E-11 
+ 

MOTAMAQ vs. 
NSGA-III 

p-value 
sign 

0.3306 
= 

0.0161 
+ 

0.9280 
= 

0.2679 
= 

MOTAMAQ vs. 

MOTAMA-GA-LS1
𝑏 

p-value 
sign 

0.0067 
+ 

0.0103 
+ 

0.4553 
= 

0.0016 
+ 

MOTAMAQ vs. 

MOTAMA-GA-LS2
𝑏 

p-value 
sign 

0.0351 
+ 

0.5592 
= 

8.15E-5 
+ 

0.0378 
+ 

MOTAMAQ vs. 

MOTAMA-AMDE-LS1
𝑐 

p-value 
sign 

6.53E-8 
+ 

3.77E-4 
+ 

9.75E-10 
+ 

0.0133 
− 

MOTAMAQ vs. 

MOTAMA-AMDE-LS2
𝑐 

p-value 
sign 

1.25E-7 
+ 

8.56E-4 
+ 

1.07E-9 
+ 

0.0451 
− 

 

Table 9 

Comparison results summarized from Table 8 (the percentage of the 18 random instances and 3 real-world instances for which the statistical 

tests indicate MOTAMAQ to be better, similar or worse than each of the seven other approaches) 

Random Instances 

 HVR IGD Spacing Spread 

MOTAMAQ vs. 

dε-MOEA 
+ = − + = − + = − + = − 

50% 50% 0 83% 17% 0 22% 61% 17% 11% 83% 6% 

MOTAMAQ vs. 

MOEA/D-DE 
+ = − + = − + = − + = − 

100% 0 0 100% 0 0 72% 28% 0 100% 0 0 

MOTAMAQ vs. 

NSGA-III 
+ = − + = − + = − + = − 

67% 33% 0 72% 28% 0 17% 66% 17% 11% 83% 6% 

MOTAMAQ vs. 

MOTAMA-GA-LS1
𝑏

 
+ = − + = − + = − + = − 

78% 22% 0 39% 61% 0 17% 66% 17% 6% 83% 11% 

MOTAMAQ vs. 
MOTAMA-GA-LS2

𝑏
 

+ = − + = − + = − + = − 

72% 28% 0 44% 56% 0 33% 61% 6% 6% 83% 11% 

MOTAMAQ vs. 

MOTAMA-AMDE-LS1
𝑐

 
+ = − + = − + = − + = − 

100% 0 0 100% 0 0 39% 61% 0 50% 33% 17% 

MOTAMAQ vs. 

MOTAMA-AMDE-LS2
𝑐

 
+ = − + = − + = − + = − 

100% 0 0 100% 0 0 39% 61% 0 61% 22% 17% 

Real-world Instances 

 HVR IGD Spacing Spread 

MOTAMAQ vs. 

dε-MOEA 
+ = − + = − + = − + = − 

67% 33% 0 100% 0 0 0 100% 0 0 67% 33% 

MOTAMAQ vs. 

MOEA/D-DE 
+ = − + = − + = − + = − 

100% 0 0 100% 0 0 100% 0 0 100% 0 0 

MOTAMAQ vs. 

NSGA-III 
+ = − + = − + = − + = − 

67% 33% 0 67% 33% 0 0 100% 0 0% 100% 0 

MOTAMAQ vs. + = − + = − + = − + = − 



MOTAMA-GA-LS1
𝑏

 100% 0 0 67% 33% 0 0 100% 0 67% 33% 0 

MOTAMAQ vs. 
MOTAMA-GA-LS2

𝑏
 

+ = − + = − + = − + = − 

100% 0 0 33% 67% 0 33% 67% 0 33% 67% 0 

MOTAMAQ vs. 

MOTAMA-AMDE-LS1
𝑐

 
+ = − + = − + = − + = − 

100% 0 0 100% 0 0 67% 33% 0 0 33% 67% 

MOTAMAQ vs. 

MOTAMA-AMDE-LS2
𝑐

 
+ = − + = − + = − + = − 

100% 0 0 100% 0 0 67% 33% 0 0 33% 67% 

 

5.3.4 Comparison with the three state-of-the-art MOEAs 

As explained in section 5.3.1, we have compared MOTAMAQ, dε-MOEA, MOEA/D-DE, and 

NSGA-III in order to evaluate the impact of different dynamic MOEAs on the performance of MODSPSP.  

First, the convergence performance metrics IGD and HVR are considered. In terms of IGD, 

MOTAMAQ exhibits distinct advantages over dε-MOEA, MOEA/D-DE, and NSGA-III. It can be seen 

from Table 7 that the proposed approach (MOTAMAQ) has the best average value for 15 out of 18 random 

instances, and for all the real-world instances. From Table 9, it is clear that the performance of 

MOTAMAQ is significantly better than dε-MOEA and NSGA-III for 83% and 78% of the random 

instances, and for 100% and 67% of the real-world instances, respectively. In addition to that, MOTAMAQ 

outperforms MOEA/D-DE for all the random and real-world instances. These results clearly illustrate the 

ability of proposed approach in providing software managers with a more diverse set of non-dominated 

solutions that are closer to the reference Pareto front. Considering HVR, the performance of MOTAMAQ 

is better than or comparable to dε-MOEA and NSGA-III for all instances. Table 7 indicates that 

MOTAMAQ obtains the best average value for 11 out of the 18 random instances, and for 2 out of the 3 

real-world instances. Table 9 shows that MOTAMAQ performs significantly better than dε-MOEA and 

NSGA-III for 50% and 67% of the random cases, and for 67% and 67% of the real-world instances, 

respectively. However, there is no significant difference between each pair of them for the remaining cases. 

One possible reason for this small gap is that dε-MOEA is good at maintaining a wide spread of solutions 

due to which its HVR value (which measures both the convergence and spread) increases. When compared 

with MOEA/D-DE, similar to IGD, MOTAMAQ outperforms MOEA/D-DE for all the random and 

real-world instances.  

For the distribution performance Spacing, MOTAMAQ is comparable to dε-MOEA and NSGA-III, 

since there is no significant difference between them for 61% and 66% of the random instances, and for 

100% and 100% of the real-world instances, respectively. For the random instances where there was a 

significant difference in terms of Spacing, MOTAMAQ was better than dε-MOEA and NSGA-III in around 

half and worse in around the other half of them. The performance of MOTAMAQ is significantly better 

than or comparable to that of MOEA/D-DE for all instances. In terms of Spread, the performance of 

MOTAMAQ is comparable to dε-MOEA for the random instances, while a bit worse than dε-MOEA for 

the real-world instances, which validates the assumption that dε-MOEA is able to find solutions with a 

good spread. There is no significant difference between MOTAMAQ and NSGA-III on 83% and 100% of 

the rand and real-world instances, respectively. Besides, MOTAMAQ performs significantly better than 

MOEA/D-DE for all the instances on Spread.  

Since the convergence performance is the most important factor that a software manager should 



consider when evaluating an approach, the improved convergence behavior of our MOTAMAQ approach 

over dε-MOEA, MOEA/D-DE, and NSGA-III clearly indicates that the strategies it adopts are very 

effective for solving MODSPSP. Such strategies include the Q-learning-based learning mechanism that 

chooses appropriate search operators to different environments; maintenance of two archives to promote 

convergence and diversity separately to handle many objectives; and incorporation of local search 

operators together with global search operators specifically designed for the MODSPSP. Considering its 

poor performances in terms of convergence, distribution and spread, MOEA/D-DE may not be suitable for 

solving MODSPSP. 

5.3.5 Comparison with the four fixed actions 

To further analyze the impact of the self-adaptive learning mechanism on the performance of our 

rescheduling approach, MOTAMAQ has been compared to MOTAMA-GA-LS1
𝑏, MOTAMA-GA-LS2

𝑏, 

MOTAMA-AMDE-LS1
𝑐, and MOTAMA-AMDE-LS2

𝑐. As stated in section 5.3.1, these four algorithms do 

not adopt the learning mechanism, but use the fixed search operators in different scheduling environments.  

As mentioned before, in Table 7, MOTAMAQ has the best average IGD value for 15 out of the 18 

random instances, and for all the real-world instances. The results shown in table 9 indicate that with IGD, 

MOTAMAQ is significantly better than MOTAMA-GA-LS1
𝑏 and MOTAMA-GA-LS2

𝑏 for 39% and 44% 

of the random cases, and for 67% and 33% of the real-world instances, respectively. For the remaining 

instances, no significant difference has been found. Besides, MOTAMAQ is significantly better than 

MOTAMA-AMDE-LS1
𝑐 and MOTAMA-AMDE-LS2

𝑐 for all the random and real-world instances. In terms 

of HVR, it can be seen from Table 7 that MOTAMAQ has obtained the best average value for 11 out of the 

18 random instances, and for 2 out of the 3 real-world instances. Table 9 shows that for HVR, MOTAMAQ 

performs significantly better than MOTAMA-GA-LS1
𝑏 and MOTAMA-GA-LS2

𝑏 for 78% and 72% of the 

random cases, respectively and for all the three real-world instances. There is no significant difference 

between them for the remaining cases. Besides, the performance of MOTAMAQ is also significantly better 

than that of MOTAMA-AMDE-LS1
𝑐  and MOTAMA-AMDE-LS2

𝑐  for all the random and real-world 

instances. These results clearly indicate that the introduction of self-adaptive learning mechanism based on 

Q-learning acutely improves the convergence performance of MOEA-based rescheduling approach 

(especially for HVR). It means that the proposed approach MOTAMAQ has selected the right actions based 

on the learned information in most of the cases. Thus, when rescheduling, it is helpful for a software 

manager to take features of the current project environment into account, and choose an appropriate 

approach adaptively.  

As for the metrics of Spacing and Spread, MOTAMAQ is comparable to MOTAMA-GA-LS1
𝑏 and 

MOTAMA-GA-LS2
𝑏, since there is no significant difference between each pair of them in most of the cases. 

Compared to MOTAMA-AMDE-LS1
𝑐  and MOTAMA-AMDE-LS2

𝑐 , MOTAMAQ behaves better for 

Spacing since it outperforms or is comparable to them for all the instances. Meanwhile, considering the 

Spread metric, MOTAMAQ behaves a bit better for random instances since it is significantly better than 

each of them for 50% and 61% of the random instances, respectively. However, MOTAMA-AMDE-LS1
𝑐 



and MOTAMA-AMDE-LS2
𝑐 have a better Spread performance as a whole for the real-world instances: 

they get the overall best average value on 2 and 1 out of the 3 real instances (see Table 7), respectively, and 

each of them is significantly better than MOTAMAQ for 2 out of the 3 real instances (see Tables 8 and 9).  

5.4 Pareto fronts at rescheduling points 

At each rescheduling point, a set of non-dominated solutions are evolved by MOTAMAQ. With the 

aim to demonstrate the trade-offs among these solutions that a software manager could exploit when 

making a selection about the final schedule, one rescheduling point on a test instance 

(sT20_dT10_E10_SK4-5) has been chosen arbitrarily and for the sake of illustration. At tl=24.2, the 

employee e4 returned, and a total of 7 tasks existed in the project. In order to show a five-objective Pareto 

front obtained by MOTAMAQ, a parallel coordinate plot is given in Fig. 9. Since the five objectives in 

MODSPSP have different scales, the best and the worst objective values observed during all the runs of the 

compared eight approaches have been identified, and the objective values of the obtained Pareto front are 

normalized. It can be seen from Fig. 9 that MOTAMAQ can find a set of well-distributed non-dominated 

solutions in the objective space, and the non-dominated front extends over a large range rather than being 

in a limited area. This result indicates the ability of MOTAMAQ in maintaining diversity. 

To visually investigate different trade-offs among the five objectives obtained by MOTAMAQ, the 

diagonal plot [34] shown in Fig. 10 has been studied. The plot presents pairwise interactions among the 

five dimensions along the Pareto front, where the axes of any plot can be found by checking the 

corresponding diagonal boxes and their ranges. For example, the plot shown at the second row fifth 

column has its vertical axis as costI and horizontal axis as satisfaction. First, it can be seen from the plot of 

durationI vs. costI that the two efficiency objectives are conflicting with each other in most of the cases, 

since a smaller durationI often leads to a larger costI. Second, it can be observed from the plot of durationI 

vs. satisfaction that the two objectives are also conflicting with each other. When finding a solution that 

has a smaller durationI, the satisfaction value becomes worse. Thirdly, the figure stability vs. satisfaction 

suggests that the two objectives have a similar variation tendency. When the stability value becomes 

smaller, the satisfaction value also decreases. However, it is hard to determine the relationship from the 

remaining figures. For instance, a small robustness may correspond to either a small or a high costI. The 

reason may be that a total of five objectives are optimized simultaneously, and the relationship between 

each pair of them becomes more complex, compared to the case in which only two or three objectives are 

considered together. No solution can simultaneously optimize all the considered objectives. 

Some examples of the objective vectors chosen from the Pareto front are shown in Fig. 10 and listed in 

Table 10. A solution may behave very well for one objective, but poorly for some of the others, such as 

Solution1 – Solution5. Some solutions may obtain good (but not the best) values for most of the objectives, 

which shows a good trade-off among various objectives, such as Solution6 – Solution8. The Pareto front 

generated by MOTAMAQ can provide a software manager with a deeper insight into various compromises 

among many objectives. It is useful for him/her to make an informed decision about the best compromise 

according to his/her preference.  



 

Fig. 9 Parallel coordinate plot of the Pareto front generated by MOTAMAQ at the rescheduling point 24.2
l

t  on sT20_dT10_E10_SK4-5. 
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Fig. 10 Diagonal plot of the Pareto front generated by MOTAMAQ at the rescheduling point tl=24.2 on sT20_dT10_E10_SK4-5. 
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Table 10 

Examples of objective vectors chosen from the Pareto front generated by MOTAMAQ at tl=24.2 on sT20_dT10_E10_SK4-5. 

 [durationI, costI, robustness, stability, satisfaction] 

         Solution1 [5.01, 161291, 0.41, 4.86, 0.21] 

Solution2 [11.26, 135179, 0.74, 2.43, 0.14] 

Solution3 [9.21, 143452, 0.37, 0.21, 0.12] 

Solution4 [12.67, 148960, 0.45, 0, 0.043] 

Solution5 [16.89, 151524, 0.38, 0.29, 0.039] 

Solution6 [7.24, 145766, 0.59, 0.50, 0.18] 

Solution7 [8.44, 144839, 0.80, 0.36, 0.14] 

Solution8 [7.79, 148708, 0.69, 0.79, 0.16] 

5.5 Discussion 

   When comparing different dynamic scheduling approaches, it is evident that the proposed 

Q-learning-based method MOTAMAQ outperforms the other three state-of-the-art MOEAs, named 

dε-MOEA, MOEA/D-DE, and NSGA-III. Despite the use of heuristic population initialization strategies, 

dε-MOEA MOEA/D-DE, and NSGA-III adopt fixed global search operators during the entire project 

implementation, without considering that different operators may be best suited for different environment 

states. In contrast, based on the states perceived by the agent in Q-learning and its accumulated knowledge, 

MOTAMAQ can capture the features of different scheduling environments, and then decide on the 

appropriate search operators. Thus, its adaptation to the changing environment is improved. Moreover, 

MOTAMAQ incorporates several problem specific local search operators to enhance the local search 

ability, and maintains a convergence archive and a diversity archive separately to handle many objectives. 

Experimental results in Section 5.3.4 show that these strategies combined promote the convergence of 

MOTAMAQ greatly, while maintaining a comparable distribution performance. In Section 5.3.5, 

comparisons with the four algorithms with fixed global and local search methods (i.e. one of the four 

actions in MOTAMAQ) further validate the effectiveness of our self-adaptive learning mechanism based 

on Q-learning. Besides, from the parallel coordinate plot and the diagonal plot of the Pareto front obtained 

by MOTAMAQ, a software manager can gain a deeper insight into the various trade-offs among the five 

objectives, and make an informed decision. The results above suggest that it is worthwhile employing 

MOTAMAQ as a dynamic scheduling approach to assist software project management.  

6 Conclusions  

This paper introduced a Q-learning-based multi-objective two-archive memetic algorithm to adapt to 

changing environments in dynamic software project scheduling. Our first contribution is to formulate a 

more practical formulation of the MODSPSP, which highlights the influence of human factors on project 

success. Our formulation relates the growth rate of the skill proficiency to both human factors (motivation, 

learning ability) and skill difficulties, being closer to the real world than other existing SPSP formulations. 

Considering the degree with which each employee is willing to engage with each skill (and thus with each 

task), the objective of employees’ satisfaction is defined and considered together with project duration, cost, 



robustness and stability under a variety of practical constraints at each rescheduling point. 

Our second contribution is the design of a Q-learning-based multi-objective two-archive memetic 

algorithm to solve the formulated MODSPSP in a proactive-rescheduling way. The approach introduces 

problem specific local search operators to enhance the local search ability. It can perceive the state of the 

current project environment, and learn the appropriate global and local search operators of the memetic 

algorithm adaptively, according to the obtained information and the knowledge accumulated by the 

Q-learning agent. Besides, to deal with many objectives, it maintains two archives that promote 

convergence based on the I   indicator, and keep diversity based on Pareto dominance separately. 

Our third contribution is a comprehensive experimental study of the newly proposed approach 

MOTAMAQ. The study is divided into three groups. The first group compares the overall performance in 

dynamic environments produced by MOTAMAQ and three state-of-the-art MOEA-based rescheduling 

methods, namely dε-MOEA, MOEA/D-DE, and NSGA-III. Experimental results show that the strategies 

designed in MOTAMAQ are very effective in improving its convergence performance. The 

Q-learning-based learning mechanism can adapt appropriate search operators to different scheduling 

environments. By cooperating with the global search operators, the problem-specific local search operators 

enhance the local search ability of the algorithm. Besides, the maintenance of two archives that promote 

convergence and diversity separately can deal with the 5 objectives in MODSPSP effectively. The second 

group compares MOTAMAQ with four algorithms which use fixed global and local search operators in 

different environments. Our results further demonstrate that the introduction of self-adaptive learning 

mechanism based on Q-learning helps to improve the convergence performance of our MOEA-based 

rescheduling approach. It indicates that MOTAMAQ has selected the right actions according to the learned 

information in most of the cases. The third group analyses different trade-offs among the five objectives. 

The parallel coordinate plot shows that MOTAMAQ can find a set of well-distributed non-dominated 

solutions in the objective space, and the non-dominated front extends over a large range rather than being 

in a limited area. The diagonal plot presents pairwise trade-offs among the five objectives along the Pareto 

front, from which a software manager can get a deeper insight into various compromises among many 

objectives, and make an informed decision.  

Although our MODSPSP model is an improvement and considers more aspects of reality than the 

existing models (e.g., employees’ subjective properties such as motivation and willingness to engage in 

tasks involving certain skills), it is still far from extracting all factors, uncertainties and dynamic events 

which could affect project scheduling environments. In our current work, the learning ability factor and the 

motivation factor of each employee are assumed to follow the normal distribution. We believe that some 

experiments need to be realized to investigate the suitability of normal distribution in modelling such 

factors while considering special situations such as more specialized subjects in which employees should 

have high motivation and the fact that their specialization is directly connected to the ability to learn new 

things. This would require data collection on the learning ability factor and the motivation factor of each 

employee gathered during a period of time. When the appropriate probability distribution is found, it can 

be easily incorporated in our method. The same holds for the deviations of task effort estimations. Besides, 



more efficient global and local search operators could be designed, which could provide a diverse set of 

candidate actions for the agent to select, and further improve the search efficiency of our approach. 

As future work, first, a more sophisticated mathematical formulation of the MODSPSP should be 

created. Different skills may require different specializations and learning abilities. Thus, if specialties of 

the employees who are engaged in the skills match well with the skill requirements, the project efficiency 

can be improved to a large extent. In addition, more properties of employees and tasks in the real project 

scheduling situations, e.g. employees’ experiences, due-date of each task, as well as the elements that can 

affect the properties, e.g. political behaviors, social or human capital, psychological factors, should be 

taken into account. Meanwhile, how to measure these properties and factors remains a challenging study. 

Second, the proposed Q-learning-based dynamic scheduling approach MOTAMAQ should be applied to 

more complex software projects, with different kinds of dynamic events and uncertainties, e.g. changing 

objectives to be optimized, task removal, variations in the task precedence, and changes of the degree with 

which each employee is willing to engage with a skill. The relationship between such dynamic factors and 

the performance of MOTAMAQ needs to be studied. Third, the practicability of the proposed scheduling 

approach should be further improved in terms of how close it is to real software project scenarios. This can 

be supported by performing a thorough empirical validation in a variety of industrial contexts, collecting 

large amounts of data from real-world projects, getting feedback from software developers on the 

assumptions made by our approach and on how to improve our method. Finally, the scalability of 

MOTAMAQ should also be validated, by applying it for scheduling larger scale software projects with a 

greater number of tasks and employees. 
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