
A Q-learning-based memetic algorithm for multi-objective dynamic

software project scheduling

Xiao-Ning Shena,*, Leandro L. Minkub, Naresh Marturic, Yi-Nan Guod,Ying Hana

a B-DAT, CICAEET, School of Information and Control, Nanjing University of Information Science and Technology, Nanjing

210044, China

b Department of Informatics, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom

c Extreme Robotics Lab, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

d School of information and control engineering, China university of Mining and Technology, Xuzhou 221116, China

Abstract Software project scheduling is the problem of allocating employees to tasks in a software project. Due

to the large scale of current software projects, many studies have investigated the use of optimization algorithms

to find good software project schedules. However, despite the importance of human factors to the success of

software projects, existing work has considered only a limited number of human properties when formulating

software project scheduling as an optimization problem. Moreover, the changing environments of software

companies mean that software project scheduling is a dynamic optimization problem. However, there is a lack

of effective dynamic scheduling approaches to solve this problem. This work proposes a more realistic

mathematical model for the dynamic software project scheduling problem. This model considers that skill

proficiency can improve over time and, different from previous work, it considers that such improvement is

affected by the employees’ properties of motivation and learning ability, and by the skill difficulty. It also

defines the objective of employees’ satisfaction with the allocation. It is considered together with the objectives

of project duration, cost, robustness and stability under a variety of practical constraints. To adapt schedules to

the dynamically changing software project environments, a multi-objective two-archive memetic algorithm

based on Q-learning (MOTAMAQ) is proposed to solve the problem in a proactive-rescheduling way. Different

from previous work, MOTAMAQ learns the most appropriate global and local search methods to be used for

different software project environment states by using Q-learning. Extensive experiments on 18 dynamic

benchmark instances and 3 instances derived from real-world software projects were performed. A comparison

with seven other meta-heuristic algorithms shows that the strategies used by our novel approach are very

effective in improving its convergence performance in dynamic environments, while maintaining a good

distribution and spread of solutions. The Q-learning-based learning mechanism can choose appropriate search

operators for the different scheduling environments. We also show how different trade-offs among the five

objectives can provide software managers with a deeper insight into various compromises among many

objectives, and enabling them to make informed decisions.

Keywords Metaheuristics; Dynamic software project scheduling; Multi-objective memetic algorithms;

Mathematical modeling; Q-learning

1 Introduction

With the rapid development of the software industry, software companies are confronted with a highly

competitive market environment. In order to win the market, as well as to meet project requirements

(deadlines, budget, etc.), efficient and effective software project schedules need to be adopted [29, 36].

Nevertheless, it is not uncommon for software companies to face software project failure due to

inappropriate project schedules. For instance, it is reported that more than 40% of the software projects in

China are unsuccessful due to incoherent scheduling of tasks and human resources [4]. Another example is

NASA’s checkout launch control software project, which involved more than 400 people and had to be

cancelled after having gone over budget [21].

The software project scheduling problem (SPSP) consists in allocating employees to tasks over a

project timeline, so that the required objectives (project cost, duration, etc.) can be achieved subject to

various constraints. This problem is particularly complex and challenging for large-scale software projects

[27], which may involve dozens or even hundreds of software engineers cooperating to complete a large

number of tasks. This is because the size of the search space of potential allocations of employees to tasks

is extremely large for such projects. Scheduling large software projects manually can be very

time-consuming and result in inefficient and unsatisfactory schedules. Given that software projects have

become increasingly large, it is desirable to have methods to help project managers with the SPSP.

With the development of search-based software engineering (SBSE) [18], many researchers have

formulated SPSP as a search-based optimization problem, and employed evolutionary algorithms (EAs)

[13, 15] to search the large decision space and provide near-optimal schedules, automating the task finding

good allocations and helping the software manager to make a final decision.

Real-world software projects often suffer working environment changes due to unpredictable events

such as employees’ leave of absence, change of requirements, addition of high-priority tasks, etc.

Moreover, the project activities are often subject to uncertainties. For example, the amount of effort

required to develop tasks may have been underestimated or overestimated, and the number of resources

required for completing a task may change due to variations of the task specification [31]. In such cases, an

optimal schedule produced by a static scheduling method may get severely deteriorated during the project

execution. It is thus of great importance to employ dynamic scheduling techniques to adapt schedules for

dynamically changing environments, as well as to reduce the impact of uncertainties.

So far in the literature, very few studies have dealt with dynamic software project scheduling in

uncertain project environments. Proactive scheduling was used for software projects with uncertainties [5,

16, 17, 20, 22], and dynamic resource rescheduling was designed to react to new project arrivals [43]. Our

previous study [35] was the first research work dealing with the mathematical modeling and dynamic

scheduling of the multi-objective dynamic software project scheduling problem (MODSPSP). This

previous work addresses both uncertainties and dynamic events occurring during a project lifetime.

Although a few interesting results have been reported by the above studies, difficulties still exist and

need to be further addressed. One of the difficulties is that there is a gap between the constructed SPSP

mathematical formulation and real-world software projects. Since human resources are one of the main

project resources, software project managers have paid much attention to the influence of employees’

subjective properties on project success. However, only some basic properties of employees and tasks are

considered by existing SPSP models [1, 2, 4, 27, 35], such as the specific skills possessed by each

employee. In order to formulate a more practical model, more properties of human resources and tasks

should be taken into account, as well as their possible variations. For example, a certain employee may

have a strong willingness to take part in a specific task, and his/her skills proficiency can improve with

experience. Besides, employees’ satisfaction for the allocation is an important criterion that a software

manager often considers when scheduling, but it has never been regarded as an objective to be optimized

in the existing models.

Another difficulty is the lack of effective dynamic scheduling approaches for solving MODSPSP. In

MODSPSP, the search space is large, and the project environment varies dynamically. However, the

current search-based dynamic scheduling approaches for this problem find solutions based on fixed search

operators, and lack self-learning mechanisms that could exploit the environment features to guide the

search direction. Therefore, existing approaches have weak ability to adapt and may suffer from slow

convergence speed and/or premature convergence. It is therefore hard for them to find optimal schedules in

dynamically changing environments [24]. In particular, different environment conditions may require

different search operators in order to find good solutions more efficiently and effectively. Existing

approaches for MODSPSP are unable to deal with that.

With the aim of covering the shortage of existing methods, this paper makes two main contributions: (i)

It proposes a more realistic model of MODSPSP, highlighting the influence of employees’ subjective

properties on project success. Different from previous work, our model considers several additional

employee properties, namely the fact that their skill proficiency can be improved over time and that such

improvement is affected by their motivation and learning ability and the skill’s difficulty. Moreover, it

takes into account the impact of employees’ satisfaction by considering it as an extra objective in addition

to project duration, cost, robustness and stability. (ii) It proposes a multi-objective two-archive memetic

algorithm based on Q-learning (MOTAMAQ) to solve the formulated MODSPSP in a

proactive-rescheduling way. The key idea of the approach is to learn the appropriate global and local

search methods of MA adaptively in dynamically changing software project environments through

Q-learning.

To validate the effectiveness of our approach, 18 dynamic SPSP benchmark instances and 3 instances

derived from real-world software projects were used in our experimental studies. Our results indicate that

the introduction of self-adaptive learning mechanism based on Q-learning helps to improve the

convergence performance of MOTAMAQ. By cooperating with the global search operators, the

problem-specific local search operators enhance the local search ability of the algorithm. Besides, the

maintenance of two archives that promote convergence and diversity separately can deal with the 5

objectives in MODSPSP effectively.

The remainder of this paper is organized as follows. Section 2 gives background information and an

overview of related work. Our proposed MODSPSP mathematical model is presented in Section 3. In

Section 4, our Q-learning-based proactive-rescheduling framework is presented, and the proposed

rescheduling approach MOTAMAQ is introduced. Section 5 presents the experimental studies.

Conclusions are drawn in Section 6.

2 Background and related work

2.1 Memetic algorithms and Q-learning

 Memetic algorithm (MA) is a meta-heuristic approach that mimics the process of culture evolution,

and imitates the mutation process supported by specialized knowledge through local heuristic search [28].

MA combines population-based global search with individual-based local search. Compared to traditional

EAs, MAs can find high quality solutions more efficiently in many applications because local search

abilities are enhanced [30]. Some multi-objective memetic algorithms have been used for solving

multi-objective optimization problems [12, 25, 45]. However, environments change dynamically in

MODSPSP. Therefore, MA is likely to exhibit distinct search performance if different global and local

search operators are adopted for different environment states. Thus, if the algorithm can capture the state

of the current environment, and learn the current best evolutionary operators by itself, the search efficiency

of MA for solving MODSPSP will be greatly improved.

Reinforcement Learning (RL) is an effective method to learn an optimal behavior by trial and error

interactions between an agent and a dynamic environment [37, 41]. The agent can perceive the

environment, select an action to execute in the current state, and then the environment feedbacks a reward

or penalty signal to the action taken. The interactions iterate until the agent learns the action

decision-making policy that maximizes the accumulated reward. The above process makes the learning

strategy of RL have long-term effects. Q-learning [6, 19] is one of the famous RL approaches. Its goal is

for an agent to learn the optimal long-term expected reward value Q(s, a) for each pair of state (s) and

action (a). If the fitness value of an individual is regarded as a reward, then there is a high conceptual and

structural compatibility between Q-learning and MA [32]. Based on the above analysis, if a self-learning

multi-objective memetic algorithm is designed by combining both the merits of MA and Q-learning, it may

have a great potential to solve complex dynamic multi-objective problems like MODSPSP.

2.2 SPSP task-based models

The task-based model is a very popular formulation of the SPSP in the search-based software

engineering literature [27]. In this model, there are a group of employees and a set of tasks. Each employee

has the properties of monthly salary, a set of skills, etc. An employee can perform several tasks

concurrently during a working day. Each task also has some properties such as task effort and a set of

required skills. Execution of the tasks should follow a task precedence graph (TPG), which provides

information about the tasks that need to be completed before commencing new ones. The tasks and TPG

are considered as the project to be scheduled. SPSP consists in determining which employees are allocated

to each task, and specifying the dedication of each employee to the assigned tasks, with the objectives of

minimizing project cost, duration and so on. Constraints of no overwork, required task skills, etc, are also

considered [1].

Many researchers have investigated task-based models in static environments. Chang et al. [2]

proposed a task-based model in which overwork was regarded as an extra objective in addition to project

duration and cost. Alba and Chicano [1] and Minku et al. [27] have employed similar models to the one

specified in [2], where the total dedications of each employee to all active tasks were not allowed to exceed

a predefined maximum value specified by the company rules. However, in both these works, overwork

was treated as a constraint. Crawford et al. [7] established a construction graph according to the task-based

model to adapt a Max-Min Ant system to solve SPSP. Wu et al. [42] proposed an evolutionary

hyper-heuristic to solve the static SPSP, which adaptively chose both crossover and mutation operators

during the search. Chicano et al. [5] and Luna et al. [24] formulated the SPSP as a multi-objective

optimization problem where duration and cost were optimized simultaneously based on Pareto dominance.

To make the allocation more flexible, a task-based model with an event-based scheduler was proposed by

Chen and Zhang [4]. In this work, an original schedule was adjusted at events. To make the task-based

model more practical, a time-line model that divided the task duration into various time slices was

developed by Chang et al. [3]. Employees were allocated to tasks in discrete time slices iteratively, and the

accumulated fitness values were evaluated for each solution. In this manner, more features such as

re-assignment of employees, different skill proficiencies, distinct salaries for normal work and overtime

work could be introduced. Nevertheless, too many subjective parameters need to be set and tuned to use

this model, which could make it difficult for software managers to use. Besides, sensitivity of the

algorithm’s performance to various parameters was unknown [27], and a large amount of system instability

would be induced because the tasks were scheduled separately within different time slices [4].

Considering that it is extremely challenging to obtain all the accurate information beforehand, in our

previous work [35], we formulated software project scheduling as a dynamic scheduling problem with task

effort uncertainty and three types of dynamic events (employee leaves, employee returns and new task

arrivals). Then, we proposed a dynamic version of the task-based model, where both the efficiency related

objectives (project duration and cost) and the objectives concerning dynamic environment (robustness and

stability) are considered together.

In most of the above-mentioned models, only some basic properties of employees and tasks are

considered. Properties such as the ability and motivation of employees to improve their skills proficiency,

and satisfaction with the generated schedule are not taken into account. This makes the existing models

inconsistent with real cases.

2.3 Software project scheduling approaches for dynamic environments

A few studies have proposed approaches to deal with uncertainties in software projects. Most of them

adopted proactive scheduling. Hapke et al. [17] translated a fuzzy scheduling problem into a set of

deterministic problems by describing the uncertain activity parameters through L-R fuzzy numbers. To

reduce the effect of uncertainties on project performance, the most appropriate remedial action was chosen

according to the project goal using the simulation-based method provided by Lazarova-Molnar and

Mizouni [22]. Gueorguiev et al. [16] adopted an MOEA to search the trade-off solutions between

completion time and robustness to new tasks. Similarly, Chicano et al. [5] also used an MOEA to solve the

http://www.sciencedirect.com/science/article/pii/0165011494902119

multi-objective SPSP that considered both the employee productivity in performing different tasks and

robustness to the inaccuracies of task effort estimations. Harman [18] performed a number of Monte Carlo

simulations according to a baseline schedule and an event list, so that a schedule under uncertainties was

generated. Vasant et al. [39] considered a project with imprecise activity times and proposed ranking

methods based on fuzzy mathematical techniques.

In the existing literature, very few works have studied resource rescheduling in response to the

dynamic events occurring during software development. Xiao et al. [43] considered one type of disruptive

event, which stood for the addition of a new project, and implemented the rescheduling of three new

project arrivals. To address both the uncertainties and dynamic events, in our previous work [35], we have

proposed a proactive-rescheduling approach based on ε-MOEA [9] to solve the dynamic software project

scheduling problem. A robust schedule is produced predictively with regard to the project uncertainties,

and then the previous schedule is revised by the rescheduling approach in response to critical dynamic

events. However, with our previous approach, the operators in the dynamic scheduling approach are fixed,

and it is not possible to select appropriate search operators adaptively according to the current project state.

To resolve this problem, in this paper, a more practical dynamic version of the task-based mathematical

model for MODSPSP is formulated, which addresses the effect of several human factors on project success.

For instance, the model considers improvement of employees’ skill proficiency over time, and includes an

objective to take employees’ satisfaction into account, together with project duration, cost, robustness and

stability. A multi-objective two-archive memetic algorithm is proposed to solve the formulated MODSPSP

in a proactive-rescheduling way, which can learn the appropriate global and local search operators of the

memetic algorithm adaptively in the dynamically changing project environment based on Q-learning.

3 MODSPSP problem formulation and mathematical modelling

The MODSPSP mathematical model constructed in this paper is an improvement of the one presented

in our previous work [35]. Different from that work, it considers that the skill proficiency of each

employee can be improved over time. It also considers the learning ability and the motivation of each

employee to learn new knowledge, and the difficulty of each skill. Besides, the degree with which each

employee is willing to engage with each skill (and thus in each task) is considered, leading to a new

objective to represent employees’ satisfaction. This objective is considered in addition to the objectives of

project duration, cost, robustness and stability considered in previous work [35].

3.1 The proactive-rescheduling mode

 To address the dynamic features in software project scheduling, one type of uncertainty (the task effort

uncertainty), and three dynamic events (new task arrivals, employee leaves and employee returns) are

taken into account. Among them, urgent task arrivals, employee leaves and returns are considered as

critical events, and regular task arrivals as trivial events.

A proactive-rescheduling mode is employed. Initially, a robust schedule for all tasks and employees at

the initial time 0
t is produced by a proactive scheduling approach, considering the objectives of project

efficiency (duration and cost), schedule robustness (sensitivity of the schedule to task effort uncertainty),

http://link.springer.com/search?facet-author=%22Junchao+Xiao%22

and employees’ satisfaction (willingness of the employees to be allocated to tasks) together. To reduce the

rescheduling frequency, a critical-event-driven mode is adopted. Once a critical event occurs, the

rescheduling approach is triggered, optimizing the objectives of project efficiency, schedule robustness,

system stability (deviations between the new and original schedules) and employees’ satisfaction,

simultaneously. Trivial events (regular task arrivals) are not scheduled until the next critical event takes

place. However, if the new regular task has to start before the occurrence of next critical event based on the

TPG, a heuristic method is used to allocate it [35]. The time when a new schedule is regenerated is called

the rescheduling point, and is denoted as l
t (1,2,l). The unit of l

t is month. Newly generated

schedule is executed in the project until the next critical event occurred, at which time the above

rescheduling approach is driven again. This process lasts until the entire project is finished.

3.2 Skills’ properties

Assume that the project to be scheduled requires in total S skills. The degree of difficulty kSD is

attributed to the kth skill (1,2, ,k S). A greater value of kSD indicates that the kth skill is more

difficult to be grasped.

3.3 Employees’ properties

Table 1 describes employees’ properties. Assume that M employees could get involved in a project.

The skills that an employee i
e possesses at the rescheduling point l

t are denoted by

 1 2={ , , , }skills S

i l i l i l i l
e t pro t pro t pro t , where 1,2, ,i M and [0,C]k

i l
pro t (1,2, ,k S) is a

fractional score which measures the proficiency of i
e for the kth skill at l

t . If 0k

i l
pro t , then i

e

does not have the kth skill, and if Ck

i l
pro t , then i

e totally masters the kth skill. To describe the

proficiency in a more detailed way than in [35], C is set to be 100 here.

According to interviews with software managers, is assumed to be improved with the time t

as follows:

0 0

0 0
0

tanh C= C

k k k k
i i i i

k k k k
i i i i

a t t I a t t I

k k k

i i i a t t I a t t I

e e
pro t a t t I

e e

, 0t t (1)

where, tanh(.) is the hyperbolic tangent function, the parameter
k

i
a describes the proficiency growth rate,

t
0
 is the initial scheduling time, and I

i

k is derived from the initial proficiency pro
i

k t
0() of the employee.

More specifically,

LA MO

k i i

i k

e e
a

SD

 , where

LA

i
e represents the learning ability factor of employee i

e .

Greater values of
LA

i
e indicate better learning ability of . The learning ability includes the ability of

 k

i
pro t

i
e

logic thinking, reasoning, understanding, data analysis, generation, abstraction, etc. The factor
MO

i
e is the

motivation factor of employee i
e , which measures the internal drive of i

e to improve skill proficiency.

Motivation may be influenced by various aspects, such as individual interests, working attitude, habit

formed through a long period of time, salary, sense of worthiness, family environment, company’s culture,

etc. A greater value of
MO

i
e indicates a stronger general motivation of i

e to master skills. In a software

project team, different employees have different learning abilities and motivations, and for a mature

employee, these two characteristics are relatively stable. The learning ability factor of an employee can be

scored by the software manager and fellow team mates based on his/her performances in the previous

projects. Meanwhile, from interviews with real-world software managers, the motivation factor can be

measured by a specialized questionnaire, which has been adopted in many companies. Greater values of

LA

i
e and

MO

i
e , and smaller values of kSD , lead to greater values of

k

i
a , which means a faster

improvement of the proficiency. The parameter
k

i
a can also be related to other factors, e.g. specialization.

This will be further studied in our future work.

Given the initial proficiency pro
i

k t
0() at the beginning of the project, the value of

k

i
I in (1) can be

obtained using

 0atanh()
C

k

i

k

i k

i

pro t

I
a

 , which indicates the time span it takes for an employee i
e to achieve

the initial proficiency 0

k

i
pro t , and atanh(.) is the inverse hyperbolic tangent function. It is worth noting

that
k

i
I is a fixed parameter once 0

k

i
pro t and

k

i
a are given. The changing curve of k

i
pro t with

time t is illustrated in Fig.1.

The degree with which each employee is willing to engage with each skill is denoted by

 1 2= , , ,ED S

i i i i
e ED ED ED , where [0,1]k

i
ED (1,2, ,k S) is a fractional score which measures the

degree of i
e for the kth skill. 0k

i
ED means that i

e is not willing to engage with the kth skill at all,

and 1k

i
ED means that i

e is willing to engage with the kth skill fully. This property will be used to

compute one of the objectives of MODSPSP (see section 3.5).

We use
()

()
C

j i

k

Proficiency i l

ij l

k req skill

pro t
e t

 to indicate the proficiency of i
e for task j

T at , where

j
req is the set of specific skills required by task j

T , and () [0, 1]Proficiency

ij l
e t .

Each employee i
e (1,2, ,i M) also has a maximum dedication

maxded

i
e (maximum percentage of

l
t

his/her time that can be spent on the project), a salary paid for normal working hours
_norm salary

i
e , and a

salary paid for overwork hours
_over salary

i
e .

During the execution of the project, i
e may leave, and return later. ()available

i l
e t is used to indicate the

availability of i
e . We use _ _ ()

l
e ava set t to denote the set of available employees at l

t , i.e.,

 _ _ () | () 1, 1,2, ,available

l i i l
e ava set t e e t i M .

In summary, each employee has some time-invariant properties (
LA

i
e ,

MO

i
e ,

ED

i
e ,

maxded

i
e ,

_norm salary

i
e ,

_over salary

i
e), and also some time-related properties (skills

i l
e t , ()available

i l
e t , ()Proficiency

ij l
e t). Since k

i l
pro t can

be improved over time, ()Proficiency

ij l
e t , which means the proficiency of i

e for task j
T at , is also

time-variant.

It is worth noting that although the skill level improvement has been considered in [3], the model just

took the training hours into account. In contrast, our model relates the skill proficiency growth rate to both

the human factors (motivation, learning ability) and the skill difficulties, which is more appropriate for the

real cases. Meanwhile, the “learning” mentioned here not only indicates the training course used in [3], but

also includes other ways of study such as self-learning.

C

0t lt t

 k

i
pro t

 k

i l
pro t

 0

k

i
pro t

k

i
I

Fig. 1. Illustration of the changing curve of k

i
pro t with time t.

l
t

Table 1

Properties of each employee.

name description

LA

i
e The learning ability factor of employee

i
e . Greater values of LA

i
e indicate better learning ability of

i
e .

MO

i
e

The motivation of employee
i

e . A greater value of MO

i
e indicates a greater motivation of

i
e to improve skill

proficiency.

ED

i
e

The degree with which each employee is willing to engage with each given skill is denoted by

 1 2= , , ,ED S

i i i i
e ED ED ED , where [0,1]k

i
ED (1,2, ,k S) is a fractional score which measures the degree of

i
e

for the kth skill. 0k

i
ED means that

i
e hopes not to have to engage with the kth skill at all, and 1k

i
ED means

that
i

e is willing to engage with the kth skill fully.

maxded

i
e

The maximum dedication of
i

e to the project, which means the percentage of a full-time job
i

e is able to work.

1maxded

i
e means

i
e can dedicate all the normal working hours of a month to the project. Part-time jobs or overtime

working are allowed by setting maxded

i
e to a value smaller or bigger than 1, respectively. For example, 1.2maxded

i
e

indicates
i

e is allowed to work up to 120% of the normal working time.

_norm salary

i
e The monthly salary of

i
e for his/her normal working time.

_over salary

i
e The monthly salary of

i
e for his/her overtime working time.

()skills

i l
e t The skill indicator set of employee

i
e at

l
t (0,1,2,l), 1 2()={ (), (), , ()}skills S

i l i l i l i l
e t pro t pro t pro t .

i
skill

The set of specific skills possessed by
i

e . It can be converted from ()skills

i l
e t , where

{ | () 0, 1,2, , }k

i i l
skill k pro t k S .

()available

i l
e t

A binary variable which indicates whether
i

e is available or not at
l

t . () 1available

i l
e t means

i
e is available at

l
t ,

and () 0available

i l
e t shows

i
e is unavailable at

l
t .

()Proficiency

ij l
e t

The proficiency of
i

e for task
j

T at
l

t .
()

()
C

j i

k

Proficiency i l

ij l

k req skill

pro t
e t

 (
j

req is the set of specific skills required

by task
j

T), and () [0, 1]Proficiency

ij l
e t .

3.4 Tasks’ properties

By l
t , assume + ()

I new l
N N t tasks have been regarded as part of the project in total, among which

I
N tasks existed at the initial time of the project, and ()

new l
N t new tasks were released in the project

one-by-one during the time span 0 , lt t . Properties of each task j
T (1,2, , + ()

I new l
j N N t) are described

in Table 2, where
skills

j
T , j

req ,
_ _est tot eff

j
T are considered as time-invariant, and ()unfinished

j l
T t , ()available

j l
T t ,

TPG are time-related. It is worth noting that, even though
_ _est tot eff

j
T is considered time-invariant, it may

involve uncertainty. For example, the estimated effort may be inaccurate.

At l
t , it is possible that the task j

T has finished (marked by ()unfinished

j l
T t), or j

T is unfinished but

unavailable (marked by ()available

j l
T t) because it cannot be implemented temporally due to one or several

employees’ leaves resulting in at least one of the skills required by j
T not being grasped by any of the

remaining employees. The set _ _ ()
l

T ava set t denotes the set of available tasks at l
t , i.e.,

_ _ ()
l

T ava set t | () 1, 1,2, , + ()available

j j l I new l
T T t j N N t .

TPG is updated at each rescheduling point l
t , considering the cases of completion of a task, new

regular task arrival, or new urgent task arrival. One can refer to our previous work [35] for the details of

TPG update.

Table 2

Properties of each task.

name description

skills

j
T

The skill indicator set of task
j

T . 1 2, , ,skills S

j j j j
T sk sk sk , where 1k

j
sk (1,2, ,k S) indicates the kth skill is

required by
j

T , and 0k

j
sk means not.

j
req The set of specific skills required by

j
T . It can be converted from skills

j
T , where { | 1, 1,2, , }k

j j
req k sk k S .

_ _est tot eff

j
T

The initially estimated effort required to complete task
j

T in person-months. The task effort uncertainty of
j

T is

assumed to follow a normal distribution (,)
j j

N , where
j

 and
j

 are the mean and standard deviation,

respectively. Here, we set _ _est tot eff

j j
T .

()unfinished

j l
T t

A binary variable indicating whether
j

T has finished by
l

t . () 1unfinished

j l
T t means that

j
T is unfinished at

l
t ,

and () 0unfinished

j l
T t means that

j
T has finished by

l
t .

TPG

An acyclic directed graph with tasks as nodes and task precedence as edges. TPG must be updated when a task

finishes or a new task is added into the project. Here, (), ()
l l

G V t A t is used to represent the TPG at
l

t , where

()
l

V t is the vertex set which includes all the arrived and unfinished tasks at
l

t , i.e.,

 () | () 1, 1,2, , + ()unfinished

l j j l I new l
V t T T t j N N t , and ()

l
A t is the arc set which indicates the precedence relations

among the tasks in ()
l

V t .

()available

j l
T t

A binary variable indicating whether
j

T is available or not at
l

t . () 1available

j l
T t shows

j
T is available at

l
t ,

while () 0available

j l
T t means not.

j
T is regarded as available at

l
t if and only if the following three conditions are

satisfied simultaneously: (1)
j

T is unfinished at
l

t , i.e., () 1unfinished

j l
T t ; (2) for any skill required by

j
T , at least

one of the available employees at
l

t possesses the skill, i.e., if
j

k req , then

 , s.t. _ _ ()
i i l i

e e e ava set t k skill ; and (3) all the unfinished tasks preceding
j

T in the TPG satisfy the above

condition (2).

3.5 Optimization variables and objectives

 MODSPSP’s optimization variables and objectives at a specific rescheduling point are formulated in

this section. At the rescheduling point l
t (0l

t t), considering all the current information gathered from

the software project, which contains attributes of a set of available employees _ _ ()
l

e ava set t , a set of

available tasks _ _ ()
l

T ava set t with their remaining estimated task efforts, and the TPG ((), ())
l l

G V t A t

updated at l
t , MODSPSP consists in generating a new schedule

 + ()
X

I new l
l ij l M N N t

t x t

 representing

the dedication matrix of each employee to each task by optimizing the following objectives:

 1 2 3 4 5
min ()=[(), (), (), (), ()]

l l l l l l
t f t f t f t f t f tF (2)

where ij l
x t indicates the dedication of employee i

e to task
j

T scheduled at time l
t . It measures the

percentage of a full-time job which i
e spends on

j
T . The objectives 1

()
l

f t , 2
()

l
f t , 3

()
l

f t , 4
()

l
f t

and 5
()

l
f t are related to the project duration, project cost, schedule robustness, stability of the project,

and employees’ satisfaction, respectively. The formulae of each objective are given below.

 1
{ | _ _ ()}{ | _ _ ()}

() max () min ()
j lj l

end start

l I j l j l
j T T ava set tj T T ava set t

f t duration T t T t

 (3)

The duration measure 1
()

l
f t in (3) evaluates the maximum elapsed time required for completing the

remaining effort of each available task rescheduled at l
t . The subscript I in

I
duration represents the

initial scenario, which assumes no task effort variances. ()start

j l
T t denotes the time at which the remaining

effort of
j

T starts processing after l
t based on the new schedule, and ()end

j l
T t is the finishing time of

j
T rescheduled at l

t .

2

_ _ ()

() _
l i l

l I i

t e e ava s

t

' et

'

tt

f t cost e cost

 (4)

 The cost measure 2
()

l
f t in (4) indicates the initial cost, which evaluates the total salaries paid to the

available employees for their work on the available tasks at l
t , assuming no task effort uncertainties. Here,

't represents any month during which the project is being implemented after l
t , and _ t'

i
e cost denotes

the salaries paid to employee i
e at the moment of time 't . _ t'

i
e cost is calculated as follows:

If
_ _ ()

 () 1
ij l

j T acti t've set

x t

 , then

'

_ '

_ _ ()

_ norm salary

i i ij l

j T active set t

t'e cost e t x t

 (5)

else if
_ _ ()

 1< () maxded

ij l i

j T active set t'

x t e

 , then

_ _

_ _ ()

_ 1 () 1norm salary over salary

i i i ij l

j T active s

t

et

'

t'

e cost e e xt' t' t

 (6)

If i
e works overtime at 't (the total dedications of i

e to all the active tasks at 't are larger than 1),

then the overtime salary
_over salary

i
e should be paid for the overtime working. The salary

_norm salary

i
e is paid

for normal working time.

2 2

3

1 1

() () () ()1 1
() max 0, max 0,

() ()

N N
q l I l q l I l

l

q qI l I l

duration t duration t cost t cost t
f t robustness

N duration t N cost t

 (7)

The robustness measure 3
()

l
f t in (7) evaluates the sensitivity of a schedule’s efficiency quality to task

effort variances based on a scenario-based approach. Here,
I

duration and
I

cost are the initial duration

and cost obtained from (3) and (4),
q

duration and
q

cost are the corresponding efficiency objective

values under the qth sampled task effort scenarios. N is the sample size, and is a weight parameter. In

our experiments, we set N=30, and 1 .

1 1

4 -1

{ | _ _ () _ _ ()} { | _ _ () _ _ ()}

() () ()
i l l j l l

l ij ij l ij l

i e e ava set t e ava set t j T T ava set t T ava set t

f t stability x t x t

 (8)

The stability measure 4
()

l
f t in (8) calculates the weighted sum of dedication deviations between the

new and original schedules. It assists in preventing employees from being shuffled around too much, and is

evaluated for all the available tasks at l
t (0l

t t) which are left from the previous schedule generated at

1l
t
 . We set the weight

ij
 as shown in (9):

-1

-1

2 if ()=0 and () 0

= 1.5 if () 0 and () 0

1 otherwise

ij l ij l

ij ij l ij l

x t x t

x t x t

 (9)

_ _ _ _

5

1

()
_ _

j i

i l j l

k

i

k req skill

ij l

e e ava set t T T ava set t j i

l

l

ED

x t
req skill

f t satisfaction
e ava set t

 (10)

The satisfaction measure 5
()

l
f t given in (10) evaluates the average degree of unwillingness of the

employees to engage with the allocated tasks weighted by the dedication of employees to tasks. This

objective is required to be minimized, as the other four objectives. The smaller the value of 5
()

l
f t , the

better the employees’ satisfaction with the generated schedule.

The pseudo code for evaluating 1
()

l
f t , 2

()
l

f t , 3
()

l
f t and 4

()
l

f t is same as the one provided in our

previous work [35], except that when calculating the objectives of project duration and cost, the

proficiency ()Proficiency

ij l
e t of employee i

e for task
j

T is updated at each l
t according to

LA

i
e ,

MO

i
e and

kSD .

It is worth mentioning that at the initial time 0
t , only four of the objectives defined above (

I
duration ,

I
cost , robustness and satisfaction (without stability)) are optimized.

3.6 Constraints

In MODSPSP, the search space constraints at the rescheduling point l
t are the following:

1) No overwork constraints

At the moment of time 't after l
t , the total dedication of an available employee to all the active tasks

that are being developed should not exceed his/her maximum dedication to the project, i.e.,

 _ _ ()
i l

e e ava set t , l
t' t ,

_ _ ()

_ ()t'

i ij l

j T active set t'

e work x t

 , s.t. _ t' maxded

i i
e work e (11)

2) Task skill constraints

All the available employees working together for one available task must collectively cover all the skills

required by that task, i.e.,

 _ _ ()
j l

T T ava set t , s.t.
_ _ ()

| () 0
i l

j i ij l

e e ava set t

req skill x t

 (12)

3) Maximum headcount constraints

 _ _ ()
j l

T T ava set t , s.t. min_
() max , ()empnumteamsize maxhead

j l j j l
T t T T t (13)

where ()teamsize

j l
T t is the team size for accomplishing task

j
T ,

min_
()empnum

j l
T t is the minimum number of

available employees who should join
j

T in order to satisfy the task skill constraint, and
maxhead

j
T is the

desired upper limit for ()teamsize

j l
T t , aiming to reduce the communication overhead. Here,

maxhead

j
T is

estimated as provided by the authors of [3]: 0.672
_ _max 1, 2 3maxhead est tot eff

j j
T round T . In (13), if

()teamsize

j l
T t cannot be reduced to

maxhead

j
T without violating the task skill constraints (i.e.,

min_
()empnummaxhead

j j l
T T t), then ()teamsize

j l
T t can be relaxed up to

min_
()empnum

j l
T t .

3.7 Discussion

The MODSPSP model presented in our previous work [35] is an advanced version to that of the

available ones in the literature. It captures more dynamic features of a real-world SPSP than previous

models. When compared with our previous model, the superiorities of the improved MODSPSP model

constructed in this paper are summarized as follows:

(1) Consideration of employees’ properties on subjective initiative. Human resource is one of the main

resources for any software project. To emphasize the effects of human factors on project success, more

properties on employees’ initiative such as motivation, learning ability, and the degree with which each

employee is willing to engage with each skill (and thus with each task), are introduced in the improved

model.

(2) Improvement of the skill level. To be more consistent with the reality, the proficiency of each

employee on each skill is allowed to be improved over time. Upon investigating a real-world software

project, in our current model, employees’ learning ability, motivation, and the skill difficulty are

considered as the three most influencing factors on the skill proficiency growth rate. A relationship

between these factors has been formulated and analyzed. In contrast, the skill level is regarded as

time-invariant during the whole project in [35].

(3) Definition of the satisfaction objective. Based on the degree with which each employee is willing to

engage with each skill (and thus with each task), the employees’ satisfaction with the generated schedule

has been considered together with project duration, cost, robustness and stability, highlighting the fact that

employees’ subjective initiative is paid more attention in modern software projects. In [35], the degree with

which each employee is willing to engage with skills and the satisfaction of employees were not taken into

account.

4 A Q-learning-based proactive-rescheduling approach to solve the MODSPSP

4.1 The Q-learning-based proactive-rescheduling framework

4.1.1 Training agent to determine the appropriate scheduling approach using Q-learning

 Q-learning is used to learn which scheduling approach is the most appropriate for the new project

environment. The proposed Q-learning scheme for dynamic software project scheduling based on

centralized control is shown in Fig.2. It is assumed that the agent is able to perceive information of the

tasks and employees in the project environment, and make an appropriate decision about the action to be

taken in the new environment. Here, the action refers to the use of certain global and local search methods

in the MOTAMAQ-based scheduling approach. The software project is regarded as the environment for

carrying out Q-learning. The MOTAMAQ-based scheduling approach follows the instructions of the agent.

After a set of non-dominated scheduling solutions are generated by the specified scheduling approach, a

signal is sent to the agent. Reward for the selected action is evaluated by the agent, and the corresponding

state-action value is updated. The agent would give the instruction of the next action which is selected

based on a predefined selection policy. Afterwards, for each state of the software project, the state-action

value converges to an optimum value in iterative runs.

agent in the Q-learning

software project scheduling environment

task1 task2 taskn

engineer1 engineer2 engineerm

the state s action

（the global and local search

methods of MOTAMAQ）
reward to the actions taken

the current state

update of the state -action

value Q(s,a)）

Fig. 2. Q-learning scheme for dynamic software project scheduling

4.1.2 Procedure of the Q-learning-based proactive-rescheduling framework

To handle both uncertainties and real-time events occurring during a software project, a

Q-learning-based proactive-rescheduling framework is proposed for solving MODSPSP. Its pseudocode is

depicted in Fig. 3.

Procedure 1 The Q-learning-based proactive-rescheduling framework

******** Initialization *********

1: Set 0l .

2: All the Q-values in the state-action pair table are initialized to be 0.

3: The initial state ()
l

S t of the project environment is perceived by the agent.

4: Select an arbitrary action ()
l

A t . The global and local search methods of MOTAMAQ are selected based on the action ()
l

A t .

******** Proactive scheduling *********

5: MOTAMAQ is triggered, and automatically generates a set of non-dominated solutions to optimize the four objectives, i.e., duration,

cost, robustness, and employees' satisfaction, satisfying the three constraints defined by (11) - (13).

6: Calculate the HV value of the obtained non-dominated solution set, and set it as the reward ()
l

r t .

7: The software manager selects one solution manually, or based on an automated decision making procedure.
******** Rescheduling *********

8: while the project is not completed

9: The new generated schedule is implemented in the current project.

10: if a critical dynamic event occurs

11: 1l l .

12: The skill level of each employee is updated.

13: The current state ()
l

S t of the project environment as the result of executing action
1

()
l

A t

 is perceived by the agent.

14: The value of
1 1

((), ())
l l

Q S t A t

 is updated according to (23) in Section 4.8.

15: An action ()
l

A t is chosen based on the selection policy given in Section 4.6.

16: The MOTAMAQ-based rescheduling approach determined by ()
l

A t is triggered and automatically generates a set of

non-dominated solutions, which represent different trade-offs among the five objectives: duration, cost, robustness, stability

and satisfaction, satisfying the three constraints defined by (11) - (13).

17: The reward value ()
l

r t is calculated to evaluate the performance of ()
l

A t .

18: The software manager decides one schedule from the generated non-dominated solution set.
19: end if

20: end while

21: Exit.

Fig. 3. Pseudo code for the Q-learning-based proactive-rescheduling framework.

4.2 MOTAMAQ-based rescheduling method for MODSPSP

Two_Arch2 [40] is a successful many-objective (4 or more objectives) optimization algorithm with low

complexity. It maintains a convergence archive (CA) and a diversity archive (DA) to promote convergence

and diversity separately. It adopts the I
 indicator [46] as the selection principle for CA to improve the

convergence on many-objective optimization problems, and Pareto dominance for DA to promote diversity.

In addition, it employs an Lp-norm-based distance (p < 1) to maintain diversity in DA. MODSPSP is a

dynamic problem with five objectives. To solve it in an efficient way, our scheduling approach

MOTAMAQ uses the general framework of Two_Arch2. Moreover, MOTAMAQ is also a memetic

algorithm that employs both global and local search to generate child individuals. The appropriate global

and local search methods in a specific environment are learned adaptively by the agent in Q-learning.

At each rescheduling point l
t (0l

t t), a MOTAMAQ-based rescheduling approach is trigged to

obtain a new schedule in the new environment. The pseudo code for MOTAMAQ is presented in Fig. 4.

Procedure 2 MOTAMAQ at the rescheduling point
l

t (
0l

t t)

Input:
pop

n - the population size.
CA

n - the fixed size of the convergence archive ()
l

CA t .
DA

n - the fixed size of the diversity archive

()
l

DA t . Q - the number of uncertainty scenarios sampled. Lmax - the maximum number of iterations of the local search. NmbEvl - the

maximum number of objective vector evaluations. ()
l

A t - the action determined by Q-learning.

Output: ()
l

DA t , S- a selected solution.

******** Initialization *********

1: Generate an initial population ()
l

P t using heuristic strategies according to the updated project state at
l

t .

2: Sample a set of task effort scenarios
q

 at random according to the normal distribution, 1,2, ,q Q .

3: Evaluate each individual in ()
l

P t .

4: All the Pareto non-dominated solutions are determined from ()
l

P t to form ()
l

DA t .

5: Set ()
l

CA t as empty.

6: Set the counter of objective evaluation numbers ()
l

ct P t .

7: while ct NmbEvl

******** Variation *********

8: Sample a set of task effort scenarios '

q
 at random according to the normal distribution, 1,2, ,q Q .

9: A certain global search method specified by ()
l

A t is employed on ()
l

CA t and ()
l

DA t to produce a child population

1
()

l
NPOP t .

10: Evaluate each individual in
1
()

l
NPOP t .

11:
1
()

l
NPct ct OP t .

12: A certain local search method specified by ()
l

A t is performed on the neighborhood of each individual in
1
()

l
NPOP t for Lmax

times, and a new child population ()
l

NPOP t is obtained.

13:
max 1

()
l

NPOPct ct L t .

******** Update ()
l

CA t by the I

 indicator *********

14: Find non-duplicated objective values of individuals in () ()
l l

CA NPOPt t , and set them as ()
l

CA t .

15: if ()
l CA

A tC n

16: The extra solutions are removed from ()
l

CA t according to the I

-based fitness value.

17: end if

******** Update ()
l

DA t by Pareto dominance *********

18: Find non-dominated solutions in () ()
l l

NPO t DA tP , and set them as ()
l

DA t .

19: if ()
l DA

DA t n

20: Set ()
l

AD t empty.

21: while ()
l DA

AD t n

22: Select an appropriate solution from ()
l

DA t based on the Lp-norm-based (p < 1) distance.

23: Add it to ()
l

AD t .

24: end while

25:)() (
l l

DA t AD t .

26: end if

27: end while

28: Select one solution S from ()
l

DA t as the schedule to be implemented based on a decision making procedure.

29: Output ()
l

DA t and S.

30: Exit.

 means cardinality of a set

Fig. 4. Pseudo code for MOTAMAQ at the rescheduling point
l

t (
0l

t t).

In line 1 of the pseudo code shown in Fig. 4, updated project state is obtained in the same way as

explained in section 4.2.2 of [35]. If genetic algorithm (GA)-based global search is performed, heuristic

constructions of the initial population are obtained in the same way as explained in section 4.2.3 of [35]. If

angle modulated differential evolution (AMDE) [14]-based global search is adopted, the population

initialization is described in the following section 4.4.1 of this paper. In line 8, the sampled task efforts

vary from one generation to another, which increases the probability of obtaining robust solutions

undergoing a variety of scenarios. The global and local search methods in line 9 and line 12 are introduced

in sections 4.4.1 and 4.4.2 of this paper, respectively. Updates of CA (lines 14-17) and DA (lines 18-26) are

the same as those explained in [40]. The decision making procedure shown in line 28 is explained in

section 4.2.4 of [35]. For each candidate solution, the constraint handling methods and the objective

evaluation procedure are explained in sections 5.2 and 5.3 of [35], respectively.

It is worth noting that at the initial time 0
t , the proactive scheduling is also performed using the

MOTAMAQ procedure shown in Fig. 4, except that the population is randomly initialized in line 1 instead

of using heuristic initialization, and when evaluating an individual, only four objectives (without stability)

are considered.

4.3 State description

In MODSPSP, once a dynamic critical event occurs, a rescheduling approach is triggered. The new

environment after the occurrence of a critical event is perceived by the agent, and is considered as the state

in Q-learning. Since employees and tasks are the two main elements in the software project, the

MODSPSP environment state is described by the following two aspects:

1) Effort ratio

It is defined as the ratio of the sum of remaining efforts of all the available tasks to the total efforts of all

the tasks that have ever appeared in the project until now. This ratio is mainly affected by the number of

available tasks and their remaining efforts.

 𝑓𝑎1 = 𝐸𝑓𝑓𝑜𝑟𝑡 𝑅𝑎𝑡𝑖𝑜 =
∑ 𝑇𝑗

𝑒𝑠𝑡_𝑟𝑒𝑚_𝑒𝑓𝑓
(𝑡𝑙)𝑗∈𝑇_𝑎𝑣𝑎_𝑠𝑒𝑡(𝑡𝑙)

∑ 𝑇
𝑗
𝑒𝑠𝑡_𝑡𝑜𝑡_𝑒𝑓𝑓(𝑁𝐼+𝑁𝑛𝑒𝑤(𝑡𝑙))

𝑗=1

 (14)

2) Proficiency ratio

It is defined as the ratio of the sum of proficiencies of all the available employees for all the available

tasks to the sum of the highest proficiencies (i.e., 1) of all the employees for all the available tasks. This

ratio is mainly affected by the number of available employees and their respective proficiencies.

 𝑓𝑎2 = 𝑃𝑟𝑜𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑅𝑎𝑡𝑖𝑜 =
∑ ∑ 𝑒𝑖𝑗

𝑃𝑟𝑜𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
𝑖∈𝑒_𝑎𝑣𝑎_𝑠𝑒𝑡(𝑡𝑙)𝑗∈𝑇_𝑎𝑣𝑎_𝑠𝑒𝑡(𝑡𝑙)

∑ ∑ 1𝑀
𝑖=1𝑗∈𝑇_𝑎𝑣𝑎_𝑠𝑒𝑡(𝑡𝑙)

 (15)

Nine states are defined in our work. The criterion for the classification of the nine states is listed in Table 3.

Table 3

State classification.

S1 S2 S3 S4 S5

1
0 0.4fa

2
0 0.6fa

1
0 0.4fa

2
0.6 0.9fa

1
0 0.4fa

2
0.9 1fa

1
0.4 0.8fa

2
0 0.6fa

1
0.4 0.8fa

2
0.6 0.9fa

S6 S7 S8 S9

1
0.4 0.8fa

2
0.9 1fa

1
0.8 1fa

2
0 0.6fa

1
0.8 1fa

2
0.6 0.9fa

1
0.8 1fa

2
0.9 1fa

4.4 Definition of actions

MOTAMAQ is a memetic algorithm, which is composed of both global and local searches. Different

combinations global and local search methods are regarded as different actions.

4.4.1 Global search

Two global search methods: GA-based and AMDE-based are designed.

1) GA-based representations and variation operators

In MOTAMAQ’s GA-based global search, binary encoding is used to represent individuals. The

original solution of MODSPSP is a dedication matrix
 + ()

X() ()
I new l

l ij l M N N t
t x t

 , where

() 0, maxded

ij l i
x t e . Here, nb bits are employed to encode ()

ij l
x t ; thus,

 () 0, 1 , ,maxded maxded

ij l i i
x t e k e k k , 2 1nbk . The value of ()

ij l
x t should be searched only when i

e

and
j

T are available at l
t ; in any other cases, () 0

ij l
x t . For the sake of simpler computation, only the

values of () () | () 1 and () 1available available

ij l ij l i l j l
x t x t e t T t are encoded, such that the chromosome has a

length of _ _ () _ _ ()
l l

e ava set t T ava set t nb bits.

When evaluating the objective values, each chromosome should be decoded into a dedication matrix.

An illustration of a binary chromosome representation and its decoded dedication matrix is shown in Fig. 5,

where there are two available employees 2
e and 3

e , two available tasks 1
T and 2

T , one leaving

employee 1
e , one finished task 3

T , and .

In the GA-based global search, a crossover operator designed for matrices [27] is employed. It

3nb

decodes the parent binary chromosomes into dedication matrices at first. Then either rows or columns in

the two parent dedication matrices are exchanged with an equal probability of 0.5. Later, the matrices are

once again transformed into binary chromosomes. The mutation operator is bit-flip mutation.

 0 1 0 1 1 1 1 0 0 0 0 0

2/7 1 0

x21 x22 x31 x32

chromosome dedication matrix

4/7

2 2

3

0 0 0

2
0

7

4
0 0

7

maxded maxded

maxded

e e

e

Fig. 5. An illustration of chromosome representation and its dedication matrix.

 The pseudo code of GA-based global search is shown in Fig. 6. When the global search operator is set

to GA-based global search, the procedure shown in Fig. 6 is called from line 9 of MOTAMAQ in Fig. 4 in

order to produce an offspring population 1
()

l
NPOP t .

Procedure 3 GA-based global search at the rescheduling point
l

t (
0l

t t)

Input: ()lCA t - the convergence archive. ()lDA t - the diversity archive. ()
l

P t - the initial population.
pop

n - the population size.

Output:
1()lNPOP t

********Crossover*********

1: Set
11()lNPOP t as empty.

2: While
11() 2*l popNP t nOP

3: If ()lCA t is empty

4: Select two individuals from ()
l

P t uniformly at random as the parents.

5: else

6: Select one parent individual from ()lDA t uniformly at random.

7: Select another parent individual from ()lCA t . If () 1lCA t , then select the individual in ()lCA t as the parent individual.

Otherwise, two individuals are picked up uniformly at random from ()lCA t , and check the domination of each other. If one

dominates the other, the former will be chosen. Otherwise, one of them is selected at random.

8: end if

9: Perform the crossover operator designed for matrices on the two parent individuals. Then two child individuals are generated and

added into
11()lNPOP t .

10: end while

********Mutation*********

11: Set
12()lNPOP t empty.

12: while
12()l poptNP nOP

13: if ()lCA t is empty

14: Select one individual from ()lDA t uniformly at random.

15: else

16: Select one individual from ()lCA t uniformly at random.

17: end if

18: Perform the bit-flip mutation on the selected individual, and a child individual is generated and added into
12()lNPOP t .

19: end while

20:
1 11 12() () ()l l lt tNPOP NPOP NPOP t .

21: Output
1()lNPOP t .

22: Exit.

Fig. 6. Pseudo code for GA-based global search at the rescheduling point
l

t (
0l

t t).

2) AMDE-based representations and variation operators

AMDE is designed for solving binary-valued optimization problems through operations from the

original DE. It converts a binary-valued problem into a 4-dimensional problem in a continuous-valued

space using angular modulation. AMDE operates by evolving the values of the four coefficients a, b, c,

and d of the bit string generating function given by (16).

 g(x) = sin(2𝜋(𝑥 − 𝑎) × 𝑏 × cos (2𝜋(𝑥 − 𝑎) × 𝑐)) + 𝑑 (16)

Hence, in our AMDE-based global search, 4-dimensional real number encoding has been used for

individual representation, with the range of 1, 1 for each dimension [14].

In (16), 2, 2x has been selected as shown in [14]. Similar to the GA-based global search, the

binary chromosome has a length of 1 _ _ () _ _ ()l ll e ava set t T ava set t nb bits. Thus, 1l values for

x are evenly sampled from 2, 2 . The decoding procedure is described as follows: when a new

individual with 4 dimensions is evolved using differential evolution (DE) [26] operators, replace the

coefficients a, b, c, and d from (16) by its values. The resulting function value is calculated for each of the

1l sampled values iteratively. If the result is positive, a bit-value of 1 is recorded; otherwise, a bit-value of

0 is recorded. Thus a bit string with the length of 1l is obtained, and then translated into a dedication

matrix as shown in Fig. 5 and evaluated. The DE mutation operators used in this study are DE/rand/2 and

DE/curr. to best/1 [26].

If AMDE-based global search is used, the initial population in line 1 of Fig. 4 is constructed as follows:

to use the history information of MODSPSP and speed up algorithm convergence, 20% of the initial

population are formed with the historic scheduling solution (the individual in the continuous-valued space

with 4 dimensions) from the last rescheduling point and its variants produced by polynomial mutation [10].

The remaining 80% of the population is filled with random individuals.

The pseudo code of AMDE-based global search is shown in Fig. 7. When the global search operator is

set to AMDE-based global search, the procedure shown in Fig. 7 is called from line 9 of MOTAMAQ in

Fig. 4 in order to produce an offspring population 1
()

l
NPOP t .

Procedure 4 AMDE-based global search at the rescheduling point
l

t (
0l

t t)

Input: ()lCA t , ()lDA t , ()
l

P t ,
pop

n ,
1

F ,
2

F ,
3

F -mutation factors, CR-crossover ratio

Output:
1()lNPOP t

******** DE/rand/2 mutation and binomial-crossover*********

1: Set
11()lNPOP t as empty.

2: while
11() 2*l popNP t nOP

3: if ()lCA t is empty

4: Select one individual from ()
l

P t uniformly at random as a target individual p. If () 1
l

DA t , select
1r

p ,
2r

p and
3r

p from

http://www.baidu.com/link?url=imqW_0aOCzr0IOgbmAIsIS2T8zeJzg0N4cZu3Kx8-7Ka0pskGaRQ54WpRy-2dP0C71RnmmgduJTxRpUv8PNjphhl9rJgAP0cPEbYqrNvMBOJfk-LNzUPYyCztsg0nf8p

() \lP t p , and
4r

p and
5r

p from ()lDA t uniformly at random, respectively; else if () 1
l

DA t , select
1r

p ,
2r

p ,
3r

p and
4r

p

from () \lP t p , and
5r

p from ()lDA t uniformly at random, respectively.

5: else

6: Select one individual from ()lCA t uniformly at random as a target individual p. If () 3lCA t and () 1lDA t , select
1r

p ,

2r
p and

3r
p from () \lCA t p , and

4r
p and

5r
p from ()lDA t uniformly at random, respectively; else select

1r
p ,

2r
p ,

3r
p ,

4r
p and

5r
p from () () () \

l l l
CA t DA t P t p uniformly at random.

7: end if

8: The DE/rand/2 mutation is performed on p, and a donor solution v is generated:
1 2 3 4 51

()
r r r r r

v p F p p p p .

9: Check each dimension of v. If the value of a certain dimension is out of bounds, it is replaced by a random value within bounds.

10: Apply the binomial crossover operator on p and v, to obtain a trial solution u:
 if or

 else

j j rand

j

j

v rand CR j j
u

p

，where
ju ,

j
v ,

and
j

p are the jth dimension of u, v, and p, respectively, 1,2,3,4j , and
randj is a value generated from 1,2,3,4 uniformly

at random.

11: u is added into
11()lNPOP t .

12: end while

******** DE/curr. to best/1 mutation and binomial-crossover*********

13: Set
12()lNPOP t empty.

14: while
12()l poptNP nOP

15: if ()lCA t is empty

16: Select one individual from ()
l

P t uniformly at random as a target individual p. Select
2r

p and
3r

p from () \lP t p , and
bestp

from ()lDA t uniformly at random, respectively.

17: else

18: Select one individual from ()lCA t uniformly at random as a target individual p, and select
bestp from ()lDA t uniformly at

random. If () 2lCA t , select
2r

p and
3r

p from () \lCA t p uniformly at random, else, select
2r

p and
3r

p from

 () () \l lCA t P t p uniformly at random.

19: end if

20: The DE/ curr. to best/1 mutation is performed on p, and a donor solution v is generated:
2 32 3() ()r r bestv p F p p F p p .

21: Check each dimension of v. If the value of a certain dimension is out of bounds, it is replaced by a random value within bounds.

22: Apply the binomial-crossover operator on p and v, to obtain a trial solution u.

23: u is added to
12()lNPOP t .

24: end while

25:
1 11 12() () ()l l lt tNPOP NPOP NPOP t .

26: Output
1()lNPOP t .

27: Exit.

Fig. 7. Pseudo code for DE-based global search at the rescheduling point
l

t (
0l

t t).

4.4.2 Local search

To work with the GA-based global search (for which the individual is defined in the binary-valued

space), two local search approaches are designed, which are denoted as
1

bLS and
2

bLS . With
1

bLS , the

value of each entry in the dedication matrix X()
l

t of the considered individual is replaced by a different

value selected uniformly at random from the set {0, 1 , , }maxded maxded

i i
e k e k k with a probability Pm,

where 1 (_ _ () _ _ ())
m l l

P T ava set t e ava set t .
2

bLS swaps two randomly selected rows or columns in

X()
l

t . It is worth noting that after performing the above local search, the heuristic operator is executed on

the dedication matrix of the resulting solution, which sets the dedication of an employee for a task to 0 if

he/she has none of the skills required by the task, i.e., if 0Proficiency

ij
e , then set () 0

ij l
x t .

To work with the AMDE-based global search (where the individual is defined in the continuous-valued

space), two local search approaches are designed that are denoted by
1

cLS and
2

cLS . In
1

cLS , polynomial

mutation is performed on each entry of the considered individual with a probability ' =1 4
m

P (the length

of an individual in AMDE is 4), whereas for
2

cLS , uniform mutation is performed with a probability of '

m
P .

The heuristic operator is also performed on the dedication matrix of the resulting solution.

4.4.3 Four actions

 A total of four actions are defined by combining the global search procedures described in section

4.4.1 with the local search procedures described in section 4.4.2. These actions are listed in Table 4.

Table 4

The four MOTAMAQ actions.

A1 A2 A3 A4

GA+LS1
𝑏 GA+LS2

𝑏 AMDE+LS1
𝑐 AMDE+LS2

𝑐

4.5 State-action pair table

The state-action pair table is presented in Table 5. This table is used by Q-learning to decide which

action to use for a given state as explained in section 4.6. Its Q-values are updated as explained in sections

4.7 and 4.8.

Table 5

State-action pair table.

 Action No.

State No.
A1 A2 A3 A4

S1 Q(S1, A1) Q(S1, A2) Q(S1, A3) Q(S1, A4)

S2 Q(S2, A1) Q(S2, A2) Q(S2, A3) Q(S2, A4)

S3 Q(S3, A1) Q(S3, A2) Q(S3, A3) Q(S3, A4)

…… …… …… …… ……

S9 Q(S9, A1) Q(S9, A2) Q(S9, A3) Q(S9, A4)

4.6 Action selection policy

For the perceived environment state l
S t , a selection policy l

S t , is used by an agent to select

an action. Here, the selection probability ,
l i

P S t A for each candidate action i
A (1,2, ,i NA ,

where NA is the number of candidate actions), is determined by the Q-values in the state-action pair table

with the help of the softmax function:

𝑃(𝑆𝑡𝑙
, 𝐴𝑖) =

𝑒𝑥𝑝(𝜃𝑄(𝑆(𝑡𝑙),𝐴𝑖) max
𝑖=1,2,⋯,𝑁𝐴

𝑄(𝑆(𝑡𝑙),𝐴𝑖)⁄)

∑ 𝑒𝑥𝑝(𝜃𝑄(𝑆(𝑡𝑙),𝐴𝑖) max
𝑖=1,2,⋯,𝑁𝐴

𝑄(𝑆(𝑡𝑙),𝐴𝑖)⁄)𝑁𝐴
𝑖=1

 (17)

where, 2 is used in this work. An action l
A t is then chosen from 1 2

, , ,
NA

A A A according to

the roulette wheel selection.

4.7 Reward of an action

The reward value is essentially served to reinforce the action and guide the agent to accomplish its goal.

After executing l
A t , a reward value l

r t is given to evaluate the performance of l
A t and also to

update the state-action pair value ((), ())
l l

Q S t A t . For multi-objective optimization, the hypervolume (HV)

[47] is a commonly used metric mainly because of its ability to evaluate both the convergence and spread

of the obtained non-dominated front. In our approach, HV is calculated as the reward l
r t for the

selected action l
A t . A larger l

r t value indicates a better convergence and a wider spread.

The reference point for calculating HV is obtained by estimating the worst value on each objective in

the current environment state , which is given as follows:

 max max _ _

1
_ _ () _ _ ()

_ _ ()

_ _

_ _ ()
_ _ ()

() () min max

 7 () min

i l j l
j l

i l
j l

est rem eff maxded

l I j l i j
e e ava set t T T ava set t

T T ava set t

est rem eff maxded

j l i
e e ava set t

T T ava set t

f t duration T t e k V

k T t e

 (18)

In the worst case, tasks are processed one by one. The total dedication for each task is the minimum

value
_ _ ()
min

i l

maxded

i
e e ava set t

e k

, and the cost driver value j
V of each task j

T takes the maximum value 7.

max max _ _ _

2

_ _ () _ _ ()

() () 7
i l j l

over salary est rem eff

l I i j l

e e ava set t T T ava set t

f t cost e T t

 (19)

In the worst case, all available employees are dedicated to all the tasks with individual overwork salary

_over salary

i
e . Besides, the total dedication of each employee to each task j

T is equal to the total effort

 l
S t

required for the task
_ _ () 7est rem eff

j l
T t , in which the maximum cost driver value of each task takes the value

7.
max max

3
() 10

l rob
f t robustness C (20)

From experimental observations, it is noted that the robustness value of each scheduling solution is

always a lot smaller than the constant .

max max

4
_ _ ()

() _ _ () _ _ () 2 max
i l

maxded

l l l i
e e ava set t

f t stability e ava set t T ava set t e

 (21)

In the worst case, the dedication deviation of each available employee to each available task is

_ _ ()
max

i l

maxded

i
e e ava set t

e

, and the weight ij
 always takes the maximum value of 2.

 max max

5
_ _ ()

() _ _ () max
i l

maxded

l l i
e e ava set t

f t SD T ava set t e

 (22)

In the worst case, the average dissatisfaction degree and the dedication of each available employee to

each allocated available task are 1 and
_ _ ()
max

i l

maxded

i
e e ava set t

e

, respectively.

4.8 Update of the Q-value

During the learning process of the agent in Q-learning, the Q-value of the state-action pair

1 1
((), ())

l l
Q S t A t

 is updated as follows:

 1 2

1 1 1 1 1
, , ,

((), ()) (1) ((), ()) () max ((),)
i NA

l l l l l l i
A A A A

Q S t A t Q S t A t r t Q S t A

, 1t (23)

where
 1 2, , ,
max ((),)

i NA
l i

A A A A
Q S t A

 is the maximum state-action pair Q-value at the new perceived state ()

l
S t

after executing 1
()

l
A t

 ; 0 1 is the learning rate; 0 1 is the discount rate, which indicates

the influence of the future reward on the current situation.

5 Experimental studies

Considering the complex and dynamically changing environments of software projects, we perform

experiments with the aim of providing software managers with a detailed insight on selecting a scheduling

approach for solving MODSPSP. This insight should be supported by evidences demonstrating which

scheduling approach is likely to behave better based on the performance indexes that may affect the

software manager’s decision. Therefore, in this section, we compare our Q-learning based scheduling

approach (MOTAMAQ) with seven other MOEA-based dynamic scheduling approaches in terms of

convergence, distribution, and spread performance metrics. These performance metrics are often used to

evaluate multi-objective optimization approaches. In addition, different trade-offs among the five

objectives are analyzed by presenting the Pareto fronts of software projects.

5.1 Dynamic software project simulation model and instances

In order to validate the effectiveness and efficiency of our proposed model and approach, 18

rob
C

MODSPSP instances derived from Alba and Chicano’s benchmarks [1], and 3 real-world instances derived

from business software construction projects for a departmental store [4] are adopted in this work. All the

experiments are implemented in MATLAB running on a personal computer with Intel core i5, 3.2 GHz

CPU and 4 GB RAM.

The 21 MODSPSP test instances generated here are similar to those used in our previous work [35].

The differences between them are summarized as follows: (1) Properties such as learning ability
LA

i
e ,

motivation
MO

i
e , and the degree with which employees are willing to engage with each skill

ED

i
e are

attached to each employee i
e (1,2, ,i M), and the degree of difficulty kSD is attributed to the kth

skill (1,2, ,k S). (2) The skill level of each employee can be improved with time according to Eq. (1)

such that the proficiency of each employee for each task is also improved. The range of the proficiency

score is [0, 100]. From interviews with real-world software managers, for most people, the learning ability

and motivation factors are close to the average level, and the probability of possessing a higher or lower

level decreases gradually. Thus,
LA

i
e and

MO

i
e are assumed to follow the normal distribution N(0.5,

0.15), with a mean value of 0.5 and variance of 0.15. kSD and
ED

i
e are sampled uniformly from [0, 1]

at random, respectively. If an employee possesses one skill, the initial proficiency score is sampled

uniformly from (0, 100] at random, otherwise it is set to 0. For all 21 test instances, 10 new tasks are added

one by one following the Poisson distribution during the project implementation. Besides, employee leaves

and returns are also assumed to follow the Poisson distribution.

The 18 randomly generated MODSPSP instances are named as sT#1_dT#2_E#3_SK#4-#5, where sT#1

represents the number of initial static tasks, dT#2 denotes the number of new arriving tasks, E#3 represents

the number of employees, and SK#4-#5 denotes each employee possesses #4 to #5 skills. For example,

sT20_dT10_E10_SK4-5 means that 20 tasks exist initially in the project; then 10 new tasks are added one

by one dynamically. A total of 10 employees each of whom possesses 4-5 skills are available to take part in

the project. The 3 real-world instances are named Real_1, Real_2 and Real_3, respectively.

5.2 Parameter settings

Parameter settings of our approach MOTAMAQ are presented in Table 6. For each independent run,

the algorithm iterates until 15000 objective vector evaluations are performed. In order to decide which

solution to adopt for a given rescheduling point, the decision-making procedure presented in [35] is

adopted with the following pairwise comparison matrix for the five objectives:

 1 5 5

1 1 2 2 2

1 1 2 2 2

C = 1 2 1 2 1 1 1

1 2 1 2 1 1 1

1 2 1 2 1 1 1

ij
c

.

Thus, the corresponding weight vector for the objectives is:

5 1

w [0.2857 0.2857 0.1429 0.1429 0.1429]T

i
w

 .

Table 6

Parameter settings of MOTAMAQ.

pop
n - population size 100

CA
n - the fixed size of ()lCA t 100

DA
n - the fixed size of ()lDA t 100

Q - the number of uncertainty scenarios sampled 30

Lmax - the iteration number of local search 5

p - the parameter in the Lp-norm-based distance 1/4 in the proactive scheduling, 1/5 in the rescheduling procedure

Crossover probability in GA-based global search 0.9

Mutation probability in GA-based global search 1/L, where L is the chromosome length

CR - crossover ratio in AMDE-based global search 0.1

1
F ,

2
F ,

3
F - mutation factors in AMDE-based global search a random number sampled uniformly from [0.8, 0.9]

maximum number of objective vector evaluations 15000

5.3 Validating the effectiveness of the strategies designed in MOTAMAQ

5.3.1 Introduction to the compared approaches

In this section, the proposed Q-learning-based scheduling approach MOTAMAQ is compared with

seven other MOEA-based dynamic scheduling approaches. These other approaches also used the

framework of proactive-rescheduling, i.e., a robust schedule is generated initially by proactive scheduling

with regards to project uncertainties, and then the previous schedule is revised by the rescheduling

approach in response to critical dynamic events. The heuristic population initialization mechanism that has

been validated as an effective dynamic optimization strategy [35] is also adopted in the rescheduling

approach. The differences among the compared algorithms are in that the proactive scheduling and

rescheduling approaches are based on different MOEAs.

To validate the effectiveness of the many-objective handling strategy, the local search operators, and the

Q-learning based learning mechanism employed in MOTAMAQ, the approach is compared to dε-MOEA

(proposed as a rescheduling method in our previous work [35]), a MOEA/D-DE [23]-based rescheduling

method, and a NSGA-III [8]-based rescheduling method. The dε-MOEA uses the ε-domination relation [9]

and adopts efficient parent and archive update strategies. It has been validated as effective in producing

good convergence and diversity compared to the state-of-the-art dynamic MOEA [35]. MOEA/D [44] is a

promising algorithm which has gathered significant attention in recent years. It provides a new and general

framework for solving multi-objective or many-objective problems based on decomposition. MOEA/D-DE

is an improved version of MOEA/D, which employs a DE operator for generating new individuals.

NSGA-III is a recently developed reference-point-based many objective evolutionary algorithm following

the NSGA-II [11] framework. It maintains diversity based on a set of uniformly distributed reference

points assigned in advance. The chromosome representations and variation operators in dε-MOEA and

NSGA-III are the same as those in the GA-based global search, and the same parameter settings of

MOTAMAQ are used with dε-MOEA. Parameter settings of NSGA-III are: in the proactive scheduling

(four objectives are considered), the number of reference points is 165, and the population size is 168. In

the rescheduling approach (five objectives are considered), the number of reference points is 210, and the

population size is 212. The chromosome representations in MOEA/D-DE are the same as that in

AMDE-based global search, and the DE operator is represented in the similar fashion as in [23]. Parameter

settings of MOEA/D-DE are: T (the neighborhood size of each subproblem) is 5, (the probability that

the parent individuals in variation operators are selected from the neighborhood) is 0.9 and r
n (the

maximal number of individuals replaced in the neighborhood when updated) is 2 [23].

To further investigate the influence of the self-adaptive learning mechanism based on Q-learning,

MOTAMAQ has been compared to four additional algorithms without Q-learning. These algorithms use

each of the four actions listed in section 4.4.3, respectively. In other words, the global and local search

methods of these algorithms are fixed to a single action while executing the entire project, no matter how

the project environment changes. The four algorithms are named as MOTAMA-GA- LS1
𝑏 ,

MOTAMA-GA- LS2
𝑏 , MOTAMA-AMDE- LS1

𝑐 , MOTAMA-AMDE- LS2
𝑐 , respectively. This group of

comparisons can provide a software manager with an insight into whether it would be helpful to learn the

features of different environments, and select the appropriate search operators adaptively according to the

learned information. Parameter settings of the four algorithms are the same as those of MOTAMAQ (given

in Table 6). Note that all algorithms will stop after 15000 objective vector evaluations in one run.

5.3.2 Performance measures

In multi-objective optimization, convergence, distribution and spread are the three main performance

criteria used to evaluate the quality of the obtained Pareto front. If a Pareto front with good convergence, a

uniform (in most cases) distribution and a wide spread can be found, the software manager can get a full

picture of the various trade-offs among project duration, cost, robustness, stability, and satisfaction. Thus,

he/she is able to make an informed decision or modify his/her own manual schedule on the basis of project

requirements.

In this work, four popular metrics are used to evaluate the algorithm performances. The first one is the

hypervolume ratio (HVR) [38] which calculates the ratio of the size of the objective space dominated by

the obtained Pareto front PFknown to that dominated by the reference Pareto front PFref. A larger HVR value

indicates a better convergence and a wider spread of the generated Pareto front. The second one is the

inverted generational distance (IGD), which evaluates how far PFref is from PFknown [23]. IGD can

measure both convergence and diversity. A small IGD value means the obtained solutions are close to PFref

and do not miss any part of the whole PFref. The third one is a distribution metric named Spacing, which

evaluates the distance variance of neighbouring vectors in PFknown [33]. A smaller Spacing indicates a more

uniform distribution of PFknown. The fourth one is the modified Spread [35], which evaluates the extent of

spread that the obtained solutions achieve and how uniform PFknown distributes in problems with more than

two objectives. A small Spread indicates a wide and uniform spread of solutions in PFknown.

At each rescheduling point, the true Pareto front in the current environment is unknown in MODSPSP.

Thus, PFref is obtained by merging the solutions produced in all the independent runs from a total of eight

algorithms, and then by determining the non-dominated solutions out of them. The reference point needed

in HVR consists of the worst objective values obtained during all optimization runs. When deciding which

algorithm to adopt, the convergence performance (HVR and IGD) of an algorithm should be considered

first by the software manager, because better objective values are always vital. Out of two algorithms with

equal amount of convergence, the one with a better distribution (Spacing) and spread (Spread) should be

selected.

5.3.3 Performance comparison procedure

As previously mentioned, MOTAMAQ is compared with the seven other MOEA-based dynamic

scheduling approaches in terms of the overall performance during the dynamic process of a project. For

each MODSPSP instance, the procedure followed is described below:

Step 1: At the beginning of the project, MOTAMAQ is used as the proactive scheduling approach to

generate a set of non-dominated schedules. Then a schedule is chosen to be implemented based on the

decision-making procedure explained in [35].

Step 2: Once a critical dynamic event occurs, a rescheduling method is triggered. At each rescheduling

point, the following sub-steps are carried out:

Sub-step 2.1: 30 independent runs of each approach are replicated. The “robustness” value is

recalculated for each solution obtained by the eight approaches using the same 100 randomly sampled task

efforts. Following this, eight updated non-dominated sets are obtained for each run.

 Sub-step 2.2: All the updated non-dominated sets produced by the eight approaches in the 30 runs are

merged. The new non-dominated solutions are determined from them to form the reference Pareto front.

Sub-step 2.3: For each approach in each of the 30 runs, the performance values (HVR, IGD, Spacing,

Spread) are evaluated based on the reference Pareto front and its updated non-dominated set. Therefore, 30

values of each metric are recorded for each approach. As shown in Fig. 8, at the rescheduling point lt , the

30 values are:
, ()k i

j lmetric t , 1,2, ,30j , where
, ()k i

j lmetric t represents the ith performance metric

value of the kth approach in the jth run at lt , k=1,2,3,4,5,6,7,8, 1,2,3,4i , and HVR, IGD, Spacing and

Spread are considered as the 1st to the 4th metric, and MOTAMAQ, dε-MOEA, MOEA/D-DE, NSGA-III,

MOTAMA-GA- LS1
𝑏 , MOTAMA-GA- LS2

𝑏 , MOTAMA-AMDE- LS1
𝑐 , MOTAMA-AMDE- LS2

𝑐 are

considered as the 1st to the 8th approach, respectively.

Sub-step 2.4: One solution is chosen from the reference Pareto front as the new schedule to be carried

out in the project through the decision-making procedure explained in [35]. In this way, it will be ensured

that, at each rescheduling point, the eight approaches are compared in the same project environment.

Step 3: If the entire project is not finished, then move to the next rescheduling point and go to Step 2;

otherwise, go to Step 4.

Step 4: In order to compare the significance of the differences in the overall performances of the eight

approaches across different runs and rescheduling points, Wilcoxon rank-sum tests with significance level

of 0.05 are used in this work. For the jth (1,2, ,30j) run of the kth (k=1,2,3,4,5,6,7,8) approach, the ith

(1,2,3,4i) performance values are averaged over the second half of the rescheduling points, as
,k i

jmean

shown in Fig. 8 (there is a training process for the learning of our approach, and to eliminate transient

effects, only the latter half of the rescheduling points are considered to calculate the statistical performance

values in dynamic environments). The 30 mean values
,k i

jmean (1,2, ,30j) form the vector
,k iVec .

The
,k i

jmean values are averaged first (the results are summarized in Table 7). Then, for the ith metric, the

pairwise comparisons between the vector
1,iVec of our approach and that of the other approach (

,k iVec ,

k=2,3,4,5,6,7,8) are performed by Wilcoxon rank-sum tests. The results of the statistical tests are given in

Table 8, and summarized in Table 9.

For the ith performance metric of the kth approach:

The 1st run:

The jth run:

The 30th run:

:
.

The rescheduling point:
lt1t Lt

,

1 1()k imetric t ,

1 ()k i

lmetric t
,

1 ()k i

Lmetric t

,

1()k i

jmetric t , ()k i

j lmetric t , ()k i

j Lmetric t

,

30 1()k imetric t ,

30 ()k i

Lmetric t,

30 ()k i

lmetric t

:
.

:
.

:
.

:
.

:
.

:
.

:
.

mean

,

1

k imean

,k i

jmean

,

30

k imean

:
.

:
. }form a vector

,k iVec

,

1

k imetric

t⌊L/2⌋

(t⌊L/2⌋)

,k i

jmetric (t⌊L/2⌋)

,

30

k imetric (t⌊L/2⌋)

:
.

:
.

Fig. 8. An illustration for the overall performance comparisons of eight dynamic scheduling approaches in one MODSPSP instance (L is the

total number of rescheduling points in the considered instance, and different instances may have different values of L).

Table 7

Average performance values of eight approaches across rescheduling points and different runs on the 21 test instances (The best value is in

bold).

Metrics HVR IGD Spacing Spread HVR IGD Spacing Spread

Instance sT10_dT10_E5_SK4-5 sT10_dT10_E10_SK4-5

MOTAMAQ 0.8351 0.1306 0.0641 0.6216 0.8235 0.1522 0.0349 0.4838

dε-MOEA 0.7668 0.1965 0.0782 0.5884 0.7148 0.1736 0.0340 0.4926

MOEA/D-DE 0.7667 0.1987 0.0813 1.0672 0.3481 0.3889 0.0453 1.0112

NSGA-III 0.7931 0.1600 0.0592 0.6473 0.7020 0.1611 0.0352 0.4812

MOTAMA-GA-LS1
𝑏

 0.7397 0.1614 0.0691 0.6381 0.7561 0.1560 0.0396 0.4795

MOTAMA-GA-LS2
𝑏

 0.7283 0.1719 0.0770 0.6468 0.7326 0.1540 0.0378 0.5018

MOTAMA-AMDE-LS1
𝑐

 0.7106 0.1747 0.0787 0.6467 0.5724 0.3451 0.0370 0.5367

MOTAMA-AMDE-LS2
𝑐

 0.6983 0.1905 0.0725 0.6553 0.5651 0.3538 0.0350 0.5332

Instance sT10_dT10_E15_SK4-5 sT10_dT10_E5_SK6-7

MOTAMAQ 0.8535 0.1425 0.0263 0.5042 0.8433 0.1193 0.0332 0.4414

dε-MOEA 0.8087 0.1797 0.0351 0.5142 0.8460 0.1397 0.0389 0.4561

MOEA/D-DE 0.3625 0.3634 0.0425 1.0411 0.4025 0.3212 0.0513 0.9792

NSGA-III 0.7866 0.1770 0.0297 0.4976 0.7881 0.1567 0.0364 0.4190

MOTAMA-GA-LS1
𝑏

 0.7200 0.1834 0.0326 0.5084 0.7673 0.1618 0.0377 0.4225

MOTAMA-GA-LS2
𝑏

 0.7298 0.1914 0.0391 0.5482 0.7910 0.1531 0.0403 0.4410

MOTAMA-AMDE-LS1
𝑐

 0.5728 0.3229 0.0332 0.6121 0.5600 0.2788 0.0433 0.4020

MOTAMA-AMDE-LS2
𝑐

 0.5645 0.3343 0.0360 0.6204 0.5597 0.2889 0.0421 0.4113

Instance sT10_dT10_E10_SK6-7 sT10_dT10_E15_SK6-7

MOTAMAQ 0.8388 0.1359 0.0351 0.4545 0.8817 0.1564 0.0355 0.5054

dε-MOEA 0.8142 0.1890 0.0379 0.4633 0.8486 0.1925 0.0300 0.5243

MOEA/D-DE 0.5522 0.3505 0.0567 0.9667 0.2951 0.3920 0.0473 0.9285

NSGA-III 0.8209 0.1299 0.0372 0.4913 0.8109 0.2016 0.0297 0.4803

MOTAMA-GA-LS1
𝑏

 0.7649 0.2044 0.0382 0.4569 0.8351 0.1644 0.0322 0.4935

MOTAMA-GA-LS2
𝑏

 0.7869 0.1781 0.0364 0.4601 0.8442 0.1672 0.0369 0.4865

MOTAMA-AMDE-LS1
𝑐

 0.6931 0.3150 0.0458 0.4818 0.6745 0.2477 0.0357 0.5339

MOTAMA-AMDE-LS2
𝑐

 0.6882 0.3321 0.0463 0.4884 0.6714 0.2534 0.0342 0.5301

Instance sT20_dT10_E5_SK4-5 sT20_dT10_E10_SK4-5

MOTAMAQ 0.8595 0.1372 0.0373 0.4475 0.8852 0.1982 0.0325 0.5252

dε-MOEA 0.8671 0.1509 0.0361 0.4206 0.8525 0.2498 0.0297 0.5153

MOEA/D-DE 0.4582 0.3046 0.0529 0.9450 0.2486 0.4730 0.0497 0.9631

NSGA-III 0.8420 0.1608 0.0373 0.4288 0.8104 0.2437 0.0346 0.5292

MOTAMA-GA-LS1
𝑏

 0.8208 0.1507 0.0386 0.4208 0.8201 0.2315 0.0377 0.5526

MOTAMA-GA-LS2
𝑏

 0.8373 0.1478 0.0368 0.4359 0.8154 0.2320 0.0385 0.5190

MOTAMA-AMDE-LS1
𝑐

 0.6804 0.2877 0.0396 0.4765 0.6320 0.3249 0.0357 0.4927

MOTAMA-AMDE-LS2
𝑐

 0.6644 0.2942 0.0378 0.4830 0.6239 0.3153 0.0376 0.4821

Instance sT20_dT10_E15_SK4-5 sT20_dT10_E5_SK6-7

MOTAMAQ 0.8860 0.2428 0.0323 0.5610 0.8792 0.1473 0.0362 0.4441

dε-MOEA 0.8520 0.2783 0.0339 0.5788 0.8417 0.1648 0.0340 0.4397

MOEA/D-DE 0.2658 0.5692 0.0347 0.9743 0.3023 0.3905 0.0443 0.9514

NSGA-III 0.8027 0.2913 0.0314 0.5620 0.8206 0.1740 0.0349 0.4119

MOTAMA-GA-LS1
𝑏

 0.8119 0.2861 0.0262 0.5547 0.7936 0.1536 0.0368 0.4130

MOTAMA-GA-LS2
𝑏

 0.8142 0.2737 0.0280 0.5619 0.8008 0.1510 0.0377 0.4085

MOTAMA-AMDE-LS1
𝑐

 0.5103 0.4190 0.0364 0.6328 0.6591 0.2989 0.0338 0.5314

MOTAMA-AMDE-LS2
𝑐

 0.5131 0.4326 0.0360 0.6371 0.6507 0.3095 0.0359 0.5267

Instance sT20_dT10_E10_SK6-7 sT20_dT10_E15_SK6-7

MOTAMAQ 0.8639 0.1832 0.0490 0.5593 0.8880 0.1879 0.0283 0.5309

dε-MOEA 0.8272 0.2808 0.0277 0.4936 0.8573 0.2390 0.0274 0.5196

MOEA/D-DE 0.2899 0.3710 0.0426 0.8918 0.2901 0.5454 0.0405 0.9158

NSGA-III 0.8310 0.2371 0.0308 0.4943 0.8237 0.2491 0.0280 0.5122

MOTAMA-GA-LS1
𝑏

 0.7795 0.2182 0.0326 0.4645 0.8293 0.2340 0.0300 0.5117

MOTAMA-GA-LS2
𝑏

 0.7784 0.2223 0.0420 0.4778 0.8066 0.2283 0.0331 0.5061

MOTAMA-AMDE-LS1
𝑐

 0.5718 0.2878 0.0454 0.5687 0.4905 0.3408 0.0369 0.6211

MOTAMA-AMDE-LS2
𝑐

 0.5691 0.2858 0.0509 0.5802 0.4914 0.3431 0.0360 0.6263

Instance sT30_dT10_E5_SK4-5 sT30_dT10_E10_SK4-5

MOTAMAQ 0.7241 0.2040 0.0274 0.5286 0.8620 0.1877 0.0319 0.5166

dε-MOEA 0.7318 0.2567 0.0343 0.5777 0.8888 0.2482 0.0329 0.4911

MOEA/D-DE 0.3235 0.4799 0.0302 1.0215 0.5748 0.5532 0.0383 0.9574

NSGA-III 0.7309 0.1973 0.0288 0.5397 0.8671 0.2080 0.0309 0.5078

MOTAMA-GA-LS1
𝑏

 0.7077 0.2442 0.0293 0.5378 0.8371 0.2322 0.0315 0.4918

MOTAMA-GA-LS2
𝑏

 0.7246 0.2281 0.0319 0.5453 0.7973 0.2352 0.0352 0.5172

MOTAMA-AMDE-LS1
𝑐

 0.4549 0.4068 0.0280 0.5553 0.5955 0.3320 0.0328 0.6213

MOTAMA-AMDE-LS2
𝑐

 0.4409 0.4217 0.0282 0.5548 0.5964 0.3400 0.0333 0.6147

Instance sT30_dT10_E15_SK4-5 sT30_dT10_E5_SK6-7

MOTAMAQ 0.8072 0.2505 0.0311 0.5433 0.8888 0.1617 0.0380 0.5186

dε-MOEA 0.8151 0.2680 0.0306 0.5467 0.8903 0.2066 0.0356 0.4452

MOEA/D-DE 0.4361 0.4917 0.0440 0.9368 0.1768 0.5711 0.0375 0.9775

NSGA-III 0.7730 0.2801 0.0342 0.5582 0.8126 0.2201 0.0323 0.4617

MOTAMA-GA-LS1
𝑏

 0.8170 0.2479 0.0287 0.5275 0.8004 0.2183 0.0378 0.4438

MOTAMA-GA-LS2
𝑏

 0.7816 0.2498 0.0300 0.5468 0.8055 0.2284 0.0393 0.4592

MOTAMA-AMDE-LS1
𝑐

 0.5901 0.5280 0.0393 0.6140 0.5830 0.4151 0.0381 0.4793

MOTAMA-AMDE-LS2
𝑐

 0.5850 0.5251 0.0397 0.6213 0.5719 0.4208 0.0309 0.5953

Instance sT30_dT10_E10_SK6-7 sT30_dT10_E15_SK6-7

MOTAMAQ 0.8191 0.2100 0.0368 0.5372 0.8323 0.2026 0.0255 0.5121

dε-MOEA 0.8533 0.2558 0.0271 0.5008 0.8069 0.2203 0.0291 0.5684

MOEA/D-DE 0.2176 0.4838 0.0357 0.9495 0.2526 0.4755 0.0313 0.9181

NSGA-III 0.8103 0.2486 0.0298 0.5196 0.7831 0.2320 0.0288 0.5599

MOTAMA-GA-LS1
𝑏

 0.7756 0.2206 0.0305 0.4698 0.7472 0.2231 0.0257 0.5296

MOTAMA-GA-LS2
𝑏

 0.7721 0.2256 0.0375 0.4783 0.7366 0.2201 0.0318 0.5145

MOTAMA-AMDE-LS1
𝑐

 0.6175 0.2986 0.0343 0.4548 0.5697 0.3375 0.0423 0.7012

MOTAMA-AMDE-LS2
𝑐

 0.6094 0.3010 0.0411 0.4498 0.5595 0.3410 0.0431 0.7000

Instance Real_1 Real_2

MOTAMAQ 0.9397 0.1009 0.0252 0.6647 0.9336 0.1127 0.0278 0.5210

dε-MOEA 0.9163 0.1137 0.0246 0.6079 0.9063 0.1635 0.0268 0.6084

MOEA/D-DE 0.6640 0.2331 0.0737 1.0125 0.6017 0.2524 0.0667 0.9764

NSGA-III 0.8873 0.1198 0.0247 0.6518 0.8903 0.1322 0.0273 0.5430

MOTAMA-GA-LS1
𝑏

 0.8900 0.1231 0.0233 0.6676 0.8867 0.1505 0.0261 0.5811

MOTAMA-GA-LS2
𝑏

 0.9051 0.1179 0.0275 0.6561 0.9024 0.1347 0.0289 0.5487

MOTAMA-AMDE-LS1
𝑐

 0.7552 0.1674 0.0457 0.5983 0.7393 0.1883 0.0545 0.5253

MOTAMA-AMDE-LS2
𝑐

 0.7577 0.1695 0.0494 0.6158 0.7393 0.1920 0.0504 0.5175

Instance Real_3

MOTAMAQ 0.9209 0.1035 0.0205 0.5432

dε-MOEA 0.9429 0.1141 0.0221 0.6095

MOEA/D-DE 0.6472 0.2435 0.0542 0.9685

NSGA-III 0.9187 0.1239 0.0202 0.5316

MOTAMA-GA-LS1
𝑏

 0.8859 0.1252 0.0198 0.6201

MOTAMA-GA-LS2
𝑏

 0.8894 0.1134 0.0296 0.5849

MOTAMA-AMDE-LS1
𝑐

 0.7488 0.1759 0.0440 0.4877

MOTAMA-AMDE-LS2
𝑐

 0.7370 0.1782 0.0477 0.4993

Table 8

Statistical test results for comparing the eight approaches across rescheduling points on the 21 test instances (The sign of ‘+/−/=’ in A vs. B

indicates that according to the metric considered, algorithm A is significantly better than B, significantly worse than B, or there is no

significant difference between A and B based on the Wilcoxon rank sum test with the significance level of 0.05).

Metrics HVR IGD Spacing Spread HVR IGD Spacing Spread

Instance sT10_dT10_E5_SK4-5 sT10_dT10_E10_SK4-5

MOTAMAQ vs.
dε-MOEA

p-value
sign

0.0224
+

0.0493
+

0.2089
=

0.7227
=

1.86E-6
+

0.1537
=

0.0519
 =

0.7283
=

MOTAMAQ vs.
MOEA/D-DE

p-value
sign

0.0046
+

0.0045
+

0.0075
+

2.55E-9
+

7.39E-11
+

7.38E-10
+

2.84E-4
+

3.02E-11
+

MOTAMAQ vs.
NSGA-III

p-value
sign

0.1206
=

0.0836
=

0.3081
=

0.2108
=

2.06E-6
+

0.0288
+

0.1023
=

0.9234
=

MOTAMAQ vs.

MOTAMA-GA-LS1
𝑏

p-value
sign

8.12E-4
+

0.2198
=

0.9764
=

0.8130
=

3.99E-4
+

0.7394
=

0.2772
=

0.2519
=

MOTAMAQ vs.

MOTAMA-GA-LS2
𝑏

p-value
sign

0.0021
+

0.0668
=

0.7394
=

0.6574
=

1.34E-5
+

0.7394
=

0.6309
=

0.3403
 =

MOTAMAQ vs.
p-value

sign
8.56E-4

+
0.0444

+
0.1260

=
0.6789

=
3.69E-11

+
9.92E-7

+
0.9587

=
0.0224

+

MOTAMA-AMDE-LS1
𝑐

MOTAMAQ vs.

MOTAMA-AMDE-LS2
𝑐

p-value
sign

5.26E-4
+

0.0141
+

0.1188
=

0.7562
=

3.34E-11
+

1.21E-8
+

0.2458
=

0.0451
+

Instance sT10_dT10_E15_SK4-5 sT10_dT10_E5_SK6-7

MOTAMAQ vs.
dε-MOEA

p-value
sign

4.35E-5
+

4.22E-4
+

1.11E-6
+

0.1669
=

0.2009
=

0.0037
+

4.71E-4
+

0.3711
=

MOTAMAQ vs.
MOEA/D-DE

p-value
sign

3.02E-11
+

3.02E-11
+

3.82E-10
+

3.02E-11
+

5.57E-10
+

1.09E-10
+

6.51E-9
+

3.02E-11
+

MOTAMAQ vs.
NSGA-III

p-value
sign

4.06E-5
+

3.83E-4
+

0.1903
=

0.2308
=

6.62E-4
+

0.0040
+

1.32E-4
+

0.3001
=

MOTAMAQ vs.

MOTAMA-GA-LS1
𝑏

p-value
sign

1.64E-5
+

0.2905
=

8.29E-6
+

0.6627
=

4.71E-4
+

0.0011
+

0.0030
+

0.2226
=

MOTAMAQ vs.

MOTAMA-GA-LS2
𝑏

p-value
sign

4.22E-4
+

0.1087
=

2.92 E-9
+

0.0122
+

7.70E-4
+

0.0044
+

8.15E-5
+

0.9470
=

MOTAMAQ vs.

MOTAMA-AMDE-LS1
𝑐

p-value
sign

7.38E-10
+

5.97E-9
+

8.48E-7
+

7.12E-9
+

4.99E-7
+

6.01E-6
+

1.17E-4
+

0.0215
−

MOTAMAQ vs.

MOTAMA-AMDE-LS2
𝑐

p-value
sign

2.61E-10
+

1.31E-8
+

2.37E-7
+

5.00E-9
+

7.77E-7
+

1.20E-6
+

2.13E-5
+

0.0271
−

Instance sT10_dT10_E10_SK6-7 sT10_dT10_E15_SK6-7

MOTAMAQ vs.
dε-MOEA

p-value
sign

0.1373
=

0.0035
+

0.1858
=

0.4553
=

0.0099
+

9.21E-5
+

8.56E-4
−

0.4464
=

MOTAMAQ vs.
MOEA/D-DE

p-value
sign

7.12E-9
+

1.15E-7
+

6.01E-8
+

3.02E-11
+

3.02E-11
+

3.02E-11
+

1.61E-6
+

3.02E-11
+

MOTAMAQ vs.
NSGA-III

p-value
sign

0.2188
=

0.1203
=

0.2002
=

0.0116
+

0.0032
+

6.73E-5
+

7.83E-4
−

0.3111
=

MOTAMAQ vs.

MOTAMA-GA-LS1
𝑏

p-value
sign

0.0067
+

2.83E-4
+

0.3329
=

0.7283
=

0.0170
+

0.2226
=

0.0519
=

0.2458
=

MOTAMAQ vs.

MOTAMA-GA-LS2
𝑏

p-value
sign

0.0110
+

0.0451
+

0.9234
=

 0.6952
=

0.0339
+

0.5201
=

0.6414
=

0.1055
=

MOTAMAQ vs.

MOTAMA-AMDE-LS1
𝑐

p-value
sign

1.17E-4
+

4.44E-7
+

4.98E-4
+

0.0315
+

4.31E-8
+

1.21E-10
+

0.9470
=

0.1120
=

MOTAMAQ vs.

MOTAMA-AMDE-LS2
𝑐

p-value
sign

3.18E-4
+

3.01E-7
+

2.39E-4
+

0.0261
+

5.09E-8
+

1.96E-10
+

0.3953
=

0.2707
=

Instance sT20_dT10_E5_SK4-5 sT20_dT10_E10_SK4-5

MOTAMAQ vs.
dε-MOEA

p-value
sign

0.3136
=

0.2833
=

0.4508
=

0.0811
=

0.0679
=

0.0023
+

0.0963
=

0.3478
=

MOTAMAQ vs.
MOEA/D-DE

p-value
sign

4.06E-10
+

7.25E-9
+

8.01E-6
+

5.31E-10
+

3.02E-11
+

3.02E-11
+

1.20E-8
+

3.02E-11
+

MOTAMAQ vs.
NSGA-III

p-value
sign

0.2743
=

0.0218
+

0.6682
=

0.0917
=

0.0213
+

0.0088
+

0.0878
=

0.7790
=

MOTAMAQ vs.

MOTAMA-GA-LS1
𝑏

p-value
sign

0.1030
=

0.3121
=

0.9058
=

0.1433
=

0.0150
+

0.0207
+

0.0392
+

0.0484
+

MOTAMAQ vs.

MOTAMA-GA-LS2
𝑏

p-value
sign

0.1360
=

0.2695
=

0.8825
=

0.8592
=

0.0594
=

0.0327
+

9.52E-4
+

0.6735
=

MOTAMAQ vs.

MOTAMA-AMDE-LS1
𝑐

p-value
sign

1.18E-6
+

6.61E-9
+

0.3912
=

0.0604
=

3.65E-8
+

1.01E-8
+

0.3555
=

0.0049
−

MOTAMAQ vs.

MOTAMA-AMDE-LS2
𝑐

p-value
sign

5.55E-7
+

2.13E-9
+

0.9906
=

0.0287
+

3.20E-9
+

6.01E-8
+

0.0099
+

0.0117
−

Instance sT20_dT10_E15_SK4-5 sT20_dT10_E5_SK6-7

MOTAMAQ vs.
dε-MOEA

p-value
sign

0.0307
+

0.0392
+

0.1669
=

0.9352
=

0.0421
+

0.2009
=

0.2707
=

0.7172
=

MOTAMAQ vs.
MOEA/D-DE

p-value
sign

3.02E-11
+

6.70E-11
+

0.0615
=

3.02E-11
+

3.34E-11
+

1.46E-10
+

0.0032
+

3.02E-11
+

MOTAMAQ vs.
NSGA-III

p-value
sign

2.08E-4
+

1.33E-4
+

0.1532
=

0.8702
=

0.0073
+

0.1760
=

0..2291
=

0.1906
=

MOTAMAQ vs.

MOTAMA-GA-LS1
𝑏

p-value
sign

0.0051
+

0.0224
+

0.0392
−

0.6309
=

0.0019
+

0.4643
=

0.6735
=

0.1413
=

MOTAMAQ vs.

MOTAMA-GA-LS2
𝑏

p-value
sign

0.0070
+

0.0424
+

0.1413
=

0.9000
=

0.0468
+

0.7506
=

0.3555
=

0.0824
=

MOTAMAQ vs.

MOTAMA-AMDE-LS1
𝑐

p-value
sign

1.20E-8
+

9.53E-7
+

0.0378
+

1.03E-6
+

7.70E-8
+

5.09E-8
+

0.2519
=

4.64E-5
+

MOTAMAQ vs.

MOTAMA-AMDE-LS2
𝑐

p-value
sign

5.46E-9
+

1.03E-6
+

0.0905
=

1.73E-6
+

1.20E-8
+

1.70E-8
+

0.7845
=

1.78E-4
+

Instance sT20_dT10_E10_SK6-7 sT20_dT10_E15_SK6-7

MOTAMAQ vs.
dε-MOEA

p-value
sign

0.0260
+

4.57E-9
+

3.35E-8
−

4.74E-6
−

0.0401
+

9.52E-4
+

0.5395
=

0.6309
=

MOTAMAQ vs.
MOEA/D-DE

p-value
sign

3.02E-11
+

6.07E-11
+

0.1120
=

3.02E-11
+

3.02E-11
+

3.02E-11
+

1.86E-6
+

3.02E-11
+

MOTAMAQ vs.
NSGA-III

p-value
sign

0.0378
+

3.80E-4
+

3.17E-6
−

6.12E-6
−

0.0093
+

1.03E-5
+

0.7033
=

0.3174
=

MOTAMAQ vs.

MOTAMA-GA-LS1
𝑏

p-value
sign

0.0051
+

0.0044
+

7.74E-6
−

3.65E-8
−

0.0122
+

0.0080
+

0.6309
=

0.2905
=

MOTAMAQ vs.

MOTAMA-GA-LS2
𝑏

p-value
sign

0.0064
+

0.0076
+

0.0468
−

3.01E-7
−

1.49E-4
+

0.0451
+

0.0024
+

0.2170
=

MOTAMAQ vs.

MOTAMA-AMDE-LS1
𝑐

p-value
sign

3.50E-9
+

2.49E-6
+

0.3329
=

0.1761
=

8.48E-9
+

3.96E-8
+

9.21E-5
+

3.83E-6
+

MOTAMAQ vs.

MOTAMA-AMDE-LS2
𝑐

p-value
sign

6.53E-8
+

6.05E-7
+

0.5011
=

0.8534
=

1.70E-8
+

1.47E-7
+

6.91E-4
+

1.29E-6
+

Instance sT30_dT10_E5_SK4-5 sT30_dT10_E10_SK4-5

MOTAMAQ vs.
dε-MOEA

p-value
sign

0.2993
=

0.0011
+

0.0241
+

0.0287
+

0.5201
=

8.56E-4
+

0.9823
=

0.2282
=

MOTAMAQ vs.
MOEA/D-DE

p-value
sign

4.99E-9
+

4.68E-9
+

0.1023
=

3.66E-10
+

3.02E-11
+

3.02E-11
+

0.0091
+

3.02E-11
+

MOTAMAQ vs.
NSGA-III

p-value
sign

0.1846
=

0.2173
=

0.6930
=

0.1766
=

0.8902
=

0.1243
=

0.2208
=

0.2787
=

MOTAMAQ vs.

MOTAMA-GA-LS1
𝑏

p-value
sign

0.0617
=

0.2413
=

0.2837
=

0.1983
=

0.0670
=

0.0635
=

0.3790
=

0.1809
=

MOTAMAQ vs.

MOTAMA-GA-LS2
𝑏

p-value
sign

0.0720
=

0.9412
=

0.2282
=

0.0868
=

0.0043
+

0.0555
=

0.6309
=

0.7172
=

MOTAMAQ vs.

MOTAMA-AMDE-LS1
𝑐

p-value
sign

1.80E-6
+

1.46E-5
+

0.9941
=

0.0434
=

2.39E-8
+

7.70E-8
+

0.7062
=

2.78E-7
+

MOTAMAQ vs.

MOTAMA-AMDE-LS2
𝑐

p-value
sign

6.87E-7
+

1.28E-6
+

0.8302
=

0.0227
=

1.87E-7
+

1.87E-7
+

0.8303
=

5.19E-7
+

Instance sT30_dT10_E15_SK4-5 sT30_dT10_E5_SK6-7

MOTAMAQ vs.
dε-MOEA

p-value
sign

0.7618
=

0.0150
+

0.8534
=

0.8073
=

0.9470
=

0.0076
+

0.2226
=

0.0905
=

MOTAMAQ vs.
MOEA/D-DE

p-value
sign

5.49E-11
+

2.78E-7
+

1.11E-6
+

3.02E-11
+

3.02E-11
+

4.50E-11
+

0.2643
=

5.07E-10
+

MOTAMAQ vs.
NSGA-III

p-value
sign

0.0203
+

0.0026
+

0.0074
+

0.6109
=

0.0416
+

0.0033
+

0.0746
=

0.0892
=

MOTAMAQ vs.

MOTAMA-GA-LS1
𝑏

p-value
sign

0.5692
=

0.1761
=

0.3632
=

0.3632
=

0.0327
+

0.1413
=

0.0963
=

0.0773
=

MOTAMAQ vs.

MOTAMA-GA-LS2
𝑏

p-value
sign

0.0877
=

0.2398
=

0.9000
=

0.8650
=

0.0905
=

0.0242
+

0.0271
+

0.2282
=

MOTAMAQ vs.

MOTAMA-AMDE-LS1
𝑐

p-value
sign

4.69E-8
+

1.73E-7
+

2.01E-4
+

2.60E-5
+

2.83E-8
+

1.56E-8
+

0.8534
=

0.1322
=

MOTAMAQ vs.

MOTAMA-AMDE-LS2
𝑐

p-value
sign

5.53E-8
+

1.16E-7
+

2.13E-4
+

3.09E-6
+

1.17E-9
+

3.50E-9
+

0.2707
=

0.0017
+

Instance sT30_dT10_E10_SK6-7 sT30_dT10_E15_SK6-7

MOTAMAQ vs.
dε-MOEA

p-value
sign

0.3953
=

0.0044
+

1.04E-4
−

0.0993
=

0.0484
+

0.0436
+

0.0099
+

1.11E-6
+

MOTAMAQ vs.
MOEA/D-DE

p-value
sign

4.62E-10
+

7.38E-10
+

0.4918
=

3.02E-11
+

3.02E-11
+

6.70E-11
+

0.0292
+

3.02E-11
+

MOTAMAQ vs.
NSGA-III

p-value
sign

0.7026
=

0.0182
+

0.0081
−

0.1346
=

0.0311
+

0.0117
+

0.0196
+

8.36E-6
+

MOTAMAQ vs.
MOTAMA-GA-LS1

𝑏
p-value

sign
0.0468

+
0.2226

=
0.0051

−
0.0023

−
0.0468

+
0.0453

+
0.8883

=
0.0850

=

MOTAMAQ vs.
MOTAMA-GA-LS2

𝑏
p-value

sign
0.0112

+
0.1715

=
0.9587

=
0.0112

−
0.0016

+
0.0403

+
5.97E-5

+
0.6520

=

MOTAMAQ vs.
MOTAMA-AMDE-LS1

𝑐
p-value

sign
6.53E-7

+
2.53E-4

+
0.0773

=
4.71E-4

−
3.82E-9

+
5.60E-7

+
1.85E-8

+
3.02E-11

+

MOTAMAQ vs.
MOTAMA-AMDE-LS2

𝑐
p-value

sign
1.60E-7

+
6.55E-4

+
0.6735

=
5.27E-5

−
2.61E-10

+
1.03E-6

+
4.44E-7

+
3.02E-11

+

Instance Real_1 Real_2

MOTAMAQ vs.
dε-MOEA

p-value
sign

0.0303
+

0.0468
+

0.1224
=

0.0053
−

0.0067
+

1.11E-4
+

0.5201
=

0.4740
=

MOTAMAQ vs.
MOEA/D-DE

p-value
sign

1.33E-10
+

3.20E-9
+

3.82E-10
+

8.99E-11
+

1.78E-10
+

5.97E-9
+

5.07E-10
+

3.02E-11
+

MOTAMAQ vs.
NSGA-III

p-value
sign

2.71E-4
+

0.0086
+

0.1266
=

0.1120
=

0.0086
+

0.0921
=

0.9722
=

0.0967
=

MOTAMAQ vs.

MOTAMA-GA-LS1
𝑏

p-value
sign

6.91E-4
+

0.0029
+

0.2340
=

0.3017
=

7.70E-4
+

0.0624
=

0.9117
=

2.84E-4
+

MOTAMAQ vs.

MOTAMA-GA-LS2
𝑏

p-value
sign

0.0163
+

0.2519
=

0.2398
=

0.1316
=

0.0025
+

0.0411
+

0.2707
=

0.0701
=

MOTAMAQ vs.

MOTAMA-AMDE-LS1
𝑐

p-value
sign

1.55E-9
+

5.61E-5
+

0.0903
=

0.0026
−

3.35E-8
+

3.39E-5
+

2.23E-9
+

0.6952
=

MOTAMAQ vs.

MOTAMA-AMDE-LS2
𝑐

p-value
sign

2.23E-9
+

2.43E-5
+

0.0619
=

0.0093
−=

8.89E-10
+

5.26E-5
+

2.67E-9
+

0.7731
=

Instance Real_3

MOTAMAQ vs.
dε-MOEA

p-value
sign

0.2282
=

0.0176
+

0.8766
=

0.0991
=

MOTAMAQ vs.
MOEA/D-DE

p-value
sign

2.61E-10
+

3.96E-8
+

1.09E-10
+

3.34E-11
+

MOTAMAQ vs.
NSGA-III

p-value
sign

0.3306
=

0.0161
+

0.9280
=

0.2679
=

MOTAMAQ vs.

MOTAMA-GA-LS1
𝑏

p-value
sign

0.0067
+

0.0103
+

0.4553
=

0.0016
+

MOTAMAQ vs.

MOTAMA-GA-LS2
𝑏

p-value
sign

0.0351
+

0.5592
=

8.15E-5
+

0.0378
+

MOTAMAQ vs.

MOTAMA-AMDE-LS1
𝑐

p-value
sign

6.53E-8
+

3.77E-4
+

9.75E-10
+

0.0133
−

MOTAMAQ vs.

MOTAMA-AMDE-LS2
𝑐

p-value
sign

1.25E-7
+

8.56E-4
+

1.07E-9
+

0.0451
−

Table 9

Comparison results summarized from Table 8 (the percentage of the 18 random instances and 3 real-world instances for which the statistical

tests indicate MOTAMAQ to be better, similar or worse than each of the seven other approaches)

Random Instances

 HVR IGD Spacing Spread

MOTAMAQ vs.

dε-MOEA
+ = − + = − + = − + = −

50% 50% 0 83% 17% 0 22% 61% 17% 11% 83% 6%

MOTAMAQ vs.

MOEA/D-DE
+ = − + = − + = − + = −

100% 0 0 100% 0 0 72% 28% 0 100% 0 0

MOTAMAQ vs.

NSGA-III
+ = − + = − + = − + = −

67% 33% 0 72% 28% 0 17% 66% 17% 11% 83% 6%

MOTAMAQ vs.

MOTAMA-GA-LS1
𝑏

+ = − + = − + = − + = −

78% 22% 0 39% 61% 0 17% 66% 17% 6% 83% 11%

MOTAMAQ vs.
MOTAMA-GA-LS2

𝑏

+ = − + = − + = − + = −

72% 28% 0 44% 56% 0 33% 61% 6% 6% 83% 11%

MOTAMAQ vs.

MOTAMA-AMDE-LS1
𝑐

+ = − + = − + = − + = −

100% 0 0 100% 0 0 39% 61% 0 50% 33% 17%

MOTAMAQ vs.

MOTAMA-AMDE-LS2
𝑐

+ = − + = − + = − + = −

100% 0 0 100% 0 0 39% 61% 0 61% 22% 17%

Real-world Instances

 HVR IGD Spacing Spread

MOTAMAQ vs.

dε-MOEA
+ = − + = − + = − + = −

67% 33% 0 100% 0 0 0 100% 0 0 67% 33%

MOTAMAQ vs.

MOEA/D-DE
+ = − + = − + = − + = −

100% 0 0 100% 0 0 100% 0 0 100% 0 0

MOTAMAQ vs.

NSGA-III
+ = − + = − + = − + = −

67% 33% 0 67% 33% 0 0 100% 0 0% 100% 0

MOTAMAQ vs. + = − + = − + = − + = −

MOTAMA-GA-LS1
𝑏

 100% 0 0 67% 33% 0 0 100% 0 67% 33% 0

MOTAMAQ vs.
MOTAMA-GA-LS2

𝑏

+ = − + = − + = − + = −

100% 0 0 33% 67% 0 33% 67% 0 33% 67% 0

MOTAMAQ vs.

MOTAMA-AMDE-LS1
𝑐

+ = − + = − + = − + = −

100% 0 0 100% 0 0 67% 33% 0 0 33% 67%

MOTAMAQ vs.

MOTAMA-AMDE-LS2
𝑐

+ = − + = − + = − + = −

100% 0 0 100% 0 0 67% 33% 0 0 33% 67%

5.3.4 Comparison with the three state-of-the-art MOEAs

As explained in section 5.3.1, we have compared MOTAMAQ, dε-MOEA, MOEA/D-DE, and

NSGA-III in order to evaluate the impact of different dynamic MOEAs on the performance of MODSPSP.

First, the convergence performance metrics IGD and HVR are considered. In terms of IGD,

MOTAMAQ exhibits distinct advantages over dε-MOEA, MOEA/D-DE, and NSGA-III. It can be seen

from Table 7 that the proposed approach (MOTAMAQ) has the best average value for 15 out of 18 random

instances, and for all the real-world instances. From Table 9, it is clear that the performance of

MOTAMAQ is significantly better than dε-MOEA and NSGA-III for 83% and 78% of the random

instances, and for 100% and 67% of the real-world instances, respectively. In addition to that, MOTAMAQ

outperforms MOEA/D-DE for all the random and real-world instances. These results clearly illustrate the

ability of proposed approach in providing software managers with a more diverse set of non-dominated

solutions that are closer to the reference Pareto front. Considering HVR, the performance of MOTAMAQ

is better than or comparable to dε-MOEA and NSGA-III for all instances. Table 7 indicates that

MOTAMAQ obtains the best average value for 11 out of the 18 random instances, and for 2 out of the 3

real-world instances. Table 9 shows that MOTAMAQ performs significantly better than dε-MOEA and

NSGA-III for 50% and 67% of the random cases, and for 67% and 67% of the real-world instances,

respectively. However, there is no significant difference between each pair of them for the remaining cases.

One possible reason for this small gap is that dε-MOEA is good at maintaining a wide spread of solutions

due to which its HVR value (which measures both the convergence and spread) increases. When compared

with MOEA/D-DE, similar to IGD, MOTAMAQ outperforms MOEA/D-DE for all the random and

real-world instances.

For the distribution performance Spacing, MOTAMAQ is comparable to dε-MOEA and NSGA-III,

since there is no significant difference between them for 61% and 66% of the random instances, and for

100% and 100% of the real-world instances, respectively. For the random instances where there was a

significant difference in terms of Spacing, MOTAMAQ was better than dε-MOEA and NSGA-III in around

half and worse in around the other half of them. The performance of MOTAMAQ is significantly better

than or comparable to that of MOEA/D-DE for all instances. In terms of Spread, the performance of

MOTAMAQ is comparable to dε-MOEA for the random instances, while a bit worse than dε-MOEA for

the real-world instances, which validates the assumption that dε-MOEA is able to find solutions with a

good spread. There is no significant difference between MOTAMAQ and NSGA-III on 83% and 100% of

the rand and real-world instances, respectively. Besides, MOTAMAQ performs significantly better than

MOEA/D-DE for all the instances on Spread.

Since the convergence performance is the most important factor that a software manager should

consider when evaluating an approach, the improved convergence behavior of our MOTAMAQ approach

over dε-MOEA, MOEA/D-DE, and NSGA-III clearly indicates that the strategies it adopts are very

effective for solving MODSPSP. Such strategies include the Q-learning-based learning mechanism that

chooses appropriate search operators to different environments; maintenance of two archives to promote

convergence and diversity separately to handle many objectives; and incorporation of local search

operators together with global search operators specifically designed for the MODSPSP. Considering its

poor performances in terms of convergence, distribution and spread, MOEA/D-DE may not be suitable for

solving MODSPSP.

5.3.5 Comparison with the four fixed actions

To further analyze the impact of the self-adaptive learning mechanism on the performance of our

rescheduling approach, MOTAMAQ has been compared to MOTAMA-GA-LS1
𝑏, MOTAMA-GA-LS2

𝑏,

MOTAMA-AMDE-LS1
𝑐, and MOTAMA-AMDE-LS2

𝑐. As stated in section 5.3.1, these four algorithms do

not adopt the learning mechanism, but use the fixed search operators in different scheduling environments.

As mentioned before, in Table 7, MOTAMAQ has the best average IGD value for 15 out of the 18

random instances, and for all the real-world instances. The results shown in table 9 indicate that with IGD,

MOTAMAQ is significantly better than MOTAMA-GA-LS1
𝑏 and MOTAMA-GA-LS2

𝑏 for 39% and 44%

of the random cases, and for 67% and 33% of the real-world instances, respectively. For the remaining

instances, no significant difference has been found. Besides, MOTAMAQ is significantly better than

MOTAMA-AMDE-LS1
𝑐 and MOTAMA-AMDE-LS2

𝑐 for all the random and real-world instances. In terms

of HVR, it can be seen from Table 7 that MOTAMAQ has obtained the best average value for 11 out of the

18 random instances, and for 2 out of the 3 real-world instances. Table 9 shows that for HVR, MOTAMAQ

performs significantly better than MOTAMA-GA-LS1
𝑏 and MOTAMA-GA-LS2

𝑏 for 78% and 72% of the

random cases, respectively and for all the three real-world instances. There is no significant difference

between them for the remaining cases. Besides, the performance of MOTAMAQ is also significantly better

than that of MOTAMA-AMDE-LS1
𝑐 and MOTAMA-AMDE-LS2

𝑐 for all the random and real-world

instances. These results clearly indicate that the introduction of self-adaptive learning mechanism based on

Q-learning acutely improves the convergence performance of MOEA-based rescheduling approach

(especially for HVR). It means that the proposed approach MOTAMAQ has selected the right actions based

on the learned information in most of the cases. Thus, when rescheduling, it is helpful for a software

manager to take features of the current project environment into account, and choose an appropriate

approach adaptively.

As for the metrics of Spacing and Spread, MOTAMAQ is comparable to MOTAMA-GA-LS1
𝑏 and

MOTAMA-GA-LS2
𝑏, since there is no significant difference between each pair of them in most of the cases.

Compared to MOTAMA-AMDE-LS1
𝑐 and MOTAMA-AMDE-LS2

𝑐 , MOTAMAQ behaves better for

Spacing since it outperforms or is comparable to them for all the instances. Meanwhile, considering the

Spread metric, MOTAMAQ behaves a bit better for random instances since it is significantly better than

each of them for 50% and 61% of the random instances, respectively. However, MOTAMA-AMDE-LS1
𝑐

and MOTAMA-AMDE-LS2
𝑐 have a better Spread performance as a whole for the real-world instances:

they get the overall best average value on 2 and 1 out of the 3 real instances (see Table 7), respectively, and

each of them is significantly better than MOTAMAQ for 2 out of the 3 real instances (see Tables 8 and 9).

5.4 Pareto fronts at rescheduling points

At each rescheduling point, a set of non-dominated solutions are evolved by MOTAMAQ. With the

aim to demonstrate the trade-offs among these solutions that a software manager could exploit when

making a selection about the final schedule, one rescheduling point on a test instance

(sT20_dT10_E10_SK4-5) has been chosen arbitrarily and for the sake of illustration. At tl=24.2, the

employee e4 returned, and a total of 7 tasks existed in the project. In order to show a five-objective Pareto

front obtained by MOTAMAQ, a parallel coordinate plot is given in Fig. 9. Since the five objectives in

MODSPSP have different scales, the best and the worst objective values observed during all the runs of the

compared eight approaches have been identified, and the objective values of the obtained Pareto front are

normalized. It can be seen from Fig. 9 that MOTAMAQ can find a set of well-distributed non-dominated

solutions in the objective space, and the non-dominated front extends over a large range rather than being

in a limited area. This result indicates the ability of MOTAMAQ in maintaining diversity.

To visually investigate different trade-offs among the five objectives obtained by MOTAMAQ, the

diagonal plot [34] shown in Fig. 10 has been studied. The plot presents pairwise interactions among the

five dimensions along the Pareto front, where the axes of any plot can be found by checking the

corresponding diagonal boxes and their ranges. For example, the plot shown at the second row fifth

column has its vertical axis as costI and horizontal axis as satisfaction. First, it can be seen from the plot of

durationI vs. costI that the two efficiency objectives are conflicting with each other in most of the cases,

since a smaller durationI often leads to a larger costI. Second, it can be observed from the plot of durationI

vs. satisfaction that the two objectives are also conflicting with each other. When finding a solution that

has a smaller durationI, the satisfaction value becomes worse. Thirdly, the figure stability vs. satisfaction

suggests that the two objectives have a similar variation tendency. When the stability value becomes

smaller, the satisfaction value also decreases. However, it is hard to determine the relationship from the

remaining figures. For instance, a small robustness may correspond to either a small or a high costI. The

reason may be that a total of five objectives are optimized simultaneously, and the relationship between

each pair of them becomes more complex, compared to the case in which only two or three objectives are

considered together. No solution can simultaneously optimize all the considered objectives.

Some examples of the objective vectors chosen from the Pareto front are shown in Fig. 10 and listed in

Table 10. A solution may behave very well for one objective, but poorly for some of the others, such as

Solution1 – Solution5. Some solutions may obtain good (but not the best) values for most of the objectives,

which shows a good trade-off among various objectives, such as Solution6 – Solution8. The Pareto front

generated by MOTAMAQ can provide a software manager with a deeper insight into various compromises

among many objectives. It is useful for him/her to make an informed decision about the best compromise

according to his/her preference.

Fig. 9 Parallel coordinate plot of the Pareto front generated by MOTAMAQ at the rescheduling point 24.2
l

t on sT20_dT10_E10_SK4-5.

durationI

5-26

costI

135000-165000

robustness

0.3-1.2

stability

0-5

satisfaction

0.03-0.22

Fig. 10 Diagonal plot of the Pareto front generated by MOTAMAQ at the rescheduling point tl=24.2 on sT20_dT10_E10_SK4-5.

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Objective No.

O
bj

e
ct

iv
e

 V
a

lu
e

Table 10

Examples of objective vectors chosen from the Pareto front generated by MOTAMAQ at tl=24.2 on sT20_dT10_E10_SK4-5.

 [durationI, costI, robustness, stability, satisfaction]

 Solution1 [5.01, 161291, 0.41, 4.86, 0.21]

Solution2 [11.26, 135179, 0.74, 2.43, 0.14]

Solution3 [9.21, 143452, 0.37, 0.21, 0.12]

Solution4 [12.67, 148960, 0.45, 0, 0.043]

Solution5 [16.89, 151524, 0.38, 0.29, 0.039]

Solution6 [7.24, 145766, 0.59, 0.50, 0.18]

Solution7 [8.44, 144839, 0.80, 0.36, 0.14]

Solution8 [7.79, 148708, 0.69, 0.79, 0.16]

5.5 Discussion

 When comparing different dynamic scheduling approaches, it is evident that the proposed

Q-learning-based method MOTAMAQ outperforms the other three state-of-the-art MOEAs, named

dε-MOEA, MOEA/D-DE, and NSGA-III. Despite the use of heuristic population initialization strategies,

dε-MOEA MOEA/D-DE, and NSGA-III adopt fixed global search operators during the entire project

implementation, without considering that different operators may be best suited for different environment

states. In contrast, based on the states perceived by the agent in Q-learning and its accumulated knowledge,

MOTAMAQ can capture the features of different scheduling environments, and then decide on the

appropriate search operators. Thus, its adaptation to the changing environment is improved. Moreover,

MOTAMAQ incorporates several problem specific local search operators to enhance the local search

ability, and maintains a convergence archive and a diversity archive separately to handle many objectives.

Experimental results in Section 5.3.4 show that these strategies combined promote the convergence of

MOTAMAQ greatly, while maintaining a comparable distribution performance. In Section 5.3.5,

comparisons with the four algorithms with fixed global and local search methods (i.e. one of the four

actions in MOTAMAQ) further validate the effectiveness of our self-adaptive learning mechanism based

on Q-learning. Besides, from the parallel coordinate plot and the diagonal plot of the Pareto front obtained

by MOTAMAQ, a software manager can gain a deeper insight into the various trade-offs among the five

objectives, and make an informed decision. The results above suggest that it is worthwhile employing

MOTAMAQ as a dynamic scheduling approach to assist software project management.

6 Conclusions

This paper introduced a Q-learning-based multi-objective two-archive memetic algorithm to adapt to

changing environments in dynamic software project scheduling. Our first contribution is to formulate a

more practical formulation of the MODSPSP, which highlights the influence of human factors on project

success. Our formulation relates the growth rate of the skill proficiency to both human factors (motivation,

learning ability) and skill difficulties, being closer to the real world than other existing SPSP formulations.

Considering the degree with which each employee is willing to engage with each skill (and thus with each

task), the objective of employees’ satisfaction is defined and considered together with project duration, cost,

robustness and stability under a variety of practical constraints at each rescheduling point.

Our second contribution is the design of a Q-learning-based multi-objective two-archive memetic

algorithm to solve the formulated MODSPSP in a proactive-rescheduling way. The approach introduces

problem specific local search operators to enhance the local search ability. It can perceive the state of the

current project environment, and learn the appropriate global and local search operators of the memetic

algorithm adaptively, according to the obtained information and the knowledge accumulated by the

Q-learning agent. Besides, to deal with many objectives, it maintains two archives that promote

convergence based on the I indicator, and keep diversity based on Pareto dominance separately.

Our third contribution is a comprehensive experimental study of the newly proposed approach

MOTAMAQ. The study is divided into three groups. The first group compares the overall performance in

dynamic environments produced by MOTAMAQ and three state-of-the-art MOEA-based rescheduling

methods, namely dε-MOEA, MOEA/D-DE, and NSGA-III. Experimental results show that the strategies

designed in MOTAMAQ are very effective in improving its convergence performance. The

Q-learning-based learning mechanism can adapt appropriate search operators to different scheduling

environments. By cooperating with the global search operators, the problem-specific local search operators

enhance the local search ability of the algorithm. Besides, the maintenance of two archives that promote

convergence and diversity separately can deal with the 5 objectives in MODSPSP effectively. The second

group compares MOTAMAQ with four algorithms which use fixed global and local search operators in

different environments. Our results further demonstrate that the introduction of self-adaptive learning

mechanism based on Q-learning helps to improve the convergence performance of our MOEA-based

rescheduling approach. It indicates that MOTAMAQ has selected the right actions according to the learned

information in most of the cases. The third group analyses different trade-offs among the five objectives.

The parallel coordinate plot shows that MOTAMAQ can find a set of well-distributed non-dominated

solutions in the objective space, and the non-dominated front extends over a large range rather than being

in a limited area. The diagonal plot presents pairwise trade-offs among the five objectives along the Pareto

front, from which a software manager can get a deeper insight into various compromises among many

objectives, and make an informed decision.

Although our MODSPSP model is an improvement and considers more aspects of reality than the

existing models (e.g., employees’ subjective properties such as motivation and willingness to engage in

tasks involving certain skills), it is still far from extracting all factors, uncertainties and dynamic events

which could affect project scheduling environments. In our current work, the learning ability factor and the

motivation factor of each employee are assumed to follow the normal distribution. We believe that some

experiments need to be realized to investigate the suitability of normal distribution in modelling such

factors while considering special situations such as more specialized subjects in which employees should

have high motivation and the fact that their specialization is directly connected to the ability to learn new

things. This would require data collection on the learning ability factor and the motivation factor of each

employee gathered during a period of time. When the appropriate probability distribution is found, it can

be easily incorporated in our method. The same holds for the deviations of task effort estimations. Besides,

more efficient global and local search operators could be designed, which could provide a diverse set of

candidate actions for the agent to select, and further improve the search efficiency of our approach.

As future work, first, a more sophisticated mathematical formulation of the MODSPSP should be

created. Different skills may require different specializations and learning abilities. Thus, if specialties of

the employees who are engaged in the skills match well with the skill requirements, the project efficiency

can be improved to a large extent. In addition, more properties of employees and tasks in the real project

scheduling situations, e.g. employees’ experiences, due-date of each task, as well as the elements that can

affect the properties, e.g. political behaviors, social or human capital, psychological factors, should be

taken into account. Meanwhile, how to measure these properties and factors remains a challenging study.

Second, the proposed Q-learning-based dynamic scheduling approach MOTAMAQ should be applied to

more complex software projects, with different kinds of dynamic events and uncertainties, e.g. changing

objectives to be optimized, task removal, variations in the task precedence, and changes of the degree with

which each employee is willing to engage with a skill. The relationship between such dynamic factors and

the performance of MOTAMAQ needs to be studied. Third, the practicability of the proposed scheduling

approach should be further improved in terms of how close it is to real software project scenarios. This can

be supported by performing a thorough empirical validation in a variety of industrial contexts, collecting

large amounts of data from real-world projects, getting feedback from software developers on the

assumptions made by our approach and on how to improve our method. Finally, the scalability of

MOTAMAQ should also be validated, by applying it for scheduling larger scale software projects with a

greater number of tasks and employees.

Acknowledgement

This work is supported by the National Natural Science Foundation of China (NSFC) under Grant No.

61502239, No. 61573361, and No. 61503191, and Natural Science Foundation of Jiangsu Province of

China under Grant No. BK20150924 and No. BK20150933. We are grateful to Weineng Chen and Jun

Zhang for providing the data of the three real-world PSP instances.

References

[1] E. Alba, J.F. Chicano, Software project management with Gas, Information Sciences, 177 (2007) 2380-2401.

[2] C.K. Chang, M.J. Christensen, T. Zhang, Genetic algorithms for project management, Annals of Software Engineering, 11 (2001)

107-139.

[3] C.K. Chang, H. Jiang, Y. Di, D. Zhu, Y. Ge, Time-line based model for software project scheduling with genetic algorithms, Information

and Software Technology, 50 (2008) 1142-1154.

[4] W.N. Chen, J. Zhang, Ant colony optimization for software project scheduling and staffing with an event-based scheduler, IEEE

Transactions on Software Engineering, 39(1) (2013) 1-17.

[5] F. Chicano, F. Luna, A.J. Nebro, E. Alba, Using multiobjective metaheuristics to solve the software project scheduling problem, in:

Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference, 2011, pp. 1915-1922.

[6] J.W. Christopher, D. Peter, Q-learning, Machine Learning, 8 (1992) 279-292.

[7] B. Crawford, R. Soto, F. Johnson, E. Monfroy, F. Paredes, A max–min ant system algorithm to solve the software project scheduling

problem, Expert Systems with Applications, 41 (2014) 6634-6645.

[8] K. Deb, H. Jain, An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach,

Part I: Solving problems with box constraints

[9] K. Deb, M. Mohan, S. Mishra, Evaluating the ε-domination based multi-objective evolutionary algorithm for a quick computation of

Pareto-optimal, Evolutionary Computation, 13(4) (2005) 501-525.

[10] K. Deb, R.B. Agrawal, Simulated binary crossover for continuous search space, Complex Systems, 9(2) (1995) 115~148.

[11] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on

Evolutionary Computation, 6 (2) (2002) 182-197.

[12] J. Deng, L. Wang, A competitive memetic algorithm for multi-objective distributed permutation flow shop scheduling problem, Swarm

and Evolutionary Computation, 32 (2007) 121-131.

[13] A.E. Eiben, J.E. Smith, Introduction to evolutionary computing, Springer-Verlag, Berlin, 2003.

[14] AP. Engelbrecht, G. Pampara, Binary differential evolution strategies, in: Proceedings of IEEE Congress on Evolutionary Computation,

Singapore, 2007, pp. 1942-1947.

[15] D. Gong, N. Qin, X. Sun, Evolutionary algorithms for optimization problems with uncertainties and hybrid indices, Information

Sciences, 181 (19) (2011) 4124-4138.

[16] S. Gueorguiev, M. Harman, G. Antoniol, Software project panning for robustness and completion time in the presence of uncertainty

using multi-objective search based software engineering, in: Proceedings of 11th Annual Genetic and Evolutionary Computation

Conference, 2009, pp. 1673-1680.

[17] M. Hapke, A. Jaszkiewicz, R. Slowinski, Fuzzy project scheduling system for software development, Fuzzy Sets and Systems,

67(1)(1994) 101-117.

[18] M. Harman, The current state and future of search based software engineering, In: Proceedings of the 2007 Future of Software

Engineering, ACM, 2007, pp. 342-357.

[19] K. Hwang, H. Lin, Y. Hsu, H. Yu, Self-organizing state aggregation for architecture design of Q-learning, Information Sciences, 181

(2011) 2813-2822.

[20] Intaver Institute Inc, Software project scheduling under uncertainties, <http://www.intaver.com/Articles/Article_Software Project

Management.pdf>.

[21] E. Kocaguneli, T. Menzies, A.B. Bener, J.W. Keung, Exploiting the essential assumptions of analogy-based effort estimation, IEEE

Transactions on Softwre Engineering, 38(2) (2012) 425-438.

[22] S. Lazarova-Molnar, R. Mizouni, A simulation-based approach to enhancing project schedules by the inclusion of remedial action

secnarios, in: Proceedings of the 2011 Winter Simulation Conference, 2011, pp. 761-772.

[23] H. Li, Q. Zhang, Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II, IEEE Transactions on

Evolutionary Computation, 13(2) (2009) 284-302.

[24] F. Luna, D. González-Álvarez, F. Chicano, M.A. Vega-Rodríguez, The software project scheduling problem: a scalability analysis of

multi-objective metaheuristics, Applied Soft Computing, 15 (2014) 136-148.

[25] Y. Mei, K. Tang, X. Yao, Decomposition-based memetic algorithm for multiobjective capacitated arc routing problem, IEEE

Transaction on Evolutionary Computation, 15(2) (2011) 151-165.

[26] E. Mezura-Montes, M. Reyes-Sierra, C.A.C. Coello, Multi-objective optimization using differential evolution: a survey of the

state-of-the-art, Advances in Differential Evolution, 2008, 173-196.

[27] L.L. Minku, D. Sudholt, X. Yao, Improved evolutionary algorithm design for the project scheduling problem based on runtime analysis,

IEEE Transactions on Software Engineering, 40(1) (2014) 83-102.

[28] P. Moscato, On evolution, search, optimization, genetic algorithms and martial arts: toward memetic algorithms, Technical

http://xueshu.baidu.com/s?wd=author%3A%28Engelbrecht%2C%20A.P%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28Pampara%2C%20G%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=paperuri%3A%28281aa3a2464866a4226ae12b13baf90e%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Ficp.jsp%3Farnumber%3D4424711&ie=utf-8&sc_us=13982527638153205177
http://xueshu.baidu.com/usercenter/data/journal?cmd=jump&wd=confuri%3A%281d881b3605934167%29%20IEEE%20Congress%20on%20Evolutionary%20Computation&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dpublish&sort=sc_cited
http://www.sciencedirect.com/science/article/pii/S0020025511002544
http://www.sciencedirect.com/science/journal/00200255
http://www.sciencedirect.com/science/journal/00200255
http://www.sciencedirect.com/science/journal/00200255/181/19
http://www.sciencedirect.com/science/article/pii/0165011494902119
http://www.sciencedirect.com/science/article/pii/0165011494902119
http://www.sciencedirect.com/science/article/pii/0165011494902119
http://www.sciencedirect.com/science/journal/01650114
http://www.sciencedirect.com/science/article/pii/S0020025511000995
http://www.sciencedirect.com/science/article/pii/S0020025511000995
http://www.sciencedirect.com/science/article/pii/S0020025511000995
http://www.sciencedirect.com/science/article/pii/S0020025511000995
http://www.sciencedirect.com/science/journal/00200255
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6648326
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6648326
http://dl.acm.org/citation.cfm?id=2431607
http://dl.acm.org/citation.cfm?id=2431607
http://www.sciencedirect.com/science/journal/15684946

Report ,Caltech Concurrent Computation Program, California Institute of Technology, Pasadena, 1989.

[29] N. Nan, D.E. Harter, Impact of budget and schedule pressure on software development cycle time and effort, IEEE Transaction on

Software Engineering, 35(5) (2009) 624-637.

[30] Q.K. Pan, L. Wang, H.Y. Sang, J.Q. Li, M. Liu, A high performing memetic algorithm for the flowshop scheduling problem with

blocking, IEEE Transactions on Automation Science and Engineering, 10(3) (2013) 741-756.

[31] R.S. Pressman, software engineering: a practitioner's approach, sixth ed.. McGraw-Hill Science, 2005.

[32] Y. Sakurai, K. Takada, T. Kawabe, S. Tsuruta, A method to control parameters of evolutionary algorithms by using reinforcement

learning, in: Proceedings of the 2010 Sixth International Conference on Signal-Image Technology and Internet Based Systems, IEEE,

2010, pp. 74-79.

[33] J.R. Schott, Fault tolerant design using single and multicriteria genetic algorithm optimization, Master’s thesis, Department of

Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1995.

[34] R. Shang, L. Jiao, F. Liu, W. Ma, A novel immune clonal algorithm for MO problems. IEEE Transaction on Evolutionary Computation,

16(1) (2012) 35-50.

[35] X.N. Shen, L.L. Minku, R. Bahsoon, X. Yao, Dynamic Software Project Scheduling through a Proactive-Rescheduling Method, IEEE

Transaction on Software Engineering, 42(7) (2016) 658-686.

[36] I. Sommerville, Software engineering, eighth ed.. Essex: Addison-Wesley, 2006.

[37] R.S. Sutton, A.G. Bart, Reinforcement learning: An introduction, The MIT Press, Cambridge, MA, 1998.

[38] D.A. Van Veldhuizen, G.B. Lamont, Multiobjective evolutionary algorithm test suites, in: Proceedings of 1999 ACM Symposium on

Applied Computing, 1999, pp. 351-357.

[39] P. Vasant , G. Weber, V. N. Dieu. Handbook of research on modern optimization algorithms and applications in engineering and

economics. Hershey, PA: IGI Global. 2016.

[40] H. Wang, L. Jiao, X. Yao, Two_Arch2: an improved two-archive algorithm for many-objective optimization, IEEE Transaction on

Evolutionary Computation, 19(4) (2015) 524-541.

[41] H. Wang, X. Wang, X. Hu, X. Zhang, M. Gu. A multi-agent reinforcement learning approach to dynamic service composition,

Information Sciences, 363 (2016) 96-119.

[42] X. Wu, P. Consoli, L.L. Minku, G. Ochoa, X. Yao. An evolutionary hyper-heuristic for the software project scheduling problem,

in: Proceedings of the 14th International Conference on Parallel Problem Solving from Nature (PPSN'16), 2016, pp. 37-47.

[43] J. Xiao, L.J. Osterweil, Q. Wang, M. Li, Dynamic resource scheduling in disruption-prone software development environments, in:

Proceedings of 13th International Conference on Fundamental Approaches to Software Engineering, 2010, pp. 107-122.

[44] Q. Zhang, H. Li, MOEA/D: A multiobjective evolutionary algorithm based on decomposition, IEEE Transactions on Evolutionary

Computation, 11(6) (2007) 712-731.

[45] Z. Zhu, J. Xiao, S. He, Z. Jia, Y. Sun. A multi-objective memetic algorithm based on locality-sensitive hashing for one-to-many-to-one

dynamic pickup-and-delivery problem, Information Sciences, 329 (2016) 73-89.

[46] E. Zitzler, S. Künzli, Indicator-based selection in multiobjective search, in: Proceedings of Parallel Problem Solving from

Nature—PPSN VIII, Springer Berlin, Germany, 2004, pp. 832-842.

[47] E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach, IEEE

Transactions on Evolutionary Computation, 3(4) (1999) 257-271.

http://search.china-pub.com/s/?key1=Roger+S.Pressman
http://search.china-pub.com/s/?key1=McGraw-Hill+Science%2fEngineering%2fMath
https://www.igi-global.com/affiliate/pandian-vasant/182010/
https://www.igi-global.com/affiliate/gerhard-wilhelm-weber/273749/
https://www.igi-global.com/affiliate/vo-ngoc-dieu/227400/
http://dx.doi.org/10.1109/TEVC.2014.2350987
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4235
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4235
http://www.sciencedirect.com/science/journal/00200255
http://www.ppsn2016.org/conference/
http://link.springer.com/search?facet-author=%22Junchao+Xiao%22
http://link.springer.com/search?facet-author=%22Leon+J.+Osterweil%22
https://vpn.nuist.edu.cn/science/article/pii/,DanaInfo=.awxyCwholvloou4sr9Qu76+S002002551500660X
https://vpn.nuist.edu.cn/science/article/pii/,DanaInfo=.awxyCwholvloou4sr9Qu76+S002002551500660X
https://vpn.nuist.edu.cn/science/article/pii/,DanaInfo=.awxyCwholvloou4sr9Qu76+S002002551500660X
https://vpn.nuist.edu.cn/science/article/pii/,DanaInfo=.awxyCwholvloou4sr9Qu76+S002002551500660X
https://vpn.nuist.edu.cn/science/article/pii/,DanaInfo=.awxyCwholvloou4sr9Qu76+S002002551500660X#aff0001
https://vpn.nuist.edu.cn/science/article/pii/,DanaInfo=.awxyCwholvloou4sr9Qu76+S002002551500660X
https://vpn.nuist.edu.cn/science/journal/,DanaInfo=.awxyCwholvloou4sr9Qu76+00200255

