
The Stata Journal (yyyy) vv, Number ii, pp. 1–26

stpm2cr: A flexible parametric competing risks
model using a direct likelihood approach for the

cause-specific cumulative incidence function

Sarwar Islam Mozumder
Department of Health Sciences

University of Leicester
Leicester, UK
si113@le.ac.uk

Mark J. Rutherford
Department of Health Sciences

University of Leicester
Leicester, UK

mark.rutherford@le.ac.uk

Paul C. Lambert
Department of Health Sciences

University of Leicester
Leicester, UK

and
Medical Epidemiology & Biostatistics

Karolinska Institutet
Stockholm, Sweden

paul.lambert@le.ac.uk

Abstract. In a competing risks analysis, interest lies in the cause-specific cumula-
tive incidence function (CIF) which is usually obtained in a modelling framework
by either (1) transforming on all of the cause-specific hazard (CSH) or (2) through
its direct relationship with the subdistribution hazard (SDH) function. We ex-
pand on current competing risks methodology from within the flexible parametric
survival modelling framework (FPM) and focus on approach (2). This models
all cause-specific CIFs simultaneously and is more useful when prognostic related
questions are to be answered. We propose the direct FPM approach for the cause-
specific CIF which models the (log-cumulative) baseline hazard without the re-
quirement of numerical integration leading to benefits in computational time. It
is also easy to make out-of-sample predictions to estimate more useful measures
and alternative link functions can be incorporated, for example, the logit link.
To implement the methods, a new estimation command, stpm2cr, is introduced
and useful predictions from the model are demonstrated through an illustrative
Melanoma dataset.

Keywords: st0001, stpm2cr, survival analysis, competing risks, flexible parametric
models, subdistribution hazard, cumulative incidence function

1 Introduction

In competing risks, the cause-specific cumulative incidence function (CIF), which is
the probability of failure from an event in the presence of other competing events, is
considered. From within the modelling framework this is usually obtained by either
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2 Direct Likelihood Inference on the CIF

(1) estimating all the cause-specific hazard (CSH) functions, or (2) transforming using
a direct relationship with the subdistribution hazard (SDH) function for the cause of
interest. There are a number of different tools available in Stata that allow us to
estimate the cause-specific CIF. An empirical, non-parametric estimate of the cause-
specific CIF can be obtained using the user-written command stcompet which applies
the Aalen-Johansen approach Coviello and Boggess (2004).

Alternatively, we can fit regression models on either the CSH or SDH scale, the
choice of which relates to the research question to be answered (Sapir-Pichhadze et al.
2016; Noordzij et al. 2013; Koller et al. 2012). CSH regression models can be fitted
from within a semi-parametric approach using a typical Cox model or from within a
flexible parametric modelling framework, using the user-written post-estimation com-
mand, stpm2cif. This command is used with an expanded dataset where each patient
has a row for each cause and after fitting a cause-specific flexible parametric survival
model (FPM) with stpm2 to model all causes (Hinchliffe and Lambert 2013; Lambert
and Royston 2009; Lambert et al. 2011; Royston and Parmar 2002).

The most popularly applied method for modelling covariate effects on the cause-
specific CIF is the Fine & Gray model (Fine and Gray 1999) and is available through
the stcrreg command. However, this approach only allows us to model one event indi-
vidually using the partial-likelihood and we must fit separate models for each competing
event if we want to understand the overall impact of a covariate on risk.

Competing risks models can also be fit using the user-written stcrprep command
which restructures the data and calculates the appropriate weights. Standard Stata
survival analysis commands can then be used to fit models more computationally ef-
ficiently such as the Fine & Gray model and parametric models for the cause-specific
CIF (Lambert et al. 2016 (submitted).

We introduce the use of parametric methods using the full-likelihood as smooth
estimates can be obtained for the baseline cause-specific CIF or SDH for a particular
cause which can easily extend to incorporate non-proportional SDHs. Fitting parametric
models for the cause-specific CIF in this way is computationally quicker than fitting
models with stcrprep since no numerical integration or data restructure is required. An
additional advantage of these models is that we are able to model all cause-specific CIFs
simultaneously and covariate effects are modelled on all competing causes. Jeong and
Fine (2006) investigated a direct parametric inference approach and define a likelihood
which allows us to model all the cause-specific CIFs simultaneously. We extend this
approach to FPMs where it is easy to model time-dependent effects and obtain useful
out-of-sample predictions.

Others have also proposed modelling the SDH under alternative link functions. For
example, Gerds et al. (2012) proposes the proportional log-odds model for the cause-
specific CIF which offers an alternative interpretation. However, the interpretation is
not as simple as it is when modelling a single event and suffers from similar issues
in interpretation as in the complementary log-log link function. Incorporating such
alternative link functions on the cause-specific CIF is also easy to implement using the
approach outlined in this paper.
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The remaining content of this paper is structured as follows. In Section 2, we begin
by introducing the methods for direct inference on the cause-specific CIF under a FPM
framework. Section 3 outlines the syntax of stpm2cr which fits the models introduced in
Section 2 and in Section 4, syntax for postestimation using predict after fitting models
with stpm2cr is described. This is followed by some illustrative examples in Section
2. Finally, the paper is concluded with some discussion on the approach including
limitations and potential extensions.

2 Methods

Let T be the time to event for any K competing causes k = 1, · · · ,K and D denote
the type of event, where D = 1, · · · ,K. Here, we consider the events to be death from
different causes and so the cause-specific CIF, Fk(t), is the probability of dying from a
particular cause, D = k, by time t whilst also being at risk of dying from other causes
(Putter et al. 2007),

Fk(t) = P (T ≤ t,D = k) (1)

The all-cause CIF, F (t), which is the probability of dying from any of the K causes
by time t, is the sum of all K cause-specific CIFs, Fk(t), and can also be expressed as
the complement of the overall survival function, S(t),

F (t) = P (T ≤ t) =

K∑
j=1

Fj(t) = 1− S(t) (2)

2.1 Cause-specific hazard function

The cause-specific CIF, Fk(t), can be expressed as a function of either the CSH func-
tions for all K causes or the SDH for cause k. The CSH function, hcsk (t) gives the
instantaneous mortality rate from a particular cause k given that the patient is still
alive at time t.

hcsk (t) = lim
∆t→0

P (t < T ≤ t+ ∆t,D = k|T > t)

∆t
(3)

The cause-specific CIF can be expressed as a function of the CSHs for all K causes
such that,

Fk(t) =

∫ t

0

exp

−∫ t

0

K∑
j=1

hcsj (u)du

hcsk (u)du (4)



4 Direct Likelihood Inference on the CIF

Note here that the leading term within the integral gives the overall survival function,
S(t),

S(t) = exp

−∫ t

0

K∑
j=1

hcsj (u)du

 (5)

2.2 Subdistribution hazard function

Gray (1988) introduces the SDH for cause k, hsdk (t), which gives a direct relationship
with the cause-specific CIF. This has the following mathematical formulation,

hsdk (t) = lim
∆t→0

P (t < T ≤ t+ ∆t,D = k|T > t ∪ (T ≤ t ∩D 6= k)

∆t
(6)

=
d
dt [Fk(t)]

1− Fk(t)
= −d [ln (1− Fk(t))]

dt
(7)

and is interpreted as the instantaneous rate of failure at time t from cause k amongst
those who are still alive, or have died from any of the other K − 1 competing causes
excluding cause k. The SDH rate is not a conventional epidemiological rate due to the
risk-set (see Lau et al. (2009)) and should not be interpreted as a standard hazard rate.

The cause-specific CIF can be expressed directly in terms of the SDH function for
cause k using standard survival relationships along with the cumulative SDH for cause
k, Hsd

k (t),

Fk(t) = 1− exp
[
−Hsd

k (u)
]

and Hsd
k (t) =

∫ t

0

hsdk (u)du (8)

Using the SDH functions for all K causes, we can also obtain the CSH functions,
hcsk (t), for all K causes (Beyersmann and Schumacher 2007),

hcsk (t) = hsdk (t)

1 +

[∑K
j=1 Fj(z)

]
− Fk(t)

1−
∑K
j=1 Fj(t)

 (9)

2.3 Regression modelling

The most common model for the SDH for cause k is the Fine & Gray model (Fine and
Gray 1999), which is expressed in a similar way to the cause-specific Cox PH model in
that it assumes proportionality of covariate effects on the SDH scale,

hsdk (t|x) = hsd0,k(t) exp
[
xkβββ

sd
k

]
(10)



S. I. Mozumder et al. 5

where βββsdk are log-SDH ratios (SHR) for cause k. The SHR, exp
(
βββsdk
)

is interpreted
as the association on the effect of a covariate on risk (refer to Wolbers et al. (2014)
for more details on interpretation). We focus on implementing and extending the SDH
regression model in Equation ?? from within the FPM approach.

2.4 Likelihood estimation

Jeong and Fine (2006) showed that we can simultaneously fit parametric models that
directly estimate covariate effects on the cause-specific CIF for all k causes, Fk(t|xk)
(k = 1, · · · ,K), without the requirement of indirect specification through the CSHs.
Hence, for an observable failure time ti, with independent right censoring, for each
individual i = 1, · · · , N , the likelihood for direct inference on the cause-specific CIF is,

L =

N∏
i=1

 K∏
j=1

[
hsdj (ti|xj)(1− Fj(ti))

]δij 1−
K∑
j=1

Fj(ti|xj)

1−
∑K

j=1 δij
 (11)

where the censoring indicator, δik, tell us whether an individual died from any cause
k (δik = 1), or not (δik = 0). Note here, however, that, the cause-specific CIF, Fk(t), in
Equation ?? is not a proper cumulative distribution function and is instead referred to
as a subdistribution function since limt→∞ Fk(t) 6= 1 (Andersen et al. 2012).

2.5 Flexible parametric regression on the cause-specific cumulative
incidence function

Using the likelihood in Equation 11, a parametric survival model can be fitted simul-
taneously for all K cause-specific CIFs. We apply the likelihood to the FPM approach
described by Royston and Parmar (2002) and extend on this using restricted cubic
splines, sk(ln(t);γγγk,mk), with M − 1 degrees of freedom where sk is a restricted cubic
spline function for cause k on log-time and consists of a vector of M knots, m, a vector
of M − 1 parameters, γγγ and covariates xk (Durrleman and Simon 1989). The following
model can be specified through a general link function, g(·), for each of the k = 1, · · · ,K
cause-specific CIF with covariates, xk,

g(Fk(t|xik)) = sk(ln(t);γγγk,mk) + xkβββk (12)

= γ0k + γ1kz1k + · · ·+ γ(M−1)kz(M−1)k + xkβββk (13)

Where z1k, · · · , z(M−1)k are the basis functions of the restricted cubic splines and
are defined as follows:

z1k = ln(t) (14)
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zjk = (ln(t)−mjk)3
+ − φjk(ln(t)−m1k)3

+ − (1− φjk)(ln(t)−mMk)3
+, j = 2, · · · ,M − 1

where,

φjk =
mMk −mjk

mMk −m1k
(15)

and

(u)+ =

{
u, if u < 0

0, otherwise
(16)

Through the general link function, g(·), for the cause-specific CIF, Fk(t), in Equation
12, are able to apply similar transformations described in Royston and Parmar (2002)
for the survival function. Lambert et. al. (submitted) offers more details on the
various link functions available for the cause-specific CIF, but here we only introduce
the complementary log-log (cloglog) and logit link function (see Table 1).

Table 1: Common transformations on the general link function for the cause-specific
CIF

Parameters Link Function Link Name

log-subdistribution hazard ratios ln [− ln(1− Fk(t|xk))] cloglog

log-odd ratios Fk(t|xk)
1−Fk(t|xk) logit

2.6 Time-dependent effects

To relax the proportionality assumption, interactions are fitted between the associated
covariates and the spline function for log-time. This allows us to introduce a new set of
knots, mek, which represent the eth time-dependent effect for cause k with associated
parameters αααek. If there are e = 1, · · · , E time-dependent effects, then we can extend
the model in Equation 12 to,

ηk(t) = sk(ln(t);γγγk,m0k) + xkβββk +

E∑
l=1

sk(ln(t);αααlk,mlk)xlk (17)

In this approach, the spline function for different time-dependent effects can be
different and usually requires fewer knots for the baseline spline function. This is an
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extension on the original approach proposed by Royston and Parmar (2002). As all K
causes are modelled, it is also possible to specify different time-dependent effects for the
each of the k cause-specific FPM regression model.

2.7 Delayed entry

stpm2cr can also model left-truncated data or data with delayed entry. This is when
subjects are considered to be at risk some time after t = 0.

2.8 Cure models

Andersson et al. (2011) proposed a method that allows estimation of the cure proportion
in a relative survival FPM framework. In the competing risks scenario, this would occur
in a situation where the cause-specific CIF is constant after a certain point in time t.
Hence, by adapting the approach described by Andersson et al. (2011), we can estimate
the cure proportion from within a flexible parametric model for the cause-specific CIF
specified in Section 2.5 by forcing the log cumulative SDH to plateau after the last knot.
This involves an adjustment to the way the spline variables are calculated so that the
cause-specific CIF is forced to plateau (see Andersson et al. (2011) for more details).
Since the SDH function for cause k on which we assume cure needs to be evaluated
whilst simultaneously modelling all other causes, the final knot must be specified after
the final observed time of death which has been set at the 110th percentile of log-time.
Applying the methods in Andersson et al. (2011) and the above adjustment to a specific
cause k = c, we can fit a flexible parametric cure model with a complementary log-log
link for a cause-specific CIF such that,

Fc(t|xc) = 1− (1− πc)exp[γ2cz2c+···+γ(M−1)cz(M−1)c+
∑E

i=1 sc(ln(t);αααic,mic)xic] (18)

1− πc = 1− exp (− exp(γ0c + xcβββc)) (19)

Therefore, the parameters, γ0c and βββc are used to estimate the cure proportion for
cause k = c. Here, we also implement a constraint on the linear spline, γ1c, such that it
is equal 0.

To fit a cure model, a plateau needs to be observed in the “raw” data for the cause-
specific CIF on which we wish to model cure. This is usually done for a single relevant
cause, particularly the event of interest.

3 Syntax

stpm2cr
[
equation1

][
equation2

]
...
[
equationN

] [
if
] [

in
]
, events(varname)

[
censvalue(#) cause(numlist) level(#) alleq noorthog eform oldest

mlmethod(string) lininit maximise options
]
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Where equation1, equation2, . . . , equationN are the equations for each competing event.
Note that at least two equations must be specified. The syntax of each equation is:

causename:
[
varlist

]
, scale(scalename)

[
df(#) knots(numlist) tvc(varlist)

dftvc(df list) knotstvc(numlist) bknots(knotslist) bknotstvc(numlist)

noconstant cure
]

You must stset your data before using stpm2cr; see [ST] stset. All events must be
specified in the failure option of stset.

3.1 Main Options

Model

events(varname) specifies the varname that contains the indicators for each competing
event failure.

cause(numlist) specifies the indicator value(s) for the competing events specified in
events(). The indicators specified in numlist must be listed in the same order of
the equations equation1, equation2, . . . , equationN.

censvalue(#) specifies the indicator value(s) in events() for individuals that are
censored; The default is censvalue(0).

noorthog suppresses orthogonal transformation of spline variables.

Reporting

alleq reports all equations used by ml. The models are fit using various constraints for
parameters associated with the derivatives of the spline functions. These parameters
are generally not of interest and thus are not shown be default. Also, an extra
equation is used when fitting delayed-entry models; again, this is not shown by
default.

eform reports the exponentiated coefficients. For models on the log cumulative-subdistribution
hazard scale, scale(hazard), this gives the subdistribution hazard ratios if the co-
variate is not time-dependent. Similarly, for models on the log cumulative-subdistribution
odds scale, scale(odds), this option will give odds ratios for non-time-dependent
effects (see scale() option).

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level; see [U] 23.5 Specifying the width
of confidence intervals.
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Max options

lininit obtains initial values by fitting only the first spline basis function (i.e., a linear
function of log survival time). This is useful when models fail to converge using the
initial values obtained in the usual way. However, this option is seldom needed.

maximise options difficult, technique(algorithm spec), iterate(#), . These op-
tions are seldom used, but difficult may be useful if there are convergence prob-
lems when fitting more complicated models.

3.2 Equation Options

Model

scale(scalename) specifies the scale on which to model the cause-specific CIF.

scale(hazard) fits a model on the log-cumulative subdistribution hazards scale i.e.
the scale of ln (− ln (1− Fk(t))). If no time-dependent effects are specified, then the
resulting model assumes proportionality.

scale(odds) fits a model on the log-cumulative odds scale i.e. the scale of log Fk(t)
1−Fk(t) .

If no time-dependent effects are specified, then the resulting model assumes proportion-
ality of the odds ratios over time.

df(#) specifies the degrees of freedom for the restricted cubic spline function used for
the baseline subdistribution hazard rate. Usually a value between 3 and 5 is sufficient
and the choice of degrees of freedom has been shown not to be too sensitive to
parameter estimates. Using df(1) is equivalent to fitting a Weibull model when using
scale(hazard). The internal knots are placed at the centiles of the distribution of
the uncensored log times with boundary knots placed at the 0th and 100th centiles.
An example is provided below for df(5):

DF Internal Knots Centile Positions (Log-time)
5 4 20th 40th 60th 80th

knots(numlist) specifies knot locations for the baseline distribution function as opposed
to the the default knot locations set by df(). The locations of the knots are placed
on the log-time scale. Default knot positions are determined by the df() option.

bknots(knotslist) is a two-element list giving the boundary knots. By default, these
are located at the minimum and maximum of the uncensored survival times for all
cause-specific events on the log scale.

tvc(varlist) specifies the names of the variables that are time-dependent. Time-dependent
effects are fit using restricted cubic splines. The degrees of freedom are specified us-
ing the dftvc() option.

dftvc(df list) specifies the degrees of freedom for time-dependent effects. If the same
degree of freedom is used for all time-dependent effects then the syntax is the same
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as df(#). With 1 degree of freedom, a linear effect of log-time is fit. If there is
more than one time-dependent effect and different degrees of freedom are required
for each time-dependent effect, then the following syntax can be used: dftvc(x1:3

x2:2 1), where x1 has 3 degrees of freedom, x2 has 2 degrees of freedom, and any
remaining time-dependent effects have 1 degree of freedom.

knotstvc(numlist) specifies the location of the internal knots for any time-dependent
effects. If different knots are required for different time-dependent effects, then this
option can be specified as follows: knotstvc(x1 1 2 3 x2 1.5 3.5).

cure is specified when fitting cure models for a particular cause. It forces the cause-
specific cumulative subdistribution hazard to be constant after the last knot. When
the df() option is used together with the cure option, the internal knots are placed
evenly according to centiles of the distribution of the uncensored log survival-times
except one, which is placed at the 95th centile and the final knot is placed outside
of the last uncensored cause-specific log-survival time (110th percentile by default).
Alternative knot locations can be selected using the knots() option. Cure models
can only be used when modelling on the log cumulative-subdistribution hazards scale
(scale(hazard)).

noconstant; see [R] estimation options.

4 Postestimation

stpm2cr is an estimation command and shares most of the features of standard Stata
estimation commands; see [U] 20 Estimation and postestimation commands. The
predictions available after fitting a modelling using stpm2cr are briefly described below.

4.1 Syntax

predict newvarname
[
if
] [

in
] [

, at(varname #
[
varname #

]
)

cause(numlist) chrdenominator(varname #
[
varname # ...

]
)

chrnumerator(varname #
[
varname # ...

]
) ci cif cifdiff1(varname #[

varname # ...
]
) cifdiff2(varname #

[
varname # ...

]
) cifratio csh

cumodds cumsubhazard cured shrdenominator(varname #
[
varname #

...
]
) shrnumerator(varname #

[
varname # ...

]
) subdensity subhazard

survivor timevar(varname) uncured xb zeros deviance dxb level(#)
]

Main

at(varname #
[
varname #

]
) requests that the covariates specified by varname be

set to #. This is a useful way to obtain out-of-sample predictions. If at() is used
together with zeros, then all covariates not listed in at() are set to zero. If at()



S. I. Mozumder et al. 11

is used without zeros, then all covariates not listed in at() are set to their sample
values.

cause(numlist) specifies the causes on which to make the predictions for and are stored
in newvarname c#. If cause() is not specified, then predictions are made for all
causes included in the model and stored in newvarname c#.

chrdenominator(varname #
[
varname # ...

]
) and shrdenominator(varname #[

varname # ...
]
) specifies the denominator of the cause-specific hazard ratio or

subdistribution hazard ratio for a specific cause. By default, all covariates not spec-
ified using this option are set to zero. See the cautionary note in chrnumerator()

and shrnumerator below. If # is set to missing (.), then the covariate has the values
defined in the dataset.

chrnumerator(varname #
[
varname # ...

]
) shrnumerator(varname #

[
varname

# ...
]
) specifies the numerator of the (time-dependent) cause-specific hazard ratio

or subdistribution hazard ratio for a specific cause. By default, all covariates not
specified using this option are set to zero. Setting the remaining values of the co-
variates to zero may not always be sensible, particularly on models other than those
on the cumulative subdistribution hazard scale or when more than one variable has
a time-dependent effect. If # is set to missing (.), then the covariate has the values
defined in the dataset.

ci calculates a confidence interval for the requested statistic and stores the confidence
limits in newvarname lci and newvarname uci.

cif predicts the cause-specific cumulative incidence function.

cifdiff1(varname #
[
varname # ...

]
) and cifdiff2(varname #

[
varname # ...

]
)

predict the difference in cause-specific cumulative incidence functions, with the first
cause-specific cumulative incidence function defined by the covariate values listed for
cifdiff1() and the second, by those listed for cifdiff2(). By default, covariates
not specified using either option are set to zero. Setting the remaining values of
the covariates to zero may not always be sensible. If # is set to missing (.), then
varnamehas the values defined in the dataset.

Example: cifdiff1(stage 1) (without specifying cifdiff2()) computes the dif-
ference in predicted cause-specific cumulative incidence functions at stage = 1 com-
pared with stage = 0 with all other covariates set to 0.

Example: cifdiff1(stage 2) cifdiff1(stage 1) computes the difference in pre-
dicted cause-specific cumulative incidence functions at stage = 2 compared with stage

= 1.

Example: cifdiff1(stage 2 age 50) cifdiff1(stage 1 age 70) computes the
difference in predicted hazard functions at stage = 2 and age = 50 compared with
stage = 1 and age = 70 with all other covariates set to 0.

cifratio predicts the relative contribution of failing from an event to the overall cu-
mulative incidence function. For example, if the event of interest is in cancer, this
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is the relative contribution of dying from cancer to the total mortality. cifratio

must be used along with the cause() option in order to specify the cause-specific
cumulative incidence function on the numerator of the ratio.

csh predicts the cause-specific hazard function.

cumodds predicts the cumulative odds-of-failure function.

cumsubhazard predicts the cumulative subdistribution hazard function.

cured predicts the cause-specific cure proportion after fitting a cure model.

subdensity predicts the sub-density function.

subhazard predicts the subdistribution hazard function.

timevar(varname) defines the variable used as time in the predictions. The default is
timevar( t). The use of timevar() is useful for large datasets where, for plotting
purposes, predictions are needed for only 200 observations, for example. Some cau-
tion should be taken when using this option because predictions may be made at
whatever covariate values are in the first 200 rows of data. This can be avoided by
using the at() option or the zeros option to define the covariate patterns for which
you require the predictions.

uncured can be used after fitting a cure model for a specific cause. It can be used
with the survivor, subhazard, and cif options to base predictions for the uncured
group.

xb predicts the linear predictor, including the spline function.

zeros sets all covariates to zero (baseline prediction). For example, predict cif,

cause(1) cif zeros calculates the baseline cause-specific cumulative incidence func-
tion for cause = 1.

Subsidiary

dxb calculates the derivative(s) of the linear predictor(s).

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is 95 or as set by set level.

5 Examples

5.1 Northern European Cancer Registry Data (1975-94)

The methods outlined in this paper are illustrated through the use of Northern European
cancer registry data, which has also been previously used to illustrate the use of strs

for relative survival models (Dickman and Coviello 2015). We use a subset of this data
which contains observations on 4,578 patients aged between 40 and 79 years old who
were diagnosed with melanoma between 1975 and 1994. Survival time is measured
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in months since diagnosis to death due to cancer or other causes. The covariates of
interest are patient age at diagnosis and stage of cancer, which is categorised into
localised or regional stage cancer at diagnosis. Follow-up time is restricted to 15 years
from diagnosis.

5.2 Non-parametric estimates for the cause-specific cumulative in-
cidence function
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Figure 1: Predicted cause-specific cumulative incidence functions for death from cancer
or death from other causes using the Aalen-Johansen method by stage at diagnosis for
patients aged 40 to 80 years old.

Estimated cause-specific CIFs have been predicted using the stcompet command
which implements the Aalen-Johansen method (Coviello and Boggess 2004). Figure 1
shows cause-specific CIFs estimated by stage at diagnosis for death from cancer and
from other causes and shows that, those with a more distant stage cancer at diagnosis,
have an increased risk of dying from cancer and lower risk of dying from other causes.
The sum of the cancer-specific CIF and CIF for other causes give the overall, or all-cause
probability of death.

5.3 Fine & Gray model

We initially fit direct regression models on the cause-specific CIF using the Fine & Gray
approach which is, at present, the most commonly implemented method for modelling
covariate effects on the cause-specific cumulative incidence function. Fine & Gray mod-
els are fitted with only stage at diagnosis as a covariate for each of the cause-specific
CIFs.
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A new indicator variable, status2 was generated in order to overcome a small re-
porting error with the stcrreg command when using the exit() option in stset at
the time of submission. When using the usual censoring indicator variable in stset

for one cause before fitting a Fine & Gray model, because the competing events and
censored events are no longer distinguished and those who die before the exit time are
instead treated as censored, the number of actual competing events are under-reported.
Although this has no direct consequence on the parameter estimates, the total number
of overall failures that is reported for each cause-specific model is inconsistent. There-
fore, we go on to fit Fine & Gray models using the new variable which is generated as
shown below:

. stset surv_mm, failure(status == 1, 2) scale(12) id(id) exit(time 180)
(output omitted )

. gen status2 = cond(_d==0,0,status)

. *Cancer

. stset surv_mm, failure(status2 == 1) scale(12) id(id) exit(time 180)
(output omitted )

. stcrreg i.stage, compete(status2 == 2)

failure _d: status2 == 1
analysis time _t: surv_mm/12

exit on or before: time 180
id: id

Iteration 0: log pseudolikelihood = -7389.917
Iteration 1: log pseudolikelihood = -7389.4747
Iteration 2: log pseudolikelihood = -7389.4745

Competing-risks regression No. of obs = 4,204
No. of subjects = 4,204

Failure event : status2 == 1 No. failed = 937
Competing event: status2 == 2 No. competing = 583

No. censored = 2,684

Wald chi2(1) = 287.75
Log pseudolikelihood = -7389.4745 Prob > chi2 = 0.0000

(Std. Err. adjusted for 4,204 clusters in id)

Robust
_t SHR Std. Err. z P>|z| [95% Conf. Interval]

stage
Regional 4.783974 .4414379 16.96 0.000 3.992499 5.732352

.

. *Other

. stset surv_mm, failure(status2 == 2) scale(12) id(id) exit(time 180)
(output omitted )

. stcrreg i.stage, compete(status2 == 1)

failure _d: status2 == 2
analysis time _t: surv_mm/12

exit on or before: time 180
id: id

Iteration 0: log pseudolikelihood = -4565.6556
Iteration 1: log pseudolikelihood = -4556.6879
Iteration 2: log pseudolikelihood = -4556.6578
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Iteration 3: log pseudolikelihood = -4556.6578

Competing-risks regression No. of obs = 4,204
No. of subjects = 4,204

Failure event : status2 == 2 No. failed = 583
Competing event: status2 == 1 No. competing = 937

No. censored = 2,684

Wald chi2(1) = 0.31
Log pseudolikelihood = -4556.6578 Prob > chi2 = 0.5790

(Std. Err. adjusted for 4,204 clusters in id)

Robust
_t SHR Std. Err. z P>|z| [95% Conf. Interval]

stage
Regional .9080851 .1577827 -0.55 0.579 .6459927 1.276514

The SHR for cancer gives the association between stage at diagnosis and the cancer-
specific CIF. A SHR of 4.78 indicates that, those with a more severe stage at diagnosis
is associated with an increased risk of dying from cancer. However, it is important to
note that, due to the awkward definition in the risk-set, it is difficult to make inferences
on quantitative effects. Although non-significant, the SHR from the Fine & Gray model
for other causes shows that, those with a more severe stage at diagnosis is associated
with a decreased risk of dying from other causes. This is explained by the fact that
patients at an earlier stage at diagnosis are healthier and are more likely to live longer
and die of other causes before their cancer. Whereas, on the other hand, patients at a
later stage are unlikely to live as long to have the chance of dying from other causes.

After fitting each cause-specific Fine & Gray model, stcurve can be used to predict
and store the cause-specific CIFs. These are stored and plotted later in Figure 3.

5.4 Log-cumulative subdistribution hazard models

Using the full-likelihood in Equation 11, direct flexible parametric regression models
for the cause-specific CIF can be fitted. Rather than fitting a model to each cause-
specific CIF separately, this approach allows to instead model all cause-specific CIFs
simultaneously. This is shown below with the assumption of proportionality for all
causes:

. stset surv_mm, failure(status==1, 2) scale(12) id(id) noshow exit(time 180)
(output omitted )

. stpm2cr [cancer: stage2, scale(hazard) df(5) ] ///
> [other: stage2, scale(hazard) df(5) ] ///
> , events(status) cause(1 2) cens(0) eform nolog

(output omitted )

Log likelihood = -4901.0253 Number of obs = 4,204

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

cancer
stage2 4.673522 .3973545 18.14 0.000 3.956153 5.520973
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_rcs_c1_1 2.371601 .0642335 31.88 0.000 2.248989 2.500897
_rcs_c1_2 1.40679 .0445023 10.79 0.000 1.322216 1.496774
_rcs_c1_3 1.061522 .0237518 2.67 0.008 1.015975 1.109111
_rcs_c1_4 .9889806 .0103402 -1.06 0.289 .9689204 1.009456
_rcs_c1_5 1.002836 .005948 0.48 0.633 .9912455 1.014562

_cons .1390518 .0053603 -51.18 0.000 .1289329 .1499648

other
stage2 .6867003 .115223 -2.24 0.025 .4942449 .9540964

_rcs_c2_1 2.564841 .0949475 25.44 0.000 2.385338 2.757852
_rcs_c2_2 1.058082 .0298144 2.00 0.045 1.001231 1.118161
_rcs_c2_3 .9541731 .0196412 -2.28 0.023 .9164434 .9934562
_rcs_c2_4 .9843678 .0125716 -1.23 0.217 .9600337 1.009319
_rcs_c2_5 .9917352 .0082375 -1.00 0.318 .9757208 1.008012

_cons .0800586 .0040859 -49.47 0.000 .0724379 .088481

An equation is specified for each cause within the square brackets along with their
respective options. These are similar to those used for stpm2 where df(5) implies 4
internal knots at default locations. The estimated subdistribution hazard ratios are
displayed for each cause and their 95% confidence intervals. The advantage of using the
parametric approach is that it is easy to obtain useful predictions to aid interpretation.
The following code obtains the cause-specific CIFs, subdistribution hazard functions for
each cause and the cause-specific hazard functions. Confidence intervals are obtained
by using the ci option.

. range temptime 0 15 1000

. predict cif1, cif at(stage1 1 stage2 0) timevar(temptime)
Calculating predictions for the following causes: 1 2

. predict cif2, cif at(stage1 0 stage2 1) timevar(temptime)
Calculating predictions for the following causes: 1 2

. predict sdh1, subhazard at(stage1 1 stage2 0) timevar(temptime)
Calculating predictions for the following causes: 1 2

. predict sdh2, subhazard at(stage1 0 stage2 1) timevar(temptime)
Calculating predictions for the following causes: 1 2

. predict csh1, csh at(stage1 1 stage2 0) timevar(temptime)
Calculating predictions for the following causes: 1 2

. predict csh2, csh at(stage1 0 stage2 1) timevar(temptime)
Calculating predictions for the following causes: 1 2

The top row in Figure 2 plots the predicted subdistribution hazard function for each
cause and the bottom illustrates the predicted cause-specific hazard function by stage
at diagnosis. The subdistribution hazard gives the association on the effect of stage at
diagnosis on risk and the cause-specific hazard is the association on the effect of stage
at diagnosis on the hazard rate. Figure 3 compares the cause-specific CIFs obtained
from the Fine & Gray models for each cause to those obtained from the log-cumulative
proportional subdistribution hazards model and shows sensible agreement between the
two (refer to Mozumder et al. (2016 (submitted) for more details on the disagreement
in the cause-specific CIF for death from other causes). In Figure 4 the Aalen-Johansen
estimates are compared to the cause-specific CIFs obtained from the log-cumulative pro-
portional subdistribution hazards model. The estimates are reasonably similar, however,
a better fit can be achieved by relaxing the assumption of proportionality through the
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Figure 2: Subdistribution hazards predicted for each cause and cause-specific hazard
predictions by stage at diagnosis for patients aged 40 to 80 years old from a log-
cumulative proportional subdistribution hazards model for melanoma data.

inclusion of time-dependent effects using restricted cubic splines.

5.5 Time-dependent effects

The inclusion of time-dependent effects can be easily incorporated by specifying the
dftvc() and tvc() equation specific options as shown in the following code.

. stpm2cr [cancer: stage2, scale(hazard) df(5) tvc(stage2) dftvc(3)] ///
> [other: stage2, scale(hazard) df(5) tvc(stage2) dftvc(3)] ///
> , events(status) cause(1 2) cens(0) eform nolog

(output omitted )
Log likelihood = -4877.5917 Number of obs = 4,204

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

cancer
stage2 5.225629 .4543429 19.02 0.000 4.406875 6.196499

_rcs_c1_1 2.570244 .089602 27.08 0.000 2.400493 2.752
_rcs_c1_2 1.440213 .0605618 8.68 0.000 1.326274 1.56394
_rcs_c1_3 1.076737 .0280174 2.84 0.004 1.023201 1.133074
_rcs_c1_4 .9907888 .0106845 -0.86 0.391 .9700674 1.011953
_rcs_c1_5 .9997375 .0058897 -0.04 0.964 .9882603 1.011348

_rcs_stage2_c1_1 .7353858 .0413674 -5.46 0.000 .658617 .8211029
_rcs_stage2_c1_2 .9750149 .0568817 -0.43 0.664 .8696665 1.093125
_rcs_stage2_c1_3 .9458115 .0303569 -1.74 0.083 .8881458 1.007221

_cons .1328929 .0053238 -50.38 0.000 .1228576 .143748

other
stage2 1.18831 .2267027 0.90 0.366 .8175976 1.727109
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Figure 3: A comparison of cause-specific cumulative incidence functions for death from
cancer or death from other causes predicted simulataneously from a log-cumulative
subdistribution hazards model and from seperate Fine & Gray models for each cause
by stage at diagnosis for patients aged 40 to 80 years old.

_rcs_c2_1 2.658485 .1059802 24.53 0.000 2.458675 2.874533
_rcs_c2_2 1.062388 .0328778 1.96 0.051 .999864 1.128822
_rcs_c2_3 .9584928 .0206057 -1.97 0.049 .9189454 .9997422
_rcs_c2_4 .9841378 .0124521 -1.26 0.206 .9600322 1.008849
_rcs_c2_5 .9926364 .0081918 -0.90 0.370 .9767099 1.008823

_rcs_stage2_c2_1 .68066 .0697333 -3.75 0.000 .5568331 .8320231
_rcs_stage2_c2_2 1.007956 .0739275 0.11 0.914 .8729933 1.163783
_rcs_stage2_c2_3 .9515855 .0501094 -0.94 0.346 .8582712 1.055045

_cons .0775996 .0040571 -48.89 0.000 .0700417 .0859732

The tvc(stage2) and dftvc(3) options states that the stage2 variable is to be
time-dependent using restricted cubic splines with 2 internal knots (i.e. 3 degrees of
freedom). Overall, there are 10 parameters being estimated for each cause in the model.
For example, for cancer, there are 5 derived variables for the baseline log-cumulative sub-
distribution hazard ( rcs c1 1- rcs c1 5) and 3 derived splines for the time-dependent
effect stage2 ( rcs stage2 c1 1- rcs stage2 c1 3).

In a time-dependent model, parameter estimates become more complex and are not
very useful when interpreted on their own. Instead, it is better to obtain predictions
between groups for specific covariate patterns as relative and/or absolute differences
over time by using predict. Note here that, to generate the same predictions, the
coding is the same:

. range temptime 0 15 1000

. predict cif_tvc1, cif at(stage1 1 stage2 0) ci timevar(temptime)
Calculating predictions for the following causes: 1 2
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Figure 4: A comparison of cause-specific cumulative incidence functions for death from
cancer or death from other causes predicted simulataneously from a log-cumulative
subdistribution hazards model assuming proportionality and using the Aalen-Johansen
empirical estimates for each cause by stage at diagnosis for patients aged 40 to 80 years
old.

. predict cif_tvc2, cif at(stage1 0 stage2 1) ci timevar(temptime)
Calculating predictions for the following causes: 1 2

. predict cifdiff, cifdiff1(stage1 0 stage2 1) cifdiff2(stage1 1 stage2 0) ci timevar(temptime)
Calculating predictions for the following causes: 1 2

. predict shr, shrn(stage1 0 stage2 1) shrd(stage1 1 stage2 0) ci timevar(temptime)
Calculating predictions for the following causes: 1 2

. predict chr, chrn(stage1 0 stage2 1) chrd(stage1 1 stage2 0) ci timevar(temptime)
Calculating predictions for the following causes: 1 2

Figure 5 now shows a better fit of the model estimated cause-specific CIFs, particu-
larly with regional stage patients, in comparison to the non-parametric Aalen-Johansen
estimates with very good agreement.

We can obtain absolute differences with 95% confidence intervals between the re-
gional and localised stage groups over time for each cause-specific CIF. Differences are
calculated by using the cifdiff1() and cifdiff2() options. The obtained predictions
are illustrated in Figure 6, which show us that, those with a more severe stage of cancer
at diagnosis, are more likely to die from cancer. The difference is smaller for other
causes for the first 6 years since diagnosis and in the later years, the cause-specific CIF
for other causes is larger for localised stage patients.

Time-dependent subdistribution and cause-specific hazard ratios are obtained us-
ing the options, shrnumerator() and shrdenominator(), and chrnumerator() and
chrdenominator() respectively. Using these options, we can obtain ratios for any
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Figure 5: A comparison of cause-specific cumulative incidence functions for death from
cancer or death from other causes predicted simulataneously from a log-cumulative non-
proportional subdistribution hazards model and using the Aalen-Johansen empirical
estimates for each cause by stage at diagnosis for patients aged 40 to 80 years old.

two covariate patterns. Figure 7 shows the time-dependent subdistribution and cause-
specific hazard ratios and compares regional stage patients to localised stage patients
at diagnosis. At the start of follow up, for both cancer-specific hazard ratios, regional
stage patients have a mortality rate that is 17 times the mortality rate of localised stage
patients and decreases over follow up time. The mortality rate due to other causes on
both scales for regional stage patients at the start of follow up time is approximately
4.5 times that of localised stage patients. Beyond 2 years since diagnosis, the subdis-
tribution hazard rate due to other causes for regional stage patients is lower than the
localised stage patients since the ratio is less than 1 which is expected since those at a
later stage will die earlier due to the cancer before they have the chance to die of other
causes. The cause-specific hazard ratios give us the association of stage at diagnosis
on the rate. The CSHR show a different effect on death due to other causes because
patients at a later stage tend to be more sick and, in general, are at a higher risk of
dying. This translates to a positive association between more distant stage patients and
the mortality rate for other causes.

5.6 Cure model

Cure models for any causes can be fit by adding the equation option cure, however, it is
highly recommended that this is done for one cause, which is usually the event of interest.
Predictions can be made after fitting a cure model with predict using the cured and
uncured options. Specifying the cured option will calculate the cure proportion for the
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Figure 6: Predicted absolute differences (Regional - Localised) in cause-specific cumu-
lative incidence functions with 95% confidence intervals from a log-cumulative non-
proportional subdistribution hazards model.

cause that cure was specified for and a variable with the suffix btd that partitions those
that are still alive into two groups; patients bound to die from cancer and not bound to
die from cancer. The code for fitting a cure model and predictions are shown below:

. stpm2cr [cancer: , scale(hazard) df(5) cure] ///
> [other: , scale(hazard) df(5)] ///
> , events(status) cause(1 2) cens(0) eform mlmethod(lf2) nolog

(output omitted )

Log likelihood = -1742.7601 Number of obs = 1,692

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

cancer
_rcs_c1_1 2.168448 .0851865 19.70 0.000 2.007752 2.342007
_rcs_c1_2 .9134977 .0245224 -3.37 0.001 .8666772 .9628475
_rcs_c1_3 .9989706 .0182824 -0.06 0.955 .9637729 1.035454
_rcs_c1_4 .9775022 .0134488 -1.65 0.098 .9514954 1.00422
_rcs_c1_5 1 (omitted)

_cons .348136 .0181445 -20.25 0.000 .3143294 .3855784

other
_rcs_c2_1 2.645041 .3083898 8.34 0.000 2.104696 3.324111
_rcs_c2_2 .9981758 .0919501 -0.02 0.984 .8332895 1.195689
_rcs_c2_3 .9368575 .0517331 -1.18 0.238 .8407566 1.043943
_rcs_c2_4 1.013603 .037129 0.37 0.712 .9433826 1.089051
_rcs_c2_5 .9643029 .0211338 -1.66 0.097 .9237584 1.006627

_cons .0220712 .0032665 -25.77 0.000 .0165139 .0294985

. range temptime 0 15 1000
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Figure 7: Predicted subdistribution and cause-specific hazard ratios for each cause
from a log-cumulative non-proportional subdistribution hazards model. Ratios compare
regional stage to localised stage patients at diagnosis. Dotted line is a reference line
when the rate is equal to 1 i.e. no difference.

. predict cif, cif timevar(temptime)
Calculating predictions for the following causes: 1 2

. predict cure, cured timevar(temptime)
Calculating predictions for the following causes: 1 2

. gen cif_tot = cif_c1 + cif_c2

In Section 2.8, we showed that, to fit cure models, the last knot was constrained
to be zero to force a plateau. This is shown in the output above where the parameter
for rcs c1 5 is equal to one. Analysis is restricted to localised stage patients aged 40
to 54 years old where cure is found to be reasonable. To check this, the plot to the
left in Figure 8 compares the estimated cancer-specific CIF from the model with the
Aalen-Johansen estimate and shows extremely good agreement with the cure proportion
estimated at approximately 30% after 12 years since diagnosis where the cancer-specific
CIF plateaus. On the right hand side of Figure 8, the cause-specific CIFs are stacked and
the dashed line is the partitioning of alive patients that are bound to or not bound to die
into two groups. This estimate is provided as part of the cured option with the suffix
btd. Eloranta et al. (2014) introduces this quantity to aid better risk communication

and is calculated as follows:

Palive,can(t) = πc − F1(t) (20)

Palive,oth(t) = 1− F2(t)− · · · − FK(t)− πc (21)
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where πc is the proportion of those bound-to-die from cancer on which cure is
assumed. For k = 1, Palive,can(t) represents patients who will ultimately die from
their cancer, and Palive,oth(t) give those who will die from competing causes where
k = 2, · · · ,K. In our example, from the stacked probabilities in Figure 8, at 6 years
after diagnosis, approximately 25% have died and 6% are alive and bound to die from
cancer, and 69% are alive and not bound to die from cancer.
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Figure 8: Left: Comparison of predicted cancer-specific CIFs obtained from log-
cumulative subdistribution hazards cure model and using the Aalen-Johansen method
for localised stage patients aged 40 to 54 years old. Right: Stacked cause-specific CIFs
obtained from a log-cumualtive subdistribution hazards cure model. Dashed-line par-
titions patients who are still alive into those who are bound to die (BTD) from cancer
and not BTD from cancer.

5.7 Conclusions

Competing risks models are being more widely applied in research and fitting regres-
sion models on the subdistribution hazard scale is encouraged to make inferences on
prognosis and understand the association of a covariate on risk. Analysis from within
the flexible parametric modelling framework using the direct likelihood approach for
the cause-specific CIF has several advantages. This includes computational time gains
as numerical integration is not required to model the baseline log-cumulative subdistri-
bution hazard function and all causes are modelled simultaneously so there is no need
to fit separate models for each cause. This is implemented in the new stpm2cr com-
mand, which is an adaptation of the stpm2 command. Other useful predictions can
be obtained by using predict after fitting a model using stpm2cr. This complements
flexible parametric regression models for competing risks on the cause-specific hazard
scale and allows researchers to gain a more complete understanding on the impact of the
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event of interest on outcome. There is scope for further improvement of these models as
convergence can be difficult if they are misspecified and mortality in a covariate group
is high which may cause the sum of all probabilities to exceed one. Therefore, future
work may involve implementing an appropriate constraint on the models to avoid issues
in convergence.
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