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Abstract6

Seminal findings involving payoffs (Shafir and Tversky, 1992; Tver-7

sky and Shafir, 1992; Shafir, 1994) showed that individuals exhibit8

state-dependent behaviour in different informational contexts. In par-9

ticular, in the condition of ambiguity as well as risk, individuals tend10

to exhibit ambiguity aversion. The core principle of rational (conse-11

quential) behaviour conceived by Savage (1954), that is the ‘Savage12

Sure Thing’ principle, has been shown to be violated. In mathematical13

language, this violation is equivalent to the violation of the “Law of14

total probability”, (Kolmogorov, 1933). Given the importance of orig-15

inal findings in the call for a generalization of classical expected utility,16

we perform in this paper a set of experiments related to expressing17

investment preferences: i) under objective risk, ii) after a preceding18

gain, or loss. In accordance with previous findings we detected state19

dependence in human judgement (previous gain or loss changed the20

preference state of the participants) as well as violation of consequen-21

tial reasoning under risk. We propose a quantum probabilistic model22

of agents’ preferences, where non-consequentialism and state depen-23

dence can be well explained via interference of complex probability24

amplitudes. A geometric depiction of the experimental findings with25

a state reconstruction procedure from statistical data via the inverse26
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Born’s rule (1926), allows for an accurate representation of agents’27

preference formation in risky investment choice.28

Keywords: Decision theory; non-consequential reasoning; investment29

choice; state dependence; quantum probability; generalized observables.30

1 Introduction31

Modern economic theory has naturally been preoccupied with the formaliza-32

tion of decision making. Theories of rational thought, such as the expected33

utility (EUT) model by von Neumann and Morgenstern (1944), its general-34

ization under subjective uncertainty, the subjective expected utility (SEUT)35

by Savage (1954), as well as a hybrid paradigm by Anscombe-Aumann (1963)36

became to varying degrees ‘workhorse models’ in many applied and theoret-37

ical economic models.38

Given the enormous difficulty of proposing an axiomatic framework, which39

can distil the essence of such a complicated topic as human decision making,40

it is no surprise that the axioms and logic in the above models were proven41

to be violated by experimental-based decision making. Various paradoxes42

plagued the expected utility research community, e.g., the Ellsberg paradox43

(1961), the Allais paradox (1953), and recently the Rabin and Thaler (2001)44

and Machina (2009) paradoxes, which pointed to non-classical processing45

of information (not conforming to the cannons of the classical Kolmogorov46

probability theory) and hence, falsifying some of the core axioms of these the-47

ories.1 Violations of the independence axiom (also known as the ‘Sure Thing48

Principle’ (STP), Savage (1954)), which postulates consequential reasoning49

via Bayes’ conditioning as the appropriate operator for updating knowledge)50

were also revealed by Shafir and Tversky (1992), Tversky and Shafir (1992),51

Shafir (1994), Croson (1999). The above findings showed that agents avoid52

carrying out probabilistic assessment of consequences, given by their acts in53

the different states and possess event non-separability in their probabilistic54

assessment of states, cf. examination in Gilboa (1987), Bastardi and Shafir55

(1998), Machina (1987; 2005), Karni (2014) and Marinacci (2015).256

1Machina (2005) establishes a division of the types of violations into three main cate-
gories: event-separability violation (aka violation of irrelevant alternatives) shown in Al-
lais paradox; state-dependence violations that question agents probabilistic sophistication
where acts only depend on the subjective probability measure assigned to consequences
(only utility of consequence plays a role and the state in which it realises does not matter)
and finally, ambiguity aversion shown in the classical Ellsberg setting.

2Interestingly, the behaviour that is not consistent with the STP was also ascribed to
finance market agents by Shafir and Tversky (1992), as manifested in low trading activity
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Broad-based research in mathematical psychology and economics ad-57

dressed the above paradoxes, with a particular focus on the origins of the58

violation of independence axiom for risky and ambiguous situations (see dis-59

cussions in Kahneman and Tversky, 1979; Machina, 1982; Holt, 1986; Gilboa,60

1987 and others). Without the aim of being exhaustive, we can mention61

some well-known contributions that were aimed at overcoming the linearity62

restriction of the subjective probabilistic beliefs: max-min expected utility63

by Gilboa and Schmeidler (1989), in which individuals can possess multi-64

ple probabilistic priors; seminal ‘Choquet expected utility’ by Schmeidler65

(1989) and the subjective probability version by Gilboa (1989) that intro-66

duces non-additive probabilistic capacities, to relax the linearity constraints67

of probabilities, given by the independence axiom. Klibanoff et al. (2005) fur-68

ther investigated the agents’ non-additive subjective beliefs that are revealed69

in Ellsberg type paradoxes, by axiomatising a formulation with a ‘second70

layer of uncertainty’, via the transformation of the subjective belief function71

(depending on model uncertainty) over the objective probabilistic measures.72

Another prominent contribution to tackle the paradoxes was conceived by73

Kahneman and Tversky (1979) known as ‘Prospect Theory’ (PT) and its74

rank-dependent modification by Tversky and Kahneman (1992) known as75

Cumulative Prospect Theory (CPT). A more general exposition by Karni et76

al. (1983), coined the ‘state-dependent’ SEUT, relaxes the notion of prob-77

abilistic sophistication, whereby agents may not evaluate the consequences78

separately from states (i.e. the utility of the consequence can be state depen-79

dent). The above generalizations gained wide recognition in economics and80

were successfully implemented in finance to describe ‘anomalous’ phenomena,81

such as the ‘equity premium puzzle’, by Mehra and Prescott (1985) and state82

dependence in investment preferences (Shefrin and Statman, 1985; Benartzi83

and Thaler, 1995; and Odean, 1998). At the same time, some difficulties84

with the application of the above frameworks were identified in the economic85

literature. Takemura (2014), Thaler and Johnson (1990) discuss the prob-86

lem of empirically establishing the form of personal value function in PT that87

stems from the difficulty in detecting a unique personal reference point, given88

the editing rules that different decision makers (DMs) can apply.3 Machina89

(2009) and Baillon et al (2011) also challenged the assumptions of rank de-90

pendent probabilities applied in EUT generalizations by Schmeidler (1989)91

before the 1998 Presidential elections showing market players’ unwillingness to implement
any form of mixed strategy.

3More precisely, Thaler and Johnson (1990), Barkan and Busemeyer (2003) point out
that a DM can implement different editing rules of the risky and uncertain prospects
(lotteries) e.g. by coding the prior gains and losses separately from the current DM task,
or alternatively incorporating them within the initial DM state, i.e. the reference point.
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and Tversky and Kahneman (1992) due to the violation of ‘tail separability’.92

Given the variety of EUT and SEUT generalizations, Kahneman (2003), drew93

attention to the existence of DM contextuality and the non-static nature of94

human preferences. More recently, Dzhafarov and Kujala (2013), Dzhafarov95

et al. (2017) carried out an extensive analysis of various types of contextual96

influences, and devised a special framework to analyse contextual influences97

on systems of random variables in psychology and decision theory.98

In the search for more general and unified probabilistic theories, to model99

decision making processes and belief updates in economics and finance (and100

of course in all other domains of social science), theorists and practitioners101

turned their attention to the quantum probabilistic paradigm. The calcu-102

lus and logic of quantum theory is by now widely applied interdisciplinarily103

in decision theory and cognition with a growing number of contributions104

to quantum probabilistic models of decision making in economics, neuroe-105

conomics, game theory and finance (Khrennikov and Haven (2009), Pothos106

and Busemeyer (2009; 2013), Brandenburger (2010), Danilov and Lambert-107

Mogiliansky (2010), Bagarello (2012), Bagarello and Haven (2014), Buse-108

meyer and Bruza (2012), Hawkins and Frieden (2012), Haven and Khrennikov109

(2013), Aerts et al (2014; 2016), Khrennikov (2015), Favre et al. (2016),110

Haven and Sozzo (2016), Khrennikova and Haven (2016; 2017), Takahashi111

(2017), and Khrennikova (2017)). The above contributions utilize the math-112

ematical framework of quantum theory, which is based on a quantum proba-113

bility that is a measure on subspaces of a multidimensional state space (the114

Hilbert state space), cf. Von Neumann (1932). Since the axiomatics of logic115

on subspaces is different from classical Boolean logic, the projection valued116

measures (that allow to reproduce probabilistic measures) do not obey some117

operations of classical Kolmogorov set theory, such as commutativity and dis-118

tributivity. Decision makers’ beliefs and preference states are represented as119

complex vectors and can describe well ‘ambiguity aversion’ as the process of120

forming prior probabilistic beliefs about states of nature and the conditional121

probabilities, as well as indeterminacy in the process of preference formation.122

As formalised by Pothos and Busemeyer (2013), p. 255.123

“In QP [Quantum probability] theory, probabilistic assessment is124

often strongly context- and order-dependent, individual states can be125

superposition states (that are impossible to associate with specific126

values), [and] our thesis is that they provide a more accurate and127

powerful account of certain cognitive processes.”128

In light of the above exposition, our paper’s contribution is twofold.129

Firstly, we seek to examine individual behaviour in a financial investment130

setting by exploring through a controlled experiment, whether investment131
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decisions under risk adhere to the postulates of consequential reasoning and132

event separability in STP. Another envisaged aim is to explore the existence133

of state non-separability in investment choices, with respect to the previously134

realized gains or losses. The paper is structured as follows. We briefly review135

the classical decision theories under risk and uncertainty (section 2), followed136

by an introduction of the core principle of consequential reasoning, STP.137

We illustrate empirical evidence that poses a challenge to the consequential138

paradigm. In section (3) we present the basics of the quantum probabilistic139

approach to human belief and preference formation. In sections (4) and (5)140

we exemplify the descriptive features of quantum probability via collected141

experimental findings. We further suggest in section (5) a QP framework142

that can well accommodate the experimental statistics, and we conclude in143

section (6).144

2 SEUT and consequential thinking145

The core aim of SEUT (Subjective Expected Utility) synthesized by Savage146

(1954)4 is to operationally render an individual’s preference relation between147

acts based on the perceived subjective expected utility of their consequences148

in different states of the world, given by some subjective probability esti-149

mates over states. The choice space p of DM (decision maker) is a set of all150

consequence functions from the space of acts to the space of consequences, fol-151

lowing Kreps (1988).5 Hence, the SEUT decision form is defined by a quartet152

of variables: {S,C, F, p}, given by the set of states (S), set of consequences153

(C), set of acts (F ) and the consequence function (p). DM establishes her154

preference formation by forming some subjective probability estimates π(s)155

over events (different states of the world), where each s ∈ S. The latter156

corresponds to the whole set of all available mutually exclusive states, where157

only one state will realize.6 Since SEUT formalises a decision rule under158

uncertainty, the beliefs about states of the world are given by the classical159

probability measure formalised by Kolmogorov (1933).7 The measure, π, is160

4In classical EUT under objective risk by von Neumann and Morgenstern (1944) the
function of states into the consequences is already specified externally, hence the DM
has only to care about the utility of each consequence (payoff) and associated objective
probability.

5See also Gilboa (1987), Machina (2005), Marinacci (2015) for a detailed presentation
of the theoretical foundations.

6Realisation of states can be understood as a realization of values of some random
variables, such as states of the economy, or asset price values.

7For further comparison with the quantum probability model of (random) observables,
we emphasize the functional representation of observables in classical theory.
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countably (and, in particular, finitely) additive: for disjoint subsets (events)161

of the sample space, Ω;E1, E2, E3...En... ∈ E,Ei ∩ Ej = ∅, i 6= j,162

π(E1 ∪ E2 ∪ E3... ∪ En) = π(E1) + π(E2) + π(E3) + ...+ π(En) (2.1)

In particular, if disjoint sets form the partition of the whole sample space,163

Ω, i.e. ∪nEn = Ω, we have:164

π(E1 ∪ E2 ∪ E3... ∪ En) = 1. (2.2)

Hence, in SEUT the probability measure over all states is additive to unity,165 ∑
s∈S π(s) = 1.8166

In the DM process, states are mapped into corresponding consequences167

c ∈ C, where technically, each consequence is specified as a function p given168

by the acts, f ∈ F conditioned on the state that occurs; p : F × S → C,169

where c = p(f, s). This functional representation allows to derive a decision170

rule that is based solely on consequences, e.g., an indifference relation f1 ∼ f2171

between two acts holds, iff p(f1, s) = p(f2, s) for ∀s ∈ S. The ranking of172

consequences is established via a real valued function u : C → R. The u(.)173

with higher numerical value is always preferred to lower numerical value,174

specifying the subjective utility of a DM. The function u associates conse-175

quences in C with some real numbers, where its expectation value is given176

by:
∑n

i=1 u(ci)π(si). As such, a weakly transitive binary relation on a set of177

acts F can be established (e.g. f1 � f2), iff a person possesses a subjective178

utility function and the expectation value of the functional V (f1) is higher179

than (or equal to) the expectation of V (f2), formally: V (f1) ≥ V (f2), i.e.,180 ∑
s∈S π(s)u(p(f1, s)) ≥

∑
s∈S π(s)u(p(f2, s)).181

2.1 Sure thing principle (STP)182

Consequentialism lies at the core in the STP formulation of SEUT (it is183

equivalent to the independence axiom in the von Neumann and Morgenstern184

(1944) EUT formulation, with risky lotteries), cf. Savage (1954). This prin-185

ciple assumes that only consequences are important, and their utility does186

not depend on any particular state of the world, si. The principle (also187

known as Postulate 2 of SEUT) can be formulated as: if a person prefers188

act f1 to f2 either knowing that state s1 occurred, or state s2 (s1, s2 ∈ S)189

occurred then he prefers f1 to f2, and her preferences over acts are indepen-190

dent from the actual state realization. This also implies that V (f1) � V (f2),191

8For simplicity in this and the following formulation we assume a finite number of states
of the world, each associated with a probabilistic measure.
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meaning that the expected utility of possible consequences of act f1 is higher192

in both states of the world. This principle was reinstated in probabilistic193

terms in Shafir and Tversky (1992), Khrennikov and Haven (2009), Pothos194

and Busemeyer (2009) and others, showing that the violation of STP for a195

population of decision makers is equal to the violation of additivity of the196

probability disjunctions in the formula of total probability (henceforth FTP)197

in the Kolmogorovian set theory. The formula is obtained if two conditions198

are satisfied: i) the additivity of measures, and ii) the subjective probabilistic199

beliefs can be undated via Bayes’ formula of conditional probability. For the200

Savage example with two acts and two states of the world the formula can201

be stated in a simple manner:202

πT (f1) = π(f1 ∩ s1) + π(f1 ∩ s2). (2.3)

The formula can be expanded by replacing the joint probability of acts in203

different states of the world via Bayes’ conditional probability:204

πT (f1) = π(f1 | s1)π(s1) + π(f1 | s2)π(s2). (2.4)

where, s1 ∪ s2 = S; π(s1) = 1− π(s2) and f1 ∪ f2 = F , π(f1) = 1− π(f2).205

With the aid of (2.4) one can express the total probability (πT ) of real-206

ization of act f1 (respective f2), given the conditional π(f1 | s1), π(f1 | s2)207

and prior probabilities π(s1), π(s2). Hence, FTP is representing the baseline208

probability of an event, given different disjoint paths of its realisation. In209

case the total probability of an act is equal to one, a DM knows for sure that210

in all states the act f1 will be chosen i.e. π(f1 � f2) = 1. The total probabil-211

ity can only be obtained if the DM possesses a joint probability distribution212

(she can combine the acts and states in the same probability state space).213

Evidence on violation of STP was collected for both objective and subjec-214

tive probability distributions; cf. Allais (1953), Ellsberg (1961), Tversky and215

Shafir (1992), Shafir (1994), Croson (1999), Pothos and Busemeyer (2009),216

Machina (2009) and others. Non-consequential reasoning as a form of non-217

Bayesian processing of information in the ‘agree to disagree’ paradox was218

also explored in Khrennikov (2015).219

2.2 State dependence220

The classical generalizations of SEUT, approach the probabilistic violations221

exhibited by individuals in the process of their evaluation of consequences.222

Yet, state dependence can also be shown, whereby the form of the individual223

utility function can be state dependent, i.e., u(ci|s) cf. Karni et al. (1983).224

Hence, an individual can possess different utility functions in different states225
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and show preference reversals over acts. Specific attention is paid in the226

literature to realizations of states that yield positive, or negative monetary227

consequences (known as previous gains and losses). Some more general ex-228

amples can be: states of health of the decision maker, states of the financial229

market, etc.230

Thaler and Johnson (1990), Tversky et al (1990), Tversky and Kahneman231

(1991) and Shafir (1994) showed that the existence of the previous gains and232

losses affects the subsequent preferences under risk and uncertainty.9 This233

phenomenon was coined as ‘reference dependence’ by Kahneman and Tver-234

sky (1979) and Tversky and Kahneman (1992). The devised PT and CPT235

addressed the effect of the prior outcomes upon the change in preferences,236

by proposing so called ‘editing rules’ that a DM can employ. When editing237

the risky or uncertain prospects, the prior certain outcomes are incorporated238

into the reference point and hence, different value functions can exist for a239

DM, depending on the cumulative perception of the monetary consequences.240

CPT is characterized by two specific (loss and gain) value functions that241

have a different curvature, showing that the sensitivity of a DM to a possible242

loss is almost double the sensitivity to a possible gain, based on the exper-243

imental evidence (Tversky and Kahneman, 1992; Rabin and Thaler, 2001;244

Kahneman, 2003).245

3 Quantum probability theory of preferences246

Quantum probability (QP) is a complete probabilistic framework that can247

be well applied, as a descriptive decision making model under risk and uncer-248

tainty.10 In general QP builds on two assumptions: i) human beliefs can be249

ambiguous, and no exact probabilistic distribution can be specified, ii) state250

dependence of preference formation, where preferences over consequences251

can differ in different states.11 We proceed with a complete representation252

9Preference reversals are at variance with the SEUT presuming that only the integration
of the possible monetary consequences with the total existing wealth can take place.

10We remark that different notations, such as ‘quantum-like’, cf., Haven and Khrennikov
(2013), ‘Quantum probability theory’ by Busemeyer and Bruza (2012), and ‘Quantum
Decision Theory’ by Favre et al. (2016) are in use, to denote the application of quantum
mechanical calculus to macroscopic phenomena in cognition and decision theory. The
umbrella of ‘quantum-like’ models also includes frameworks beyond the ‘standard quantum
formalism’, cf. Khrennikov (2010), Aerts et al. (2016). We also remark that the framework
is widely used to describe various probabilistic fallacies and preference reversals in riskless
choice, such as order effects (Busemeyer and Bruza, 2012) and voting preference reversals,
(Khrennikova and Haven, 2016).

11Applications of the QP formalism does not imply the necessity of an existence of a
classical utility function, instead preference formation can be modeled via decision oper-
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of both beliefs and preferences, given the evidence on state dependence of253

preferences, section (2.2). We briefly sketch the axiomatic representation of254

human beliefs and preferences by means of QP and the geometric properties255

of Hilbert space:256

• The assembly of beliefs about events12 in a DM task correspond to unit
length vectors (the so called basis vectors), ψ, that are one dimensional
subspaces of the Hilbert space, H. The Hilbert space is a complex
linear space, endowed with a scalar product, denoted as 〈ψ1|ψ2〉 and is
complete with respect to the metric determined by the norm defined
as:

‖ψ‖ =
√
〈ψ|ψ〉.

The norm defines the metric (distance) on H : d(ψ1, ψ2) = ‖ψ1 − ψ2‖.257

In applications of the quantum formalism to cognitive phenomena and258

decision theory, a finite dimensional Hilbert space is usually applied,259

in order to simplify the complexity of the models. The state space is260

derived empirically, where one can represent all the observables in two-261

dimensions or use a maximum state space size to correspond to all the262

elementary event-act combinations, cf. analysis in Haven and Khren-263

nikov (2009), Pothos and Busemeyer (2009), Busemeyer and Bruza264

(2012), Khrennikova and Haven (2016).13
265

• The uncertainty of a DM, associated with the beliefs about state re-266

alisation and preferences, is encoded in the superposition of the vari-267

ous belief states, or DM states (cf. monographs Busemeyer and Bruza268

ators that can combine payoff utility with some other cognitive factors, cf. Pothos and
Busemeyer (2009). Yet, some contributions use QP as a tool to model only the violations
of type (i), ambiguity of human beliefs, cf. Haven and Sozzo (2016). In the former ap-
proach of quantum probabilistic modeling, the obtained probability of choosing a specific
option is associated with the preference of the DM rather than only with the quantification
of her degree of belief, as in standard utility based economic models.

12Events can denote both states of the world and preferences over acts, in the words of
SEUT.

13The derivation of an appropriate state space still remains an unsolved problem. Two-
dimensional state space allows for a simple representation of information processing and
preference formation, (while even a four dimensional state space is already characterized
by a large number of free parameters), yet suffers from the existence of ‘hidden param-
eters’ that mathematically corresponds to the impossibility of the usage of conventional
Hermitian projectors that have to obey normalization with respect to identity. This prob-
lem was addressed in Khrennikova and Haven (2017), who derived a generalized operator
that allows to represent any number of observables with dichotomous values in a two
dimensional plane.
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(2012); Bagarello (2012); Haven and Khrennikov (2013) for an exten-269

sive introduction to QP and quantum dynamics). We remark that270

the distribution of beliefs does not obey the probability measure by271

Kolmogorov (1933), based on a σ-algebra of events, and hence the272

commutativity and distributivity of events are relaxed. Moreover, the273

prognosis of preferences over acts is also obtained in a form of proba-274

bilistic distribution, rather than a deterministic relationship.275

We can represent events by fixing in H an orthonormal basis (ej), i.e.,
〈ei|ej〉 = δij. Vectors can be represented through their coordinates:

ψ1 = (k1, ..., kn), ψ2 = (b1, ..., bn).

In the above coordinate representation the inner product of the vectors
has the form:

〈ψ1|ψ2〉 =
∑
j

k̄jbj,

where k̄ denotes the complex conjugate. The superposition state of276

the decision making state is depicted through normalized vectors in H,277

i.e., ψ such that 〈ψ|ψ〉 = 1. Such normalized vector determines a pure278

state up to the phase factor eiθ, θ ∈ [0, 2π), i.e., two vectors ψ1 and279

ψ2 = eiθψ1 would describe the same decision making state.280

• States of the world that are given by random variables in classical prob-281

ability theory, are given in QP by so called observables. The operator282

projectors, e.g. Ei act upon the belief state ψ and update it, in respect283

to the basis states ei corresponding to the possible states of the world284

si.
14 In a similar mode, the preference question (or a lottery) is given by285

another set of observables with respect to the same state ψ (we allude286

to it as a ‘DM state’, if a preference observable acts upon it). The pro-287

jector operator Fi acts upon ψ and transforms it into one of the basis288

states, fj corresponding to concrete preferences over acts. Observables289

in a conventional quantum framework are represented by Hermitian290

operators, e.g. A =
∑

i aiEi, where ai are eigenvalues of operator A.291

Eigenvalues label the outcomes, e.g., number of possible acts, or states292

of the world. Ei are orthogonal projectors onto the corresponding sub-293

spaces. One can assign another operator B to depict the preference294

formation, B =
∑

i biFi. The bi are eigenvalues corresponding to the295

possible preference realizations (acts), and Fi are projectors onto the296

‘preference subspaces’. The above representation is valid for operators297

14We remark that the states of the world, and preferences (acts), are represented by
different sets of observables.

10



with non-degenerate spectra, where each eigenvalue corresponds to a298

one-dimensional eigenstate.299

• Loosely speaking a particular preference outcome (corresponding to300

the eigenvalue of an observable in quantum jargon) is obtained by301

projection of the unit length vector ψ (that we call the belief, or302

DM vector), onto one of the bases (which can be a one dimensional303

ray, or a multidimensional subspace, depending on the complexity of304

the model) of the decision making space (the complex Hilbert space).305

The squared projectors correspond to the probability of observing a306

particular act, or belief about the realization of an event. This in-307

formation processing algorithm is borrowed from the quantum mea-308

surement scheme, given by the so called Born rule, Born (1926). It309

can be expressed as: π(A = ai) = 〈Eiψ|ψ〉 = ‖Eiψ‖2. The lat-310

ter expression means that e.g., the belief about the probability of a311

state of the world is given by a squared length of the projected vector312

onto the subspace that denotes this event (before the actual realiza-313

tion of the event, but also before the DM obtains a belief about the314

certainty of the occurrence of the event). When sequential measure-315

ments are used, DM performs a state update, after the Ei projective316

measurement took place, and the new normalized state is given by:317

ψai = Eiψ/‖Eiψ‖. This is the canonical version of the projection pos-318

tulate in quantum formalism, von Neumann (1932). Hence, the condi-319

tional probability for the sequence of A,B measurements will be given320

as: π(B = bi|A = ai) = 〈Fiψai |ψai〉 = ‖Fiψai‖2. See a visualisation in321

fig. (1) for a case of a two dimensional state space.322

• By representing the DM state in respect to the observables that the323

DM state of the agent confronts, one can decompose it in respect to the324

eigenvectors of the corresponding observable A with the corresponding325

eigenvectors e1, ..., en that form an orthonormal (obeying unit-length326

and orthogonality of the basis vectors) basis in the decision making327

state denoted as H. The decision making state can be represented in328

terms of the complex coordinates ci ∈ C. Such a combination of pure329

states ei is called the superposition representation: ψ = c1e1 + ...+cnen.330

This form of linear representation of DM states allows to restate the331

Born rule15 for the probabilistic distribution of the post-measurement332

states associated with respective events πai = |ci|2.333

15Again the latter expression reads as: probability of observing the eigenvalue of ob-
servable A (associated with a specific event), is given by the squared complex amplitude
associated with the basis state, ei. We continue to denote probability by the letter π.
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Figure 1: Graphical representation of sequential state transition onto the
eigenbases under projective measurement scheme.

• Observables that can not be measured on the DM state ψ simulta-334

neously are represented by non-commuting Hermitian operators. Ob-335

servables which can be measured simultaneously, i.e., represented by336

commuting Hermitian operators, share the basis consisting of common337

eigenvectors. When the observables cannot be processed simultane-338

ously by the DM state, one observes a violation of FTP, that indicates339

the lack of a joint distribution of random variables, hence the total340

probability associated with some act fi cannot be assessed by the DM.341

The order of preference formation depends on an ensemble of factors,342

to mention a few: a) the order in which question measurement about343

preferences takes place; b) the personal choice of answering the deci-344

sion making tasks (questions) that can, in particular, depend on the345

representativeness of the events; c) time that is given for the decision346

making task, and other internal and external factors, cf. Kahneman347

(2003), Busemeyer and Bruza (2012).348

• QP is a non-deterministic framework, where the functional approaches349

of utility theory and its generalizations is replaced by DM state and350

projectors acting upon it. The beliefs in respect to pursuing particular351

acts are partly based on a personal value, associated with the corre-352
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sponding consequences (e.g. value of payoffs), but also created in the353

process of interaction of the DM state with other observables. Hence,354

in the spirit of Karni et al. (1983), the realization of a particular state355

can have a direct impact on the individual evaluation of consequences.356

In QP models, this effect is coined ‘contextuality’, cf., Bruza and Buse-357

meyer (2012), Haven and Khrennikov (2013), Dzhafarov et al. (2017).358

4 Experimental Data on Investment Prefer-359

ences360

In order to further explore the existence of; i) the disjunction effect in the361

probabilistic update in risky investment indicating STP violation; ii) the362

state dependence of investment behaviour, in the light of previous gains and363

losses, we carried out a series of so called ‘Portfolio game’ experiments, cf.364

Khrennikova (2016) for an extended presentation and data analysis. These365

experiments were designed to extend the widely cited ‘Two-stage gambling’366

task into the hypothetical setting of a financial market.16 The contribution of367

this paper can be considered as a first attempt to generalize the experimental368

setup of a ‘casino’ into a financial environment. At this stage, we used the369

same payoff-probability combinations as in Tversky and Shafir (1992), yet370

the more subjective nature of risk was present, due to the probability being371

based on market forecasts, rather than on the frequency of a spin of a roulette372

wheel. We ran a total of three experiments that we labeled ‘Pilot experiment’,373

‘Main experiment’ and ‘Belief elucidation’ experiment. The description of the374

experiments is presented in the next section, (4.1).375

4.1 Experimental design376

Both in the initial ‘Pilot experiment’ and the ‘Main experiment’, the in-377

vestment task was presented to the participants as a portfolio game with a378

reinvestment opportunity for the second investment. Hence, the investment379

in the portfolio consisted of two periods, where the participation in the first380

investment period was presented as given. The participants had to decide for381

the participation (in the form of yes/no) in the second investment period in382

three experimental conditions of the portfolio game. The initial information383

in all three settings was as follows:384

16The original two-stage gambling experiment from Tversky and Shafir (1992) was repli-
cated in the same financial setting by Kühberger et al (2001) and Lambdin and Burdsal
(2007).
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“Imagine that you are an investor on the financial market. You have385

borrowed £1000 to invest in a portfolio” and will have to return it at the end386

of the portfolio game. Please neglect interest rates on the £1000. You can387

own the positive return the portfolio might make. Equally, you could obtain388

a negative return on your portfolio investment. Assume the time is now 9:00389

am. Consider two future times: 10:00 am and 11:00 am. The portfolio is390

predicted to have a strictly 50% chance of obtaining a +20% profit and 50%391

chance to generate a loss of −10% at 10:00 am. Equally, the portfolio has a392

50% chance of obtaining a +20% profit and 50% chance of having a loss of393

−10% at 11:00 am. Consequently, you can either gain £200 or lose £100394

at 10:00 am and 11:00 am. You can only acquire information about the395

realized portfolio return from a portfolio manager. This means you cannot396

obtain information about the portfolio’s price change from any other source397

(internet, newspapers, etc.). At the same time, the portfolio manager has a398

purely informative role and cannot influence the price of the portfolio”.399

The above description was followed in each condition by specific informa-400

tion and a dichotomous choice question supported by a graphical illustration401

exemplified in the Appendix, (7).402

1. No Information (NYK): “Imagine that at 10:00 am no information403

was released by the portfolio manager. This means you do NOT know404

whether you have a profit of £200 or a loss of £100. Would you continue405

playing and owning (or dis-owning) the returns of the portfolio between406

10:00 am and 11:00 am, or would you prefer to quit the game now?”407

2. Won: “At 10:00 am the portfolio manager releases information that408

the portfolio had a positive return and you made a profit of £200 on409

your portfolio investment. Would you continue playing and owning (or410

dis-owning) the returns of the portfolio for the second round between411

10:00 am and 11:00 am, or would you prefer to quit the game now?”412

3. Lost: “At 10:00 am the portfolio manager releases information that413

the portfolio had a negative return and you lost £100 of your portfolio414

investment. Would you continue playing and owning (or dis-owning)415

the returns of the portfolio for the second round between 10:00 am and416

11:00 am, or would you prefer to quit the game now?”417

The above experimental design was aimed to ascertain, whether the portfolio418

game participation frequency in the second period would differ in different419

experimental conditions. Furthermore, we aimed to get additional evidence420

related to STP violation found in previous studies by analysing, whether the421

NYK playing frequency is below the weighted average playing frequency after422
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a loss or gain, cf. summary of frequencies from previous studies in Appendix,423

table (A1).424

In the third experiment, the so called ‘belief elucidation’, the three in-425

formational settings were juxtaposed next to each other on the same page:426

“Imagine that at 10:00 am NO information was released from the portfolio427

manager. This means you do NOT know for sure whether you have a profit428

of £200 or a loss of £100. If you believe that you have obtained a profit429

of £200, would you continue to play the portfolio game for the next round430

between 10:00 am and 11:00 am, or would you prefer to quit the game now?”431

In a similar vein, a question is asked about playing the next round, if you432

believe that you lost. Finally, the ‘No information’ question was given to433

the participants: “Would you play the portfolio game for the second round434

between 10:00 am and 11:00 am before knowing the outcome of the first round435

of the portfolio game?”436

Those experiments aimed to elucidate beliefs of the participants about437

their winning or losing of the portfolio game, to form conditional preferences438

in the NYK setting. In a sense, this experiment allowed the participants to439

form a ‘mental decision tree’ and hence, avoid non-consequential reasoning.440

A similar approach was applied for different disjunction effect experiments441

(testing violation of STP) in Shafir and Tversky (1992), Tversky and Shafir442

(1992), Croson (1999), and Busemeyer and Bruza (2012). Another research443

objective that was not explicitly followed in previous STP experiments was444

to observe, whether individuals exhibit state dependence in preferences, after445

a gain and after a loss, as noted by Thaler and Johnson (1990).17
446

Additionally, in the ‘main experiment’ and ‘belief elucidation’ experiment447

we devised a risk attitude question to measure participants’ risk preferences448

and realize whether the size of the negative payoff might be too high for them449

to accept.18 Finally, some personal questions were asked, such as gender,450

age, country of origin, annual income range, presence of trading experience451

of securities on the financial market.452

17The null hypothesis about the absence of the disjunction effect in the previous ex-
periments implies that the individuals ought to play both after a gain, and after a loss.
Yet, the relative frequency of playing (quitting) in the respective settings is not explicitly
discussed in the original setup. See however Kühberger et al (2001), seeking to provide an
interpretation of the low playing frequency after a loss in their experiments.

18The levels of risk were acceptable, where 46% of students indicated that they would
accept a 50/50 chance investment, with an expected payoff of £50 and above. In line with
the findings of Shafir and Tversky (1992), this frequency was comparable with accepting
the portfolio game in the NYK setting.
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4.2 Procedure453

For all three portfolio game experiments, the students were sampled from var-454

ious Postgraduate and Undergraduate Programs at the School of Business,455

University of Leicester.19 Firstly, a ‘pilot study’ was carried out, where we456

utilized between-group design with N=118, consisting of 71% female and 29%457

male students from various postgraduate programs. We allocated the stu-458

dents to three experimental conditions, by randomly assigning each seminar459

group that we approached to an experimental condition, to obtain approx-460

imately the same number of participants for each condition. To overcome461

the possible biases that can be associated with between group design we also462

run a within group replication of the same experiment, that we called the463

‘main experiment’. In the main experiment N= 60 students, 60% females464

and 40% males, took place in all three conditions with a time interval of two-465

three weeks between the conditions, to eliminate the memory effect. Finally,466

for the ‘belief elucidation’ experiment we obtained N= 29 (by design of the467

questions the experiment was within-group) answers, with 45% females and468

55% males.469

4.3 Results470

• Pilot experiment: The results for the pilot experiment were as fol-471

lowing: 67% of students were willing to participate in the second invest-472

ment round after a previous loss of £100, yet, only 40.5% of students473

were willing to play after a sure gain of £200 and finally 52% of stu-474

dents were willing to play for the second period in the NYK setting.475

The difference between the Won and Lost conditions was significant,476

X2(1) = 13, 982, p < 0.01. The difference between NYK and respec-477

tive Lost and Won behaviour was not significant. We could conclude478

that disjunction effect was negligible for this sample of participants,479

yet preference reversals in playing after a gain and after a loss were480

present. No significant relationship was detected in terms of gender481

and playing/quitting behaviour.482

• Main experiment: In this experiment the same participants were483

participating in all these settings that allowed to add additional evi-484

19We remark that the participants took some courses in statistics and finance. Students
were not sampled from the first and second years of study, so as to make sure that they
possess a minimal knowledge of the probabilistic calculus and finance terminology. The
experimental studies were carried out in accordance with the ‘University of Leicester Code
of Practice and Research Code of Conduct’ and ethical approval (ref: pk198-d0eb) was
obtained from the Research Ethics Committee of the School of Business.
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dence to the study on disjunction affect and preference reversals. In485

this setting, the highest playing frequency of 66.7% was once again ob-486

served for the Lost condition, followed by 65% of participants playing487

the second period, when they knew that they gained and finally, 48.3%488

playing the second period in the NYK setting. To analyse further the489

differences in statistics across pilot and main experiment, we computed490

the average playing frequency across all conditions for the pilot study,491

which was 53.3% and for the main experiment it was 60%. We should492

also note that gender and program of study composition in the sam-493

ples were different, where males in general were more willing to play494

across all settings. We ran a set of significance tests; Cochrans Q test,495

(p < 0.046), followed by McNemars test to find out the specific differ-496

ences between conditions. The results of McNemars test are: significant497

difference in choices between NYK and Lost conditions (p < 0.035) and498

no significant difference between other conditions. No significant rela-499

tionship between gender and investment choices was detected. Hence,500

the findings indicated that the disjunction effect existed, yet the prefer-501

ence reversals after a previous gain, respective loss were minimal.20 We502

ran a Chi-Square test for goodness of fit to test for the existence of the503

disjunction effect, where NYK playing frequency, 48%, was compared504

with the benchmark playing frequency of 65.85% that we computed via505

(2.4), with X2(1) = 8.187, p < 0.04, showing that the disjunction effect506

was present.507

• Belief elucidation experiment: After considering a hypothetical508

loss 55.2% of participants would invest again, given a hypothetical gain509

48% of participants would invest again and in NYK 55.2% of partici-510

pants would invest. Cochran’s Q test did not show any significant dif-511

ferences (p = 0.670) between the frequencies, related to participants’512

hypothetical preferences in the three settings. The results support pre-513

vious findings (Tversky and Shafir, 1992; Croson, 1999) whereby the514

framing of the decision making task externally forced the participants515

to evaluate the consequences of their actions in the two states of the516

world and form their evaluation of the preferences. On an aggregate517

level, preference reversals after a gain and loss were also minimal show-518

ing state independent risk-attitude and, hence preference ranking.519

20As noted by Lambdin and Burdsal (2007) it is also important to take into account
unspecified percentage comparisons, and seek to analyse the behavioural pattern of each
participant in order to detect the exact direction of preference reversals. Such a detailed
analysis of the collected statistics is performed in Khrennikova (2016). We do not report
it in the present study due to its limited scope.
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We summarized our results together with the results of ‘Two stage gambling520

tasks’ for a comparative analysis in Appendix (7), table, (A1).521

4.4 Discussion522

We would like to recall that there are two components of preference formation523

that are revealed in our study and in previous studies. Firstly, contextual-524

ity (that we can allude to as ‘state dependence’) of preferences related to525

personal risk attitudes (i.e. the same payoff can be preferred in one setting,526

but rejected in another setting). Such changes in preferences are at vari-527

ance with EU theories, where the absolute values of payoffs matter for the528

DM, but not her earlier gains/losses (and more complex contextual circum-529

stances). Another component is related to personal probabilistic assessment530

and information update in respect to some random variables that can affect531

the payoffs. The DM can exhibit ambiguity aversion and hence, not follow532

the canons of consequential preference formation.533

4.4.1 Choice in the presence of prior losses and gains534

The obtained findings in section(4.3), indicate that preference reversals occur535

for many participants after a sure preceding gain/loss. The main difference536

between the findings of Tversky and Shafir (1992), Kühberger et al. (2001),537

Lambdin and Burdsal (2007), and our findings (which persisted in both the538

‘Pilot study’ and the ‘Main experiment’) is that, after a sure loss, the partici-539

pants are most willing to play for the second period. The acceptance of risky540

investments in this setting is explained initially in Kahneman and Tversky541

(1979) as ‘loss aversion’. According to Thaler and Johnson (1990) a DM will542

be risk seeking for complex losses, by integrating the previous losses with543

her subsequent investment choice. This is due to the need to break even544

and recover the previous losses. Loss aversion is also widely observed among545

investors in the financial market, known as the disposition effect, cf. Shefrin546

and Statman (1985), Odean (1998).547

4.4.2 No information (NYK)548

As we outlined in section, (2.1), empirical evidence shows that individuals549

tend not to accept any subsequent gamble, both under objective uncertainty550

(risk) and subjective uncertainty (ambiguity), if they do not know any certain551

outcome. The ambiguity avoidance situations have been well explained in the552

studies exploring variants of the Ellsberg Paradox, Ellsberg (1961), Gilboa553

and Schmeidler (1989), Shafir and Tversky (1992), Shafir (1994), Klibanoff554
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et al (2005), Busemeyer and Bruza (2012) and others. The main findings of555

these studies, as well as our experiment is that participants are not able to556

(or prefer to avoid) form classical probabilistic subjective beliefs about the557

states of the world and hence consider the consequences in a SEUT manner.558

We note that the original, two step gambling experiments always involved559

objective risks, of a very simple nature, giving an equal chance to realize again560

and face a loss.21 By inferring the decisions in the state of a gain, as well as in561

the state of a loss, the classical probabilistic paradigm would imply that the562

DM can form a joint distribution of their conditional beliefs about her acts in563

a risky setting. Since the risk is objective, it means that the participants have564

no reason for ambiguity avoidance. Yet, we can observe that in our study and565

in the previous studies, (A1), the consequential reasoning approach does not566

explain the observed variance in preference frequencies. Hence, following the567

explanation of Shafir and Tversky (1992), Shafir (1994), Bastardi and Shafir568

(1998) and Croson (1999), we suppose that in the two-stage risky choice we569

deal with an emergence of ‘disjunction effect’, where the DM cannot carry570

out a hypothetical evaluation of consequences of the different states of the571

world (the ‘good economy’ state accompanied by a sure gain and the ‘bad572

economy’ accompanied by a loss, in our simple set-up). The assumption is573

further confirmed by the control experiment (elucidation experiment), where574

disjunction effect and dependence of the preferences on a realized state (gain,575

loss) was absent.576

5 QP framework of investment preferences577

The aim of this theoretical analysis is to assess the classicality of participants’578

probabilistic assessment of upcoming information, based on the evaluation579

of prior probabilities and the usage of the Bayesian updating scheme. As a580

next step we aim to devise a QP description of preference formation for a581

representative agent. We use a DM preference representation via a so called582

DM state, that can be obtained through the usage of a generalized Born583

rule. We use a generalization of Born’s rule in order to be able to apply non-584

Hermitian positive valued projectors, cf. Khrennikova and Haven (2017).585

21The set-up can be of course generalized to genuinely uncertain situations, such as
introducing some real financial assets and their subsequent payoff realization. This would
be one of the future directions of our research.
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5.1 Interference effects and DM state reconstruction586

We denote the set of acts f1, f2 ∈ F corresponding to ‘play’ respective ‘quit’.587

The states of the world are given by s1, s2 ∈ S and correspond to ‘Won’,588

or ‘Lost’ settings in the portfolio game. A representative agent would hence589

prefer the act that has a higher probability of its realization (another ex-590

planation is that the QP can provide a probabilistic prognosis for a group591

of DMs. Yet, this interpretation would require to complicate the model, by592

introducing a mixed DM state representation, to encode the individual differ-593

ences in the initial DM states.) According to (2.4), the marginal probability594

of a person in a NYK setting to choose some option fj should be equal to the595

sum of disjunctions of fj conditioned upon the events s1, s2 (in our setting,596

a loss, or a gain in a previous period of the portfolio game). By embedding597

the averaged frequencies for playing in the different settings22, from the pilot598

and main experiments, cf. table (A1), into the equation (2.4), we obtain:599

π(f1) 6= π(f1|s1) · π(s1) + π(f1|s2) · π(s2) = πT (f1); (5.1)

0.5 6= 0.549 · 0.5 + 0.67 · 0.5 = 0.6095 (5.2)

Based on the results we can observe super-additivity of disjunctions with600

a probabilistic difference of −0.1095 between the marginal probability of f1601

and the total probability of its realization (πT (f1) = 0.6095). The above dis-602

crepancy suggests that the violation of the classical probabilistic assessment603

of information takes place, and STP is not followed by some individuals.604

Along with the earlier studies utilizing QP for representing reasoning and605

decision making, we use a quantum generalization of FTP, the so called606

quantum formula of total probability (QFTP), due to von Neumann (1932),607

to reconstruct the initial DM state from the psychological data (see intro-608

duction on QP in section 3). For two dichotomous variables the formula has609

the form:610

π(f1) = π(f1 | s1) · π(s1) + π(f1 | s2) · π(s2)+ (5.3)

2 cos θ1

√
π(s1) · π(f1 | s1) · π(s2) · π(f1 | s2) (5.4)

with the data:611

0.5 = 0.549 · 0.5 + 0.67 · 0.5 + 2 cos θ1

√
0.5 · 0.549 · 0.67 · 0.5 (5.5)

22Total probability for f2 (quit the second round) can be also computed with a sub-
additivity in probability π = 0.1095, i.e. the sum of the probabilistic violations for the
outcomes f1 and f2 is equal to zero.
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We aimed to compute the so called interference angle in (5.5), also known612

as the phase between the complex coordinates (that represents the initial DM613

state in respect to a given observable). We obtain cosθ1 = −0.180544, and614

the interference angle θ1 = 1.7523 rad. We recall that the negative value of615

cosθ signifies a destructive interference of the probability amplitudes related616

to preference formation in respect to f1. The probabilistic interference related617

f2 (quit) equals to cosθ2 = 0.283838, θ2 = 1.283 rad.23 We can interpret the618

destructive interference (where the θ corresponds to phases between basis619

vectors in the superposition DM state) of probability waves as leading to620

lower probability of playing preference, when only one preference observable621

acts upon the DM state ψ, in the absence of interaction of the DM state622

with the observable related to belief formation on s1, s2. Hence, the DM623

state transits into the eigenstates corresponding to eigenvalues f1, or f2, yet624

remains in a superposition state in respect to the observable with eigenvalues625

corresponding to s1, s2.626

By knowing the interference angle from (5.5), it is possible to reconstruct627

the DM state ψ, that is the initial superposition state with respect to the628

preference operator that we denoted as P . We reconstruct the DM state via629

the inverse Born rule formulated by Born (1926).24 The DM state vector (ψ)630

is defined through a linear combination of complex coordinates (c1, c2), |ψ〉 =631

c1|eP1 〉+c2|eP2 〉, where |eP1 〉, |eP2 〉 is a basis of ψ with respect to the operator P .632

The square of the complex coordinate, c1 gives the unconditional probability633

for f1 preference. Hence, the determination of quantum probabilities from634

probability amplitudes is possible and vice versa. The coordinate can be635

represented as:636

c1 =
√
π(s1) · π(f1|s1) + eiθ1

√
π(s2) · π(f1|s2) (5.6)

In the same vein, the complex coordinate c2, that gives the probability of637

23Since the interference terms are less than one, the statistical data can be accom-
modated in a Hilbert space. Higher magnitudes of interference can also be observed in
psychological data, cf. Khrennikov (2010) and Khrennikov and Haven (2013). For com-
parison, we also analysed the statistics from the previous gambling experiments (A1),
and obtained probabilistic super-additivity of −0.204 for f1, with a negative interference
cosθ1 = −0.34466 of a higher magnitude, with an angle θ1 = 1.9227 rad.

24The inverse Born rule, is the essential tool for reconstruction of the superposition
state of a quantum, or psychological system from the experimental data. Its application
enables to obtain the agents’ generalized initial DM state ψ, with the aid of the matrix
of transition probabilities. In a psychological context, transition probabilities denote the
conditional preferences that are firm preferences, obtained after a question/information
measurement is carried out on the DM state. Another promising approach for a belief
state reconstruction from the preferences is the application of “quantum tomography”.
Quantum tomography allows to measure unknown belief states from the known (final
observed) preference, or belief states.
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‘quit’ preference, f2 could be obtained from the statistics of the experiment:638

c2 =
√
π(s1) · π(f2|s1) + eiθ2

√
π(s2) · π(f2|s2) (5.7)

We recall that by Euler’s formula: eiθ = cosθ+ isinθ. This allows to decom-639

pose eiθ, to express the coordinates via complex numbers:640

c1 =
√

0.5 · 0.549+(−0.18055+0.9836i)·
√

0.5 · 0.67 = 0.4194+0.5693i (5.8)

We note that the complex amplitude gives us the probability of finding the641

(initial) DM state in the eigenvalue corresponding to preference f1, π(f1) =642

|c1|2 = |0.4194 + 0.5693i|2 = 0.5. For f2 we get:643

c2 =
√

0.5 · 0.451+(0.2838+0.95887i)·
√

0.5 · 0.33 = 0.59016+0.3895i (5.9)

Hence, π(f2) = |c2|2 = |0.59016 + 0.3895i|2 = 0.5 that is the probability644

of preference f2 to take place. The above computations enable to faithfully645

represent the initial DM state in a complex two dimensional Hilbert space,646

from the obtained statistics on preference distribution: |ψ〉 = (0.4194 +647

0.5693i)|eP1 〉+ (0.59016 + 0.3895i)|eP2 〉.648

To represent the other operator V transforming the initial DM state (or649

better to say, the belief state) with respect to the eigenvalues corresponding650

to s1, s2, one needs to introduce a class of more general operators. A simple651

form of orthogonal Hermitian operators cannot be applied, to describe the652

belief state with respect to the V observable, due to the matrix of transition653

probabilities not satisfying double stochasticity (it satisfies left stochasticity654

through):655 [
π(f1|s1) π(f1|s2)
π(f2|s1) π(f2|s2)

]
;

[
0.549 0.67
0.451 0.33

]

We can see that: π(f1|s1) + π(f1|s2) 6= π(f2|s1) + π(f2|s2) 6= 1. This656

means that the basis vectors |eV1 〉, |eV2 〉, denoting the DM’s belief state with657

respect to V are non-orthogonal. One would need to introduce projectors658

(unless a state space increase, or degenerate spectra is considered) that do659

not obey orthogonality, imposed on classical Hermitian projectors. In quan-660

tum physics one solves this representation problem by considering positive661

operator valued measures (POVMs).662

Definition: A POVM is a family of linear operators A = (Vj) such that663

each Vj is Hermitian and positive semidefinite, obeying the normalisation664

condition, where I is the identity operator:665

V ≡
∑
j

Vj = I. (5.11)
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Although POVMs serve well to describe an important class of phenomena666

in quantum physics, in application to decision theory, it is convenient to667

proceed with an even wider class of operator valued measures, relaxing the668

normalization constraint, i.e.
∑

j Vj 6= I, where Vj are generalised projectors,669

cf., Khrennikova and Haven (2017). In this contribution we also adopt the670

formalism of such non-orthogonal generalized POVMs, to reconstruct the671

DM state, ψ, with respect to the V observable, related to states of the world672

that the agent has to consider. The initial DM state vector is in a similar673

manner represented through the eigenbasis, corresponding to the V projective674

measurement: |ψ〉 = k1|eV1 〉 + k2|eV2 〉, where k1, k2 are the corresponding675

complex coordinates. The probability for s1, respective s2, is given by the676

squared complex amplitudes, i.e. π(s1) = |k1|2, π(s2) = |k2|2, and |k1|2 +677

|k2|2 = 1. The basis |eV1 〉, |eV2 〉 can also be expressed via a system of complex678

coordinates, with respect to the second state transition of a DM giving the679

conditional probabilities π(fj|sj), j = 1, 2.680

|ψ〉 =
√
π(s1)|eV1 〉+

√
π(s2)|eV2 〉 (5.12)

where the basis of the generalized POVM can be expressed via an orthogonal681

basis (eP1 , e
P
2 ) with respect to P given by conventional orthogonal projectors:682

|eV1 〉 =
√
π(f1|s1) |eP1 〉+

√
π(f2|s1) |eP2 〉 (5.13)

|eV2 〉 = eiθ1
√
π(f1|s2) |eP1 〉+ eiθ2

√
π(f2|s2) |eP2 〉 (5.14)

Applying the projectors V1 and V2
25 onto the initial DM state ψ, allows683

to obtain the probability distribution of s1 and s2. The projectors have684

the matrix representation, cf. Khrennikova and Haven (2017) for detailed685

formulation.686

V1 =
1√

π(f1|s1)π(f2|s2)−
√
π(f2|s1)π(f1|s2)ei∆12

×[ √
π(f1|s1)π(f2|s2) −

√
π(f1|s1)π(f1|s2)ei∆12√

π(f2|s1)π(f2|s2) −
√
π(f2|s1)π(f1|s2)ei∆12

] (5.15)

where the difference between the phases related to complex coordinates687

c1, c2 is ∆12 = (θ1 − θ2) = 1.7523− 1.283 = 0.4693 rad.688

25Since the matrix of transition probabilities is not doubly stochastic, the vectors eV1 , e
V
2

are non-orthogonal, hence the corresponding projectors V1 and V2 are neither orthogonal.
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V2 =
1√

π(f1|s1)π(f2|s2)−
√
π(f2|s1)π(f1|s2)ei∆12

×[
−
√
π(f2|s1)π(f1|s2)ei∆12

√
π(f1|s1)π(f1|s2)ei∆12

−
√
π(f2|s1)π(f2|s2)

√
π(f1|s1)π(f2|s2)

] (5.16)

With respect to the above defined projectors, eq.(5.15)- (5.16), one can689

build the components of the generalized POVM (denoted as Qj, j = 1, 2),690

corresponding to the basis eV1 , e
V
2 , by taking: Qj = V ?

j Vj.691

Q1 =
1

K

[
π(f2|s2) −

√
π(f1|s2)π(f2|s2) ei∆12

−
√
π(f1|s2)π(f2|s2) e−i∆12 π(f1|s2)

]
(5.17)

where:692

K = |
√
π(f1|s1)π(f2|s2)−

√
π(f2|s1)π(f1|s2)ei∆12|2 =

π(f1|s1)π(f2|s2)+π(f2|s1)π(f1|s2)−2
√
π(f1|s1)π(f2|s2)π(f2|s1)π(f1|s2) cos ∆12

(5.18)
In the same way:693

Q2 =
1

K

[
π(f2|s1) −

√
π(f1|s1)π(f1|s1)

−
√
π(f1|s1)π(f2|s1) π(f1|s1)

]
(5.19)

By calculating the scalar product of the components (Qj, j = 1, 2) with694

the initial DM state, i.e. 〈Qjψ, ψ〉, we can obtain the respective marginal695

probabilities, π(s1), π(s2). Hence, we can express the DM state with respect696

to, V , as a generalised POVM: |ψ〉 = 0.707|eV1 〉+ 0.707|eV2 〉.697

5.2 Preference formation algorithm in QP scheme698

Throughout the two-stage portfolio game, participants are assumed to be699

prepared in an initial DM state ψ, upon which the two observables P and V700

act in different settings. The P observable relates to the question on playing701

the second round of the portfolio game, and the V observable expresses the702

impact of the information on a monetary gain, respective loss. The two703

observables are represented in a two-dimensional Hilbert space with non-704

degenerate spectra, hence the bases are simply one dimensional rays. For705

the P measurement, the eigenvalues corresponding to the f1, f2 preference706

outcome are pj, j = 1, 2, in the basis, (|eP1 〉, |eP2 〉). The basis is orthonormal,707

i.e. 〈eP1 |eP2 〉 = 0 and eP1 = (1, 0), eP2 = (0, 1). The belief state (we also allude708

to it as DM state), ψ, can be expressed in the eigenbasis: |ψ〉 = c1|eP1 〉+c2|eP2 〉709
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with |c1|2 + |c2|2 = 1 by the normalization condition. We are reminded that710

|c1|2 = π(f1) = 0.5 and |c2|2 = π(f2) = 0.5.711

Another observable (V ) corresponds to the delivery of information related712

to winning, or losing the first period of the portfolio game that we denoted as713

states of the world to occur. As mentioned, the observable V = (Q1, Q2) is714

composed of non-orthogonal projectors, V1, V2. The projectors act onto the715

basis, eV1 , e
V
2 , with respect to ψ. The possible realizations of the first round716

of the portfolio game states s1, s2 correspond to the eigenvalues vj, j = 1, 2.717

In the context of NYK, the belief state of the DM is only affected by the718

operator P . The DM is still in a state of superposition (indeterminacy) with719

respect to possible outcomes of the first round of the portfolio game, given720

by V . Hence, a direct state transition ψ −→ ψpj onto one of the eigenvectors721

(|eP1 〉, |eP2 〉) takes place. The squared complex amplitudes of the projectors722

onto these eigenvectors give us the probability of this state transition. We723

remind that the order of the two projective measurements (direct state tran-724

sition, respective two consecutive state transitions) is important in creating725

the violation of FTP.726

When participants are given information about the outcome of the first727

round of the portfolio game, a generalized POVM V acts upon the initial728

DM state ψ. It is updated with respect to the basis vectors |eV1 〉, or |eV2 〉. A729

new updated DM state, |ψvj〉 = Vj|ψ〉/‖Vj|ψ〉‖ emerges. In this state, beliefs730

about states, sj are given with π = 1. Next, another projective measurement731

takes place as observable P acts upon the updated state ψvj . We get a state732

transition ψvj −→ ψpj with probability |〈ψvjePj 〉|2, which denotes the condi-733

tional probability, π(P = pj|V = vj). Depending on the observables that act734

upon the DM state, two different state transition schemes can take place,735

[ψ −→ ψpj ] and [ψ −→ ψvj −→ ψpj ], which are characterized by different736

final probability distributions. The measurements are state dependent (i.e.737

the path, through which the final preference state is reached, can alter the738

probability distribution of preferences). The phase between the bases is a way739

of measuring the degree of state dependence (non-commutativity of the op-740

erators P and V , in QP terminology). The state dependence (contextuality)741

of measurements implies that the probabilities from the first (unconditional)742

preference question and the conditional preferences of DM cannot be coupled743

through FTP:744

π(P = pj) 6= π(V = v2) · π(P = pj|V = v2) + π(V = v1) · π(P = pj|V = v1),
(5.20)
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since:745

|〈ψ|ePj 〉|2 = |〈ψ|eV1 〉 · 〈eV1 |ePj 〉 + 〈ψ|eV2 〉 · 〈eV2 |ePj 〉|2 = |〈ψ|eV1 〉 · 〈eV1 |ePj 〉|2 +

|〈ψ|eV2 〉 · 〈eV2 |ePj 〉|2 + 2cosθ|〈ψ|eV1 〉 · 〈eV1 |ePj 〉| · |〈ψ|eV2 〉 · 〈eV2 |ePj 〉| 6= |〈ψ|eV2 〉|2 ·
|〈eV2 |ePj 〉|2 + |〈ψ|eV1 〉|2 · |〈eV1 |ePj 〉|2.

(5.21)
The QP scheme in section (3) explains the non-additivity of the prob-746

ability disjunctions, based on probability interference incorporated in the747

interference term and hence, it relaxes the constraints on the additivity of748

probability measures posed by the distributive axiom.749

6 Final Remarks750

By analysing experimental findings on investment preferences under risk and751

comparing them with investment preferences after a gain or loss we aimed752

to devise a framework for depicting preference reversals that yield violations753

of event separability postulated in STP and also indicate fluctuations in risk754

attitude, given a particular DM state. The proposed quantum representation755

of belief state transition in the process of preference formation is updated756

by the rules of a quantum projective measurement, where interference of757

probability amplitudes captures the mode of non-consequential reasoning.758

The phase relates the informational content of the DM-operators that can759

capture: i) ambiguity in the process of belief formation about possible states760

of the world, and corresponding consequences of different acts leading to non-761

consequentialism; ii) state dependence of preferences, as the actualisation of a762

state of the world (represented as a DM belief state update in QP) can change763

the probabilistic distribution of preferences (e.g., risk attitude towards some764

risky payoffs can change, depending on which state of the world the DM finds765

herself in).766

In future works, by collecting a broader range of evidence, we aim to de-767

vise a more complete axiomatization of projective measurements, to describe768

investment preferences, given different subjective and objective risks.769
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7 Appendix770

We present a summarising table (A1) with the results of the previous exper-771

iments and our own results as well as the computed weighted average results772

(separately the previous studies and own experiments).

Table 1: Summary of the acceptance rate of the second gamble across all
studies

Playing frequency across conditions NYK Won Lost Total sample

1 Original 36% 69% 59% N=98 (within group)
1 Original 38% 69% 57% N=213 (between gr)
1 Belief Elucidation version 84% 71% 56% N=87 (within group)
2 Replication of original 46.8% 60% 47% N= 177 (between gr.
2 Replication of original 42.9% 80% 37.1% N=35 (within gr.)
2 Payoffs $(4; -2) 61.9% 82.8% 69.8% N= 184 (between gr.)
2 Real payoffs $ (4;-2) 37.5% 67.6% 32.1% N=97 (within gr.)
3 Replication of original 36.8% 63% 45.6% N=57 (within gr.)
3 Three Card Monte 24% 70% 38% N= 57 (within gr.)
3 Reversed Three Card Monte 60% 73% 49% N= 57 (within gr.)
4 Pilot study 52.8% 40.5% 67.5% N= 118 (between gr.)
4 Main study 48.3% 65% 66.7% N=60 (within gr.)
4 Belief elucidation 55% 48.2% 55% N=29 (within gr.)
Mean: Previous replications 39.3%a 67.5% 51.9% Sum of all subsamples
Mean: Pilot+ Main study 50% 54.9% 67%

1-study by Tversky and Shafir (1992);

2-study by Kühberger et al. (2001);

3-study by Lambdin and Burdsal (2007);

4-present study.

a) We computed weighted averages to account for differences in the sample sizes

across the different studies. We omitted replications with different payoffs and

probability distributions.

773
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Graphical illustration of the possible monetary payoffs774

in the different experimental conditions775

Figure 2: Graphical representation of possible monetary payoffs in NYK
condition in case of option A (play) is selected. Similar representations are
shown to participants for option B (quit).

Figure 3: Graphical representation of possible monetary payoffs in the Won
condition in case of option A (play) is selected. Similar representations are
shown to participants for option B (quit).
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Figure 4: Graphical representation of possible monetary payoffs in the Lost
condition in case of option A (play) is selected. Similar representations are
shown to participants for option B (quit).
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