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This work is concerned with the derivation of a robust a posteriori error estimator for a discontinu-
ous Galerkin method discretisation of a linear non-stationary convection-diffusion initial/boundary value
problem and with the implementation of a corresponding adaptive algorithm. More specifically, we derive
a posteriori bounds for the error in the L2(H1)+L∞(L2)-type norm for an interior penalty discontinuous
Galerkin (dG) discretisation in space and a backward Euler discretisation in time. Finally, an adaptive
algorithm is proposed utilising the error estimator. Optimal rate of convergence of the adaptive algorithm
is observed in a number of test problems and for various Pèclet numbers.

Keywords: Discontinuous Galerkin; unsteady convection-diffusion; a posteriori error estimation; adaptive
finite element methods.

1. Introduction

The interaction between convection and diffusion modelled by initial/boundary value problems involv-
ing partial differential equations (PDEs) poses a number of challenges in the context of their numeri-
cal approximation. Indeed, stationary convection-dominated convection-diffusion type problems admit
analytical solutions of a multiscale nature that can contain steep gradients, usually termed boundary
or interior layers, depending upon their location in the computational domain. The accurate and ef-
ficient numerical resolution of such steep layers is a challenge as their exact location cannot be, in
general, known a priori. In the special cases where the location of boundary or interior layers is known,
structured grids have been successfully employed (Roos et al. (2008)). Ultimately, in non-stationary
convection-diffusion equations, the nature of the solution (including layers) may vary throughout the
domain as time progresses. This renders the use of adaptive algorithms an attractive proposition for the
accurate and efficient numerical approximation of this class of problems. As adaptive algorithms are
usually based on suitable a posteriori error estimators, the formulation of estimators that can robustly
estimate both the temporal and spatial nature of the error are of particular interest.

A posteriori error estimation for stationary linear equations is now relatively well understood; for
pure diffusion problems there is a huge array of estimators available for a wide variety of different types
of finite element discretisations (Verfürth (1996); Ainsworth & Oden (2000)) and for dG methods in
particular (Karakashian & Pascal (2003); Becker et al. (2003); Houston et al. (2007)). For stationary
convection-diffusion equations, the quest for robust a posteriori error estimators (in the sense that they
are independent of the Péclet number of the problem) has seen recent advancements in various contexts
(Verfürth (1998, 2005b); Kunert (2003); Sangalli (2008); Schötzau & Zhu (2009); Ern et al. (2010);
Schötzau & Zhu (2011)).

A posteriori error estimators for non-stationary linear convection-diffusion equations are also avail-
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able for various discretisations (Houston & Süli (2001); Berrone & Canuto (2004); Verfürth (2005a);
Ern & Proft (2005); Araya et al. (2005a,b); Sun & Wheeler (2006); Georgoulis et al. (2008); Lozinski
et al. (2009)). A posteriori error estimators for (spatial) dG methods for non-stationary pure diffusion
problems can be found in Georgoulis et al. (2011); Ern & Vohralı́k (2010); Šebestová (2012), while
convection-diffusion problems are considered in Dolejšı́ et al. (2013).

This work is concerned with the derivation and implementation of an a posteriori estimator in the
L2(H1)+L∞(L2)-type norm for the backward Euler discretisation in time (zero-th order dG method) and
the interior penalty dG discretisation in space of the non-stationary linear convection-diffusion equation
with variable coefficients. The derivation of the a posteriori bound utilises the elliptic reconstruction
technique (Makridakis & Nochetto (2003); Georgoulis et al. (2011)) which allows the use of the robust
elliptic error estimator from Schötzau & Zhu (2009). The temporal residual is also treated so as to
ensure that robustness, in the sense that the time-effectivity indices are insensitive to the Péclet number
of the problem, is maintained – this is highlighted numerically. The resulting residual-based a posteriori
error estimator is shown numerically to be reliable and efficient in both time and space. The a posteriori
estimator derived below can be viewed as the analogue of the one presented in Verfürth (2005a) when
the spatial discretisation is a dG method. The a posteriori estimator in Dolejšı́ et al. (2013) is based on
the flux reconstruction framework for a stronger norm.

The a posteriori estimator is used to drive an adaptive algorithm which is numerically assessed in
two ways. First, the savings with respect to the degrees of freedom and time steps by using space-time
adaptivity are shown in a series of test problems. Second, the rates of convergence of the space-time
adaptive algorithm are computed. The adaptive algorithm appears to converge optimally in both space
and time. To the best of our knowledge, numerically verified optimal convergence rates for practical
adaptive algorithms for dG methods for parabolic problems have not appeared before in the literature.

The remainder of this work is structured as follows. The function space setting and the model
problem are given in Section 2. Section 3 describes the discretisation of the problem. In Section 4
we state an a posteriori error bound for the stationary elliptic problem. Sections 5 and 6 contain the
derivation of the a posteriori bounds for the non-stationary convection-diffusion model problem in the
semi-discrete and the fully-discrete settings, respectively. Section 7 describes a space-time adaptive
algorithm driven by the a posteriori estimators derived in the previous section. A series of numerical
experiments are presented in Section 8 and the final conclusions are drawn in Section 9.

2. Model problem

Let the computational domain Ω ⊂ R2 be a bounded Lipschitz polygon with boundary ∂Ω .
We denote the standard L2-inner product on Ω by (·, ·) and the standard L2-norm on Ω by || · ||. For

1 6 p 6 +∞, we define the spaces Lp(0,T ;X) (where X is a real Banach space with norm ‖ · ‖X ) that
consist of all measurable functions v : [0,T ]→ X for which:

‖v‖Lp(0,T ;X) :=
(∫ T

0
‖v(t)‖p

X dt
)1/p

<+∞, for 16 p <+∞,

‖v‖L∞(0,T ;X) := esssup
06t6T

‖v(t)‖X <+∞, for p =+∞.
(2.1)

We also define H1(0,T,X) := {u ∈ L2(0,T ;X) : ut ∈ L2(0,T ;X)}. Finally, we denote by C(0,T ;X) and
C0,1(0,T ;X), respectively, the spaces of continuous and Lipschitz-continuous functions v : [0,T ]→ X
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such that:
||v||C(0,T ;X) = max

06t6T
||v(t)||X < ∞,

||v||C0,1(0,T ;X) = max
{
||v||C(0,T ;X), ||

∂v
∂ t
||C(0,T,X)

}
< ∞.

(2.2)

We consider the model problem of finding u : Ω → R such that:

∂u
∂ t
− ε∆u+a ·∇u+bu = f in Ω × (0,T ],

u = 0 on ∂Ω × (0,T ],
u(·,0) = u0 in Ω̄ .

(2.3)

We make the following assumptions: 0 < ε 6 1, f ∈ C(0,T ;L2(Ω)), a ∈ C(0,T ;W 1,∞(Ω))2, b ∈
C(0,T ;L∞(Ω)) and u0 ∈ L2(Ω).

It is assumed that the length of a≡ a(x, t) and the area of Ω are of order one, possibly up to rescaling,
so that ε−1 can be taken to be the Péclet number of the problem. For simplicity, we assume that there
are constants β > 0 and c∗ > 0 such that:

b− 1
2

∇ ·a> β a.e. in Ω × [0,T ], ||−∇ ·a+b||C(0,T ;L∞(Ω)) 6 c∗β . (2.4)

The weak form of (2.3) then reads: find u ∈ L2(0,T ;H1
0 (Ω))∩H1(0,T ;L2(Ω)) such that for each

t ∈ (0,T ] we have∫
Ω

∂u
∂ t

vdx+
∫

Ω

(ε∇u ·∇v+a ·∇uv+buv)dx =
∫

Ω

f vdx ∀v ∈ H1
0 (Ω). (2.5)

Under the regularity assumptions above, we have that u ∈C(0,T ;L2(Ω)).

3. Discontinuous Galerkin method

Let the mesh ζ = {K} be a shape-regular subdivision of Ω , with K denoting a generic element. We
assume that the subdivision ζ is constructed via affine mappings FK : K̂→K with non-singular Jacobian
where K̂ is the reference triangle or the reference square. The mesh is allowed to contain a uniformly
fixed number of regular hanging nodes per edge. We define the finite element space

Vh ≡Vh(ζ ) := {v ∈ L2(Ω) : v|K ◦FK ∈P p(K̂),K ∈ ζ}, (3.1)

where P p(K) is the space of polynomials of total degree p if K̂ is the reference triangle, or the space of
polynomials of degree p in each variable if K̂ is the reference square.

Denote by E (ζ ) the set of all edges in the triangulation ζ and E int(ζ ) ⊂ E (ζ ) the subset of all
interior edges. We also denote the diameter of an element K by hK and the length of an edge E by hE .
The outward unit normal on the boundary ∂K of an element K is denoted by nK . Given an edge E ∈
E int(ζ ) shared by two elements K and K′, a vector field v ∈ [H1/2(Ω)]2 and a scalar field v ∈H1/2(Ω),
we define jumps and averages of v and v across E by:

{v}= 1
2
(v|K̄ +v|K̄′), [v] =v|K̄ ·nK +v|K̄′ ·nK′ ,

{v}= 1
2
(v|K̄ + v|K̄′), [v] =v|K̄nK + v|K̄′nK′ .

(3.2)
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If E ⊂ ∂Ω , we set {v} = v, [v] = v ·n, {v} = v and [v] = vn, with n denoting the outward unit normal
to the boundary ∂Ω .

We define the inflow and outflow parts of the boundary ∂Ω at the time t, respectively, by:

∂Ω
t
in = {x ∈ ∂Ω | a(x, t) ·n(x)< 0}, ∂Ω

t
out = {x ∈ ∂Ω | a(x, t) ·n(x)> 0}. (3.3)

The inflow and outflow parts of an element K at time t are similarly defined as:

∂Kt
in = {x ∈ ∂K | a(x, t) ·nK(x)< 0}, ∂Kt

out = {x ∈ ∂K | a(x, t) ·nK(x)> 0}. (3.4)

The semi-discrete discontinuous Galerkin approximation to (2.5) then reads as follows. For t = 0,
set uh(0) ∈Vh to be a projection of u0 onto Vh. For t ∈ (0,T ], find uh ∈C0,1(0,T ;Vh) such that

(
∂uh

∂ t
,vh)+B(t;uh,vh)+Kh(uh,vh) = ( f ,vh) ∀vh ∈Vh, (3.5)

with
B(t;w,v) := ∑

K∈ζ

∫
K
(ε∇w−aw) ·∇v+(b−∇ ·a)wvdx+ ∑

E∈E (ζ )

γε

hE

∫
E
[w] · [v]ds

+ ∑
K∈ζ

(∫
∂Kt

out∩∂Ω t
out

a ·nKwvds+
∫

∂Kt
out\∂Ω

a ·nKw(v|K̄− v|K̄′)ds
)
,

Kh(w,v) :=− ∑
E∈E (ζ )

∫
E
{ε∇w} · [v]+{ε∇v} · [w]ds,

(3.6)

where K̄∩K̄′=E ⊂ ∂Kt
out \∂Ω . In standard fashion, the penalty parameter γ > 0 is chosen large enough

so that the operator B+Kh is coercive. Moreover, for simplicity of the presentation, we assume γ > 1
so that the constants in the subsequent discussion are independent of it.

We note that the bilinear form Kh is not well-defined for arguments in H1
0 (Ω), but the bilinear form

B is and for u,v ∈ H1
0 (Ω) and t ∈ (0,T ], we have

B(t;u,v) =
∫

Ω

(ε∇u ·∇v+a ·∇uv+buv)dx. (3.7)

In light of this, the weak problem (2.5) can be rewritten for each t ∈ (0,T ] as

(
∂u
∂ t

,v)+B(t;u,v) = ( f ,v) ∀v ∈ H1
0 (Ω). (3.8)

We shall also consider a full discretisation of problem (2.5) by using a backward Euler method to
approximate the time derivative.

To this end, consider a subdivision of [0,T ] into time intervals of lengths τ1,τ2, ...,τn such that
∑

n
j=1 τ j = T for some n> 1 and set t0 = 0 and tk := ∑

k
j=1 τk. Denote an initial triangulation by ζ 0. We

associate to each time step k > 0 a triangulation ζ k which is assumed to have been obtained from ζ k−1

by locally refining and coarsening ζ k−1. This restriction upon mesh change is made to avoid degradation
of the finite element solution, cf. Dupont (1982). To each mesh ζ k, we assign the finite element space
V k

h =Vh(ζ
k) given by (3.1). We also set f (., tk) = f k, a(., tk) = ak, and b(., tk) = bk for brevity.

The fully-discrete dG method then reads as follows. Set u0
h to be a projection of u0 onto V 0

h . For
k = 0,...,n−1, find uk+1

h ∈V k+1
h such that

(
uk+1

h −uk
h

τk+1
,vk+1

h )+B(tk+1;uk+1
h ,vk+1

h )+Kh(uk+1
h ,vk+1

h ) = ( f k+1,vk+1
h ) ∀vk+1

h ∈V k+1
h . (3.9)
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We shall take u0
h to be the orthogonal L2-projection of u0 onto V 0

h , although other projections onto V 0
h

can also be used.

4. Error bounds for the dG method for the stationary problem

To analyse the spatial error, we introduce the following quantities:

|||u||| :=
(

∑
K∈ζ

(ε||∇u||2L2(K)+β ||u||2L2(K))+ ∑
E∈E (ζ )

γε

hE
||[u]||2L2(E)

)1/2

,

|u|A :=
((

sup
v∈H1

0 (Ω)\{0}

∫
Ω

au ·∇vdx
|||v|||

)2

+ ∑
E∈E (ζ )

(
βhE +

hE

ε

)
||[u]||2L2(E)

)1/2

.

(4.1)

We note that ||| · ||| and | · |A define norms on H1
0 (Ω)+Vh.

Throughout this work, the symbols . and & are used to denote inequalities true up to a positive
constant independent of ε , β , u, and uh.

Let t ∈ (0,T ] be fixed. It is easy to see that the bilinear form B(t; ·, ·) is coercive on H1
0 (Ω), viz.,

B(t;v,v)> |||v|||2, (4.2)

for all v ∈ H1
0 (Ω), and is continuous in the following sense:

B(t;w,v). (|||w|||+ |w|A)|||v|||, (4.3)

for all w ∈ H1
0 (Ω)+Vh and v ∈ H1

0 (Ω). Moreover, the discrete bilinear form is coercive for vh in Vh
with respect to the ||| · ||| norm, viz.,

B(t;vh,vh)+Kh(vh,vh)& |||vh|||2 (4.4)

Next, we introduce the following notation which will be used to define the a posteriori estimators:

αK := min(hKε
− 1

2 ,β−
1
2 ), αE := min(hEε

− 1
2 ,β−

1
2 ) and αT = min(ε−

1
2 ,β−

1
2 ). (4.5)

An a posteriori estimator for the stationary problem inspired by Schötzau & Zhu (2009) will be utilised
in our analysis. More specifically, we have the following result whose proof is completely analogous to
the one of Theorem 3.2 in Schötzau & Zhu (2009) and is therefore omitted for brevity.

THEOREM 4.1 For a given t ∈ (0,T ], let us ∈ H1
0 (Ω) be such that

B(t;us,v) = ( f ,v) ∀v ∈ H1
0 (Ω),

and consider us
h ∈Vh such that

B(t;us
h,vh)+Kh(us

h,vh) = ( f ,vh) ∀vh ∈Vh.

Then the following a posteriori bound holds:

(|||us−us
h|||+ |us−us

h|A)2 . ∑
K∈ζ

α
2
K || f + ε∆us

h−a ·∇us
h−bus

h||2L2(K)+ ∑
E∈E int (ζ )

ε
3
2 αE ||[∇us

h]||2L2(E)

+ ∑
E∈E (ζ )

(
γε

hE
+βhE +

hE

ε

)
||[us

h]||2L2(E).
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5. An a posteriori bound for the semi-discrete method

To highlight the main ideas, we begin by deriving an a posteriori bound for the semi-discrete problem.
The error will be analysed in the L2(H1)+L∞(L2) type norm

||u||∗ =
(
||u||2L∞(0,T ;L2(Ω))+

∫ T

0
|||u|||2 dt

)1/2

. (5.1)

DEFINITION 5.1 For each t ∈ (0,T ], we define the elliptic reconstruction w ∈H1
0 (Ω) to be the (unique)

solution of the problem

B(t;w,v) = ( f − ∂uh

∂ t
,v) ∀v ∈ H1

0 (Ω).

REMARK 5.1 The dG discretisation of the above equation is to find a function wh ∈C0,1(0,T,Vh) such
that for each t ∈ (0,T ] we have

B(t;wh,vh)+Kh(wh,vh) = ( f − ∂uh

∂ t
,vh) ∀vh ∈Vh.

This, in conjunction with (3.5) and (4.4), implies that wh = uh. Thus, |||w− uh|||+ |w− uh|A can be
estimated using Theorem 4.1.

We decompose the error as follows:

e = u−uh = ρ +θ , with ρ := u−w and θ := w−uh. (5.2)

The dG solution, uh, admits a decomposition into a conforming part uh,c ∈ H1
0 (Ω)∩Vh and a non-

conforming part uh,d ∈Vh with uh = uh,c +uh,d , such that:

|||uh,d |||2 + |uh,d |2A . ∑
E∈E (ζ )

(
γε

hE
+βhE +

hE

ε

)
||[uh]||2L2(E),

||
∂uh,d

∂ t
||2 . ∑

E∈E (ζ )

hE ||[
∂uh

∂ t
]||2L2(E),

||uh,d ||2 . ∑
E∈E (ζ )

hE ||[uh]||2L2(E).

(5.3)

We refer to Schötzau & Zhu (2009) for proof of these estimates which are based on respective con-
structions by Karakashian & Pascal (2003) and Verfürth (2005b). We further define ec := u− uh,c and
θc := w−uh,c.

LEMMA 5.1 For each t ∈ (0,T ] and for all v ∈ H1
0 (Ω) we have

(
∂e
∂ t

,v)+B(t;ρ,v) = 0.

Proof. This follows directly from Definition 5.1 and (3.8). �
We define the error estimator, η̃ , by

η̃
2 = ||e(0)||2 +

∫ T

0
η̃

2
S1

dt +min
{(∫ T

0
η̃S2 dt

)2
,α2

T

∫ T

0
η̃

2
S2

dt
}
+ max

06t6T
η̃

2
S3
, (5.4)
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where

η̃
2
S1
= ∑

K∈ζ

α
2
K || f −

∂uh

∂ t
+ ε∆uh−a ·∇uh−buh||2L2(K)+ ∑

E∈E int (ζ )

ε
3
2 αE ||[∇uh]||2L2(E)

+ ∑
E∈E (ζ )

(
γε

hE
+βhE +

hE

ε

)
||[uh]||2L2(E),

η̃
2
S2
= ∑

E∈E (ζ )

hE ||[
∂uh

∂ t
]||2L2(E),

η̃
2
S3
= ∑

E∈E (ζ )

hE ||[uh]||2L2(E).

(5.5)

THEOREM 5.2 The error e of the semi-discrete dG method (3.5) satisfies the bound

||e||∗ . η̃ .

Proof. Choosing v = ec in Lemma 5.1 gives

(
∂ec

∂ t
,ec)+B(t;ec,ec) = (

∂uh,d

∂ t
,ec)+B(t;θc,ec). (5.6)

Using (4.2), (4.3), and Young’s inequality we arrive to

d
dt
(||ec||2)+ |||ec|||2 . (|||θc|||+ |θc|A)2 + ||

∂uh,d

∂ t
|| ||ec||. (5.7)

Let T0 ∈ [0,T ] be such that Ec := ||ec(T0)||= ||ec||L∞(0,T ;L2(Ω)) then integrating (5.7) on [0,T ] and [0,T0]
gives

||ec||2∗ . ||ec(0)||2 +
∫ T

0
(|||θc|||+ |θc|A)2 dt +Ec

∫ T

0
||

∂uh,d

∂ t
||dt. (5.8)

Using young’s inequality on (5.8) gives

||ec||2∗ . ||ec(0)||2 +
∫ T

0
(|||θc|||+ |θc|A)2 dt +

(∫ T

0
||

∂uh,d

∂ t
||dt
)2

. (5.9)

Going back to (5.7) and using the Poincaré-Friedrichs inequality, Young’s inequality and again integrat-
ing over [0,T ] and [0,T0] gives:

||ec||2∗ . ||ec(0)||2 +
∫ T

0
(|||θc|||+ |θc|A)2 dt +α

2
T

∫ T

0
||

∂uh,d

∂ t
||2 dt. (5.10)

Combining (5.9) and (5.10) and using the triangle inequality yields

||e||2∗ .||e(0)||2 +min
{(∫ T

0
||

∂uh,d

∂ t
||dt
)2

,α2
T

∫ T

0
||

∂uh,d

∂ t
||2 dt

}
+
∫ T

0
(|||θ |||+ |θ |A)2 dt + ||uh,d ||2∗.

(5.11)

The proof then follows directly from Theorem 4.1 and (5.3).
�
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6. An a posteriori bound for the fully-discrete method

We now continue by applying to the fully-discrete setting the general framework presented in the previ-
ous section.

DEFINITION 6.1 We define Ak ∈V k
h to be the unique solution of the elliptic problem

B(tk;uk
h,v

k
h)+Kh(uk

h,v
k
h) = (Ak,vk

h) ∀vk
h ∈V k

h .

REMARK 6.1 For k > 1 we obtain from the numerical method that Ak+1 = Ik+1
h f k+1−

uk+1
h − Ik+1

h uk
h

τk+1
where Ik+1

h is the L2-projection operator onto V k+1
h .

DEFINITION 6.2 We define the elliptic reconstruction wk ∈ H1
0 (Ω) to be the unique solution of the

elliptic problem

B(tk;wk,v) = (Ak,v) ∀v ∈ H1
0 (Ω).

At each time step k, we decompose the dG solution uk
h into a conforming part uk

h,c ∈ H1
0 (Ω)∩V k

h

and a non-conforming part uk
h,d ∈V k

h such that uk
h = uk

h,c +uk
h,d . Given t ∈ (tk, tk+1], we (re)define uh(t)

to be the linear interpolant with respect to t of the values uk
h and uk+1

h , viz.,

uh(t) := lk(t)uk
h + lk+1(t)uk+1

h , (6.1)

where {lk, lk+1} denotes the standard linear Lagrange interpolation basis defined on the interval [tk, tk+1].
We define uh,c(t) and uh,d(t) analogously. We can then decompose the error e= u−uh = ec−uh,d where
ec = u−uh,c. It will also be useful to define θ k = wk−uk

h.

LEMMA 6.1 Given t ∈ (tk, tk+1] we have

(
∂e
∂ t

,v)+B(t;e,v) = ( f − f k+1,v)+( f k+1− ∂uh

∂ t
,v)−B(t;uh,v) ∀v ∈ H1

0 (Ω).

Proof. This follows from Definition 6.2 and (3.8) and by rearranging the resulting equation. �
Before proving the a posteriori bounds for the fully-discrete method, we introduce the error estimators.
We begin by defining the spatial estimator, ηS, by

η
2
S =||e(0)||2 + 1

3

n−1

∑
j=0

τ j+1(η
2
S1, j +η

2
S1, j+1)+

n−1

∑
j=0

τ j+1η
2
S2, j+1 + max

06 j6n
η

2
S3, j

+min
{(n−1

∑
j=0

τ j+1ηS4, j+1

)2

,α2
T

n−1

∑
j=0

τ j+1η
2
S4, j+1

}
,

(6.2)
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where

η
2
S1, j = ∑

K∈ζ j

α
2
K ||A j + ε∆u j

h−a j ·∇u j
h−b ju j

h||
2
L2(K)+ ∑

E∈E int (ζ j)

ε
3
2 αE ||[∇u j

h]||
2
L2(E)

+ ∑
E∈E (ζ j)

(
γε

hE
+βhE +

hE

ε

)
||[u j

h]||
2
L2(E),

η
2
S2, j+1 = ∑

K∈ζ j∪ζ j+1

α
2
K || f j+1− I j+1

h f j+1 +
u j

h− I j+1
h u j

h
τ j+1

||2L2(K)

η
2
S3, j = ∑

E∈E (ζ j)

hE ||[u j
h]||

2
L2(E),

η
2
S4, j+1 = ∑

E∈E (ζ j∪ζ j+1)

hE ||[
u j+1

h −u j
h

τ j+1
]||2L2(E).

(6.3)

The time (or temporal) estimator, ηT is given by

η
2
T =

n−1

∑
j=0

∫ t j+1

t j
η

2
T1, j+1 dt +min

{(n−1

∑
j=0

∫ t j+1

t j
ηT2, j+1 dt

)2

,α2
T

n−1

∑
j=0

∫ t j+1

t j
η

2
T2, j+1 dt

}
. (6.4)

where

η
2
T1, j+1 = ∑

K∈ζ j∪ζ j+1

1
ε
||l j+1(a j+1−a)u j+1

h + l j(a j−a)u j
h||

2
L2(K),

η
2
T2, j+1 = ∑

K∈ζ j∪ζ j+1

|| f − f j+1 + l j(A j+1−A j)+ l j+1(b j+1−b−∇ ·a j+1 +∇ ·a)u j+1
h

+l j(b j−b−∇ ·a j +∇ ·a)u j
h||

2
L2(K).

(6.5)

THEOREM 6.3 The error e of the fully-discrete method satisfies the bound

||e||∗ .
√

η2
S +η2

T . (6.6)

Proof. From Lemma 6.1 and Definition 6.2 we have

(
∂e
∂ t

,v)+B(t;e,v) =( f − f k+1,v)+( f k+1− ∂uh

∂ t
−Ak+1,v)+B(tk+1;θ

k+1,v)

+B(tk+1;uk+1
h ,v)−B(t;uh,v),

(6.7)

which upon straightforward manipulation and using Remark 6.1 gives

(
∂e
∂ t

,v)+B(t;e,v) =lk+1B(tk+1;θ
k+1,v)+ lkB(tk;θ

k,v)+( f − f k+1 + lk(Ak+1−Ak),v)

+lk+1B(tk+1;uk+1
h ,v)+ lkB(tk;uk

h,v)−B(t;uh,v)+( f k+1− ∂uh

∂ t
−Ak+1,v).

(6.8)

The first 2 terms give rise to the space estimator via elliptic reconstruction, the final term can be rewritten
using Remark 6.1, properties and bounds of the L2-projection and the Cauchy-Schwarz inequality:

( f k+1− ∂uh

∂ t
−Ak+1,v) = ( f k+1− ∂uh

∂ t
−Ak+1,v− Ik+1

h v). ηS2,k+1|||v|||, (6.9)



10 of 19

By combining terms, using the definition of the bilinear form B and using the Cauchy-Schwarz inequal-
ity; the remaining four terms give rise to the time estimator:

( f − f k+1 + lk(Ak+1−Ak),v)+ lk+1B(tk+1;uk+1
h ,v)+ lkB(tk;uk

h,v)

−B(t;uh,v). ηT1,k+1|||v|||+ηT2,k+1||v||.
(6.10)

Setting v = ec and using (4.2), (4.3), the Cauchy-Schwarz inequality and Young’s inequality yields

d
dt
(||ec||2)+ |||ec|||2 . ||

∂uh,d

∂ t
||||ec||+ l2

k+1(|||θ k+1|||+ |θ k+1|A)2 + l2
k (|||θ k|||+ |θ k|A)2

+ |||uh,d |||2 + |uh,d |2A +ηT2,k+1||ec||+η
2
T1,k+1 +η

2
S2,k+1

(6.11)

The proof then follows from Theorem 4.1 and (5.3) and by employing a bounding strategy identical to
that used in Theorem 5.2. �

REMARK 6.2 The spatial estimator is expected to be robust, in the sense that the effectivity indices
(i.e., the ratio between the true errors and the value of the a posteriori estimators) are insensitive with
respect to ε , once the spatial mesh is sufficiently resolved as the predominant terms are the same as
in the elliptic case. For pre-asymptotic case, one would need to work in stronger norms to achieve
theoretical robustness. We note, however, that in all the numerical experiments below, the adaptive
algorithm, implementing the estimators presented here, was able to arrive to optimally convergent space-
time mesh modifications. The temporal error estimator is also expected to be robust with respect to ε in
the asymptotic regime as the temporal data approximation error terms are all order two in time and the
only order one temporal term is a difference of derivatives (from Remark 6.1) which is anticipated to be
independent of ε in the asymptotic regime.

REMARK 6.3 The use of elliptic reconstruction is not essential for the proof of Theorem 5.2 and The-
orem 6.3. It is possible to derive the residual based a posteriori bounds directly albeit at the cost of a
lengthier calculation. The advantage of using the elliptic reconstruction in the proof lies in the fact that
it can be easily modified to include non-residual based spatial a posteriori estimators. This, in turn, may
offer improvements in robustness with respect to the Péclet number (cf. Sangalli (2008)).

7. An adaptive algorithm

The a posteriori bounds presented above will be used to drive a space-time adaptive algorithm. A number
of adaptive algorithms for parabolic problems have been proposed in the literature; see e.g. Chen & Feng
(2004); Schmidt & Siebert (2005) and the references therein.

Here, we propose a variant of the adaptive algorithms from Chen & Feng (2004); Schmidt & Siebert
(2005) which appears to perform well for our discretisation. The pseudocode is given in Algorithm 1.
The algorithm is based on using different parts of the a posteriori estimator from Theorem 6.3 to drive
space-time adaptivity. In particular, in contrast with Chen & Feng (2004); Schmidt & Siebert (2005) the
adaptive algorithm utilises the spatial estimator for both refinement and coarsening in space.

Both mesh refinement and coarsening are driven by the term ηS1, j+1. The size of the elemental con-
tributions to ηS1, j+1 determines whether the elements are to be refined, coarsened or neither depending
on two spatial thresholds stol+ and stol−. The nature of the time estimator, ηT , makes it difficult to
use as a temporal refinement indicator so, to this end we define η̂T, j+1 given by

η̂
2
T, j+1 =

∫ t j+1

t j
η

2
T1, j+1 dt +min{αT ,T}

∫ t j+1

t j
η

2
T2, j+1 dt. (7.1)
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Algorithm 1 Space-time adaptivity

1: Input: ε,a,b, f ,u0,T,Ω ,n,ζ 0,γ,ttol+,ttol−,stol+,stol−.
2: Calculate u0

h.
3: Set j = 0, τ1, ...,τn = T/n, time = τ1.
4: Calculate u1

h from u0
h.

5: while η̂2
T,1 > ttol+ OR maxK η2

S1,1|K > stol+ do
6: Modify ζ 0 by refining all elements such that η2

S1,1|K > stol+ and coarsening all elements such
that η2

S1,1|K < stol−.
7: if η̂2

T,1 > ttol+ then
8: n← n+1
9: τ3 = τ2, ...,τn = τn−1

10: τ2 = τ1/2
11: τ1← τ1/2
12: end if
13: if η̂2

T,1 < ttol− AND n > 1 then
14: n← n−1
15: τ1← τ1 + τ2
16: τ2 = τ3, ...,τn = τn+1
17: end if
18: time = τ1
19: Calculate u0

h.
20: Calculate u1

h from u0
h.

21: end while
22: Modify ζ 0 by refining all elements such that η2

S1,1|K > stol+ and coarsening all elements such that
η2

S1,1|K < stol−.
23: while time6 T do
24: Calculate u j+1

h from u j
h.

25: while η̂2
T, j+1 > ttol+ OR η̂2

T, j+1 < ttol− do
26: if η̂2

T, j+1 > ttol+ then
27: n← n+1
28: τ j+3 = τ j+2, ...,τn = τn−1
29: τ j+2 = τ j+1/2
30: τ j+1← τ j+1/2
31: end if
32: if η̂2

T, j+1 < ttol− AND n > 1 then
33: n← n−1
34: τ j+1← τ j+1 + τ j+2
35: τ j+2 = τ j+3, ...,τn = τn+1
36: end if
37: time = t j + τ j+1

38: Calculate u j+1
h from u j

h.
39: end while
40: Create ζ j+1 from ζ j by refining all elements such that η2

S1, j+1|K > stol+ and coarsening all
elements such that η2

S1, j+1|K < stol−.

41: Calculate u j+1
h from u j

h.
42: j← j+1
43: time = t j + τ j+1.
44: end while
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The sum of all terms η̂2
T, j+1 bound η2

T and hence can be used to drive temporal refinement and coarsen-
ing subject to two temporal thresholds ttol+ and ttol− on each time interval.

REMARK 7.1 Mesh modification must be done very carefully to ensure the solution does not degrade.
The spatial refinement threshold stol+ needs to be chosen sufficiently small in comparison to the
temporal refinement threshold ttol+; this is to ensure that the terms η2

3, j+1 and η2
4, j+1 are sufficiently

small. Secondly, the spatial coarsening threshold stol− and the temporal coarsening threshold ttol−

need to be chosen sufficiently small in comparison to the spatial refinement threshold stol+ and the
temporal refinement threshold ttol+ to avoid unnecessary refine and then coarsen loops.

REMARK 7.2 We stress that even when ttol− is set to be equal to 0, the algorithm does not necessarily
produce monotonically decreasing time step distribution from 0 to T . Indeed, the algorithm starts with
an initial equispaced subdivision of [0,T ] into n time intervals, which is then, possibly, locally bisected
based on ttol+. For instance, if the solution reaches a smoothly varying steady state, the algorithm
will retain the original (coarse) time step of size T/n at the final stages of the computation.

8. Numerical experiments

We shall investigate numerically the presented a posteriori bounds and the performance of the adaptive
algorithm through an implementation based on the deal.II finite element library (Bangerth et al.
(2007)). All the numerical experiments have been performed using the high performance computing
facility ALICE at the University of Leicester.

We denote by λk the total number of degrees of freedom on the union mesh ζ k ∪ ζ k+1. Hence, the
weighted degrees of freedom of the problem is given by

Weighted Average DoFs :=
1
T

n−1

∑
j=0

τ j+1λ j. (8.1)

In all examples presented below, unless otherwise stated, p = 2, γ = 10, stol− = 0.001 ∗ stol+,
ttol− = 0 and ζ 0 is a 4×4 uniform quadrilateral mesh. Finally, unmarked lines in convergence plots
represent the theoretically expected optimal rate of convergence for reference.

8.1 Example 1

Let Ω = (0,1)2, a = (1,1)T , b = 0, u0 = 0, T = 10 and select the function f so that the exact solution
to problem (2.5) is given by

u(x,y, t) = (1− e−t)

(
e(x−1)/ε −1
e−1/ε −1

+ x−1
)(

e(y−1)/ε −1
e−1/ε −1

+ y−1
)
. (8.2)

The solution exhibits boundary layers at the outflow boundary of the domain of width O(ε) as well as a
temporal boundary layer.

We begin by fixing a temporal threshold that produces enough time steps so that the temporal con-
tribution to the error is very small in comparison to the spatial contribution. The spatial threshold is then
gradually reduced to observe the spatial effectivity indices for this problem which are given in Figure
1. Optimal rates of convergence are observed with respect to the weighted average degrees of freedom
for both the estimator and the error but are omitted in this example. As shown, the effectivity indices
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FIG. 1. Example 1: Spatial and temporal effectivity indices.

are bounded asymptotically and remain between 5 and 10 for the different values of ε; these are directly
comparable to those observed in Schötzau & Zhu (2009) for the stationary problem.

In order to study the temporal effectivity indices for this problem any boundary layers must be fully
resolved so that the spatial error is dominated by the temporal one. To this end, we use a high polynomial
degree with sufficiently large penalty parameter γ and use specially constructed anisotropic meshes in
order to ensure that the spatial error is sufficiently small. The temporal threshold is then reduced to
observe the temporal effectivity indices of the problem which are given in Figure 1. Optimal order is
observed with respect to both the estimator and the error and the effectivity indices remain bounded
between 4 and 7 for all values of ε .

The presence of a temporal boundary layer in the solution motivates a comparison between adaptive
and uniform time-stepping. To this end, a sufficiently small spatial threshold is chosen so that the
spatial contribution to the error is small and then the temporal threshold is decreased and the results
are compared to just using uniform time-stepping. The results given in Figure 2 show that the temporal
strategy of the adaptive algorithm minimizes the temporal portion of the error better than just using
uniform time stepping.

8.2 Example 2

We set Ω = (−1,1)2, a = (1,1)T , b = 1, f = sin(5t)xy, u0 = 0 and T = 2π . The solution exhibits
layers of width O(ε) in the proximity of the outflow boundary and is oscillatory in time. The sharpness
of the boundary layers depend on time, thus making this a good test of the ability of the algorithm
to add and remove degrees of freedom. As in Example 1, we begin by fixing a temporal threshold
while decreasing the spatial threshold to observe the rates of convergence for the space estimator. We
then set a spatial threshold small enough to resolve any boundary layers, while reducing the temporal
threshold to observe the rates of the time estimator. The results are displayed in Figure 3. Optimal rates
of convergence are observed for both the space and the time estimators.

To assess the mesh change driven by the adaptive algorithm we also plot the individual degrees of
freedom on each mesh against time for a given spatial and temporal threshold. The results are given in
Figure 4. We observe that the adaptive algorithm is adding and removing degrees of freedom at a rate
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FIG. 2. Example 1: Temporal error comparison under adaptive and uniform time-stepping for ε = 1 and ε = 10−2.

FIG. 3. Example 2: Spatial and temporal rates.

that is in accordance with the oscillating nature of the solution driven by the sinusoidal forcing f .

8.3 Example 3

Let Ω =(−2,2)2, T = 2π , a=(y,−x)T , b= 0, f = 0 and u0 = e−64(x−0.5)2
e−64y2

. The PDE convects the
initial two dimensional Gaussian profile along the circular wind while diffusing it at a rate depending
upon ε . In particular, providing the error at the boundary is sufficiently small, the exact solution to
problem (2.5) is given by

u(x,y, t) =
1

1+256εt
exp
(
− 64(x−0.5cos(t))2

1+256εt

)
exp
(
− 64(y+0.5sin(t))2

1+256εt

)
. (8.3)

To observe the temporal effectivity indices and temporal rates of the problem we first fix a spatial
threshold so that the spatial contribution to the error is small and then reduce the temporal threshold;
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FIG. 4. Example 2: DoFS vs Time for ε = 1 and ε = 10−2.

FIG. 5. Example 3: Temporal effectivity indices and the rate of the time estimator for ε = 10−2.

the results given in Figure 5 show that the temporal effectivity indices are bounded and remain between
1 and 8 for all values of ε and that the optimal rate of convergence is achieved by both the error and
the estimator. Some meshes at various time steps produced by the algorithm for ε = 10−5 are shown in
Figure 6 and show that the adaptive algorithm is adding and removing degrees of freedom efficiently.

8.4 Example 4

Let Ω = (0,1)2, a = (sin(t),cos(t))T , b = 0, f = 1, u0 = 0 and T = 2π . The nature of the solution
is rather uniform in time but has a boundary layer of width O(ε) whose location depends on time.
Therefore, this example is well suited to test the ability of the algorithm to adapt the grid to this moving
boundary layer as time evolves. See Figure 7 where grids at various times for ε = 10−2 are shown.

As in previous examples, we fix a temporal threshold and then reduce the spatial threshold to observe
the rates of the space estimator. Again, we also fix a spatial threshold small enough to ensure that all
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FIG. 6. Example 3: Grid snapshots.

FIG. 7. Example 4: Grid snapshots.
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FIG. 8. Example 4: Spatial and temporal rates.

boundary layers are sufficiently resolved and then observe the rates of the time estimator. These results
are given in Figure 8. Optimal spatial and temporal rates of convergence are observed and the grids
produced for ε = 10−2 clearly show that the adaptive algorithm is picking up the boundary layers as
they move around the domain and that unneeded degrees of freedom are not retained.

9. Conclusions

An a posteriori error estimator for the discontinuous Galerkin spatial discretisation of a non-stationary
linear convection-diffusion equation is presented. The derivation of the estimator is based on reconstruc-
tion techniques to make use of robust a posteriori estimators for elliptic problems already developed in
the literature. Our numerical examples clearly indicate that the error estimator is practical and the re-
spective space-time adaptive algorithm works well for the studied problems. The spatial effecitivity
indices are in an identical range to those observed in (Schötzau & Zhu (2009)) and the temporal ef-
fectivity indices are substantially smaller than the ones seen in (Georgoulis et al. (2011)) for the heat
problem.
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