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Abstract—Real-time data processing applications demand dy-
namic resource provisioning and efficient service discovery, which
is particularly challenging in resource-constraint edge computing
environments. Network embedding techniques can potentially aid
effective resource discovery services in edge environments, by
achieving a proximity-preserving representation of the network
resources. Most of the existing techniques of network embed-
ding fail to capture accurate proximity information among the
network nodes and further lack exploiting information beyond
the second-order neighbourhood. This paper leverages artificial
intelligence for network representation and proposes a deep
learning model, named Inductive Content Augmented Network
Embedding (ICANE), which integrates the network structure
and resource content attributes into a feature vector. Secondly,
a hierarchical aggregation approach is introduced to explicitly
learn the network representation through sampling the nodes
and aggregating features from the higher-order neighbourhood.
A semantic proximity search model is then designed to generate
the top-k ranking of relevant nodes using the learned network
representation. Experiments conducted on real-world datasets
demonstrate the superiority of the proposed model over the
existing popular methods in terms of resource discovery and
the query resolving performance.

Index Terms—Edge computing, network embedding, artificial
intelligence, deep learning, resource discovery.

I. INTRODUCTION

EDGE computing is an emerging paradigm that brings
the computing resources near the edge in a close prox-

imity to the end-users. Industrial Internet of Things (IIoT)
applications recently exploit edge computing as a platform
to process intensive applications near the edge. With a dis-
tributed processing of workloads among the end devices,
edge-computing can significantly reduce both the time and
computing overheads by shifting the computation towards the
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periphery of the network [1] [2], rather relying on centralised
servers. However, edge computing is still in its infancy, one
notable area requiring immediate attention is efficient resource
management among the end devices. Most of the IoT devices
are resource-constraint and cannot handle overwhelming traffic
and intensive execution beyond their capacity. This issue
can be alleviated through distributed processing that requires
partial knowledge of the network, such as topologies [3],
resource locations [4] and the social information [5]. Network
embedding techniques [6] can help to achieve this knowledge
by facilitating efficient representation of the network structure
and resources.

Network embedding aims at preserving the network struc-
tural properties whilst representing the network resources in
a low-dimensional vector space. On the one hand, existing
embedding techniques have ignored exploiting information be-
yond the second-order neighbourhood proximity of the nodes,
mostly limiting to just the local pair-wise node similarity
and node-pair connectedness. Exploiting higher-order node
proximity information, such as node’s neighbour structures,
community level similarity, etc., can help to preserve rich and
auxiliary node information and their special attributes such
as roles, identity, and global ranking. On the other hand,
existing strategies have not given enough emphasis to balance
the trade-off between complexity and accuracy of embedding
algorithms, thereby generating inefficient and inappropriate
representation of large-scale heterogeneous networks. Given
such limitations of existing network embedding techniques,
developing efficient network embedding methodologies re-
mains an open issue.

To this end, this paper emphasises the incorporation of
Artificial Intelligence (AI) techniques for edge computing
whilst learning the network structure and content resources
from higher-order neighbourhood. AI techniques, especially
deep learning models, can facilitate learning the higher-order
complex proximity and automatic preservation of the key
properties of the network. With this in mind, this paper focuses
on network representation learning and resource discovery
in order to facilitate a cost-effective, scalable infrastructure
for edge artificial intelligence that can support efficient re-
source discovery in a fully decentralised edge environment.
In order to achieve this objective, this paper proposes a
general network representation learning model, named Induc-
tive Content-Augmented Network Embedding (ICANE). The
proposed method effectively leverages rich features in higher-
order proximity networks to generate a low dimension vector
representation. Furthermore, a deep neural network-based al-
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gorithm is proposed to adaptively aggregate information from
node’s neighbourhood, along with a semantic proximity search
method for resource discovery. For each query node, proximity
scores are computed for its potential target nodes based on
their embedding distance to locate the top-k relevant nodes.
We conduct experiments based on real-word network datasets
to demonstrate the efficiency of our proposed method in
terms of the achieved query correctness and in reducing query
latency. The main contributions of this paper are summarised
as follows.
• A network representation learning model ICANE is pro-

posed to learn the content textual features and network
structural features, in order to transform heterogeneous
network information into a low dimensional, continu-
ous and proximity-persevered vector space, which can
significantly improve the efficiency of downstream task
execution in edge computing environments.

• A semantic proximity search model based on a deep
neural network is then proposed to generate top-k ranking
of relevant nodes conditioned on specific queries. This
model leverages the similarity of the query embedding
and learned network embedding to facilitate efficient
resource discovery in decentralised systems.

The rest of the paper is organised as follows. Section II
reviews the related works. Section III presents the problem
definition and preliminaries on network embedding techniques,
and Section IV details the proposed method. Experiments and
results are discussed in Section V, and Section VI concludes
this paper along with outlining our future research directions.

II. RELATED WORKS

Recently, network embedding has been identified as an
effective way of learning and representing the network that can
facilitate machine learning tasks with improved performance.
Most common forms of network embedding techniques [7] fall
into reconstruction-oriented and discrimination-oriented based
categories. A Continuous bag of words (CBOW) [8] model has
been built based on a log-linear classifier by training prior and
posterior sequence of words as inputs in order to classify the
middle sequence of words. This model assigns more weight to
the words located closer to the target words, and less weight
to farther words, in which the word distance plays a crucial
role. Skip-Gram model [9] attempts to maximise the word
classification based on another word located within the same
sentence. Irrelevant words enjoying more weights in the input
sequence would considerably affect the classification accuracy
in such models.

Constrained DeepWalk [6] [10] exploits the random walk
technique for sampling the word classification based on edge
weights. This technique learns the independent latent repre-
sentation for labels of vertices by relying on the intensity
of user interactions. Users characterising more interactions
pose better predictability, but users with fewer interactions
pose greater learning challenges. Text-Associated DeepWalk
(TADW) [11] incorporates the network vertex features under a
matrix factorisation framework, one of the resulting matrices
containing more zero entries is then considered for the ver-
tex representation, despite the data sparsity in real datasets.

Although this approach can potentially balance the trade-off
between speed and accuracy, always relying on the zero-entry
matrix might risk losing important latent information in the
ignored product matrix. Long short-term memory (LSTM) [12]
and its related models [13] [14] [15] have been built based
on DeepWalk, with suitable modifications to the random
walk phase. Such models have been primarily developed to
overcome the drawbacks of the Skip-Gram model, which can
only embed a single node, but LSTM can potentially embed
a sequence of nodes [12]. Given the natural computational
intensity of the intermediate levels of the memory cells in the
LSTM model, its input phase based on random walk adds
to its computational complexity. Nonetheless, LSTM has the
capability of preserving long sequential relationships between
inputs, which makes LSTM an advantage for learning higher-
order proximity in the networks.

Negative sampling strategy [8] is another deep learning
approach used to generate fast approximations of the softmax
layer. A nearest negative sampling model [16] discriminates
negative nodes those located closer to positive nodes, based
on pre-trained embedding. This pre-trained approach may not
hold good for evolving networks, since the discrimination
boundary is always unique to any networks comprising hetero-
geneous nodes. Minimising distance-based loss [6] is the strat-
egy of reducing loss by placing the node proximity calculated
based on node embedding closer to the proximity that is calcu-
lated based on the observed edges. The computation accuracy
has a serious impact in this approach, and a subsequent number
of iterations may require whilst minimising the distance loss.
Another approach of reducing construction loss is to minimise
the margin-based ranking loss [6], which focuses on increasing
the similarity of a given node’s embedding to relevant nodes
than those of irrelevant nodes. With a presumption that social
links are not always formed of common interests, a unified
embedding approach has been developed [17] by the way of
maximising a posterior Area Under the Curve (AUC) ranking
criterion. This approach linearly combines the learnings ob-
tained from the first and second order proximities for network
representation. The random walk phase of this approach is
naturally expensive due to the intensity of learning required.

A supervised approach [18] has been used based on K-
Nearest Neighbouring (KNN) technique to describe the local
affinity structure around each node. In general, supervised
learning might not be efficient enough to learn the affinities of
newly joining nodes with robust characteristics in a dynamic
edge network. Convolutional Neural Network (CNN) has been
widely adopted in network embedding for designing and
reformatting inputs [19] and to generalise neurons for learning
graphs [20]. Deep neural networks are effective in learning
the statistical properties of the nodes in the network, but
generalising CNN may not be efficient in a dynamic network.

Most of the existing works on network embedding are
not exploiting the network information to any degree be-
yond the node’s second order proximity. Another common
drawback is their lack of semantic accuracy in resource-rich
networks, since majority of the existing approaches solely
focus either on network structure or network content. As a
result, they potentially characterise a higher risk of generating
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poor representations for heterogeneous edge networks, thus
not efficient enough to support accurate resource discovery.
To address these challenges, this paper proposes a novel
network representation learning model ICANE, integrated with
a semantic search model with a global objective of facilitating
efficient resource discovery in decentralised edge computing
environments.

III. PROBLEM DEFINITION

This section introduces the preliminaries and terminologies
used in this paper along with a formal definition of the network
representation learning problem. Common notations used in
this paper are listed in Table 1.

A. Preliminaries and Notations

Definition 3.1 (Information Networks). An information net-
work can be represented as G = (V,E,A,C), where V is
a set of vertices, and E ⊆ V × V denotes a series of edges
connecting those vertices. A ∈ R|V |×m represents the attribute
matrix of the vertex, where m is the total number of attributes,
and the ai ∈ A is the attribute information for vertex vi, and
finally C is the label matrix with ci ∈ C is related with a
class label of node vi. To avoid ambiguity, this paper uses the
vertices and nodes in information networks interchangeably,
and the edges in the network are considered as undirected and
unweighted, where edge (vi, vj) is identical to edge (vj , vi).

TABLE 1: Common notations in this paper.

Symbols Meaning
G The given information network
V The vertex(node) set in the network
E The edge set in the network
|V | The number of vertices
|E| The number of edges
|A| The attribute set of vertices
|C| The label set of vertices
m The number of vertex attributes
x The feature embedding vector

zv The embedding vector of node v
q The resource request query
K The maximum learning depth
W The weight matrix
σ The sigmoid function

B. Problem Definitions

Fig. 1 shows an adjacency matrix for a toy graph with 10
vertices. The adjacency matrix is the most intuitive way of
representing the structure of a given network. However, adja-
cency matrix still characterises a few known shortcomings in-
cluding value sparsity, high dimensionality, high computation
complexity, and the lack of semantic representation. Network
learning techniques can potentially address such issues of adja-
cency matrix by effectively aiding the representation of large-
scale networks in a low dimensional and densely populated
vector space for facilitating efficient network analytical tasks.
The formal problem definition is described as follows.

Definition 3.2 (Network Representation Learning). Suppose
an information network G = (V,E,A,C), network repre-
sentation learning (NRL) is the act of learning a mapping
function f(v) : vi 7→ hkvi ∈ Rd that transforms the network
into a relatively low dimensional vector space, where hkvi is

the representation of vertex vi learned at step k, and d is its
dimension. The goal of NRL is to preserve the proximities
of the original network in the mapped vector space. Such
vector representation is termed as the embeddings of the
corresponding network.

(a) A toy network (b) Adjacency matrix
Fig. 1: Illustration of a toy network with 10 vertices and its
adjacency matrix with 10× 10 dimensionality.

Definition 3.3 (Network Resource Discovery). A resource
request node is defined as vq , which represents a node v with
a query q looking for targeting nodes (i.e., resource providers)
with resource attributes that can satisfy q ⊆ au for any given
node u. Let yu|q = 1 if q ⊆ au and yu|q = 0 for otherwise.
The task of resource discovery is then simplified to perform a
binary classification over the nodes in V for a given query q.

IV. THE PROPOSED APPROACH FOR NETWORK
REPRESENTATION LEARNING

In an edge-computing network, nodes are often heteroge-
neous in terms of their operating systems, network connec-
tions, types of offered resources and size of files etc. This
paper aims at mapping the heterogeneous nodes into a har-
monious and accordant vector representation which preserves
the original network proximity. Then the learned network
representation is used as the meta-data to support semantic-
aware resource discovery.
A. Network Embedding Generation

The process of network embedding generation is illustrated
in Algorithm 1. This algorithm assumes that the parameters of
K feature aggregation functions are known with the presump-
tion of a prior knowledge of trained parameters, denoted as
AGGk,∀k ∈ {1, . . . ,K}. Besides, a set of weight matrices
W k, k ∈ {1, . . . ,K} are used as weight factors between
the different neural network layers. Algorithm 1 outputs the
learned network embeddings for all the nodes in the network.

In the Algorithm 1, K is the maximum learning depth that
corresponds to the number of layers in the model. When the
learning process is completed, the final layer hK

v is outputted
as the trained network embedding, which is then used to
perform the resource discovery tasks. The main idea behind
the Algorithm 1 is that at each iteration of for loop, the
central node in the network aggregates information from its
first-order proximity neighbours, and incrementally gathers
more information by out-reaching the network further. More
specifically, at initial stage, this algorithm samples a few
required nodes for enabling the network embedding process.
Lines 1 − 5 correspond to the network sampling phase and
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Algorithm 1: NETWORK EMBEDDING GENERATION.
Input: Information Network G = (V,E,A,C); a

sequence of attributes 〈x1, x2, . . . , xn〉 where
xi ∈ A; max learning depth K; embedding
dimension d; weight matrices W k;
neighbourhood mappig function: N : v 7→ 2V ;
batch size: T ;

Output: The vector representation zv in batch B
1 Initialise VS = ∅
2 for v ∈ V do
3 for i← 1 to K do
4 VS ← VS ∪ SampleNetwork(G, v, i)
5 Fi ← FeatureEncode(VS)

6 B ←MiniBatch(VS , T )
7 h0

v ← Initialization(F0(xv ← (xcontv _ xstrucv )))
8 for k ← 1 to K do
9 for all v ∈ B do

10 AGGk ← LSTMk(d, Fk,B)
11 hk

N (v) ← AGGk({hk−1
u ,∀u ∈ N (v) ∩ B})

12 Fk ← Dense(hk−1
v _ hk

N (v))

13 hk
v ← mixPooling{σ(W k

pool × Fk + b)}

14 return zv ← hK
v ,∀v ∈ B

feature encoding. The SampleNetwork is a uniform-draw
function, which samples a uniform proportion of nodes in each
iteration from the K-order neighbourhood. The objective of
this neighbourhood sampling is to reduce in-memory compu-
tation and to generate a candidate set for the following network
embedding learning model. The FeatureEncode is a one-hot
encoding function used to generate the feature matrix of the
sampled nodes. Furthermore, to improve the computational
efficiency and to reduce the memory consumption of the
stochastic gradient descent, the training data is split into
batches. Each batch contains the nodes required to compute
the embeddings of the nodes within that corresponding batch.
Next, each node v aggregates the representation of nodes in the
first-order neighbourhood {hk−1

u ,∀u ∈ N(v)} into a vector
space.

The aggregation function AGGk is a standard LSTM model
with d memory units and T batches of input features, which
utilises the representations generated at the previous iteration
from (k−1)-order neighbourhood, and h0

u is the input features
of the central node. The output of the AGGk function is a
fixed length node sequence learned from the input features.
To be more specific, each hidden LSTM unit comprises three
gates, namely an input gate, a forget gate and an output gate.
This unit memorises the values over arbitrary sequences, where
the three gates control the sequence flow of input and output
arguments. The input gate uses the sigmoid function to select
the values to be included into the unit; the forget gate uses the
hyperbolic tangent function to control the values to be stored
in the units, and the output gate uses a logistic function to
determine the values to be outputted by the LSTM unit. Since
LSTM can learn both long-term and short-term patterns from

input features, it can capture the hop-by-hop node sequence
and hidden patterns beyond the co-occurrences in the features.

In this process, previously iterated representation drives
the succeeding aggregation step. When the neighbourhood
aggregation is completed, a given node’s current representation
hk−1
v and its aggregated neighbourhood vector hk

N(v) are
concatenated, then fed though a fully connected LSTM layer
using dense function with a non-linear activation function
σ = (1 + e−x)−1, which is known as the sigmoid function.
σ transforms the representations used in the succeeding step
for hk

v . The final representation is denoted as zv ← hK
v . The

mix-pooling strategy [21] is applied to randomly output the
mean and max of the hidden LSTM states from each network
layer, which can effectively address the over-fitting problem
during feature aggregation.
B. Heterogeneous Feature Aggregation

This section describes the feature information that is fed
into the multi-layer LSTM neural network in Algorithm 1. Our
proposed approach incorporates feature aggregation functions,
which obtain feature information from the k-order neighbour-
hood. Each function aggregates information at a different
learning depths, away from the central node to generate
embeddings for the entire information network. The charac-
teristics of the proposed ICANE model can be summarised
as follow: (1) Adaptability - ICANE model can learn the
network adaptively and incrementally even when the networks
are constantly evolving to host new structure and contents;
(2) Scalability - ICANE model can learn large-scale networks
with low latency; (3) Low dimensionality - ICANE model can
significantly reduce the dimensionality of the original network
for achieving quicker convergence of the employed end-to-
end machine learning algorithms; (4) Community awareness
- ICANE model can effectively reflect the semantics between
nodes in the network embeddings. Fig. 2 illustrates the feature
aggregation process from the sampled nodes (highlighted with
green, blue and grey) within third-order neighbourhood of the
central node (orange).

(a) Neighbourhood sampling (b) Feature aggregation
Fig. 2: An example of the neighbourhood aggregation process.

Our proposed ICANE model considers two kinds of fea-
tures, including the content feature, and network structure
feature. Each node v has a d-dimensional feature vector
xv ∈ Rd. By vertically stacking up all the feature vectors,
a feature matrix can be constructed, which can be denoted
as X = [x1,x2, . . . ,xn]

> ∈ Rn×d. In a decentralised
edge environment, the features are considered the node’s local
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attributes and nodes can proactively gather features from their
directly connected neighbours. Feature aggregation is an of-
fline learning process that only incurs an insignificant portion
of network overhead for feature aggregation at the network
embedding training phase. Once this training is completed, the
learned network embeddings are stored as local knowledge
of the global network resources, in order to direct newly
generated queries (unseen data) to the most appropriate nodes.
Herein, the proposed feature aggregation process is very cost-
effective for resource discovery tasks.

Fig. 3: The architecture of feature embedding method.

Fig. 3 illustrates the feature embedding method of the
proposed model. In this paper, the original network structure
information and content attributes are presented in a matrix
using one-hot encoding to indicate the presence of the obser-
vations. Observations with the value ’1’ in the structure matrix
indicate the connection among nodes, while observations with
the value ’1’ elements in the content matrix represent the
presence of the given attributes. To generate the embedding
for a given node v, the row vectors of v in its structure matrix
and content matrix are selected as inputs to form a feature
vector. For a given sampled node i at the learning depth k, the
feature vector is denoted as x(k)

i = (x
(k)
conti _ x

(k)
struci), where

_ denotes the concatenation of the two given vectors. Then
aggregation function AGGk incorporates the feature vectors
into the LSTM model to generate the representations. The
LSTM network includes K stacked hidden layers, where each
layer contains fixed number of fully connected LSTM units.
The core function of the multiple hidden layers is to capture
the weight factors at each learning depth k, k ∈ [1,K]. Then
the mix-pooling strategy is used to randomly choose the mean
and maximum elements in the prior hidden layer. The output
of the final layer is a softmax layer with a dimensionality d.
The softmax layer contains the normalised outputs obtained
from the prior hidden layer within a bounded interval [0, 1]
that represents the probability distribution over the proximities.
The vector generated by the softmax layer is treated as the
embedding zv of the given node v. The dimensionality for all
the embedding vectors is equal in size and is decided by the
output sequence shape of the LSTM model. In this paper, we
found that the dimensionality d = 128 tends to achieve the
best performance in the resource discovery task.
C. Query Representation and Similarity Calculation

This subsection focuses on the resource discovery tasks
using network embeddings generated from Algorithm 1. Our
proposed model incorporates predicting the likely nodes com-
prising the requested resources during the resource discovery

task. Such a prediction can be particularly challenging in a
decentralised edge computing environment, due to the lack of
global knowledge of nodes requesting resources. We extended
the node embeddings to unify the query embedding space
and the node embedding space in order to compute the
comparable similarity for enabling faster node classification
and ranking process. Firstly, we embed queries containing
the information of the query node in the same vector space
that can be seamlessly compared with the node representation.
Then a semantic proximity-based resource discovery (SPRD)
strategy is presented to predict the top-k relevant nodes using
cosine distance. The workflow of the SPRD is summarised in
Algorithm 2.

Algorithm 2: SEMANTIC PROXIMITY RESOURCE
DISCOVERY (SPRD).
Input: Informaiton Network G = (V,E,A,C); node

embeddings zu; query qv = 〈w1, w2, . . . , wn〉;
query node features xv; max learning depth K

Output: The distance score between query q and node
u, u ∈ V in embedding space

1 for v ∈ Vq do
2 ṽ ← CreateShadowNode(v,Ev, Av, Cv)
3 xcontṽ ← GenerateOneHot(q)

4 h̃0
v ← Initialization(x̃v ← (xcontṽ _ xstrucv ))

5 V ← V + ṽ

6 for u ∈ V do
7 zu = LSTMmixpool{hK

u ,h
K−1
u , . . . ,h0

u}
8 LG(zu) =

∑
u∈V

∑
v∈NR(u)−log(P (v|zu))

9 Du|q ← D(zu, zqv )← cos(zu, zqv )
10 return Du|q,∀u ∈ V

The objective of the Algorithm 2 is to embed the queries
with node embeddings in the same vector space. The main
idea here is to characterise the resource requester’s inten-
tion by combining the node’s attributes with the query at-
tributes, then to train a loss function that forces the query
embeddings to be similar to the embeddings of nodes that
can satisfy a given query and are a close proximity with
the resource requester. In this way, queries can be directed
to resource providers (i.e., nodes satisfy the query) with a
shorter routing path in the decentralised edge environments.
Algorithm 2 firstly generates the resource requester’s intention
using the GenerateShowNode function, which creates a
structurally identical node to that of the resource requester.
Given a query word sequence {w1, w2, . . . , wn}, we use the
GenerateOneHot function to convert the original sequence
into a query feature matrix q = {q1w, q2w, . . . , qmw }, where
n denotes the number of words in a given query, and m
is vocabulary size of words. Then the query features are
concatenated with the query node’s structure attributes and
further fed into a fully connected LSTM to generate the final
representations for the query. Given a node that is embedded
to a vector space zv, v ∈ V , the semantic similarity score
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between the query and a given node v is given by Equation (1).

Sim(q, zv) = cos(q, zv) =
q · zv

||q|| · ||zv||
, (1)

where q is the query embedding vector and zv is the node
embedding vector. Equation (1) measures the similarity given
by the cosine distance between two embedding vectors. In
particular, let V{q} denote the targeted nodes which can
satisfy the given query q, it is favourable to generate query
embeddings q to obtain Sim(q, zv) ≈ 1,∀v ∈ Vq and
Sim(q, zv) ≈ 0,∀v /∈ V{q}.

The semantic similarity is computed based on the likelihood
between the enhanced query embeddings and node embed-
dings. Then, cosine distance is applied to calculate the simi-
larity between a given query and the nodes. A cosine distance
of 1 implies an exact match and 0 indicates decorrelation. The
cosine similarity measure is widely used in vector distance
measurement, which is adopted in this paper of the following
reasons. The cosine similarity between two embedding vectors
is bound to the interval [−1, 1], which indicates the closeness
of the two vectors in the same direction with origin as
the reference point in the vector space. In addition, it can
capture meaningful semantics for ranking relevant resources
conditioned on a given query, since it is sensitive at capturing
spatial differences of the elements in the compared vectors,
meanwhile disregarding the amplitudes of the elements. Fig. 4
illustrates the semantic process tailored specifically to a given
query node’s features by incorporating information about the
node beyond the given query. The main purpose here is to
achieve a personalised ranking of the predicted nodes that can
satisfy the given query. The query is augmented with the query
node’s content and structure information to represent its query
embedding, where the assumption is based on the following
experimental studies: (1) similar nodes tend to interact with
nodes who share common characteristics [22] [23], and (2)
node’s interests and local attributes can enhance the query’s
efficiency in fully decentralised environments [24] [25].

Fig. 4: The query match method for resource discovery.

D. Training the Model

This paper employs the supervised learning technique to
learn the network embeddings. The nodes are formed as a pair
and a label (u, v, label). The label is a boolean number which
indicates whether two given nodes are located in a closer

proximity in the network or not. We define the label = 1
if node v and node u share common structure attributes or
content attributes, and label = 0 otherwise. The objective of
the training process is to optimise the probability of correct
label classifications by minimising the pre-defined loss func-
tion. The loss function encourages the embedding of a given
node to be similar to the embeddings of nodes in its closer
proximity (i.e., label = 1) and different from the embeddings
of nodes which are not in its closer proximity (i.e., label = 0).
In order to learn effective embeddings, the random walk-based
loss function is applied to the output embeddings zu of the
final layer of LSTM, and to train the weight matrices W k. The
training process proposed in this paper adopts widely used
stochastic gradient descent (SGD) method [26] [27] [28] to
minimise the loss function in the aggregation process. The
loss function preserves the node proximity in the original
network which encourages nearby nodes with similar content
to characterise a small vector distance in the output repre-
sentations, while disparate nodes characterise highly distinct
output representations. The objective of the loss function is to
maximise the likelihood of random walk co-occurrences. The
likelihood function is defined as in Equation (2).

LG(zu) =
∑
u∈V

∑
v∈NR(u)

−log(P (v|zu)), (2)

where zu is the embeddings of node u. Each node u collects
the co-occurrence from the neighbourhood NR(u) which rep-
resents the node’s sets on random walks starting from node u.
P (v|zu) is the probability of a node v to identify a seen node u
on a random walk over the network. Equation (2) summarises
all nodes in the network and all the co-occurring nodes v
in the random walk starting form u. Further to calculate the
probability, we use Equation (3).

P (v|zu) =
exp(z>u zv)∑

v∈NR(u) exp(z
>
u zv)

, (3)

where, z>u zv is the probability of a given node v to co-
occur near u during fixed-length random walks over the
network. Equation (3) utilises softmax [29] to parameterise
P (v|zu). The random work process is further optimised to
find embeddings zu which minimises LG . However, when
V is extremely large, calculating the denominator by going
through all the words for every single sample is computation-
ally impractical. Due to the complexity of normalisation of∑

v∈NR(u) exp(z
>
u zv), negative sampling method is used to

approximate the conditional probability, as in Equation (4).

P (v|zu) ≈ log(σ(z>u zv))−
∑c

i=1 log(σ(z
>
u zni)), (4)

where σ is the sigmoid function, ni ∼ Pn which is a
negative sampling distribution [9], and c is the number of
negative samples. The objective of negative sampling is to
approximate the probability of P (v|zu). The idea of negative
sampling is to maximise the similarity between the node
vectors for nodes characterising close association in both the
structure and contents, and to minimise the similarity of nodes
that do not show closer proximity. The samples selected by
the negative sampling method are called negative samples,
which are usually the randomly selected nodes with neither
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common structure attributes nor content attributes to a given
node. It is worthy of note that Equation (4) normalises the
feature range against c random negative samples instead of
normalising against all nodes. The benefit of this strategy is the
significantly enhanced training performance, since only a small
percentage of neuron weights in the neural network needs to
be modified, rather than updating all the weights.

V. EXPERIMENTS

This section presents the performance evaluation of our
proposed model in a simulated edge environment. The per-
formance of our proposed model ICANE is tested by feeding
in resources discovery tasks. The objectives of the experiments
are threefold: Firstly, to compare the performance of network
embeddings of ICANE against the state-of-the-art methods;
Secondly, to investigate the impacts of features in the learning
phase whilst optimising the network embedding to support
semantic-proximity search. Thirdly, to visualise the learned
network representations in 2-dimensional graphs. Program-
ming environment: The network embeddings of compared
models and evaluations are implemented using TensorFlow
1.12.0 and scikit-learn 0.20.1, and the visualisation of em-
beddings uses t-SNE [30].

A. Experiment Settings

Datasets: Three citation networks benchmarking datasets1

Cora, Citeseer, and Pubmed are used to evaluate the perfor-
mance of the proposed model. In the citation networks of
Cora, Citeseer, and PubMed, a node is a publication article
and an edge is the citation link between publications. Firstly,
we establish the network topology by connecting the nodes
with undirected edges. Then, the node structure attributes and
content attributes are assigned as properties of the nodes,
where the structure attributes are the first-order neighbours and
content attributes are the terms’ occurrence in a publication for
the corresponding node. Finally, each node is assigned with
the pre-defined class label as the ground truth for classification
tasks. The processed datasets is detailed as follows:
• Cora: It comprises 2,708 nodes from seven classes and

5,429 links and 1,433 content attributes.
• Citeseer: It contains 3,312 nodes from six classes and

4,732 links and 3,703 content attributes.
• Pubmed: It consists of 19,717 nodes from three classes

with 44,338 links and 500 content attributes.
Baseline methods: The performance of our proposed

method is evaluated against the following popular network
embedding approaches:
• LINE [10]: This method learns the first d/2-dimension

embeddings from the first-order neighbours and learns
the second d/2-dimension embeddings from the second
order neighbours. Then the embedding is presented as
the concatenation of the two learned parts to form a d
dimension embedding.

• Node2vec [31]: This method preserves higher order prox-
imity through fix-length biased random walk to generate

1The datasets can be downloaded here: https://linqs.soe.ucsc.edu/data

a d dimension embedding. The window size is set to 10,
the walk length is 80, and the number of walks is 10.

• HOPE [32]: This method utilises the singular value
decomposition (SVD) [33] to factorise the higher order
similarity matrix between nodes to form a d-dimension
embedding. HOPE is configured to learn the third-order
proximity in the experiments.

• TADW [11]: This method learns a d-dimension em-
bedding from matrix decomposition, considering both
network structure and content.

To conduct fair comparisons, the dimensionality d of em-
beddings for the information network is set to 128 for all
the compared baseline methods. TADW includes the network
structure and node content information, while others only
adopt the network structure information to generate network
embeddings. The resource discovery process is equivalent to
a binary classification for multiple queries. Our proposed
ICANE model is trained for node classification task, where
the loss function is minimised at each step of the LSTM
model. During the training process, the negative sampling
method randomly select 5 negative samples. All models are
implemented using TensorFlow with a learning rate of 0.01.
ICANE model sets the max learning depth as K = 3,
which means the model samples nodes in the third-order
neighbourhood.

B. Evaluation Metrics

The requirements of resource discovery in a decentralised
edge environment are two-fold: (1) Correctness: the model
should find correct nodes which can satisfy a given query;
(2) Low response latency: the located nodes should be close
to the query initiator in the network structure. In the experi-
ments, network embeddings of different methods are evaluated
for their efficiencies of the resource discovery process. The
network simulated 10 queries for each node, then we observe
the average performance for the queries. To evaluate the cor-
rectness, the commonly used Micro-F1 and Macro-F1 metrics
are chosen to calculate the overall accuracy. Furthermore, the
average query length is observed to evaluate query response
latency. In the evaluation, we adopt the classic confusion
matrix (a.k.a, the error matrix) to compute the metrics [34].
In detail, we denote TPq , FPq and FNq as the number of
true positives, false positives and false negatives for query
q, respectively. The evaluation metrics used in the confusion
matrix are listed as follows.

Precision is the fraction of true instances among positive
instances, which is defined as P =

∑
q TPq∑

q TPq+
∑

q FPq

Recall is the fraction of true instances identified over the
total amount of true instance, which is defined as R =∑

q TPq∑
q TPq+

∑
q FNq

. By balancing the effectiveness of recall and
precision, Micro-F1 and Macro-F1 are further defined as:

Micro-F1 is the harmonic average of the precision and
recall, which is defined as Micro− F1 = 2·P ·R

P+R
Macro-F1 is the unweighed mean F1-measure of all

queries, which is defined as
∑

q∈Q Micro−F1(q)

|Q| , where
Micro − F1(q) is the F1 score for query q, and |Q| is the
size of evaluated queries.
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Average query path length (AQPL) measures the global
average distance from query nodes to predicted target nodes,
which is defined as AQPL =

∑
q∈Q Lq

|Q| , where Lq is the

average distance
∑

j∈Vq
d(vq,vj)

|Vq| from query node vq to the
target nodes vj ∈ Vq for query q, |Vq| is the size of the target
nodes and |Q| is the size of evaluated queries.
C. Results and Analysis

This section discusses the experiment results of our pro-
posed model for resource discovery tasks in decentralised edge
environments, and provide a performance comparison against
the baseline methods.

1) Resource discovery evaluation: In the experiments, we
verify the correctness of node semantic proximity embedding
and the query efficiency of the studied embedding models
using real-world citation datasets.

TABLE 2: Resource discovery results on Cora dataset.
10% training 30% training 50% training

Model Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1
LINE 0.2278 0.2189 0.3387 0.2898 0.3278 0.2918
Node2Vec 0.4324 0.4217 0.4831 0.4691 0.4824 0.4084
HOPE 0.5431 0.5123 0.5622 0.5187 0.5431 0.5902
TADW 0.6323 0.5929 0.6767 0.6356 0.7123 0.6924
ICANE 0.7615 0.7421 0.7974 0.7863 0.8615 0.8393

TABLE 3: Resource discovery results on Citeseer dataset.
10% training 30% training 50% training

Model Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1
LINE 0.1861 0.1716 0.2589 0.2484 0.2946 0.2657
Node2Vec 0.2012 0.1912 0.3186 0.2975 0.3296 0.2939
HOPE 0.3144 0.2962 0.4766 0.4385 0.5186 0.4851
TADW 0.4912 0.4723 0.5509 0.5393 0.6529 0.6443
ICANE 0.5561 0.5292 0.6197 0.5815 0.7517 0.7197

TABLE 4: Resource discovery results on Pubmed dataset.
10% training 30% training 50% training

Model Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1
LINE 0.3131 0.2933 0.4127 0.3695 0.4689 0.4358
Node2Vec 0.3287 0.3191 0.4288 0.3902 0.4974 0.4605
HOPE 0.4122 0.3941 0.5164 0.4983 0.5693 0.5587
TADW 0.4974 0.4726 0.6412 0.6045 0.7384 0.7014
ICANE 0.6667 0.6491 0.7887 0.7345 0.8852 0.8673

Correctness: the performance of our model is evaluated on
a query-node matching process, which is equivalent to a multi-
label classification task. The task is to predict whether a node
can satisfy a given query using pre-trained embeddings. The
node embeddings and query embeddings are learned by the
model as the input to conduct binary classifications for each
query. For a comprehensive comparison against the baseline
methods, the training ratio for each dataset is varied from 10%,
30% to 50% and the Micro-F1 and Macro-F1 scores in the test
datasets are reported in Table 2, 3 and 4. It can be observed
from the results that our proposed ICANE model outperforms
the other models in the three network datasets. To be more
specific, structure-based embedding models, such as the LINE,
Node2Vec, and HOPE generally performed worse than the
hybrid embedding models, such as TADW and ICANE. This
is due to the fact that the structural embedding models ignores
the content and semantic proximity, inevitably leading to the
lower F1 scores during resource discovery tasks. TADW and
ICANE are both hybrid embedding methods. ICANE achieved
higher F1 scores in comparison with the TADW model. This
is due to the fact that our proposed ICANE model uses
the feature aggregation functions to significantly enhance the

higher order proximity discovery for distant nodes. Moreover,
it can be observed that the proposed ICANE model achieved
better F1 scores with a small training ratio. This can be noted
as a favourable characteristic in supervised machine learning,
as ICANE is able to learn the overarching network features
with small portion of training data.

Fig. 5: ROC curves and area under curves for three datasets.

To further evaluate the correctness against the cost, the
ROC curves are presented in Fig 5. ROC is commonly used
in information retrieval and classification, which is defined
by FPR (false positive rate) and TPR (true positive rate) to
evaluate relative trade-offs between benefits (i.e., the TPR) and
costs (i.e., the FPR). This experiment combines the FPR and
TPR from the ICANE model for the three datasets. It can be
observed that all the three ROC curves are located above the
diagonal dashed line (black), reflecting that the classification
results are better than random. Our proposed ICANE model
exhibits better performance in Cora and Pubmed datasets
with promising early retrieval of true positives, while its
performance in Citeseer dataset is mediocre due to the fact
that the size of its query embedding 128 is much smaller than
its content dimension 3, 703. The area under ROC is using a
normalised unit that equals to the probability that ICANE can
rank the randomly chosen positives higher than the randomly
chosen negatives. It is clear that the area under ROC for
three datasets are above 0.5, therefore, it is safe to conclude
that our proposed ICANE model can yield better and reliable
classification results, in other words, achieving considerable
benefits for the incurred costs. The costs (i.e., the FPR) will
increase the overheads of query routing by building up query
latency, which is discussed as follows.

Query latency: It is vital to examine latency of query in
decentralised edge environments. This experiment simplifies
the latency measurement by using average query path length
as an alternative. The assumption behind this is that query
match is conducted in a hop-by-hop process on the physical
network layer. Therefore, a less number of hops reflects a less
query response latency.
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TABLE 5: Average query path length on three datasets.

Cora Citeseer Pubmed
LINE 13.94 11.67 30.14
Node2Vec 12.32 13.46 25.41
HOPE 14.57 12.84 18.23
TADW 8.49 9.24 12.42
ICANE 5.89 7.27 9.35

Table 5 shows the AQPL measurement for the embedding
models based on the three datasets. A given query is first
measured in the embedding space and then the most similar
nodes are selected using Equation (1). Furthermore, the query
path length is measured on the original network from the query
node to the predicted nodes. It is evident that our proposed
ICANE model achieves shorter query path lengths than the
baseline methods. This also highlights the dependability of
our proposed model in dynamic realistic edge environments
with less query latency. The following characteristics can be
postulated as the reasons for the better performance of our
proposed model: (1) ICANE can persevere the higher-order
semantic proximity of the network nodes, and (2) The query
search is enhanced when node structure and content attributes
are considered in the same embedding space. Thus, the query
matching process in embedding space can aid more efficient
resource discovery in dynamic edge networks.

Fig. 6: Visualisation of ICANE Embedding on Cora dataset.

(a) Categorical accuracy curve. (b) Loss curve.
Fig. 7: Accuracy and loss of ICANE Embedding on Cora
dataset.

2) Embedding visualisation - a demo on Cora: Due to the
space limitation, this sub-section only presents the experiments
conducted based on the Cora network as a case study to
visualise the high-dimensional network representation using
t-SNE [30]. The visualisation of network embedding is shown

in Fig 6. The colours in the graph represents the class label
of each node. There are seven class labels in the Cora dataset.
It can be observed that our proposed ICANE model achieves
compact and separated clusters in the embedding space. Fig 7a
shows the accuracy of node classification in both training and
test datasets. Besides, Fig 7b depicts the loss in Equation (2)
in the training and test dataset. The two curves are close
together until the 4-th epoch and separates after the 6-th epoch,
where an epoch represents one forward pass of all the training
parameters to the next layer in the neural network. ICANE
utilises a neighbourhood sampling method to achieve good
training parameters for the unseen data in the test dataset,
which significantly avoids the over-fitting issues [35] in the
neural networks.

VI. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

This paper proposed ICANE, an inductive content aug-
mented network embedding model, to preserve higher-order
structural and semantic content proximity in large-scale de-
centralised networks leveraged by artificial intelligence tech-
niques. ICANE can effectively learn the embedding function
to generate a low dimensional vector representation of com-
plex networks in an inductive way. Furthermore, a semantic
proximity search method has been proposed to locate the top-k
relevant nodes using the learned network representation. Ex-
periments conducted based on three network datasets demon-
strate that our proposed method significantly outperforms the
popular baseline models for resource discovery tasks in terms
of the achieved query correctness and in reducing the query
latency.

As a part of future work, we plan to explore the following:
(1) extend the implementation of the proposed ICANE model
with dynamic network analysis, and (2) perform better model
optimisation and regulation for heterogeneous resource rep-
resentations, (3) deploy and evaluate our model in industrial
edge computing environments.
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