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Analyzing the Impacts of Urbanization and Seasonal
Variation on Land Surface Temperature Based on
Subpixel Fractional Covers Using Landsat Images

Youshui Zhang, Heiko Balzter, Bin Liu, and Yajun Chen

Abstract—Impervious surface areas (ISAs) and vegetation are
two major urban land cover types. Estimating the spatial distribu-
tion of ISA and vegetation is critical for analyzing urban landscape
patterns and their impact on the thermal environment. In this pa-
per, linear spectral mixture analysis (LSMA) is used to extract their
respective subpixel land cover composition from bitemporal Land-
sat images and the accuracy of the fractional covers is assessed
with a subpixel confusion matrix at the category level and the map
level by comparing with the reference data from high-resolution
images. The percent ISA was divided into discrete categories rep-
resenting different urban development density areas. Mean land
surface temperature (LST) is calculated for each ISA category to
analyze the thermal characteristics of different levels of develop-
ment in the urban area of Fuzhou, China. ISA and vegetation
variations are also quantified between different ISA categories and
different dates. The contribution index is also calculated based on
each ISA category to analyze the impact of different landscape
patterns on the urban thermal environment. The results show that
ISA category is an important determinant of the urban thermal en-
vironment. Furthermore, seasonal variations significantly impact
the strength of this relationship. In the study area, the contribution
indices were highest in the 90%–100% ISA category in summer
2013 and early spring 2001. The analytical methodologies used in
this study can help to quantify urban thermal environmental func-
tions under conditions of urban expansion and explore the climate
adaptation potential of cities.

Index Terms—Contribution index (CI), fractional vegetation
cover (FVC), land surface temperature (LST), linear spectral un-
mixing, percent impervious surface area (ISA), subpixel confusion
matrix, urban heat island (UHI).

I. INTRODUCTION

THE change from nonurban land cover (pervious surfaces
such as grass, forest, water body, crop field, etc.) and to
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urban land cover (such as impervious surfaces) can result in
significant environmental impacts in cities including locally in-
creased land surface temperature (LST), reduced evapotranspi-
ration, more surface runoff, increased storage and transfer of
sensible heat, and deterioration of air quality [1], [2]. These
changes have a significant influence on human health and the
urban environment [3], [4]. LST change is a key area of urban
climate research [5], [6]. The relationship between the LST and
urban landscape patterns is the focus of many studies of the ur-
ban heat island (UHI) effect [7]–[9]. Therefore, the impacts of
the changes of urban impervious surfaces and vegetation, on the
variability of the urban thermal environment in different seasons
needs to be investigated in order to mitigate the UHI effect and
adapt effectively to climate change.

With the advance of remote sensing technology, it is possible
to study urban thermal environments using satellite remote sens-
ing data. Images from the Landsat series are often used to detect
spatiotemporal variations of urban impervious surface, vegeta-
tion, and LST [10], [11]. To mitigate the UHI effect and adapt
urban areas to climate change, we need to know how changes in
impervious surface area (ISA) and vegetation cover contribute
to urban LST. Per-pixel classifiers cannot handle heterogeneous
urban landscapes effectively at the Landsat resolution because
of the mixed-pixel problem [12]. This hampers an accurate anal-
ysis of the often fine-scale spatial structure of urban landscapes
and its thermal characteristics. Subpixel approaches provide a
good way to characterize the heterogeneity present in urban
landscape patterns [13]–[15]. Subpixel fractional cover types,
such as percent ISA and fractional vegetation cover (FVC), can
be used to characterize urban land cover patterns in more detail
[16], [17]. Percent ISA and FVC can provide complementary
metrics to the traditionally applied land cover types for urban
thermal environment analysis [8]. The vegetation–impervious–
soil (VIS) model addresses the mixed-pixel problem in urban
area [18]–[20]. Continuous percent ISA information can reveal
areas of urban development with varying densities and patterns
[11]. Linear spectral mixture (LSM) models are often used to
extract the subpixel impervious surface, vegetation, and soil.

Accuracy assessments of hard classifications commonly use
an error matrix or confusion matrix [21]. It quantifies the agree-
ment between the reference data and the classified map [22].
In the error matrix, some descriptive and analytical statisti-
cal techniques such as overall accuracy (OA), user’s accu-
racy (UA) and producer’s accuracy (PA), and kappa coefficient
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of agreement (κ) are commonly used to assess the accuracy.
Soft classifiers based on spectral unmixing analysis, probability
theory, artificial neural networks, expert systems, and decision
tree regression are increasingly being used [23]. However, meth-
ods for accuracy assessment of subpixel fractional cover from
soft classification are still under development [22]. Methods
for subpixel land cover types generally involve scatterplots of
predicted versus observed values, correlation analysis, bias es-
timation, root-mean-square error, etc. Here, we use a subconfu-
sion matrix to assess the accuracy of subpixel fractional covers
derived from spectral unmixing.

Many studies analyzed the impact of urban land cover change
on LST [24], [25]. Percent ISA and FVC have been used to
analyze the spatiotemporal patterns of LST [4], [8], [11], [17],
[26], [27], and the results of these studies have shown that
percent ISA and FVC provide complementary information to
hard classified land cover types. However, based on percent
ISA categories of areas with varying densities, the effects of
composition of urban ISA and green spaces on LST are not well
understood. Therefore, based on different ISA categories, the
variations of fractional covers of ISA and vegetation area on
LST need to be measured to analyze the impact of variations of
urban development density on the urban thermal environment.

In this study, we selected Fuzhou city in Eastern China as the
study area. Linear spectral mixture analysis (LSMA) was used to
extract subpixel fractional cover data from the two periods, and
a subconfusion matrix was used to analyze the accuracy of the
extracted fractional covers by comparing with reference data.
Urban thermal patterns were analyzed by mean percent ISA,
mean FVC and mean LST based on different ISA categories.

The aim of this study was to analyze the spatiotemporal pat-
terns of urban landscapes and their influence on urban LST,
and the contributions of different ISA categories to the urban
thermal environment. The intended impact of the research is to
help the city in adapting effectively to climate change impacts
on urban thermal environments.

II. STUDY AREA AND DATA

Fuzhou City is located on the southeastern coast of China (see
Fig. 1). The population of Fuzhou is rapidly increasing (from
6.5 million in 2001 to 7.1 million in 2013) leading to rapid urban
expansion. Driven by fast economic growth and population
increase, Fuzhou has experienced rapid urbanization in the
past 30 years, along with a drastic transformation of the urban
landscape patterns and environment. The city has a subtropical
humid climate, and the vegetation cover in the region is predom-
inantly evergreen and the FVC is almost invariable in different
seasons. Compared with the hot summer climate, the weather of
Fuzhou in spring, autumn and winter are relatively cool and the
weather variations between spring, autumn and winter are not as
large. Therefore, bitemporal images, a Landsat 7ETM+ image
(acquired on March 4, 2001), and a Landsat 8 Operational
Land Imager (OLI) and thermal infrared sensor (TIRS) images
(acquired on August 4, 2013) were selected to quantify the
seasonal distributions of urban landscape patterns and LST for
the two major characteristic climatic seasons. The bands 1–5

and 7 of ETM+ image have a spatial resolution of 30 m, and
the thermal infrared band (band 6) has 60 m for ETM+. The
bands 1−7 of OLI have a spatial resolution of 30 m, while 100
m for the thermal infrared bands (bands 10 and 11) for TIRS.

An IKONOS multispectral image (acquired on October 29,
2000) with 4 m spatial resolution and a Chinese ZY-3 multi-
spectral image (acquired on March 4, 2013) with 5.8 m spatial
resolution were used as ancillary data to analyze the urban land
cover patterns and accuracy assessment. The IKONOS and ZY-3
images were reprojected to the Universal Transverse Mercator
(UTM) projection. The seasonal ETM+/OLI/TIRS images were
also georeferenced to a common UTM coordinate system based
on the geocoded IKONOS and ZY-3 images. The RMSE of the
georectification was <0.3 pixels (<9 m). Using the atmospheric
correction method of the FLAASH package in ENVI, the visible
and near-infrared bands of ETM+/OLI images were converted
to land surface reflectance.

III. METHODOLOGY

The methodology for this study consists of four steps. Step 1
includes LST retrieval and fractional covers retrieval using
LSMA. Step 2 includes accuracy assessment of subpixel frac-
tional covers with a subconfusion matrix, and then fractional
cover change analysis for each ISA category. Step 3 analyzes the
bitemporal relationships between mean LST, FVC, and percent
ISA based on different ISA categories related to urban devel-
opment density. Step 4 explores the contributions of each ISA
category to the regional thermal environment. To demonstrate
the process of the study, a flowchart is illustrated in Fig. 2.

A. Landsat LST Retrieval

The radiative transfer equation was used to retrieve LST from
the Landsat data. This method has three steps [11], [27], [28]:
Step 1 is to convert the digital numbers of thermal bands to top-
of-atmosphere (TOA) radiance using the following formula, for
the Landsat 7 ETM+ image:

Lλ = [(Lmax − Lmin)/(Qcalm a x
− Qcalm in

)]

× (Qcal − Qcalm in
) + Lmin (1)

where Lλ is the TOA radiance image of the thermal band,
Lmax = 17.04 W/(m2srμm), Lmin = 0, Qcalm in

= 1, and
Qcalm a x

= 255, Qcal is the pixel digital number for thermal
band 6. Similar to (1), for Landsat 8 TIRS images, TIRS band
data can be converted to TOA spectral radiance as

Lλ = MLQcal + AL (2)

where ML is the band-specific multiplicative rescaling factor
and AL is the band-specific additive rescaling factor. ML and
AL are provided in the metadata file of the Landsat 8 data. Lλ

and Qcal in (2) are the same as those in (1).
Step 2 is to convert TOA radiance of the thermal band to

surface-leaving radiance using the atmospheric correction tool
MODTRAN 4.1 to remove the effects of the atmosphere [29].
The surface-leaving radiance LT is calculated as follows [30]:

LT = (Lλ − Lμ − τ (1 − ε) Ld)/τε (3)
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Fig. 1. Location of the study area (left) and the Landsat 8 OLI image shown in RGB (right).

Fig. 2. Flowchart showing the steps in the study.

where Lμ , τ , and Ld are, respectively, the upwelling radiance,
atmospheric transmission, and downwelling radiance. ε is the
emissivity of the surface related to the target type. ε can be
calculated based on the normalized difference vegetation index
(NDVI) and land cover types [31], [32]. Therefore, ε is the
emissivity map of the surface with 30 m resolution. In (3),
Lμ , Ld , and τ are scalars. Therefore, (3) is also a process of
merging Lλ and ε maps, and the resolution of LT is 30 m
whatever LT is calculated on ETM+ band 6/TIRS bands 10
and 11. Because the acquisition date of ETM+/TIRS is after
January 2000, the thermal band atmospheric correction using
MODTRAN is available at http://atmcorr.gsfc.nasa.gov/.

In the final step, the radiance is converted to LST using the
Landsat-specific estimate of the Planck curve as follows [33]:

LST =
k2

ln[(k1/LT ) + 1]
(4)

where LST is the temperature in Kelvin (K) and K1 and K2 are
the prelaunch calibration constants. In this study, K1 and K2
are listed in Table I.

The product information for Landsat 8 at the web-
site http://landsat.usgs.gov/Landsat8_Using_Product.php on
November 14, 2013, states the larger uncertainty in the band 11

TABLE I
CALIBRATION CONSTANTS K1 AND K2 FOR LANDSAT ETM+/TIRS DATA

Landsat 7 ETM+ Landsat 8 Band 10 Landsat 8 Band 11

K1 666.09 W/(m2srμm) 774.89 W/(m2srμm) 480.89 W/(m2srμm)
K2 128.71 K 1321.08 K 1201.14 K

values and recommends using band 10 data to retrieve LST.
Therefore, in this study, in order to derive LST accurately, a sin-
gle spectral band TIRS band 10 data was used to retrieve LST
as that of the LST retrieval of the band 6 of Landsat 7 ETM+.
Fig. 3 shows the LST of the study area in the imagery obtained
in 2001 and 2013.

B. Spectral Unmixing

The subpixel technique of LSMA can be used to extract frac-
tional land cover values from ETM+/OLI imagery. The LSMA
approach assumes that the reflectance of every pixel at each
spectral band is a linear combination of the reflectance of all
endmembers within the pixel and that the spectral proportions
of the endmembers represent proportions of the area [34]–[36].
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Fig. 3. LST retrieved from the (a) ETM+ image acquired on March 4, 2001, and (b) TIRS image acquired on August 4, 2013.

The spectral reflectance in band i can be described as

Ri =
n∑

k=1

fiRik + εi (5)

where n is the number of endmembers, fk the fraction of end-
member k within the pixel, Rik the reflectance of endmember k
in band i, and εi is the residual error for band i. The fractions
of one pixel must sum to 1 and all fractions must be �0. These
conditions are described by

n∑

k=1

fk = 1, fk ≥ 0 for k = 1, . . . , n. (6)

Applying a least squares technique, the fractional cover of each
component can be estimated by (5) and (6).

Accurate endmember selection is crucial for the success of the
LSMA for extracting fractional covers [37], [38]. As the purest
pixels in the image, image endmembers can be derived from the
extremes of the image feature space by visualization technique.
More endmembers can explain more spectral variation and in-
crease model fitness. However, too many endmembers make
the mixture model sensitive to endmember selection and may
not be generally applicable [39]. As the VIS model suggests,
the urban environment can be assumed to consist of four com-
ponents: water, vegetation, impervious surfaces, and soil [40].
Because the water endmember is not directly relevant to urban
land cover composition and the spectra of water are similar to
those of low-albedo ISA, The water surfaces were masked out
from the images based on visual interpretation before spectral
unmixing.

There are two main methods to select endmembers for
spectral unmixing, namely, reference endmembers measured
in a laboratory or in field conditions and image endmembers
derived from the image itself [41]. In this study, ground cover
spectra were not available. Thus, image endmembers were
derived from the imagery. A variety of methods are used to
determine endmembers from the image itself [42], [43]. Here,
image endmembers were derived by the pixel purity index
(PPI) and the extremes of the image feature space. A minimum

noise fraction (MNF) transformation was initially applied to the
imagery to reduce inherent noise. In applying the PPI analysis
to MNF output to rank the pixels based on relative purity
and spectral extremity, the PPI was computed by repeatedly
projecting n-dimension scatterplots on a random unit vector
and the algorithm records the extreme pixels in each projection
and the total number of times that each pixel was marked as
extreme. By setting a PPI threshold, the region of interest (ROI)
of pure pixels was determined. Within this ROI, endmember
classes were selected by choosing pixels at the edges of the
point cloud in three-dimensional scatterplots of the first three
bands as pure pixels. All LSMA procedures were undertaken
in ENVI 4.5.

The spectral response of the impervious component in the
urban environment varied widely. The analytical results of
[39] showed an analysis of relationships between impervious
surfaces and endmembers that impervious surfaces are likely
located on or near the line connecting the low-albedo and
high-albedo endmembers in the feature space diagram, and
impervious surfaces can be represented by high or low-albedo
endmembers. In this study, four endmembers were defined:
vegetation, high-albedo impervious surfaces (such as concrete),
low-albedo impervious surfaces (such as asphalt), and soil.
With the LSMA model, a constrained least-squares solution was
applied to spectrally unmix to get four fractional maps. The high-
albedo and low-albedo ISA were summed to an image of total
percent impervious surface. The fraction images for vegetation,
ISA and soil in two dates were generated, as shown in Fig. 4.
In Fig. 4(a), the sample plots delineated with “+” represent test
sites for accuracy assessment, and the same location plots were
also used for accuracy assessment for Fig 4(b)−(f). Although
the high-albedo fractional ISA also included some fractional
bare soil areas, bare soil areas [see Fig. 4(c) and (f)] are mainly
distributed alongside the river and, therefore, do not have a
significant effect on the estimation of the percent ISA. The frac-
tional cover maps provide a measure of the physical properties
of the urban land cover types at different dates, thereby helping
reveal the subpixel changing patterns of urban land cover
composition.
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Fig. 4. Fraction cover images generated from the LSMA model in 2001 and 2013: (a) fractional impervious surface in 2001; (b) fractional vegetation in 2001;
(c) fractional soil in 2001; (d) fractional impervious surface in 2013; (e) fractional vegetation in 2013; (f) fractional soil in 2013.

C. Accuracy Assessment With a Subconfusion Matrix

In this study, the accuracy of fractional covers derived from
ETM+/OLI imagery by LSMA was, respectively, assessed by
comparing the fraction estimates in selected test areas with
the reference data extracted from the high-resolution IKONOS

(with 4 m spatial resolution) and ZY-3 (with 5.8 m spatial reso-
lution) imagery. A subconfusion matrix was used to assess the
accuracy subpixel fractional covers by comparing the fraction
covers derived by LSMA with corresponding reference data
derived from the high-resolution IKONOS and ZY-3 imagery.
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The iterative self-organizing data analysis technique (ISO-
DATA) was used to extract land cover types from the IKONOS
and ZY-3 imagery, respectively, and further to select test areas
as reference data. This approach was feasible because the two
dates in which the IKONOS and ZY-3 imagery acquired were
nearly the same date as the corresponding ETM+/OLI imagery
acquired, in which the land cover nearly did not change be-
tween the two dates. A set of 25 sampled data were selected as
reference data to assess the accuracy of the subpixel fractional
covers derived from ETM+/OLI imagery by LSMA. The ISA
and vegetation extracted from high-resolution reference imagery
were converted to the percentage cover of ISA and vegetation at
30 × 30 m2 blocks and the reference data of high-resolution
IKONOS and ZY-3 imagery were matched to the position of
the corresponding pixels of ETM+/OLI data. The sample areas
labeled as “+” in Fig. 4 show the locations of the field sites.

The conventional error matrix method is rarely used in ac-
curacy assessment for soft classifications, because each pixel
in a subpixel map has partial simultaneous membership of sev-
eral classes, which overrides the assumption in the error matrix
method for accuracy assessment of hard classification that a
pixel belongs only to a single class [44]–[46]. In this study,
the subpixel confusion matrix (SCM) for soft classification is
used to assess the accuracy of the derived fraction covers by
LSMA. Some statistical indices such as oa, κ, UA, and PA are
calculated in the subpixel confusion matrix based on fractional
values of different land covers. As with the error matrix for hard
classifications, there are also two steps to calculate the SCM.
The first step is to calculate the agreement of each class for di-
agonal elements according to the minimum rule [when i = j,
(7)], because the agreement cannot be more than the minimum
value of the two proportions. The second step is to calculate
the disagreement between each class for off-diagonal elements
according to (7) (when i �= j)

Pnij =

⎧
⎨

⎩

min (cni , rnj ) , i = j

(cni − pnii) ∗
[

rn j −pn j j∑ k
j = 1 (rn j −pn j j )

]
, i �= j

(7)

where cni is the classified cover proportion of class i in sam-
pled pixel n and rnj is the reference cover proportion of class
j in the pixel based on field measurements. cni − pnii is the
disagreement in pixel n of a classification for class i, which
denotes the commission proportion of the classification. Simi-
larly, rnj − pnjj is the disagreement in pixel n of the reference
map for class j, which denotes the omission proportion of the
classification.

Each sampled pixel can be constructed an SCM; the final
SCM is constructed by averaging the SCMs for all sampled
pixels. The structure of the subconfusion matrix is similar to
the confusion matrix calculated from hard classification classes.
Taking three classes derived by LSMA as an example, the struc-
ture of the subconfusion matrix for three classes is given in
Table II.

In Table II, the values of P are expressed in percent. UA rep-
resents the proportion of commission errors, and PA represents
the proportion of omission errors; UA and PA are calculated for

TABLE II
STRUCTURE OF THE SUBCONFUSION MATRIX FOR FRACTIONAL COVERS

Reference

Class 1 Class 2 Class 3 Row Total UA

Classification Class 1 P1 1 P1 2 P1 3 C1 P1 1 /C1

by LSMA Class 2 P2 1 P2 2 P2 3 C2 P2 2 /C2

Class 3 P3 1 P3 2 P3 3 C3 P3 3 /C3

Colum total R1 R2 R3 1
pa P1 1 /R1 P2 2 /R2 P3 3 /R3

OA =
∑ k

j = 1 pj j = P1 1 + P2 2 + P3 3 , κ = [
∑ k

j = 1 pj j − ∑ k
j = 1 (rj ∗

cj )]/ [1 − ∑ k
j = 1 (rj ∗ cj )], k = 3.

each class as

UAj = pjj /cj (8)

PAj = pjj /rj . (9)

UA and PA are at category level, and the values of two indices
are in the range 0−1. A greater value denotes a higher classifi-
cation accuracy of that class. On the other hand, OA and κ are
at the map level. The range of OA and κ are also in the range
0−1, with large values representing higher accuracy.

D. Creation of Fractional ISA Categories

In order to accurately analyze urban landscape patterns and
quantify the impacts of ISA on the urban thermal environment,
percent ISA was divided into discrete categories representing
different levels of urban development. A range approach was
used to group pixels based on fractional values of ISA. Each
pixel was assigned to one of the ten equal ISA categories
(0%−10%, 10%−20%, 20%−30%, . . . , 90%−100%). In gen-
eral, the higher value of the percent ISA, the higher level of
urbanization. Based on each ISA category, mean LST, mean
percent ISA, mean FVC, areas of ISA, and vegetation cover can
be calculated and analyzed. Grouping fractional covers in this
manner facilitates an analysis of urban landscape pattern varia-
tions by ISA category and image date. The observed urban LST
in each ISA category can be calculated, and the spatial patterns
of the urban thermal environment can be analyzed for different
urban densities. In this study, the area of percent ISA > 10%
was defined as “urban area” and the area of 0%−10% ISA was
defined as “rural area.”

E. Contributions of the Landscape Pattern in Each ISA
Category to the Urban Thermal Environment

Urbanization can increase LST by surface sealing from urban
land encroachment into other landscapes that previously reduced
the local LST [2], [47], [48]. However, each type of urban ex-
pansion pattern makes a different contribution to the process in
different seasons [2]. In this study, we observed an increasing
trend of UHI intensity with the urban expansion from 2001 to
2013. It is necessary to further explore the formation mech-
anisms of the thermal environment in different ISA categories
with the urban expansion. It is inappropriate to directly compare
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LST values between different periods because the multitemporal
imagery was acquired in different climatic conditions and dif-
ferent seasons. Therefore we used the average LST differences
between the different urban development density areas and the
entire urban area rather than absolute LST changes. The pro-
portions of the area of research objects were calculated initially
(i.e., the proportions of each ISA category area in urban area).
Based on this information, we can estimate how changes in ur-
ban landscape pattern contributed to the change in entire urban
LST. We then estimated the contribution of landscape pattern
in each ISA category to the net increase or decrease in regional
temperature dynamics. This analysis is valuable for spatially
and temporally evaluating the contribution of each landscape to
the UHI intensity.

In this study, the average LSTs of each ISA category and
the entire urban area were calculated, and the contributions
of the surface cover types to the urban thermal environment
were estimated. The contribution index (CI) was calculated as
follows:

CI = LSTdif ∗ S (10)

where CI is the contribution of the each ISA category to the
regional LST, LSTdif is the average LST difference between
the functional zone or the landscape and the entire area, and S
is the proportion of the area.

The area of the different ISA categories significantly affects
the magnitude of the CI. If the role of each ISA category is
determined, it will be helpful for finding ways to improve the
thermal environment according to the spatial patterns within
each ISA category.

IV. RESULTS AND DISCUSSION

A. Accuracy Analysis of the Subpixel Classes

Using fractional covers derived from the high-resolution im-
agery as validation data, the accuracy of fractional covers de-
rived by LSMA from Landsat imagery was analyzed. Similar
to the confusion matrix for hard classification, subpixel confu-
sion matrix calculated based on the fractional values was used
to assess the accuracy for the subpixel values. Based on (7),
the accuracy of each pixel can be constructed with a subcon-
fusion matrix as in Table II. If many data points are used in
calculating the tables of the subpixel confusion matrix, the com-
putational steps become time intensive. Therefore, 25 sampled
representative pixels shown in Fig. 4(a), with corresponding
reference fractional data derived from high-resolution IKONOS
and ZY-3 imagery, were, respectively, selected to construct 25
subpixel confusion matrices with fractional covers for accuracy
assessment. The final subpixel confusion matrix was calculated
by averaging the subpixel confusion matrices of the 25 sampled
pixels. The accuracy of the 25 sampled pixels can represent the
accuracy of the whole study area. The results are illustrated in
the subpixel confusion matrices as in Tables III and IV.

In Tables III and IV, UA and PA were derived to analyze the
accuracy of each endmember at category level. UA of ISA and
vegetation are, respectively, �82.1% in Table III and �83.1%

TABLE III
AVERAGE SUBCONFUSION MATRIX FOR THE ACCURACY ASSESSMENT OF THE

FRACTIONAL COVERS EXTRACTED FROM ETM+ IMAGE IN 2001

Reference

Impervious Vegetation Bare Row UA (%)
Surface Soil Total

Classification Impervious surface 0.687 0.031 0.072 0.79 87.0
Vegetation 0.021 0.119 0.002 0.142 82.1
Bare soil 0.015 0.002 0.051 0.068 75.0

Column total 0.723 0.152 0.125 1
PA (%) 95.0 78.3 40.8

OA = 0.857; κ = 0.641.

TABLE IV
AVERAGE SUBCONFUSION MATRIX FOR THE ACCURACY ASSESSMENT OF THE

FRACTIONAL COVERS EXTRACTED FROM OLI IMAGE IN 2013

Reference

Impervious Vegetation Bare Row UA (%)
Surface Soil Total

Classification Impervious surface 0.699 0.036 0.051 0.786 88.9
Vegetation 0.026 0.133 0.001 0.16 83.1
Bare soil 0.009 0.002 0.043 0.054 79.6

Column total 0.734 0.171 0.095 1
PA (%) 95.2 77.8 45.3

OA = 0.875; κ = 0.680.

in Table IV. PA of ISA and vegetation are, respectively, �78.3%
in Table III and �77.8% in Table IV. Tables III and IV indicate
a high classification accuracy of the two classes (percent ISA
and percent vegetation) deviation and relatively little confusion
with other classes. The accuracy of fractional bare soil deviation
is the lowest in Tables III and IV. Spectral confusion resulted in
misclassification and impacted the accuracy of fractional covers
derivation. Tables III and IV show that spectral confusion re-
sulted in misclassifying percent ISA, vegetation, and bare soil by
the LSMA model, major confusion for ISA occurred with bare
soil classes. The UA and PA of fractional bare soil are, 75.0%
and 40.8% for 2001 in Table III and, respectively, 79.6% and
45.3% for 2013 in Table IV. For fractional vegetation deviation,
UA and PA are, respectively, 82.1% and 78.3% in Table III and
83.1% and 77.8% in Table IV, and the misclassification rates of
vegetation were lower than those of bare soil. If the UA of one
fractional cover is low, the probability that the other fractional
cover types are incorrectly classified as this type (commission
errors) is relatively high. And if the PA of one fractional cover
is also low, this indicates that this fractional cover type has a
high probability of being incorrectly classified as another type
(omission errors). In this study, the UA and PA accuracies of
fractional bare soil deviation were low, which impacted the
overall accuracy of Tables III and IV.

Comparing the UA and PA of ISA and vegetation, in general,
the accuracies of the fractional ISA and vegetation cover were
slightly higher from Landsat 8 OLI image in 2013 (see Table IV)
than for the fractional covers derived from ETM+ in 2001 (see
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TABLE V
TOTAL AREAS OF ISA AND VEGETATION (KM2), MEAN LST AT EACH PERCENT ISA CATEGORY OF URBAN AREA IN 2001 AND 2013

2001 2013

Percent ISA Area of ISA Area of Vegetation Mean LST (K) Area of ISA Area of Vegetation Mean LST (K)

10%−20% 2.35 6.97 287.5 6.28 25.02 304.3
20%−30% 6.02 11.58 288.1 12.46 29.31 304.3
30%−40% 13.52 17.26 288.5 24.36 37.10 304.7
40%−50% 20.21 21.26 288.5 31.95 36.01 304.8
50%−60% 31.51 20.66 288.8 40.74 22.73 305.3
60%−70% 36.16 17.12 289.2 45.68 14.76 306.2
70%−80% 39.66 11.50 289.5 50.7 9.98 306.7
80%−90% 34.38 6.63 289.9 47.56 6.21 306.9
90%−100% 49.49 5.57 290.6 65.29 6.66 307.3
Total area 233.3 118.55 326.03 187.78

Table III). Table IV shows that bare soil spectra were also a
source of confusion with ISA. As in Table III, ISA was partly
confused with bare soil, and vice versa. The misclassification
of these cover types degraded the accuracy of ISA, especially
the bare soil. The main reason of the bare soil misclassification
is that it is difficult to select bare soil endmembers to develop
an optimal spectral library for spectral unmixing because the
spectral characteristics of bare soil can be similar to those of
bright ISA. Another type of class confusion was also found
between dark vegetation impacted by shadow and dark ISA.

The oa and κ were also calculated for fraction endmembers.
Though UA or PA of some classes in Table III were higher than
those in Table IV, the oa and κ are 0.875 and 0.680, respec-
tively, in Table IV, higher than 0.857 and 0.641 in Table III. The
comparison of Tables III and IV showed that fractional covers
derived from the ETM+ image generally lead to more commis-
sion and omission errors than those derived from the OLI image.
The accuracy of bare soil is low in Tables III and IV because we
selected sample pixels of urban area for accuracy assessment.
From Fig. 4(c) and (f), it is apparent that high fractional bare soil
areas are located outside of the urban area, especially the areas
alongside the river. If the sampled pixels in high fractional bare
soil areas are selected, the accuracy of fractional bare soil will
be higher. In general, considering the heterogeneity of the urban
landscape pattern, the results showed that endmember fractions
derived by LSMA model are a good representation of reality in
the study area, and it is applicable to use subconfusion matrix
to analyze the accuracy of subpixel fractional covers.

B. Percent ISA Categories, FVC, and LST

Fig. 4 shows that the 0%−10% ISA category is mainly lo-
cated in the rural areas of the study area (fringe of the urban
area) and the dominant landscape is forest. Obviously, this zone
had the lowest level of urbanization among all the ISA cate-
gories. Urban land surface characteristics are primarily repre-
sented by impervious surface and pervious surface (especially
the vegetation cover). In this study, the vegetation cover was
calculated for all ISA categories with >10% fractional cover to
characterize the change of urban landscape patterns and further
to analyze the urban thermal environment. The mean LST and
the areas of ISA and vegetation were calculated for each urban

ISA category, as shown in Table V. Area covered by impervious
surface/vegetation for each ISA category was calculated by sum-
ming the total fractional area of impervious surface/vegetation
within that category. The area of impervious surface/vegetation
in each pixel was calculated by multiplying the fractional value
with the pixel area of 30 × 30 m2, and then the total area was
accumulated by the area of each pixel in each ISA category.

The nine urban ISA categories generally differed in land
cover compositions (see Table V). The total area of urban ISA
(233.3 km2 in >10% ISA areas) in 2001 was less than that in
2013 (326.03 km2), which indicates significant urban landscape
pattern changes resulting from urban expansion over this time
period. Table V shows that the level of urbanization increased
mainly in all the >30% ISA categories, especially 80%−90%
and 90%−100% ISA categories between 2001 and 2013. From
2001 to 2013, the areas of impervious surface, respectively,
increased from 34.38 to 47.56 km2 for the 80%−90% ISA cate-
gory and 49.49 to 65.29 km2 for the 90%−100% ISA category.
Though the areas of ISA also increased for the 10%−20% and
20%−30% ISA categories between the two dates and rates of
increase were higher, the increased area is relatively small. It
was concluded that urban expansion and the changes of urban
landscape patterns mainly occurred for the >30% ISA cate-
gories between 2001 and 2013. Table V shows that the area of
impervious surface increased by over 9 km2 for each >30% ISA
categories between the two dates.

ISA and vegetation cover vary remarkably between the core
of the city and its periphery. ISA increases at the periphery
of the city due to urban expansion. Table V indicates the con-
current changes of vegetation areas at different percent ISA
categories at the two dates. Comparing the area of impervious
surfaces between the two dates, the area of urban vegetation in-
creased markedly in all the 10%−50% (10%−20%, 20%−30%,
30%−40%, and 40%−50%) ISA categories. Table V also shows
that the rate of increase of vegetation cover in all the 10%−50%
ISA categories was higher than the ISA increase, suggesting
that the urbanization during this period was accompanied with
urban greening. Vegetation covered landscapes in urban areas
were more interspersed with the various developed urban areas
in 2013 in comparison to 2001 as a result of higher attention to
urban greening as urban expansion continued. Because of ur-
ban expansion in the peri-urban vegetation area, the vegetation
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TABLE VI
TRANSITION MATRIX OF ISA CHANGE FOR EACH DISCRETE ISA CATEGORY IN FUZHOU BETWEEN 2001 AND 2013 (KM2)

2001 2013 0%−10% 10%−20% 20%−30% 30%−40% 40%−50% 50%−60% 60%−70% 70%−80% 80%−90% 90%−100%

0%−10% 0.55 2.32 3.6 6.15 6.51 4.72 4.04 5.44 4.34 5.75
10%−20% 0.05 2.35 0.30 0.31 0.42 0.43 0.37 0.49 0.42 0.92
20%−30% 0.07 0.30 6.02 0.82 0.84 0.61 0.33 0.63 0.85 0.61
30%−40% 0.09 0.28 0.64 13.52 1.13 0.84 0.76 1.01 1.30 1.18
40%−50% 0.08 0.27 0.52 1.15 20.21 1.01 1.06 0.91 0.98 0.97
50%−60% 0.07 0.24 0.63 1.01 0.86 31.51 0.80 0.82 1.25 1.39
60%−70% 0.04 0.22 0.33 0.79 0.64 0.32 36.16 0.61 1.02 1.48
70%−80% 0.03 0.14 0.21 0.32 0.48 0.65 0.86 39.66 2.13 1.71
80%−90% 0.02 0.10 0.13 0.19 0.57 0.43 0.90 0.59 34.38 1.79
90%−100% 0.01 0.06 0.08 0.10 0.29 0.22 0.40 0.54 0.89 49.49
Total area 1.01 6.28 12.46 24.36 31.95 40.74 45.68 50.7 47.56 65.29

area in the 0%−10% ISA categories in 2001 were replaced by
ISA in the 10%−20%, 20%−30%, 30%−40%, and 40%−50%
ISA categories in 2013. Fig. 3 also shows this trend. However,
in the 60%−70%, 70-%−80%, and 80%−90% ISA categories,
vegetation slightly decreased as ISA slightly increased with the
urban expansion in this period. Table V shows that the greatest
increase in ISA occurred in the 90%−100% ISA zone, from
49.49 km2 in 2001 to 65.29 km2 in 2013, indicating that high
density urban development was the main mode of urbanization
during this time period.

ISA and vegetation are the two primary urban land cover
types. At the pixel scale, LST increases as coverage of ISA
expands and decreases as the vegetation coverage increases.
Concerning the mean LST in each ISA category in Table V, the
highest mean LST is 290.6 K in the 90%−100% ISA category
in 2001. However, the 90%−100% ISA category had a higher
mean LST of 307.3 K for 2013. Comparing the LST between
two dates, the LST at each ISA category in 2001 are less than
the LST in any ISA category in 2013. Though urban expansion
and urban landscape pattern change impacted the LST, the main
reason for this difference is caused by the seasonal variations.
In general, the mean LST in each ISA category in the sum-
mer of 2013 was about 17−18 K higher than in early spring
2001. Measuring LST and FVC for different fractional imper-
vious surface provides a precise characterization of the urban
landscape and LST patterns and is useful for urban ecological
planning.

C. ISA Variations Within Discrete ISA Categories

Subpixel fractional covers can reveal not only the spatial
structure of urban landscape patterns but also the change patterns
of within-class change [11]. In some urban areas, minor land
cover change may be taking place at the subpixel scale but would
not be detectable at the pixel scale using hard classification
approaches. In this study, the area of impervious surfaces within
each ISA category was calculated for two dates and the area
changing from one ISA category to another was also quantified
between 2001 and 2013. A transition matrix of ISA change
based on each percent ISA category was constructed and is
shown in Table VI.

In the study area, natural landscape patterns in the 0%−10%
ISA category are characterized by low ISA but high FVC.
Table VI shows that the 0%−10% ISA category was the main
landscape type that saw a sharp increase of surface sealing in
this period. Because of urban expansion, out of the 0–10%
ISA category, 2.32 km2 changed to 10–20% between 2001 and
2013, 3.6 km2 changed to 20–30% ISA, 6.15 km2 to 30–40%
ISA, 6.51 km2 to 40–50% ISA, 4.72 to 50–60% ISA, 4.04
km2 to 60–70% ISA, 5.44 km2 to 70–80% ISA, 4.34 km2

to 80–90% ISA and 5.75 km2 to 90–100% ISA, respectively
(Table VI.). Over the same period, landscape pattern change
between other ISA categories (10%−100% ISA categories, ur-
ban area) was relatively low compared to the landscape pat-
tern change in the 0%−10% ISA category. For the urban area,
ISA in the 30%−40% and 40%−50% ISA categories, respec-
tively, increased to >40% and >50% ISA categories and were
larger than the increase of ISA in the 50%−60%, 60%−70%,
70%−80%, and 80%−90% to other urban ISA categories.
Obviously, urban landscape patterns at 90%−100% ISA in 2001
had nearly no urbanization.

The increased urbanization during this time period was
accompanied with urban greening in some ISA categories
since 2001. This was proved by the transfer matrix in
Table VI. Taking an example of the 40%−50% ISA cate-
gory, from 2001 to 2013 about 1.01, 1.06, 0.91, 0.98, and 0.97
km2 ISA were, respectively, transferred from the 40%−50%
ISA category to the 50%−60%, 60%−70%, 70%−80%,
80%−90%, and 90%−100% ISA categories. In the same
period, about 1.15, 0.52, 0.27, and 0.08 km2 ISA, respec-
tively, were transferred from the 40%−50% ISA category to
the 30%−40%, 20%−30%, 10%−20%, and 0%−10% ISA
categories. The reason for these transitions is that vegetation-
covered landscapes in urban areas were more interspersed with
the various developed urban areas in 2013 in comparison to 2001
as a result of urban greening as urban expansion continued. With
a greater attention to ecological planning, more vegetation was
planted in some areas such as residential areas and roadsides post
2001, which resulted in slightly reducing the 40%−50% ISA
category to 30%−40%, 20%−30%, 10%−20%, and 0%−10%
ISA categories. Other ISA categories can also be analyzed as
done here for the 40%−50% ISA category.
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TABLE VII
CONTRIBUTION OF URBAN LANDSCAPE PATTERNS IN DIFFERENT ISA CATEGORIES TO THE URBAN THERMAL ENVIRONMENT

Year Urban Landscapes Based on Percent ISA

10%−20% 20%−30% 30%−40% 40%−50% 50%−60% 60%−70% 70%−80% 80%−90% 90%−100%

2001 −6.29% −6.56% −6.32% −8.51% −5.18% 0.67% 4.69% 8.14% 19.38%
2013 −10.38% −13.02% −12.44% −12.13% −4.43% 5.32% 10.1% 10.8% 26.17%

From Table VI, we conclude that urbanization mainly oc-
curred in the 0%−10% ISA category from 2001 to 2013. The
urbanization mainly encroached on the fringes of the city and
the landscape patterns were changed from non-ISA to ISA with
urban expansion. Fig. 4 shows that the extent of the urban
area in 2013 is larger than in 2001, especially in the east-
ern, southern, and western parts of the city. Compared to the
landscape pattern change in the 0%−10% ISA category, the
changes of landscape patterns between other urban ISA cate-
gories are relatively small, especially for the 10%−20% ISA
and 20%−30% ISA categories. With the extent of ISA cat-
egory expansion, urban greening can slightly decrease small
parts of the high ISA category to a low percent ISA category
(see Table VI). Though the ISA extent has not changed at pixel
scale, the vegetation weaved into the urban fabric decreases
the ISA category. The analysis of the landscape structure for
each ISA category is helpful to explore the climate adaptation
potential of different ISA categories. Though fractional cover
derived by LSMA is subject to some error sources and the ac-
curacy of fractional cover derivation impacted the analysis of
urban landscape patterns, general change trends can be observed
in Table VI.

D. Contribution of Each ISA Category to the Urban Thermal
Environment

ISA encroaching onto other landscapes contributes to a rela-
tive LST increase and impacts on the thermal environment. Due
to the seasonal variability and imaging under different atmo-
spheric conditions, it is inappropriate to directly compare urban
LST values between two dates, even in the same region. How-
ever, each type of urban landscape pattern in different regions
and even in different seasons may make a different contribution
to the thermal environment. Analyzing the contribution of urban
landscape patterns to the urban thermal environment will inform
urban planning and urban adaptation to the impacts of climate
change on cities.

In this study, we analyzed the contributions of different ISA
categories to the urban thermal environment with the urban
expansion between 2001 and 2013 (see Table VII). The contri-
bution of each urban ISA category to the entire urban thermal
environment net increase or decrease, were estimated in (10).
The thermal environment CI was defined as the mean LST dif-
ference multiplied by the proportion of the area. The mean LST
of each urban ISA category and the entire urban area (�10%
ISA area) were calculated in Table V for 2001 and 2013, and
the estimated LSTdif is the difference between the mean LST

of each ISA category to the mean LST of the entire urban area.
The proportion of the area was calculated by dividing the area
of each ISA category with the area of the entire urban ISA cat-
egories (�10% ISA). In the study area, the mean LST in the
�10% ISA area was 289.15 K in 2001 and 305.69 K in 2013.
The CI is positive with regard to the ISA categories with the
mean LST above the mean LST of the entire urban area, and
is negative with regard to the ISA categories with the mean
LST below the mean LST of the entire urban area. However,
the proportion of the area of each urban ISA category and the
area of the entire urban ISA categories also affect the magnitude
of the CI.

As shown in Table VII, the <60% ISA categories had
negative contributions to the urban thermal environment. How-
ever, the negative contributions of the 10%−20%, 20%−30%,
30%−40%, and 40%−50% ISA categories changed signifi-
cantly between the two dates in accordance with the increase of
ISA and vegetation (see Table V). One reason is that the urban
expansion with urban landscape pattern change impacted the
urban LST. In the ISA categories <60%, the rates of increase
of vegetation were higher than the increase in ISA within each
class might lead one to expect. Another important reason is the
impact of seasonal variations. The cooling effect is obvious for
the vegetation in the urban ISA categories in summer, whereas
the cooling effect was stronger in summer 2013 than in spring
2001. Therefore, the negative contributions were larger in sum-
mer than in spring in the 10%−20%, 20%−30%, 30%−40%,
and 40%−50% ISA categories. Because the urban expansion re-
sulted in an area change inside each ISA category and seasonal
variations impacted the LST difference, the negative contribu-
tion was largest in the 40%−50% ISA category in 2001 and
the 20%−30% ISA category in 2013. For the 50%−60% ISA
category, because the ISA extent and vegetation cover extent
changed little between the two dates and the mean LST at this
category were also close to the mean LST of urban area, the con-
tribution to the urban thermal environment changed only a little.

The 90%−100% ISA category had the highest LST in the
early spring of 2001 and the summer of 2013 and contributed
most to the urban thermal environment at both dates. In particu-
lar, the 90%−100% ISA category made a larger contribution to
the urban thermal environment in the summer of 2013 than in
the spring of 2001. The contributions were19.38% in the early
spring of 2001 and 26.17% in the summer of 2013. The pos-
itive contributions of the 60%−70%, 70%−80%, 80%−90%,
and 90%−100% ISA categories increased significantly between
the two dates in accordance with the observed increase in ISA
and decrease in vegetation cover in the 60%−70%, 70%−80%,
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and 80%−90% ISA categories, and the large increase in ISA
with a small increase in vegetation in the 90%−100% ISA cat-
egory. Contrary to the impacts of vegetation growth on LST,
an ISA expansion increases LST. Urban land of the >60% ISA
categories were the main contributor of heat to the regional
thermal environment in the different seasons, especially in
summer. The average LST of high density urban land was higher
than the average urban LST. The reason is that these areas have
dense buildings and little vegetation, the surface heat release
efficiency is reduced because of reflection and absorption by
the urban canopy, and there is less energy loss due to latent
heat fluxes from evaporation from impervious urban surfaces.
In addition, anthropogenic heat sources are strong in this region.
These reasons explain why there is greater heat storage in urban
surfaces.

As shown by this analysis, the urban expansion resulted in
urban landscape pattern change and impacted the contribution of
each ISA category to the urban thermal environment. Seasonal
variations also had significant impacts on the contributions to
the thermal environment. A comparison of the two dates in
Table VII shows that the positive/negative contributions of urban
land to the thermal environment were generally smaller in spring
2001 than in summer 2013. Through the analysis of regional
contributions to the urban thermal environment, the role of each
ISA category was determined in different seasons. The>60%
ISA categories were notable for their positive contributions to
the urban thermal environment, while the <60% ISA categories
made negative contributions that lowered the LST. It is necessary
to further explore the formation mechanisms of the thermal
environment in these ISA categories. The vegetation in ISA
categories as a cooling source must be protected in future urban
development. The cooling mechanism in each category should
also be further analyzed to find ways to improve the thermal
environment in specific ISA categories and the entire urban
area.

V. CONCLUSION

Urbanization can trigger local LST increases resulting from
the process of urban land encroaching into other landscapes.
However, each urban landscape pattern in different regions and
in different seasons makes a different contribution to the pro-
cess. This study used a subpixel confusion matrix to evaluate the
accuracy of subpixel fractional land cover types extracted by
LSMA, and used a CI to evaluate the contributions of dif-
ferent ISA categories to the urban thermal environment. The
mean differences of LST between each ISA category and the
entire urban area, and the proportions of the area of each
ISA category were calculated to estimate the contribution of
each ISA category to the urban thermal environment at two
image acquisition dates. The results showed that the >60%
ISA categories enhanced LST and the <60% ISA categories
cooled the urban thermal environment in Fuzhou. Though urban
landscape pattern change impacted the contributions of each ISA
category to the urban thermal environment, seasonal variations
also had significant impacts on the thermal environment. The
positive/negative contributions of urban ISA categories to the

urban thermal environment are smaller in early spring than in
summer. The results can provide useful information for urban
planning and urban adaptation to the impacts of climate change.

In the study, the ISA category approach has been used to ana-
lyze the spatial patterns of specific ISA ranges and their impacts
on the thermal environment of the entire urban area. Each ISA
category plays a different role in the urban thermal environment
because of different landscape patterns. The variations of mean
%ISA coverage were very small within the ISA categories at
the two dates. This can minimize the variations of landscape
patterns in small ISA categories at different dates. The impact
of the variations of landscape patterns on mean LST values of
each ISA category between different dates was small. There-
fore, the seasonal impacts of each urban landscape pattern type
in each ISA category on the urban thermal environment can be
further quantified by comparing the mean LST in the same low
ISA categories. This can help to quantitatively characterize the
spatial patterns of urban LST and provide useful information
for urban ecological design and planning.

The seasonal variation and the urban landscape pattern change
impact on LST and were analyzed based on discrete ISA cate-
gories (urban development density areas). The results showed
that the seasonal impact on urban LST was about 17–18 K be-
tween summer and early spring, and the impact of urban land-
scape pattern changes on LST was about 3 K in the urban area
between the two dates. In this study, the major fluctuations of
mean LST in each low ISA category between the two dates were
mainly caused by seasonal variation.

The accuracy assessment for hard classifications commonly
uses an error matrix (confusion matrix), comparing a sample
of reference data and corresponding land cover types extracted
from the hard classification. Considering the lack of widely
accepted measures for accuracy assessment of a soft classifi-
cation, in this study, a subpixel confusion matrix was used to
assess the accuracy by comparing the fractional cover of each
urban land cover type extracted by LSMA with corresponding
reference fractional data derived from high-resolution imagery.
Each sampled pixel can be used to construct a subpixel confu-
sion matrix with the reference data. The final subpixel confusion
matrix is built by averaging the subpixel confusion matrices for
all sampled pixels. The results showed that the methodology is
reasonable for assessing the accuracy of soft classification in
heterogeneous urban areas at map and category levels.

In spite of the merits of this study, one of its limitations is the
lack of a highly accurate estimation of the impact of the vari-
ation of ISA on LST. Though the impacts of the variations of
fractional ISA cover in each ISA category between the two dates
were minor and can be neglected, it impacted the estimation of
the seasonal variations in LST in each ISA category. Fractional
cover estimation by spectral unmixing is very important for ur-
ban landscape pattern and thermal environment analysis. Chen
et al. [46] and van der Meer et al. [49] have pointed out that if
the endmember spectra are highly correlated, the inversion of
spectral unmixing becomes unstable. Because our focus in this
study is to analyze urban land cover and thermal patterns, we
did not analyze this. In the future, the impacts of the spectral
correlation between different endmembers need to be quantified
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to assess their impacts on the accuracy of fractional cover es-
timation. In addition, the cooling mechanism of the vegetation
in each ISA category should be further analyzed to find ways to
improve the thermal environment in cities.

Fractional cover data with continuous values can reveal the
spatial structure of urban landscape patterns and within-class
change. Clarification as to how changes in the coverage of ISA
and vegetation cover contribute to variations in urban LST is
necessary in order to mitigate the UHI effect and enable urban
areas to effectively adapt to climate change. In future, mean FVC
can be estimated within each ISA category, and the variations of
mean FVC can be analyzed based on variations of fractional ISA
cover. Through quantifying the LST with fractional variation of
impervious surface and vegetation cover based on discrete ISA
categories, this study provides a precise characterization of land
cover and LST patterns for urban ecological planning.

ACKNOWLEDGMENT

The authors would like to thank four anonymous reviewers
for constructive comments.

REFERENCES

[1] T. W. Owen, T. N. Carlson, and R. R. Gillies, “An assessment of satellite
remotely sensed land cover parameters in quantitatively describing the
climatic effect of urbanization,” Int. J. Remote Sens., vol. 19, pp. 1663–
1681, 1998.

[2] X. L. Chen, M. Z. Zhao, P. X. Li, and Z. Y. Yin, “Remote sensing image-
based analysis of the relationship between urban heat island and land
use/cover changes,” Remote Sens. Environ., vol. 104, pp. 133–146, 2006.

[3] E. G. McPherson et al., “Quantifying urban forest structure, function, and
value, The Chicago Urban Forest Climate Project,” Urban Ecosyst., vol. 1,
pp. 49–61, 1997.

[4] G. Xian and M. Crane, “An analysis of urban thermal characteristics and
associated land cover in tampa bay and las vegas using landsat satellite
data,” Remote Sens. Environ., vol. 104, pp. 147–156, 2006.

[5] J. A. Voogt and T. R. Oke, “Thermal remote sensing of urban climates,”
Remote Sens. Environ., vol. 86, pp. 370–84, 2003.

[6] R. Pu, P. Gong, M. Ryo, and S. Todashi, “Assessment of multi-resolution
and multi-sensor data for urban surface temperature retrieval,” Remote
Sens. Environ., vol. 104, pp. 211–225, 2006.

[7] B. Dousset and F. Gourmelon, “Satellite multi-sensor data analysis of
urban surface temperatures and land cover,” ISPRS J. Photogrammetry
Remote Sens., vol. 58, pp. 43–54, 2003.

[8] Q. Weng, D. Lu, and J. Schubring, “Estimation of land surface
temperature−vegetation abundance relationship for urban heat island
studies,” Remote Sens. Environ., vol. 89, pp. 467–483, 2004.

[9] A. Buyantuyev and J. Wu, “Urban heat islands and landscape heterogene-
ity: Linking spatiotemporal variations in surface temperature to land-cover
and socioeconomic patterns,” Landscape Ecol., vol. 25, pp. 17–33, 2010.

[10] C. E. Woodcock and A. H. Strahler, “The factor of scale in remote sensing,”
Remote Sens. Environ., vol. 21, pp. 311–22, 1987.

[11] Y. Zhang, I. Odeh, and C. Han, “Bi-temporal characterization of land
surface temperature in relation to impervious surface area, NDVI and
NDBI, using a sub-pixel image analysis,” Int. J. Appl. Earth Observation
Geoinform., vol. 11, pp. 256–264, 2009.

[12] X. Chen, H. Sun, H. Yang, Z. Zhang, “Urban spatial growth analysis
from satellite-derived imperviousness in an oasis city,” in Proc. 2nd Conf.
Environ. Sci. Inf. Appl. Technol., 2010, pp. 1: 517−520.

[13] D. Lu and Q. Weng, “Use of impervious surface in urban land-use classi-
fication,” Remote Sens. Environ., vol. 102, pp. 146–160, 2006.

[14] A. E. Frazier and L. Wang, “Characterizing spatial patterns of invasive
species using sub-pixel classifications,” Remote Sens. Environ., vol. 115,
pp. 1997–2007, 2011.

[15] Q. Weng, “Remote sensing of impervious surfaces in the urban areas:
Requirements, methods, and trends,” Remote Sens. Environ., vol. 117,
pp. 34–49, 2012.

[16] C. L. Arnold, Jr., and C. J. Gibbons, “Impervious surface coverage the
emergence of a key environmental indicator,” J. Amer. Planning Assoc.,
vol. 62, no. 2, pp. 243–258, 1996.

[17] Y. Zhang, I. Odeh, and E. Ramadan, “Assessment of land surface temper-
ature in relation to landscape metrics and fractional vegetation cover in an
urban/peri-urban region using Landsat data,” Int. J. Remote Sens., vol. 34,
no. 1, pp. 168–189, 2013.

[18] M. O. Smith, S. L. Ustin, J. B. Adams, and A. R. Gillespie, “Vegetation in
deserts: I. A regional measure of abundance from multispectral images,”
Remote Sens. Environ., vol. 31, no. 1, pp. 1–26, 1990.

[19] T. Rashed, “Remote sensing of within-class change in urban neighbor-
hood structures,” Comput., Environ. Urban Syst., vol. 32, pp. 343–354,
2008.

[20] R. Michishita, Z. Jiang, and B. Xu, “Monitoring two decades of urbaniza-
tion in the Poyang Lake Area, China through spectral unmixing,” Remote
Sens. Environ., vol. 117, pp. 3–18, 2012.

[21] R. G. Congalton, “A review of assessing the accuracy of classifications of
remotely sensed data,” Remote Sens. Environ., vol. 37, no. 11, pp. 35–46,
1991.

[22] E. Binaghi, P. A. Brivio, P. Ghezzi, and A. Rampini, “A fuzzy set-based
accuracy assessment of soft classification,” Pattern Recognit. Lett., vol. 20,
no. 9, pp. 935–948, 1999.

[23] J. Chen, X. Zhu, H. Imura, and X. Chen, “Consistency of accuracy as-
sessment indices for soft classification: Simulation analysis,” ISPRS J.
Photogrammetry Remote Sens., vol. 65, pp. 156–164, 2010.

[24] X. Cao, A. Onishi, J. Chen, and H. Imura, “Quantifying the cool island
intensity of urban parks using ASTER and IKONOS data,” Landscape
Urban Planning, vol. 96, pp. 224–231, 2010.

[25] L. Klok, S. Zwart, H. Verhagen, and E. Mauri, “The surface heat island of
Rotterdam and its relationship with urban surface characteristics,” Res.,
Conserv. Recycling, vol. 64, pp. 23–29, 2012.

[26] R. R. Gillies and T. N. Carlson, “Thermal remote sensing of surface soil
water content with partial vegetation cover for incorporation into climate
models,” J. Appl. Meteorol., vol. 34, pp. 745–756, 1995.

[27] F. Yuan and M. E. Bauer, “Comparison of impervious surface area and
normalized difference vegetation index as indicators of surface urban
heat island effects in Landsat imagery,” Remote Sens. Environ., vol. 106,
pp. 375–386, 2007.

[28] T. A. Schroeder, W. B. Cohen, C. H. Song, M. J. Canty, and Z. Q. Yang,
“Radiometric correction of multi-temporal Landsat data for characteri-
zation of early successional forest patterns in western Oregon,” Remote
Sens. Environ., vol. 103, pp. 16–26, 2006.

[29] A. Berk, G. P. Anderson, P. K. Acharya et al., MODTRAN4 User’s Man-
ual, Air Force Research Laboratory, Ontar Corporation, North Andover,
MA, USA, pp. 10–35, 1999.

[30] J. A. Barsi, J. R. Schott, F. D. Palluconi, and S. J. Hook, “Validation of
a web-based atmospheric correction tool for single thermal band instru-
ments,” Proc. SPIE, vol. 5882, Bellingham, WA. 7, 2005.

[31] A. A. Van De Grienzd and M. Owe, “On the relationship between
thermal emissivity and the normalized difference vegetation index for
nature surfaces,” Int. J. Remote Sens., vol. 14, no. 6, pp. 1119–1131,
1993.

[32] J. A. Sobrino, N. Raissouni, and Z. L. Li, “A comparative study of land
surface emissivity retrieval from NOAA data,” Remote Sens. Environ.,
vol. 75, pp. 256–266, 2001.

[33] G. Chander and B. Markham, “Revised Landsat-5 TM radiometric cal-
ibration procedures and post calibration dynamic ranges,” IEEE Trans.
Geosci. Remote Sens., vol. 41(11), pp. 2674–2677, 2003.

[34] J. B. Adams, D. E. Sabol, V. Kapos, R. A. Filho, D. A. Roberts, M. O.
Smith et al., “Classification of multispectral images based on fractions of
endmembers: Application to land cover change in the Brazilian Amazon,”
Remote Sens. Environ., vol. 52, pp. 137–154, 1995.

[35] J. F. Mustard and J. M. Sunshine, “Spectral analysis for earth science:
Investigations using remote sensing data,” in Remote Sensing for the Earth
Sciences: Manual of Remote Sensing A. N. Rencz, Ed., 3rd ed. New York,
NY, USA: Wiley, 1999, vol. 3, pp. 251–307.

[36] Z. Mitraka, N. Chrysoulakis, Y. Kamarianakis, P. Partsinevelos, and
A. Tsouchlaraki, “Improving the estimation of urban surface emissiv-
ity based on sub-pixel classification of high resolution satellite imagery,”
Remote Sens. Environ., vol. 117, pp. 125–134, 2012.

[37] S. Tompkins, J. F. Mustard, C. M. Pieters, and D. W. Forsyth, “Optimiza-
tion of endmembers for spectral mixture analysis,” Remote Sens. Environ.,
vol. 59, pp. 472–489, 1997.

[38] A. J. Elmore, J. F. Mustard, S. J. Manning, and D. B. Lobell,
“Quantifying vegetation change in semiarid environments: Precision



1356 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 10, NO. 4, APRIL 2017

and accuracy of spectral mixture analysis and the normalized differ-
ence vegetation index,” Remote Sens. Environ., vol. 73, pp. 87–102,
2000.

[39] C. Wu and A. T. Murray, “Estimating impervious surface distribution by
spectral mixture analysis,” Remote Sens. Environ., vol. 84, pp. 493–505,
2003.

[40] M. K. Ridd, “Exploring a V-I-S (vegetation-impervious surface-soil)
model for urban ecosystem analysis through remote sensing: Compar-
ative anatomy for cities,” Int. J. Remote Sens., vol. 16, pp. 2165–2185,
1995.

[41] R. S. Lunette, “Applications, project formulation, and analytical ap-
proach,” in Remote Sensing Changing Detection: Environmental Moni-
toring Methods and Applications, R. S. Lunetta and C. D. Elvidge, Eds.
London, U.K.: Taylor & Francis, 1998, pp. 1—19.

[42] J. W. Boardman, F. A. Kruse, and R. O. Green, “Mapping target signatures
via partial unmixing of AVIRIS data,” in Proc. Summaries of the 5th An-
nual JPL Airborne Geosci. Workshop. Pasadena, CA, USA: Jet Propulsion
Laboratory Publications, 1995, pp. 23–26.

[43] Q. Weng, “Thermal infrared remote sensing for urban climate and en-
vironmental studies: Methods, applications, and trends,” ISPRS J. Pho-
togrammetry Remote Sens., vol. 64, pp. 335–344, 2009.

[44] G. M. Foody, “Approaches for the production and evaluation of fuzzy
land cover classifications from remotely-sensed data,” Int. J. Remote Sens.,
vol. 17, no. 7, pp. 1317–1340, 1996.

[45] R. G. Pontius and M. L. Cheuk, “A generalized cross-tabulation matrix to
compare soft-classified maps at multiple resolutions,” Int. J. Geographical
Inf. Sci., vol. 20, no. 1, pp. 1–30, 2006.

[46] X. Chen, J. Chen, X. Jia, and J. Wu, “Impact of collinearity on linear and
nonlinear spectral mixture analysis,” in Proc. 2nd Workshop Hyperspectral
Image Signal Processing (WHISPERS): Evolution Remote Sensing, 2010,
pp. 1–4.

[47] K. Trusilova, M. Jung, G. Churkina, U. Karstens, M. Heimann, and M.
Claussen, “Urbanization impacts on the climate in Europe: Numerical
experiments by the PSU–NCAR mesoscale model (MM5),” J. Appl. Me-
teorol. Climatol., vol. 47, no. 5, pp. 1442–1455, 2008.

[48] S. Xu, “An approach to analyzing the intensity of the daytime surface
urban heat island effect at a local scale,” Environ. Monitoring Assessment,
vol. 151, no. 1–4, pp. 289–300, 2009.

[49] F. D. van der Meer and X. P. Jia, “Collinearity and orthogonality of
endmembers in linear spectral unmixing,” Int. J. Appl. Earth Observation
Geoinform., vol. 18, pp. 491–503, 2012.

Youshui Zhang received the Ph.D. degree from Nan-
jing University, Nanjing, China, in 2004.

He is currently a Professor at the College of Ge-
ography, Fujian Normal University, Fuzhou, China.
His current research interests include urban thermal
infrared remote sensing for the climate adaptation
potential of cities and remote sensing for natural re-
sources and environment. In 2009, he was supported
by Australia Endeavour Research Fellowship to do
research at the University of Sydney, Australia. In
the period of 2013−2014, he was also supported by

China Scholarship Council to do research as a visiting scholar at the University
of Manchester, U.K.

Heiko Balzter was received the Dipl.Ing.agr. degree
and the Dr.agr. degree from Justus-Liebig University,
Giessen, Germany, in 1994 and 1998, respectively.

He is currently Director of the Centre for Land-
scape and Climate Research in the Leicester Institute
for Space and Earth Observation, University of Le-
icester, Leicester, U.K., and a Member of the NERC
National Centre for Earth Observation. Before join-
ing the University he was Head of Section for Earth
Observation in the Centre for Ecology and Hydrol-
ogy, Monks Wood, U.K., where from 1998 to 2006.

His current research interests include interactions between earth observation of
ecosystems and the processes that affect their dynamics, across multiple spatial
and temporal scales, climate change and land use change impacts on the pro-
vision of ecosystem services, and the effects of spatial patterns and processes
on biological populations in evolving, three-dimensional landscapes. He has
extensive expertise in Earth observation and remote sensing of the land surface,
particularly of forests, and lakes.

Prof. Balzter holds the Royal Society Wolfson Research Merit Award (2011)
and the Royal Geographical Society’s Cuthbert Peek Award “for advancing ge-
ographical knowledge of human impact through earth observation” (2015). He
is a Member of the Group on Earth Observations (GEO) Programme Board,
the Steering Committee of the NERC Airborne Remote Sensing Facility, and
the AIRSAR Steering Board for the Satellite Applications Catapult and Airbus
Defence and Space.

Bin Liu is currently working toward the Master’s
degree in cartography and geographic information
system at Fujian Normal University, Fuzhou, China.

Her current research interests include urban ther-
mal infrared remote sensing for the climate adapta-
tion potential of cities and remote sensing geological
analysis and calculation.

Yajun Chen is currently working toward the Master’s
degree in cartography and geographic information
system at Fujian Normal University, Fuzhou, China.

Her current research interests include vegetation
hyperspectral remote sensing and remote sensing ap-
plications for environmental monitoring.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


