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Abstract 

Distributed and embedded control systems play an increasing role in modern safety-critical systems, 

and there is a pressing need to investigate the impact of different design decisions on system 

performance and safety integrity.  In this paper, a methodology for the measurement and estimation 

of such attributes is presented.  The methodology integrates statistical fault-injection testing with 

the application of on-line, model-based performance monitoring of the embedded control system 

under test.  The methodology is particularly suited to late-phase system testing in which "hardware-

in-the-loop" (HIL) simulation techniques are employed.  The methodology is illustrated in an 

extended case study, in which the performance and dependability of eight possible designs for an 

automotive control system are compared.  It is concluded that the methodology is a useful adjunct 

to the available testing and analysis techniques for such systems. 

 

Keywords: Safety Systems, Performance Monitoring, Distributed Embedded Systems, Fault 
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1. Introduction 

Distributed and embedded systems play an increasing role in the development of safety-critical 

systems.  A distributed embedded system consists of a number of electronic control units (ECUs) 

connected to one another via one or more serial communication buses.  For example, in the modern 

passenger vehicle, up to 70 such ECUs are connected to a variety of sensors and actuators in order 

to realize high-level functionality and services (Lean et al. 1999): Isermann (2008) surveys the use 
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of such technologies in modern passenger vehicles.  With the advent of systems such as Drive-by-

Wire, these distributed embedded systems will have no mechanical backup, and will play a crucial 

role in safety (Isermann et al. 2003; Isermann 2008).  

 

Since many such systems are safety-critical in nature, special measures must be taken at all stages 

of the design process to ensure that the required Safety Integrity Level (SIL) has been achieved.  

The SIL of a system depends on the consequences of system failures, which can be determined 

using risk assessment; a required dangerous failure rate λd is then assigned for a system based on 

this risk.  Demonstrating that the dangerous failure rate for a system is at a specific level requires 

many factors to be taken into consideration; a major element in this process is the determination of 

reliability, safety, security and availability measures for each sub-system and component as part of a 

safety case. 

 

Many different design decisions have to be considered in the creation of such systems – such as the 

choice of hardware / software architecture, programming language and communications network - 

and many of these decisions are known (or thought) to influence both the performance and 

dependability of the resulting system (e.g. MISRA 1994; MISRA 2004; SAE 1993; Holzmann 

2006).  For example, an embedded system may employ one or more design paradigms: Event 

Triggered (ET), Time Triggered (TT), Preemptive (P) or Cooperative (C) (e.g. see Buttazo 1997).  

Although many - sometimes opposing - opinions have been voiced regarding the properties of these 

various paradigms in recent years (e.g. Kopetz 1991; Bate 1999; Pont 2001; Xu & Parnas 2003; 

Scheler & Schroeder-Preikschat 2006), little empirical evidence has been presented which provides 

direct comparisons of their functional performance and safety2.   

 

This lack of evidence may be attributed, in part, to the problems inherent in determining the 

reliability and dependability of such systems.  The traditional method of validating reliability is 

through life testing: however for software-based systems designed to have a failure rate less than 

10-5, such as those considered in this paper, this form of testing is impractical (on any reasonable 

timescale) and alternate means must be considered (Butler & Finelli 1993).  Additionally, assuming 

that effective testing can take place in the limited time available, it may also be extremely difficult 

to produce an ‘oracle’ that can verify the correctness – and safety properties - of each test output 

(Butler & Finelli 1993).  As such, achieving accurate estimations of safety and reliability properties 

of complex, reactive embedded control systems is a wide and ongoing area of research. 
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In this paper, an alternate means for such estimates for critical embedded systems is presented.  The 

methodology is designed to complement existing strategies employed in the design process for 

embedded systems, and it is best suited to late-phase system verification and validation exercises3 in 

which HIL simulation is employed, as shown in Figure 1.  The methodology utilises statistical fault-

injection in conjunction with on-line performance monitoring techniques to generate data that is 

then used for the estimation of key system attributes.  This approach was taken in order to both 

maximise the usefulness of the available testing time, whilst providing an automated means to 

check the validity of the system outputs against a specification in real-time. 

 

 
Fig.1. Relation of the proposed methodology to the traditional design process 

 

The remainder of the paper is organised as follows.  In Section 2, the concept of HIL and fault 

injection testing is reviewed, and the proposed methodology is outlined. In Section 3, an effective 

mathematical basis for the implementation of fault injection is discussed.  Section 4 then describes 

the implementation of an on-line performance monitor which may be used to classify the system 

behaviour.  Section 5 describes an existing HIL test facility, and explains how the proposed 

techniques were integrated within this framework. Section 6 describes an extended case study, 

which compares the performance and dependability of eight representative systems designed using 

a combination of ET, TT, P and C techniques. Section 7 presents the results of this case study.  In 

Section 8, the paper is concluded. 
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2. Proposed methodology 

In this section, the proposed methodology is outlined.  The section begins by describing and 

reviewing the use of HIL simulation and fault injection techniques, and some potential problems 

that can arise when testing non-trivial systems. 

2.1 HIL Simulation 

The principle of HIL simulation of an embedded control system is illustrated in Figure 2. The 

embedded system outputs are fed directly to the simulation, where they are sampled and used as 

input variables. A dynamic simulation model, acting on these input variables, is evaluated (normally 

in real-time, but this is not always the case).  The outputs from the simulation, which are 

synthesized from the dynamic model(s), are then fed back into the system under test as outputs, thus 

closing the control loop.  Simulations of this nature have been used successfully in a variety of 

applications, including verification of new machine tool designs (Stoepler et al. 2005), aircraft 

autopilot system design (Gomez 2001), numerous military applications (Cole & Jolly 1996) and 

testing of automotive ECUs (Ellims 2000). 

 

 
Fig.2. HIL simulation principle 

 

HIL simulation has been shown to both increase the quality and reduce the time-to-market (and 

hence development costs) of prototype embedded control systems.  In addition, when developing 

safety-critical systems it is often inappropriate, unethical or even impossible to fully test the system 

within its natural operational environment (Storey 1996; Levenson 1995).  In such cases, HIL 

simulation of the system’s environment can allow developers to make assessments of performance 

without compromising safety. 

 

Given the above features, use of HIL simulation may be felt to be particularly appropriate during 

the verification and validation stages of the development lifecycle of safety-critical systems (Storey 

1996; Levenson 1995).  The complexity involved in such large-scale testing of distributed 



embedded systems and software dictates that structured, well-defined testing procedures and 

benchmarks are preferred over more ‘traditional’, ad-hoc methods for assessing system performance 

(Broekmann & Notenboom 2002).  During these testing procedures, it is normal to measure various 

outputs from the system whilst performing stress and fault-injection testing, in order to determine 

how the system will react to abnormally high loads and random failures of components and 

subsystems.   

 

The type of embedded system of concern in this paper will usually employ some form of 

redundancy in order to achieve the required levels of safety integrity (Storey 1996).  This 

redundancy can take many forms; static and dynamic redundancy of electronic components and 

processing elements, communication systems and sensor/actuator subsystems in conjunction with 

software-based redundancy management algorithms (Isermann 2002; Hammett 2002).  Where 

redundancy is employed, fault injection is the preferred means for extracting dependability 

information (e.g. see Arlat et al. 1993).  Fault injection enables the estimation of fault coverage 

parameters for analytical system models; however great care must be taken in selecting appropriate 

test sequences and determining representative rates of fault occurrence for such experiments.  Care 

must also be taken when interpreting the resulting data, as analysing system performance in 

situations where multiple (possibly adaptive) control loops are employed and the set points / 

disturbances may be changing rapidly is a non-trivial task. 

 

In the following section two techniques which may be used to great effect to complement basic HIL 

simulation techniques are described, in order to improve the efficiency of the testing process and 

help to ameliorate the problems outlined above. 

2.2 Complementary techniques 

One interesting area of research has involved the rare events technique (RET).  The RET originated 

in the field of Operations Research as a methodology for speeding up simulations in which certain 

events of interest occur with extremely low probability: Heidelberger (1995) provides a useful 

survey of this technique.  The primary aim of the RET is to determine the effects of rare events 

using simulation models such as Markov chains.  From the perspective of real-time HIL simulation, 

the RET seems particularly suited for use in automatically generating representative test sequences 

(in a relatively short space of time) for the system under investigation.  This is because the events of 

interest (such as sensor failures) happen very rarely.   

 



Despite suggestions (e.g. Hecht & Hecht 2000; Tang et al. 1997) that the RET is particularly suited 

for integration into the high-integrity software reliability evaluation process, to the authors’ 

knowledge this possibility has yet to be explored in full.  In addition, the use of the technique to 

generate the test sequences that the evaluation is to based on has yet to be considered in the 

literature. 

 

Also of relevance in this context is the concept of Control Performance Monitoring (CPM).  Much 

research within the control community has concentrated on this concept (e.g. Qin 1998; Huang & 

Shah 1999; Jelali 2006).  CPM provides on-line, automated procedures which give information to 

operators and plant engineers: this may be used to determine whether specified performance targets 

are being met for the controlled processes.  Many different approaches have been taken in this area.  

For example minimum variance benchmarking, linear quadratic regulator benchmarking and 

various model-based approaches: Jelali (2006) provides a recent summary and comparison of work 

in this area.  Most of these techniques provide performance indices in the range [0, 1] that indicate 

good or bad control over a specified time history.   

 

From the point of view of safety-critical control systems, measures of system functional safety can 

be obtained, in part, by applying the principles of CPM and determining how close the controlled 

variables are to perceived critical levels (such as reactor temperature, vehicle separation distance 

etc) by using an idealised system specification as a benchmark. 

 

It would seem that with an appropriate implementation framework, both the RET and CPM may be 

applicable to automated fault-injection testing for performance and dependability evaluation in 

complex safety-critical control systems.   

 

The following section proposes a general framework for such an implementation. 

2.2 A framework for performance and dependability evaluation 

The framework that is proposed consists of three basic elements; an HIL simulator, complemented 

by a performance monitor and a fault injector. The structure of the framework is shown in Figure 3. 



 
Fig.3. General structure of the performance assessment framework 

 

The framework operates as follows.  A test sequence is started, and the HIL simulator is used to 

generate the real-time inputs to the system under test and read its outputs. The fault injector 

implements a statistical model of the system under test, adapted using the RET.  At “random” times, 

faults and abnormal operating conditions are introduced into the system, either using direct fault 

injection or through the HIL simulator.  The performance monitor continuously assesses the quality 

of control of the system under test in real-time, and provides a log of the recorded performance.  

This log, in conjunction with the log of faults injected, may then be used to calibrate suitable 

reliability models of the system.   

 

The fault injector and performance monitor are described in depth in the following two sections. 

3. Fault injection framework 

The RET, as applied in the evaluation of high-integrity software, starts from a single basic 

assumption: 

 

“Well designed software does not fail in routine operating conditions” 

 

This assumption is validated by numerous data from sources such as NASA (Lutz & Mikulski 

2003; Tang et al. 1997).  In addition, when software has been designed using the rigorous 

techniques that are mandated for high-integrity systems (e.g. see MISRA 2004; Holzmann 2006), 

and put through an initial test/debug phase, it can be assumed that all high-intensity defects have 

either been designed out of the system or have been removed during initial testing4.  It follows that 
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all subsequent failures are caused by non-routine conditions such as abnormal / unexpected input 

sequences, erroneous computer states and hardware failures (Hecht & Hecht 2000; Lutz & Mikulski 

2003; Tang et al. 1997).   

 

The rare events technique allows a qualitative assessment of the system under test by exploiting the 

discontinuity between ‘routine’ systems events, and abnormal or ‘rare’ system events.  Although 

determining the operational profile for sets of system inputs is (in general) extremely difficult, since 

most rare events (such as abnormal inputs) are generally caused by well-understood physical 

phenomenon, there is normally a single point which can be selected to distinguish between 

“normal” and “abnormal” operation (Hecht & Hecht 2000; Lutz & Mikulski 2003).  This is 

highlighted in Figure 4, showing the operational profile of a typical system and highlighting the 

point Prare where normal operation ends and abnormal operation begins. 

 

 
Fig.4. Normal and abnormal operational profiles 

 

Also indicated in Figure 4 is an upper limit Pupp, which is an estimated upper bound for all the rare / 

critical operations of the system; that is the probability of a critical or rare event Pc is limited as 

follows: 

 

uppcrare PPP >>  

(1) 

 

In particular, to make the assessment of failure rate, the entire operational profile of the system is 

placed into one of two sets [1] the regular set containing normal system operations or1, or2 … orn or 

[2] the critical set containing abnormal operations oc1, oc2 … ocn.  The associated probabilities of 

occurrence for these operations are then pr1, pr2 … prn and pc1, pc2 … pcn, satisfying the conditions 

shown in (2): 
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where Pr >> Pc in order to maintain consistency with the assumptions above (and shown in Figure 

4).  

 

In order to exploit the limited test time available for the reliability assessment, two factors must be 

considered.  The first is that the probabilities of occurrence of the operations in the critical test set 

are adjusted by a likelihood ratio α (see (3)) during the period of testing T, giving pc1', pc2' … pcn': 

 

α.' ii pcpc =  

(3) 

 

In which the likelihood ratio α is chosen as some suitable value for a tractable test, e.g. 1/Prare.  The 

second is that the test sequences must be selected to cyclically exercise as many of the operations in 

both the regular and (adjusted) critical sets in the least possible time, to obtain maximum possible 

test coverage.  Suppose that during the testing time T, both routine operations and critical 

operations are randomly selected (with adjusted critical operation probability).  If m failures are 

observed due to routine operations, and n failures are observed due to critical operations, the failure 

rate λ may then be estimated as shown in (4). 
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However, it is assumed that the system should not fail for routine inputs: m should therefore be zero 

(if this is not the case then further, standard testing should be performed to remove these high-

intensity bugs).   

 

In the approach proposed in this paper, statistical information regarding these measured failures 

may then be used to estimate the fault coverage probability for each rare event that has been 

considered; this may be then further utilised in reliability models to reason about the system failure 

rates.   

 



Assuming a sensible choice is made in the selection of α, a suitable statistical model may be 

calibrated and used to select test patterns for the HIL system which simulate abnormal environment 

conditions.  Assuming that the fault activation time for the system is much less than the total 

available test time T (as will be true in most – but not all - cases), and observing that the average 

‘mission time’ for an embedded control system is comparatively short (and that a safe state can be 

entered upon detection and tolerance of a sub-system failure in a relatively short time in comparison 

to T), then it is suggested that sufficient confidence may be gained in the assessment of failure rate 

by testing for a duration of approximately 10 times the MTTF of the target failure rate, adjusted by 

the inverse of the likelihood ratio.  For example, if the target failure rate of a system is 10-7 failures / 

hour, then with α = 106 the system must be tested for a minimum of 100 hours under statistical fault 

injection. 

 

In order to implement the above procedure, accurate testing of both routine and critical (rare) 

operations must be achieved: this implies that a form of physical fault injection must be used.  Such 

a mechanism for use in these situations is highly application dependant, and will more than likely 

contain interfaces by which hardware, software, sensor, actuator and communications errors can be 

introduced into the system.  Such mechanisms have been employed in this paper with the test 

facility outlined in Section 5. 

4. On-Line Performance Monitor 

Despite being a relatively new field of engineering, performance monitoring of control systems has 

expanded rapidly over the last decade and many innovative algorithms and methodologies have 

been proposed.  From recent survey material, an analysis of the existing methodologies reveals that 

from the point of view of HIL simulation, where dynamic models of the process under control are 

readily available, a model-based approach would seem to be the most suitable.  The methodology 

presented in this paper is an adapted version of the relative performance monitor presented by Li et 

al. (2003). 

 

The monitor is shown in Figure 5 and consists of three separate parts; the actual control system 

implementation and existing HIL simulation, a reference model that specifies the required closed 

loop dynamic behaviour, and the metric calculator.  From an implementation perspective, 

integration of the monitor to an existing HIL simulator should be relatively straightforward, as the 

monitor can utilise the same timing and computation resources as the simulator. 

 



 
Fig.5. Performance monitor 

 

Selection of a suitable closed loop reference model will depend highly on both the controller and 

process dynamics.  For many plants and controllers, the required closed-loop reference model can 

be as simple as a low-order transfer function.  For certain classes of non-linear processes and 

controllers, the reference model may be obtained from the required performance specifications for 

the control system.  For the most complex of controllers, the required closed loop system behaviour 

may even be generated by a secondary, idealised simulation of both the process and controller. 

 

Once this required reference model has been determined, the actual set points and disturbances that 

are fed to the real controller and process are also fed into the reference model, thus dynamically 

generating idealised target outputs for the controlled variables.  These reference model outputs are 

then passed, along with the actual controlled outputs, to the metric generator for further comparison 

and processing, to generate the performance assessment.  Many different methodologies may be 

used to generate these metrics; the approach taken by Li et al. (2003) to generate the performance 

metric is to use the ratio of reference and actual weighted moving average of squared errors, as 

shown in (5): 
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where M(er) and M(ea) are the weighted averages of the reference model and actual errors 

respectively, calculated recursively at each iteration k by (6): 
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where e2 is the squared error in the reference or actual control systems, and λ is a constant between 

0 and 1, indicating the weighting of present and previous data.   

 

It should be noted that this performance metric is intended to provide a measure of the improvement 

potential, in terms of potential error reduction in the actual system, and is not generally of interest in 

this application.  In addition, unless a very accurate noise model is included in the reference, the 

performance in the-steady state will tend towards 0 as the model error approaches 0: indeed it may 

be of more use to employ a metric that also indicates the level of noise that is present in the actual 

system, allowing the impact of partial system failures on noise rejection to be categorised.  In 

Section 5, some possible alternate metrics will be proposed for use with the case study. 

5. Test Facility Description 

In the remainder of this paper, the techniques described in Sections 2, 3 and 4 will be applied to an 

existing HIL test facility (previously developed in the Embedded Systems Laboratory at the 

University of Leicester).  The test facility is described briefly in this section. 

5.1 Real-Time Simulation 

A real-time HIL simulator has been developed in order to assess and compare different embedded 

software and hardware architectures for use in automotive control applications.  This HIL 

simulation is described in detail elsewhere (Short & Pont 2005; Short & Pont 2008).  Briefly, the 

simulation consists of a real-time representation of a motor vehicle travelling down a three-lane 

motorway, under realistic traffic conditions.  It enables different implementation architectures to be 

assessed and compared in a variety of realistic and repeatable scenarios, and enables multiple faults 

to be injected into the underlying hardware/software.  The facility is implemented on three PCs: an 

overall schematic is shown in Figure 6. 

 

 
Fig.6. Test facility general arrangement 



 

The first PC employs the DOS operating system, and uses a re-programmed hardware timer to 

iterate the HIL simulation every 1ms (Pont et al. 2003); this PC was also used to implement the 

performance monitor.  The second PC, running the Windows operating system, is connected to the 

first via a duplex high-speed serial link, and provides an interactive, graphical interface for user 

feedback and simulation control. A screenshot of the user interface is shown in Figure 7.  The third 

PC, again connected to the first by means of a high-speed duplex serial link, is able to inject the 

faults into the system and is used in the study described in this paper to implement the statistical 

fault models. 

 

 
 

Fig.7. Test facility user interface 

5.2 ACC Principle 

The case studies to be described in the following section apply the methodology outlined in the 

previous sections to various implementations of a throttle- and brake-by-wire system, with adaptive 

cruise control (ACC) capability.   

 

ACC is a relatively new technological development in the automotive field, and is said to reduce 

driver fatigue and the rate of auto accidents, whilst increasing fuel efficiency (Stanton 1997).  The 

main system function of ACC is to control the speed of the host vehicle using information about the 

distance between the subject vehicle and any forward vehicles (using Doppler radar), the motion of 

the subject vehicle itself and commands from the driver. Based upon this information, the controller 

sends commands to the vehicle throttle and brakes to either regulate the vehicle speed to a given set 

value, or maintain a safe distance to any leading vehicles. It also sends status information to the 

driver.  Figure 8 shows the overall principle of ACC.  The outer acceleration control law used in 



this study was given by (7), where vset is the desired set speed, hset is the desired headway and d is 

the vehicle separation distance.  An integrator was employed to convert the desired acceleration 

signal αd into a velocity demand for an inner loop PID (speed) controller, represented by equation 

(8). 
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where e(t) was the error between desired and actual vehicle speed, and u(t) was the commanded 

actuator signal. If u(t) was positive, this was taken as a throttle signal; otherwise it was used as the 

brake actuation signal. A 0.5 % hysteresis band was employed to prevent frequent switching 

between throttle and brakes. 

 

The system under consideration in this study is a Type 2b ACC system: such a system employs 

active braking. Vehicle acceleration is limited to 2.0 m/s2, deceleration to 3.0 m/s2 in order to 

comply with ISO standards (ISO 2003). Since the deceleration is limited to this value, the system 

additionally implements a predictive collision warning system. This system predicts, based on the 

kinematics of the current road situation, when a collision is likely to occur due to ACC system 

braking saturation and informs the driver (via a sounder) that manual intervention is required. In 

addition, the system also provides an anti-lock brake (ABS) controller for each wheel of the vehicle, 

and traction control stability (TCS) algorithm.  Further details of the nature of the controllers 

employed may be found elsewhere (Short et al. 2004a). 

 

When the cruise control system is disengaged, the throttle and brakes are activated via electronic 

signals from sensors attached to both the brake and throttle pedals.  Given the level of risk 

associated with each element of the system, the required Safety Integrity Level (SIL) for the overall 

system was classified at SIL 3, with a minimum failure rate of 10-7 dangerous failures / hour.  This 

decision was based on the MISRA guidelines (MISRA 2001). 

 



 
Fig.8. ACC principle 

 

Each system architecture to be described in the case study was designed to a minimum 

specification.  This specification included the following two key elements: 

 

1) The response to a step change in either throttle or brake demand should occur within approx. 

100ms (95 % settling time for applied acceleration commands) and should be critically damped. 

 

2) The response to a change in input conditions (either to a driver button press, or to a change in 

road conditions) should take no longer than 100ms. 

5.3 Reference Model 

The reference model was implemented as a series of digitised state equations, which included the 

throttle and braking actuation subsystems and the free driving / following dynamics of the ACC 

system.  The state equations were loosely based on the state-space model proposed by Baraket et al. 

(2003) for an ACC system operating in a variety of known, healthy conditions.  This simplified 

model has been found to successfully capture the gross vehicle-following dynamics of many 

working ACC systems (Baraket et al. 2003), given that the actual vehicle models (including those 

employed in this HIL simulation (Short & Pont 2005; Short & Pont 2008)) are complex and non-

linear.  The reference model (and desired closed loop response of each controller implementation) 

was based on the equations given by (9). 
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with uact as the applied acceleration / brake force and β a lag representing the combined response of 

the inner control loop and actuator subsystems (0.033s in this study).  When operating with the 

ACC system enabled, αd is as given by (7) and when disabled it is given by the output of the HIL 

driver model (see Short & Pont 2005 for details).  The input parameters vt, vset and tset are taken 

directly from the HIL simulation. The primary output parameters of the reference model were vacc 

and d.  The separation distance d was required to be reseeded in the performance monitor when a 

new physical target was acquired (e.g., after a lane change).   

 

In the following section, the metrics that were recorded using this reference model will be 

described. 

5.4 Recorded Performance Metrics 

In the present study, three different performance metrics were measured; the first, described by 

(10), represents a safety margin of the system, in terms of the ratio of the reference and actual 

separation distance of the vehicles.  The second metric, described by (11) represents the quality of 

velocity control in the system, by measuring the scaled absolute deviation of the reference and 

actual vehicle velocities, where a performance of 1 indicates perfect following of the reference 

dynamics, and a performance of 0 indicates a persistent deviation of more than 10 MPS from the 

nominal system dynamics.  In a similar manner, the third metric, described by (12), represents the 

quality of service being provided through the by-wire elements of the system, scaled over the span 

of the signal range: 

 

r

a
SS D

D
kk ⋅−+−⋅= )1()1()( ληλη  

(10) 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−⋅−+−⋅=

10
1)1()1()( ar

pp

VV
kk ληλη  

(11) 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+−
−⋅−+−⋅=

100
1)1()1()( arar

cc

BBTT
kk ληλη  

(12) 

 

where D represents the vehicle separation distance and V represents the velocity of the vehicle, T 

represents the applied throttle setting and B represents the applied brake setting, both expressed as a 



percentage of full scale.  In all cases, a time constant λ equal to 1s was selected to perform a 

moving averaging of the data. In this instance, the performance monitor was implemented as a 

single task within the existing (DOS) scheduler framework, running every millisecond.  Over the 

duration of each experiment, the minimum level of each of the performance indices was recorded to 

gain some idea of the worst-case deviation of the actual control performance from the ideal.   

5.5 Fault Model 

In order to implement the RET within the HIL simulation framework, it was necessary to determine 

representative failure rates for each hardware element of the systems under test, and an appropriate 

occurrence rate for the rare events under consideration.  The test systems to be described in the 

following section were created using Infineon C167CS microcontrollers (one per node) running at a 

20 MHz oscillator frequency (Phytec 2003), connected using 1 Mbit/s twisted-pair Controller Area 

Network (CAN) links (Bosch 1991).  The representative failure rates employed in this study are 

shown in Table I, with values derived from representative sources (Short et al. 2007d; Short & Pont 

2007). 

Table I: Component and event failure rates 

Component / Event Type Failure Rate (x 10-6) 
C167 CPU Permanent 0.76 
C167 RAM Permanent 0.25 
C167 ROM Permanent 0.16 
CAN Link Permanent 1 

CAN Bus Section Permanent 1 
Transient Disturbance Intermittent 1 

 

Implementation of the rare events technique was achieved as follows.  A statistical fault model was 

calibrated using information provided in a script file: component failure rates were adjusted using 

the specified likelihood ratio.  This statistical fault model was then evaluated very 5 ms, and a 

pseudo-random number generator was employed to evaluate the health of each component at every 

iteration of the model (a form of ‘Monte Carlo’ style simulation).  When the model indicated that a 

particular component failure or rare event had occurred (either transient, permanent or intermittent), 

this was physically transferred to the equipment under test using fault injection.  The statistical 

nature of the fault injection that was employed ensured that a huge number of different faults were 

injected with the vehicle in a variety of different representative road conditions. 

6. Case Study 

This section presents the results from an extended case study.  This case study was performed in 

order to test the efficacy of the proposed methodology; and also to apply the methodology to 



generate empirical data regarding the comparison of performance and dependability of eight 

representative systems, designed using a combination of ET, TT, P and C techniques.   

6.1 System Designs 

As mentioned in the introduction, system designers often have flexibility in decisions about the 

number and location of processor nodes, the allocation of software tasks to particular nodes and the 

overall choice of software architecture.  As different network topologies and design paradigms are 

considered, it is important that the designer should understand the implications that a particular 

choice may have on the system’s performance and safety.   

 

In the study described in this paper, the aim was to explore the ways in which the HIL simulator and 

proposed methodology could be used to support the process of comparing different system designs, 

and provide a source of comparative data.  The particular focus of the study was to explore the links 

between the chosen microcontroller / network topology and choice of design principle on the 

resulting control performance and functional safety of the system.  To conduct this study, four 

different hardware topologies for the ACC system were explored.  Each of the four different 

hardware architectures employed various levels or redundancy, and the simulator and proposed 

methodology was used to assess the failure modes of the architectures under intense fault injection.  

In addition, each of the four possible hardware architectures was implemented using either a TTC-

style, or a ETP-style system, communications and software architecture.  The data from each of 

these eight systems then formed the basis for a qualitative estimation of dangerous failure rate.  

6.2 Hardware Architectures 

The four different configurations of microcontroller that were considered are shown schematically 

in Figure 9 to Figure 12.  In each figure, the various inputs and outputs to/from each node and the 

simulation are shown.  From the four figures, it can be seen that the processor topologies are 

grouped logically in each of the implementations.  The figures also show how the software 

functionality was distributed in each architecture, with each software function being allocated a 

number: this will be explained further in Section 6.3.  

 



 

Fig.9. Three-node architecture 

 

 

Fig.10. Six-node architecture 
 

 
Fig.11. Nine-node architecture 

 



 
Fig.12. Ten-node architecture 

 
In the most centralised architecture (Figure 9), it can be seen that related control functions are 

grouped together on the same node: driver interface functions and associated I/O are on one node; 

the ABS and TCS controllers and associated I/O are on another node; and the ACC system 

functionality and interfaces are on the Master node.  Each architecture then progresses through 

varying degrees of distribution until the last architecture, shown in Figure 12.  From this figure it 

can be seen that the system is partitioned due to physical distribution around the vehicle.  In Figure 

12, each wheel has its own local ABS controller; the pedal interface functions have been separated 

from the remaining driver interface functions located on the instrument cluster, and so on.  

 

It can also be seen that the increase in the number of nodes has the potential to increase the fault 

tolerance of the system.  For example, a single processor failure in the braking subsystem of the 

three-node system can have a drastic effect, resulting in complete loss of throttle and brake 

actuating ability.  In all other systems, a failure of a single brake processor will have a reduced 

impact on braking capacity and no impact on throttle-actuation ability.  In addition, in the systems 

described in this paper, the backup Master employs dynamic redundancy with fault detection, i.e. it 

self-activates when the loss of the main Master is detected.  The presence of the backup Master in 

the ten-node system (for example) ensures that when the main Master fails, the system may still be 

able to operate.   

6.3 Software and Communication Architecture 

It was noted in the introduction that - while it is generally accepted that TT behaviour can provide a 

good platform for safety-critical systems - arguments have also been advanced in favour of 

alternative architectures.  For example, as discussed in the introduction, the use of ET-style 

communication and software architectures has been proposed, and there has also been debate 

regarding the use of P / C software architectures on individual nodes.   



 

In this study, two architectures were considered, each using a standard Controller Area Network 

(CAN) protocol as the communication medium (Bosch 1991). 

 

The first architecture was a fully TTC design based around a shared-clock scheduler (Pont 2001).  

Although CAN is often viewed as an ET architecture, it has been shown that fully TT behaviour can 

still be achieved using this protocol (Pont 2001; Ayavoo et al. 2006; Short & Pont 2007).  For each 

TTC system considered in this case study, the same ‘tick’ interval (5 ms) was employed. 

 

The second architecture was an ETP design, with ‘loose’ TT operation.  This system design was 

based on the paradigm for which CAN was originally intended (an event-triggered communications 

with a Multi-Master architecture: Lean et al. 1999).  In the ETP systems described in this paper, 

individual nodes employ a TTP architecture, but ET response to external events (such as button 

presses, reception of CAN messages) was allowed.  In addition there was no inherent clock 

synchronisation between nodes.  Task priorities were assigned using rate-monotonic priority 

assignment (Buttazo, 1997).  A ’tick’ interval of 1 ms was employed.  In these respects the system 

operates much like a standard RTOS.  Further details of the scheduler design have been documented 

by Fang (2006). 

 

Table II shows a summary of the software functionality that was required to implement the ACC 

system. 
 

Table II: Software task summary 

Task Number Task Functionality 
1 ACC algorithm actions 
2 Speed sensor fusion and filtering 
3 Centralised processing of vehicle status 
4 ACC sensor data acquisition and processing 
5 ‘Limp home’ functionality 
6 Front left wheel speed sensor processing 
7 Front left wheel brake and ABS control actions 
8 Front right wheel speed sensor processing 
9 Front right wheel brake and ABS control actions 
10 Rear left wheel speed sensor processing 
11 Rear left wheel brake and ABS control actions 
12 Rear right wheel speed sensor processing 
13 Rear right wheel brake and ABS control actions 
14 Throttle and brake pedal sensor processing 
15 Traction and throttle control actions 
16 Driver display interface control 
17 Driver command processing 

 



In Figure 9 to Figure 12, the distribution of this functionality in each of the four hardware 

architectures can be seen.  In each system, the software was created mainly in C, with a small 

amount of assembly required for the ETP systems to implement the ‘context switch’ mechanism.   

 

In addition to the high-level software tasks that were created for each implementation, given the 

critical nature of the system it was required to design techniques for transient fault mitigation into 

each system.  These mechanisms included the use of a 200 ms watchdog timer, duplex duplication 

of critical data with comparison5, sanity checks of control signals, task overrun detection 

mechanisms and the use of the on-chip exception traps in the C167 processor, as listed below: 

 
• Stack overflow; 

• Stack underflow; 

• Illegal operand; 

• Illegal word access; 

• Protected instruction fault; 

• Illegal bus access. 

 
The unused areas of FLASH memory and RAM in each design were filled with illegal operands to 

provide added control flow error detection.  On activation of any of these traps, a full system reset 

of the microcontroller was forced.  On system boot-up/reset, the microcontroller performed the 

following software-based self-tests (Soznowski 2006): 

 
• Internal RAM/register/stack validation; 

• External RAM validation; 

• ROM checksum; 

• Peripheral test (e.g. ports, timer). 

 
The overall approach to software fault-tolerance is summarized in Figure 13.   

 

                                                 
5 The duplex data fields were checked before each use of the variable; any discrepancy forced a hardware reset. 



 
Fig.13. Approach to software fault tolerance 

 

A number of techniques were also employed during the software design process for each system, 

prior to experimentation.  These included the adoption of structured programming techniques, 

adherence to good programming practice (MISRA 2004; Holzmann 2006), and regular use of the 

public domain static code analysis tool splint6 during software development.  As a final check (prior 

to the trials described here), the C source code in each system was formally verified using bounded 

model-checking techniques (summarized below), and each system was required to run failure-free 

(and free of failed assertions) for a continuous period of 48 hours using a simulation of a busy 

motorway.   

 

The formal verification process that was employed was as follows.  Initially, the high-level safety 

and functional requirements of the system were refined into node-level requirements for each of the 

architectures, using techniques similar to those described by Wong & Joyce (1998).  These node-

level requirements were then translated into code-level verification conditions, in the form of 

module pre and post-conditions implemented as sanity checks and assertions placed directly into the 

C source code.  Prior to model checking, the microcontroller-specific features of the code were also 

modeled; for example a read of the ADC data register was represented as a non-deterministic 

program input of the required bit length.  The C source code, along with this information, was then 

passed to the model checker “CBMC” (described by Clarke et al. 2004).  The model checker first 

compiles the code, whilst unwinding each program loop to its full extent.  It then verifies that loop 

bounds are not exceeded, and also checks the integrity of pointer arithmetic and array bounds/math 
                                                 
6 Please see www.splint.org for details. 



operations.  Finally, the code is further processed into equivalent Boolean formulae and passed to a 

Boolean Satisfiability (SAT) solver. The SAT solver executes every possible trace of the given 

program with the specified non-deterministic inputs, to verify that none of the assertions or sanity 

checks can fail during run-time.  If an assertion failure is detected, an appropriate counterexample is 

generated.   

 

It should be noted that a number of low- and medium-intensity bugs were detected and 

subsequently removed from the software during this verification process. 

6.3 Experimental methodology 

In order to test the efficacy of the proposed methodology, three separate sets of experiments were 

conducted.  The first set of experiments was performed to assess the efficiency of the proposed 

CPM methodology and also the reference model that was employed.  In these experiments, a simple 

test scenario was considered, focusing on a situation where the host vehicle, cruising at 112.6 KPH 

(70 MPH), closes onto a lead vehicle travelling at 96.5 KPH (60 MPH).  The lead vehicle 

subsequently performs a sharp deceleration manoeuvre and settles at 48.3 KPH (30 MPH).  The 

nine-node TTC system was employed in these experiments. 

 

In the first experiment, data for the ‘healthy’ system were recorded.  In the second experiment, a 

fault was injected into the braking sub-system that simulated a complete power loss in the front left 

and rear right braking nodes (‘braking’ fault).  In the third experiment, a fault was introduced 

effectively reducing the sample rate of the ACC system to 5 Hz (‘timing’ fault). 

 

In the second set of experiments, the facility was used to perform intensive hardware fault injection 

into each system.  The experimental procedure for this was as follows.  Each system was tested, in 

turn, for a continuous period of 100 hrs, during which time random hardware failures were injected 

into system using the rare events technique.  Each individual test run during this period was started 

from random initial conditions, and all previous injected faults were cleared.  Each microcontroller 

also underwent a full system reset prior to the commencement of a test run.   

 

During each test run, the “driver” attempted to accelerate the vehicle to a speed of 112.65 KPH 

(70 MPH).  At this point the driver activated the ACC system.  The driver then changed lanes as 

appropriate, whilst allowing the ACC system to control the vehicle longitudinal motion until the 

ACC system applied the collision detection warning, as discussed in Section 5.2.  At this point the 

driver resumed manual control and manoeuvred the vehicle out of the current road situation. When 



the road subsequently became clear, the driver again attempted to achieve the cruise speed and 

reactivate the ACC.  The ACC system under test also disengaged if a fault was detected, and issued 

a warning to the driver.  At this point the driver would attempt to manoeuvre the vehicle into a safe 

state, as described below. 

 

Each test run could end in one of two ways; either with the vehicle entering a safe state, or a 

dangerous failure occurring.  A safe state could be reached if (and only if) the driver of the host 

vehicle brought the vehicle to a controlled rest on the hard shoulder of the motorway, in response to 

the system under test issuing a warning signal to indicate that integrity has been compromised.  A 

dangerous failure was classified as either a vehicle collision (with the safety margin reduced to 0), 

or the vehicle becoming stranded (or otherwise totally out of control) for a given time period (30 

seconds).  This was implied by any of the performance metrics described in the previous section 

reading less than 10% for more than 30 seconds.  The likelihood ratio during this phase of testing 

was set at α = 106, and the fault models calibrated using the information given in Section 5.5. 

 

In the third set of experiments, the facility was used to perform intensive software fault injection 

into each system; employing a further 100 hrs of testing per system.  The overall test methodology 

during this period was identical to that outlined above, with the exception that each system was this 

time exposed to intense transient disturbances (as opposed to hardware failures).  A transient failure 

was defined as a period between 5 – 500 milliseconds during which time the system under test was 

subjected to a series of between 1 – 100 instantaneous bit flips.  This was chosen to simulate a 

variety of disturbances, equivalent to a Single Event Upset (SEU), a nearby lighting strike or a 

persistent period of electromagnetic upset.  Each node was assumed to be equally likely to 

experience such a disturbance during the period of the transient.   

 

Bit flips in the C167 internal RAM (IRAM) areas can corrupt the system stack, registers, special 

function registers (SFRs) and program counter, whilst bit flips in the external RAM (XRAM) areas 

can corrupt the user stack and also the task data areas.  Each fault injected in this study flipped a 

random bit in a random memory address location from a 4.5 KB area of IRAM or a 4.5 KB area of 

XRAM; thus implementing a wide variety of data, control flow and CPU / peripheral configuration 

errors.  The likelihood ratio during this phase of testing was set at α = 107. 

7. Experimental Results 

The results obtained from the studies outlined in Section 6 are presented in this section, beginning 

with the results obtained from the preliminary study employing the performance monitor. 



7.1 Healthy System Operation 

Figure 14 shows the recorded simulation data for the ‘healthy’ system scenario.  Figure 15 shows 

the recorded performance metrics during this period. 

 

 
Fig.14. Healthy system scenario 

 

 
Fig.15. Healthy system performance 

7.2 Braking Fault Operation 

Figure 16 shows the recorded performance data for the ‘braking’ fault scenario, and Figure 17 

shows the metrics that were recorded during this period. 

 



 
Fig.16. Brake fault scenario 

 

 
Fig.17. Brake fault performance 

7.3 Timing Fault Operation 

Figure 18 shows the recorded performance data for the ‘timing’ fault scenario, and Figure 19 shows 

the metrics that were recorded during this period. These results are discussed in the Section 7.5. 

 



 
Fig.18. Timing fault scenario 

 

 
Fig.19. Timing fault performance 

7.4 Fault Injection Testing 

The results that were recorded during the fault-injection phases of the system testing are 

summarised in this section.  Detailed results of the hardware and software fault injection are given 

in tabular form in Appendix A.  For each system, the total number of test runs are listed, the total 

number of faults that were injected, the breakdown of these faults, and the classification of each test 

run into either a safe state or dangerous failure.  Results are summarized in Table III, where the 

probability that a hardware fault (Ph) or software transient fault (Ps) will result in a dangerous 

failure in each system is quoted.  The equivalent (total) hardware (λh) and software transient failure 

rate (λs) for each system, calculated from the representative failure rates that were given in Table I, 



are also shown.  This then allows the estimation of total dangerous failure rate for each system λd, 

using Equation 13; this failure rate was used to classify the SIL that each system lies in, as shown in 

Table III. 

 

( ) ( )sshhd PP ×+×= λλλ  

(13) 

Table III: Fault injection summary 

System λh(x10-6) Ph λs(x10-6) Ps λd(x10-6) SIL 
3-node TTC 7.51 0.9825 1.00 0.0247 7.40 SIL1 
6-node TTC 14.0 0.3727 1.00 0.0300 5.26 SIL1 
9-node TTC 20.5 0.1539 1.00 0.0209 3.18 SIL1 
10-node TTC 22.7 0.0402 1.00 0.0480 0.96 SIL2 
3-node ETP 7.51 0.9821 1.00 0.0643 7.44 SIL1 
6-node ETP 14.0 0.4204 1.00 0.0648 5.96 SIL1 
9-node ETP 20.5 0.2465 1.00 0.0629 5.12 SIL1 
10-node ETP 22.7 0.1362 1.00 0.1030 3.20 SIL1 

 

7.5 Discussion 

Considering first the healthy system operation, it can be seen that during the entire scenario the 

performance metrics remain in the 90-100% range, indicating good control.  Obviously the effects 

of noise and slight mismatches between the reference and actual models cause the metrics to deviate 

slightly from the 100% performance level; however this is to be expected.  Table IV shows the 

minimum recorded metrics for all three systems; the healthy system remains well above the 90% 

level.  

 

Table IV: Minimum Recorded Performance Levels 

 Minimum Measured Metric 

System Velocity Safety By-Wire QOS 

Healthy System 94.544 99.519 92.647 

Braking Fault 96.423 99.455 87.195 

Timing Fault 49.638 62.819 73.956 

 

 

For the braking-fault scenario, it can be seen that - despite the fact that 50% braking capacity has 

been lost - this can be tolerated by the ACC system (as the maximum deceleration level is 

bounded).  From Table IV, the performance metrics for both the velocity control and safety margin 

perform no worse than for the healthy system; however, considering the By-Wire QOS metric, it 



can be seen that the fault has been diagnosed.  This is evident because this metric drops below the 

90% margin, to a minimum level of 87.1%, reflecting the fact that the actual applied brake settings 

were out of the predicted range.  Considering this metric as a relative (as opposed to absolute) 

measure, the minimum recorded level drops to 49.8%, correctly diagnosing a 50% loss of braking 

capacity. 

 

Considering now the ‘timing’ fault scenario, it can be seen from the recorded metrics that this is the 

most severe of the recorded failure modes in the first experimental run; in fact the safety margin has 

been compromised by almost 38% compared to a healthy system, and the velocity control metrics 

indicate that the vehicle persistently deviates from the reference by more than 5 MPS during the 

scenario.  These preliminary results highlight the effectiveness of the proposed CPM approach, in 

that the severity of different failure modes can be efficiently and automatically classified. 

 

Considering now the fault injection testing results that were obtained, a number of trends may be 

observed.  It can be seen that adding extra nodes into a system decreases the dangerous failure rate 

λd, by reducing the probability Ph that a hardware failure will result in a dangerous failure.  

However, the overall probability of a hardware failure λh increases proportionally to this increase of 

processors and may in some cases need to be taken into consideration.  In addition, it can be seen 

that the addition of redundant processors also magnifies the severity of transient disturbances, with 

a large increase in the number of transient bit-flips; this can be attributed to an increases in the 

memory usage and computation requirements of the overall system, increasing its susceptibility.  In 

general this has little (if any) effect on the probability Ps that a transient disturbance will lead to a 

dangerous failure when the additional processors are not backup Master processors.  However, in 

both TTC and ETP systems, the addition of a backup Master processor has a detrimental impact on 

this probability: it is suggested that this is because the operation of the Master and backup-Master 

nodes is tightly synchronised and relatively complex, and therefore more susceptible to short-term 

disturbances.  It is important to stress, however, that in both systems this effect is somewhat 

compensated for by the increase in hardware fault-tolerance that is gained by the addition of the 

backup Master node; this is reflected in the reduction in the probability Ph that a hardware failure 

will result in a dangerous failure in the 10-node systems. 

 

However, in all cases the ETP systems displayed an increased failure rate over the TTC systems. 

This failure rate increase is more apparent as the number of nodes increases in this system, since as 

the complexity of the system increases there is more potential for ‘things to go wrong’.  It is 

hypothesised that the differences in failure rate can be attributed to two main reasons: 



 

1) The increased determinism of the TTC system positively increases the effectiveness of the 

hardware and software fault tolerance mechanisms7. 

 

2) The increased resource usage and complexity of the preemptive design (context switch, need for 

locks etc) greatly reduces its resilience to software transients8. 

 

This difference is large enough to encompass a whole SIL in the 10-node systems; however the 

differences in the remaining systems are still large enough to advocate the use of the TTC approach 

in safety-related designs of this nature. 

8. Conclusions 

In this paper, a methodology for the automated assessment of performance and dependability of 

embedded control systems has been presented.  It has been shown how the dynamic performance of 

safety-critical control systems can be automatically monitored during testing and verification 

procedures using CPM, and how large-scale fault-injection testing can be driven by RET.  Although 

the selection of a suitable reference model and particular choice of recorded metrics during the 

testing procedures is heavily dependant on the given application, it has been shown experimentally 

that in this particular application the selected metrics give an excellent measure of the system 

operation, and are capable of diagnosing the severity of the system failure modes.   

 

Although measurement of dependability and functional safety cannot simply rely on a single 

methodology or technique, these results suggest that - with appropriate adjustments - model-based 

methodologies such as CPM and RET may prove to be an extremely useful adjunct to existing 

techniques, and may be readily integrated into existing HIL testing equipment and automated 

testing programmes.  In this particular case, failure modes could be automatically classified by their 

severity in affecting the controllability of the vehicle; this has allowed us to provide empirical data 

regarding system reliability and fault tolerance (which are closely related to safety) of ETP and 

TTC architectures to prospective designers of embedded control systems. 

 

However, it is hoped that the results presented in this case study may stimulate further discussions 

and research in this area.  The basic framework presented in this paper may provide a basis for such 

future work, giving system designers the means to efficiently and rapidly extract a reliable source of 

                                                 
7 This was concluded as ‘replica determinism’ is a key requirement for effective management of fault-tolerance (Kopetz 

2000). 
8 This is in agreement with results from a preliminary study (Short et al. 2008a). 



empirical evidence related to the application of the different design paradigms to a wider range of 

embedded-system application areas. 
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Figure Captions 

Fig. 1. Relation of the proposed methodology to the traditional design process 

Fig. 2. HIL simulation principle 

Fig. 3. General structure of the performance assessment framework 
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Fig. 7. HIL facility user interface 

Fig. 8. ACC principle 

Fig. 9. Three-node system architecture 

Fig. 10. Six-node system architecture 

Fig. 11. Nine-node system architecture 

Fig. 12. Ten-node system architecture 

Fig.13. Approach to software fault tolerance 

Fig. 14. Healthy system scenario 

Fig. 15. Healthy system performance 

Fig. 16. Brake fault scenario 

Fig. 17. Brake fault performance 

Fig. 18. Timing fault scenario 

Fig. 19. Timing fault performance 
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