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Availability Analysis for Satellite Data Processing
Systems Based on SRAM FPGAs
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Abstract—This paper presents a novel methodology, which
allows a systematic availability analysis of satellite payload data
processing systems implemented on SRAM-based FPGAs. The
methodology allows (i) comparison of different Fault Detection,
Isolation and Recovery (FDIR) schemes and (ii) prediction
of the expected system availability in a particular radiation
environment. Furthermore, it advances the state of the art by
analysing embedded Block RAMs and employing a novel fault
injection algorithm that enables more complex stochastic models.
The applicability of the method is demonstrated by a case
study representing a high availability payload data processing
application. Since Block RAMs are also taken into account, the
availability prediction precision is greatly increased. It is shown
that the reliability prediction for two border cases, in which the
Block RAMs are either ignored or assumed to be fully susceptible,
can differ as much as 75%. With the proposed Block RAM
profiling tool it is possible to determine a realistic reliability
figure that is eventually required for the accurate estimation of
the system availability.

Index Terms—Availability Analysis; Fault Injection; Radia-
tion Environment; Reconfigurable Hardware; Space Technology;
SRAM-based FPGAs; Stochastic Petri Nets

I. INTRODUCTION

INCREASED processing capabilities are required for pay-
load data processing on board spacecraft. Modern ap-

proaches necessitate that the data is processed in real time
while being streamed from a data source to a data sink, e.g.
from a payload instrument to a mass memory device. On its
way the data is possibly processed by several processor units
in series, performing computationally intensive digital signal
processing (DSP) tasks including reduction of the data volume,
which must be stored on board and later transmitted to Earth.
In a technology assessment NASA scientists found that Static
Random-Access Memory (SRAM) based Field Programmable
Gate Arrays (FPGAs) are best suited for hardware accelera-
tion of such high-performance tasks due to their flexibility,
parallel architecture and embedded DSP blocks compared to
single board computers and DSP processors [1]. Apart from
the increase in performance, SRAM-based FPGAs offer the
capability of being reconfigured, which is a valuable feature
allowing remote upgrade and repair in space missions.

However, except of the radiation hardened Xilinx Virtex-
5QV device, all modern SRAM-based FPGAs are prone to
non-destructive radiation effects, regardless of their grading
(space, defence, or commercial). When dealing with such
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FPGAs in space applications the common types of faults that
must be mitigated are caused by Single Event Upsets (SEUs)
that can change the state of a bi-stable element. SEUs are
triggered by heavy ions and protons and result from ionisation
by a single energetic particle or the nuclear reaction products
of an energetic proton. The ionisation induces a current pulse
in a p-n junction whose charge may exceed the critical charge
which is required to change the logic state of the element.
As a result, the value of a memory bit can be flipped [2].
SEUs occur in both the configuration memory and the user
memory, i.e. in embedded Block RAM cells and flip-flops.
If and when a fault ultimately manifests itself as a failure
depends on the function of the affected memory cell and the
dynamic behaviour of the application, e.g. only a fault in a
memory cell that is actually used in the design can potentially
lead to a failure.

Due to the susceptibility of SRAM-based FPGAs to radi-
ation effects a number of mitigation techniques have been
designed to protect them in the harsh space radiation envi-
ronment. A Fault Detection, Isolation and Recovery (FDIR)
methodology was proposed in [3], [4], which is an attempt
to provide a generalised and unified mitigation framework.
With such a methodology, failures propagating through the
circuit are detected by appropriate monitors. Then, the circuit
is automatically repaired by executing some kind of a recon-
figuration procedure. Depending on the redundancy scheme
applied the circuit might not function correctly in the periods,
in which the circuit is under repair and therefore the system
might suffer from down time. The probability that a system
functions correctly is called steady state availability, often
defined as:

A =
Tm

Tm + Td
(1)

where Tm is the mission duration and Td the observed down
time, which is the sum of the time required to detect and
recover failures.

Availability analysis is an integral part of space product
assurance procedures and a dedicated European Cooperation
for Space Standardization (ECSS) standard is available for
European space projects [5]. This standard gives several def-
initions for availability. In the rest of this paper the term
availability stands for inherent steady state availability, i.e.
downtime during idle periods does not contribute to the overall
system availability. According to the ECSS standard, important
objectives of availability analysis include the verification of
whether or not a system conforms to the availability require-
ments. In addition, it also identifies unavailability contributing
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Fig. 1. Block diagram of the proposed availability analysis methodology.

factors in order to quantify their impact on (i) the decision-
making process, and (ii) the risk evaluation, reduction and
control. The implementation of such an availability analysis
method with regards to SRAM-based FPGAs has two signifi-
cant advantages:

• It gives an estimation of the number of failure occurrences
that are to be expected either during a specific mission
time frame or the overall mission lifetime.

• It allows the comparison of different redundancy and
recovery schemes, which is especially important for ap-
plications where an optimal mitigation approach must be
found trading-off power, area and reliability overheads.

In this paper, a methodology is presented that allows avail-
ability analysis of so-called stream processors, implemented
on SRAM-based FPGAs. Even though Xilinx Virtex-4 devices
are used as an example, the methodology is applicable to all
SRAM-based FPGAs, which are not fully radiation hardened
and thus are prone to radiation-induced soft errors.

The rest of this paper is structured as follows: Section
II outlines the proposed availability analysis methodology.
Section III describes an architecture of a stream processor
as well as a particular image compression implementation,
which is used as a case study for a high availability payload
data processing application. In Section IV, the different failure
modes for the configuration memory, the Block RAMs and the
flip-flops are quantified using the case study stream processor
implementation. In Section V, the quantified failure modes
are used as input parameters for availability prediction with
stochastic Petri nets models, which estimate the processors
availability for a specific orbit in space. For illustration pur-
poses, the orbits of two exemplary European space missions,
Sentinel-3 and Galileo, are employed in the case study. Finally,
the increase of the prediction precision, which is made possible
by our novel Block RAM profiling tool, is illustrated in Section
VI.

II. AVAILABILITY ANALYSIS METHODOLOGY

McMurtrey et al. use Markov models to estimate the re-
liability of Triple Modular Redundancy (TMR) systems [6].
Among other things, the authors investigate how multiple
TMR partitions increase the reliability. Ostler et al. present
a reliability analysis of SRAM-based FPGAs in [7]. The
methodology takes particular radiation environments into ac-
count and is based on fault injection experiments. Kastil et
al. present a dependability analysis of their fault tolerant
systems in [8]. Applications hosted on SRAM-based FPGAs
are partitioned into functional units to which different re-
dundancy configurations can be applied. An automatic tool
creates a Markov model of the overall system. Martin et al.
also uses Markov chains in [9] to model the availability that
can be achieved with different scrubber implementations. In
two recent publications, Hoque et al. deal with probabilistic
model checking techniques for aerospace applications [10],
[11]. The authors use a continuous-time Markov reward model
to determine the availability of the configuration memory when
scrubbing is applied as recovery technique. Stochastic Petri
nets are used to model the availability of the configuration
memory for the first time in [12].

The aforementioned works take only the configuration
memory into account. However, other FPGA building blocks,
especially Block RAMs, cannot be ignored due to the large
amounts of buffers that are typically used by streaming ap-
plications. Thus, we present a more complete, yet easy to
follow availability analysis methodology in this paper, which
also takes Block RAM and flip-flop upsets into account.
Furthermore, the proposed methodology advances previous
work since it also includes:

• A novel fault injection methodology that distinguishes
between several failure modes.

• The usage of extended deterministic and stochastic petri
nets (eDSPN). We believe that this class of petri nets
arrange stochastic models more clearly than Markov
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chains. As a result, complex models are easier to build,
maintain and understand. Furthermore, eDSPNs allow
one expolynomially timed transition in each marking.
Thus, time transitions can be based on complex distri-
butions, e.g. deterministic delay, uniform distribution, or
triangular distribution.

• The usage of a novel Block RAM profiling tool that gives
a more accurate estimate of the used Block RAM cells.

A block diagram of the proposed methodology is depicted
in Figure 1. First, the SEU rates per bit-day are determined
for the configuration memory, the Block RAMs and the flip-
flops of a particular Virtex-4 device in a specific orbit. The
calculations are based on static SEU characterisation data that
was gathered from accelerated radiation testing and published
by Xilinx and NASA [13]. The radiation environment, i.e.
the heavy ion and proton fluxes of the orbit, is calculated
using radiation models standardised in the European standard
ECSS-E-ST-10-04C [14]. The calculated SEU rates give the
probability of a bit flip in one single memory element.

However, to compute the availability of a stream processor,
the SEU rate per day and stream processor must be known
and not just the rates for the memory elements. Thus, the bit
upset rates must be scaled by the number of sensitive memory
elements that first must be determined. The sensitivity of
the configuration memory is quantified by randomly injecting
faults into the memory using a fault injection system whereas
the sensitivity of the Block RAMs is estimated using a custom-
built memory profiling tool. For the usually small number of
flip-flops it is simply assumed that all of them are sensitive.
Once the sensitivity of all memory types is quantified, the SEU
rate for the whole stream processor is known.

To analyse the availability, the chosen failure recovery ap-
proach must also be considered. The typical recovery approach
for the configuration memory is often referred to as scrubbing
[15], a mitigation technique that refreshes the memory content
from time to time with a correct bitstream. In contrast to partial
reconfiguration, scrubbing does not affect the user memory
and can thus be executed during circuit operation. For some
failures, however, such a memory refresh is not sufficient
because the failure could have already manifested itself in
the user logic (e.g. state machines, counters and similar state-
dependent logic). Then, the user logic must be additionally
reset. For user memory (RAMB16s and flip-flops), two basic
failure modes exist: (i) a failure can either propagate to an
output of the FPGA or (ii) it can get trapped in a feedback
loop. In the first case, the failure is of a transient nature only
and no further recovery actions are required. In the latter case,
the user logic must be reset to a safe initial state.

If one wants to model the availability of a processor to
which a specific recovery approach is applied, e.g. frame-based
scrubbing [15] or partial reconfiguration, the SEU rates for the
aforementioned failure modes must be calculated separately.
For instance, some configuration memory bit upsets only
require a memory scrub, while others need an additional circuit
reset. Therefore, we need to determine the SEU rates for
all these cases. This is accomplished for the configuration
memory by our fault injection system that automatically
tries to recover from a failure in several ways and is thus
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Fig. 2. Example of a stream processor.

able to classify and quantify the sensitive bits, described in
Section IV-A. For the RAMB16 cells and flip-flops, a custom-
built netlist parser tool analyses how many of these memory
elements propagate into feedback loops and how many of them
do not. Then, the SEU rates for both cases can be calculated.

Once all SEU rates of interest are available, the steady-state
availability is calculated using Stochastic Petri Nets. Several
models are proposed, which take different redundancy and
failure recovery approaches into account but in principle, this
modelling technique is flexible enough to support all kind of
FDIR approaches.

III. STREAM PROCESSOR ARCHITECTURE

The architecture of a typical FPGA based stream processor
is shown in Figure 2. A soft Intellectual Property (IP) core, the
purpose of which is to accelerate a desired DSP functionality,
is embedded into the stream processor. The stream processor
further comprises a Network-on-Chip (NoC) interface for the
data exchange, some state machine logic and a memory for
state variables. Input control words are interpreted by the state
machine whereas input data words are directly fed into the
accelerator IP core. An additional memory holds all variables
necessary to configure the IP core. If the processing pipeline
uses a specific protocol, a protocol parser and/or protocol
generator may be added to the inputs and outputs of the core.

The employed IP cores are of a passive nature, e.g. they
represent hardware accelerators that are designed to be con-
nected as slaves to a Central Processing Unit (CPU) bus.
With the additional logic in the stream processor, however,
the cores become intelligent enough to process incoming data
without the interaction of a CPU, solely by interpreting data
and command words in the network input stream. Furthermore,
suitable IP cores process input data block-wise. For instance,
such a block could be a line of pixels, a full image or a series of
images (think of hyperspectral image compression and similar
applications). As a rule of thumb, it should be possible to reset
the core after each data block without affecting the processing
of subsequent blocks.

The stream processor itself is protected against soft errors
by means of modular redundancy and therefore all FPGA
building blocks within the processor are multiplied. This is
also beneficial for the embedded Block RAMs. Rollins et al.
[16] showed that redundancy is the only effective mitigation
approach because other mitigation techniques (like error detec-
tion and correction codes) rely on additional logic that must be
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Fig. 3. Example of a typical satellite payload streaming architecture with a
JPEG stream processor in different redundancy configurations: (a) No redun-
dancy, (b) Duplication with Comparison, (c) Triple Modular Redundancy.

implemented as part of the potentially unreliable FPGA fabric.
In theory, internal Error-Correcting Code (ECC) logic found
in some types of SRAM-based FPGAs could be used instead.
However, since this logic is usually not hardened by design,
it is not taken into account by the example models presented
in this paper.

The work presented in the following sections is based
on a case study that represents a typical satellite payload
streaming architecture, illustrated in Figure 3, in which a Joint
Photographic Experts Group (JPEG) image compression IP
core [17] is embedded into a stream processor. The input
data is a raw 24 bit video stream with an image geometry
of 640x480 pixels. The network stream is delivered through a
NoC implementation called SoCWire [18], which is based on
SpaceWire, a popular flow-controlled point-to-point network
protocol [19]. One data block corresponds to one image frame.
Since the subsequent processing pipeline uses a low-level
Consultative Committee for Space Data Systems (CCSDS)
protocol [20], a protocol packet generator has been added
to the output of the IP core which segments the compressed
image into 1 kB sized data chunks before transmitting it to
the next processor. The stream processor is implemented on a
Virtex-4 SX55 FPGA by Xilinx, a device that can be purchased
in a space-qualified version. The methodology could also be
applied to other SRAM-based FPGAs though.

IV. QUANTIFICATION OF SENSITIVE MEMORY ELEMENTS

The following three main types of memories, available in
radiation-tolerant SRAM-based FPGAs, must be considered in
a detailed availability analysis:

• Configuration memory: The configuration of the FPGA
is stored in volatile SRAM memory cells. A part of
the memory stores control bits, which define the routing
resources and the content of the look-up tables (LUTs).
Thus, a radiation-induced upset in one of these sensitive
memory elements can manipulate the circuit in such a
way that a failure becomes measurable at its output.

• Block RAM: In many streaming applications, a large
amount of embedded RAM blocks is utilised by the user
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Fig. 4. Fault injection system with a Virtex-4 device under test (dashed box).

logic. If a value, which was falsified by an upset, is read
from such a memory, it can manifest itself as a failure
and either propagate to the output of the circuit or get
trapped in a feedback loop within the circuit.

• User flip-flops: In most cases, flip-flops do not contribute
as much as the aforementioned memory types to the
overall cross-section due to their typically low number.
However, since flip-flop upsets can get trapped in feed-
back loops too (which requires some failure recovery ac-
tion), they are not neglected for the proposed availability
analysis method.

A. Configuration Memory (via Fault Injection)

Although analytic tools for the quantification of sensitive
configuration memory bits are available, for instance the tools
proposed by Sterpone et al. [21], fault injection is probably still
the most reliable technique for this task due to its capability
to take into account the dynamic behaviour of the application.
With this capability, the following steps can be accomplished:

• The quantification of three types of sensitive configura-
tion bits. Those which lead to failures that:

– can be scrubbed (FC/S).
– need an additional circuit reset after scrubbing

(FC/SR).
– can only be repaired by a repeated partial reconfig-

uration of the stream processor (FC/Re).
• The creation of a database that stores information about

configuration bits, for which the failure mode is exactly
known. The database can later be used to validate FDIR
techniques.

In the course of this work, a fault injection system has been
implemented as outlined in Figure 4. The FPGA floorplan is
divided into three partition, which are interconnected using
a NoC routing switch. A network bridge allows the commu-
nication with each partition via SpaceWire (SpW). The fault
injection campaign is controlled by two instances:

• An embedded software running on a LEON3 micropro-
cessor IP core [22] is responsible for the fault injection
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itself. This is done by first retrieving a desired single
configuration frame from RAM, to which the partial
bitstream under investigation has been copied before.
Then, a bit in this configuration frame is flipped before
it is finally downloaded to the FPGA via the SelectMAP
interface.

• A C++ software running on the host PC controls the
fault injection campaign by sending telecommands to the
embedded software system.

A flow chart of our novel fault injection and failure clas-
sification algorithm can be seen in Figure 5. After fault
injection, the host PC software sends a full data block to the
stream processor (here, a full image to the JPEG processor)
and is then waiting for a response from the processor. The
returning data is reassembled to a JPEG file and compared to
a golden copy of that image. If the JPEG files are identical, the
configuration frame is scrubbed to avoid an accumulation of
faults in the configuration memory and the next random fault
is injected. If there was a mismatch, however, the sensitive bit
is classified as FC/S . The configuration frame is scrubbed and
the host PC software sends another data block to the stream
processor to check if the scrubbing was successful. If so, no
additional actions are required and the next random fault can
be injected. If not, the classification of the sensitive bit is
updated to FC/SR and the circuit is reset by the embedded
system (again by sending an appropriate telecommand). Then,
the procedure is repeated. If the reset was successful, the next
random fault is injected. Otherwise, if the stream processor is
still not returning a correct answer, the classification is updated
to FC/Re. The classification for each injected bit is stored in a
Structured Query Language (SQL) database for later analysis.
Furthermore, in case of a detected failure, the returned data is

written to hard disk (here, the corrupted JPEG image).
Faults are injected just before a full raw image is sent

to the JPEG processor. In reality, however, a fault could
also occur during processing. Preceding fault injection was
chosen intentionally as it represents a worst-case scenario that
maximises the detection coverage of sensitive bits.

For our proof of concept implementation random images
were used during the test campaign. It was later found that
the sensitivity of a very small number of sensitive bits also
depends on the data processed (e.g. very dark or light images).
Therefore, it must be mentioned that data-dependency was not
taken into account during the fault injection campaign.

The automatic fault injection technique is rather slow since
full data blocks are sent through the stream processor. How-
ever, this is important to make sure that all of the states
of the circuit are traversed. It might take some time until
the fault manifests itself as a failure by propagating to the
circuit’s output and as a consequence, the failure could stay
undetected if the state space is not fully covered. In case
of the JPEG processor, only four faults can be injected per
second. But, the technique allows a very detailed classification
of the different failure modes, using a real application. It is
also non-intrusive, i.e. no circuit modifications are required
for the fault injection campaign. Therefore, a fully placed and
routed design could be analysed in a very late design phase, an
important aspect for the typical qualification process in space
engineering projects. And even if only a limited number of
faults can be injected, useful results can be still obtained by
using statistical theory. Since the outcome of the fault injection
campaign has a binomial distribution (recall the classic urn
problem), the number of sensitive configuration bits can be
estimated by a rather low number of statistical samples. To
get an idea how many samples are necessary, the formula for
Wald confidence intervals [23] can be used:

p = p̂± z1− 1
2α

·
√

1

n
p̂(1− p̂) (2)

where p̂ is the proportion of success (e.g. the ratio of
sensitive bits to all bits), n the number of trials, and z the
1 − 1

2α quantile of a standard normal distribution with α as
error percentile. Suppose, a typical 95% confidence interval
(z = 1.96) with an interval width of ±0.2% (p = p̂± 0.002)
is desired while 15% of all configuration bits are assumed to
be sensitive (p̂ = 0.15). In this case, n becomes 122,451. For
the JPEG processor, a value of n = 150, 000 fault injections is
chosen because then, a campaign can still be conducted over
the course of one night (less than 11 hours).

Once the fault injection results are available, a more con-
servative approach for the final estimation of the proportion
is chosen. The so-called Clopper-Pearson interval is known to
have never less than the given coverage rate [23] (here 95%)
which makes it a good candidate for worst-case estimations.

Table I lists the fault injection results for the processor
placed on partition 1 (the partial bitstream of this processor
comprises 3,735,264 configuration bits). The number of sen-
sitive bits is subdivided into two categories. The first category
includes the three failure modes FC/S , FC/SR and FC/Re.
The second category distinguishes between data errors and
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TABLE I
FAULT INJECTION RESULTS

Absolute 95% Confidence Rel. 95% Confidence Abs.
Min. Max. Min. Max.

Sensitive bits 21,051 13.86% 14.21% 517,655 530,811

FC/S 20,080 13.21% 13.56% 493,605 506,503
FC/SR 961 0.60% 0.68% 22,446 25,487
FC/Re 10 0.00% 0.01% 119 458

JPEG errors 14,834 9.74% 10.04% 363,766 375,077
Network er-
rors

6,217 4.04% 4.25% 151,067 158,628

network errors. Data errors affect only the application data
itself, i.e. the JPEG image, whereas network errors affect the
network protocol (falsified protocol headers, missing packets
etc.). The first column lists the absolute outcomes of the
150,000 fault injection experiments. In column 2 and 3, the
lower and upper bound of the confidence interval is given. In
the last two columns, these proportions are scaled to the real
size of the partition using its total number of bits. In theory,
the percentage figures of the first category (FC/S + FC/SR +
FC/Re) and the second category (data errors + network errors)
should both add up to the overall percentage of sensitive bits.
However, as can be seen in Table I, the values do not add
up precisely. The reason is that the confidence intervals for
each failure mode are calculated separately. How precise the
prediction of a confidence interval is depends on the number of
measured samples. Therefore, if 20,080 failures are measured
for FC/S , the predicted confidence interval is more precise
than the confidence interval for FC/Re, for which only 10
failures were measured.

The initial guess of 15% sensitive bits was quite accurate,
with a real upper bound of 14.21%. More than 95% of the
sensitive bits are of type FC/S , i.e. the processor can simply be
recovered by scrubbing. Approximately 4.5% of the sensitive
bits are of type FC/SR, i.e. the circuitry of the processor must
be reset after scrubbing. These kind of failures occur after
state-dependent logic gets affected by a fault. For instance, if
a state machine moves to an illegal state due to a configuration
memory upset, scrubbing will remove the upset but the state
machine is still in the illegal state. Then, only a circuit reset
can recover the processor. A very small number of bits is
of type FC/Re, i. e. failures that can only be repaired by a
partial reconfiguration. It was found that this critical failure
mode occurs due to Read-Only Memories (ROMs) that are
implemented in Block RAM. If the Block RAM interconnect is
affected by an upset, ROM content is likely to be overwritten.

Roughly 70% of the failures affect the data itself, here the
JPEG image. The other 30% of failures are network failures.
Since the outcome of each fault injection experiment is stored
in a database, the failure modes can later be reproduced to
validate possible FDIR techniques.

B. Embedded Block RAM (via Memory Profiling)

Streaming applications often utilise huge amounts of em-
bedded Block RAM elements, e.g. as First In, First Out Buffers
(FIFOs) or ROMs. As a consequence, the number of sensitive

bits inside these elements can be rather large, sometimes
comparable to the total number of sensitive configuration bits.
Therefore, upsets in Block RAMs cannot be neglected in an
availability analysis. However, the estimation of the Block
RAM utilisation is complicated if not impossible with the
standard Xilinx toolchain. If only the absolute number of
Block RAMs is taken into account, the number of susceptible
bits would be way too overestimated. For instance, the JPEG
stream processor utilises 84 Block RAMs. With 18 KBits per
RAM, 1,548,288 sensitive RAM bits could be assumed. In
reality, however, the number of sensitive bits depends on the
dynamic behaviour of the application. First, many rows within
a Block RAM are simply not used. Secondly, faults affecting
memory rows which are not read out after the fault occurred
will also not lead to a failure.

Modelsim

Post-synthesis
VHDL files

Tcl script

n vcd files n nfo files

vcd Parser

RAMB16 Profiler

n log files
+ csv file

Fig. 6. Block RAM profiling tool.

In the course of this work, a novel tool for the dynamic
profiling of Block RAMs has been developed. The basic idea,
as outlined in Figure 6, is as follows: The processing of one
full data block is simulated using a post-synthesis simulation
model, e.g. in ModelSim. During simulation, a vcd-file is
created for each Block RAM which records the changes on
the address and write enable lines of both ports for the
whole simulation run. Furthermore, some information about
the Block RAM is stored in a nfo-file, including the read and
write width configuration, the write mode (write-first, read-
first, no-change) as well as a flag which signals if the data in
and data out lines of both ports are actually connected. All
these information is gathered and stored automatically by a
Tcl script which is executed within the simulator.

Once all files are available, one of our tools is parsing the
vcd-files into C++ objects where the time-value pairs of the
signals are stored. Then, the memory profiling begins: The
tool steps through the simulation run to identify read and write
accesses. This is accomplished by searching for signal changes
in the address and write enable lines of connected ports. While
write accesses can easily be identified by the corresponding
write enable signal, read accesses must be guessed. This is
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TABLE II
SUMMARY OF THE BLOCK RAM PROFILING

Absolute Relative

Available Bits 1,548,288 100%
ROM bits 25,216 1.63%
RAM bits 521,264 33.67%
RAM bits (corrected by τS ) 220,003 14.21%

done by interpreting an address change, which occurs while
the write enable signal is low, as a read access. The approach is
slightly conservative but without any further knowledge about
the circuit, it must be assumed that any valid data at the output
of a Block RAM is also used in the design.

The memory profiling tool has three main tasks. First, it
must identify the real utilisation of the Block RAM. Since the
tool keeps track of the memory addresses that were accessed
during the simulation run, the number of used memory bits can
easily be calculated. Secondly, it must identify which memory
rows, respectively addresses, are used as ROMs and which are
used as RAMs. This is achieved by interpreting rows, which
are only accessed for reading but not for writing, as ROM
rows. Thirdly, the tool must determine a correction factor for
each RAM row that takes the time spans into account in which
a fault cannot manifest itself as a failure.

twr1 trd1 trd2 twr2 trd3 tsim

Tm,1 Tm,2

SEU1 SEU2

Fig. 7. Example for the calculation of the correction factor.

Take the timeline in Figure 7 as an example, where some
read and write accesses of one memory address are shown.
The first fault SEU1 occurs between a read access trd2 and
a subsequent write access twr2. Since the memory row is
overwritten with a new value, the fault cannot manifest itself
as a failure. The second fault SEU2, however, manifests itself
as a failure because the memory row is read out at trd3. All
N time spans Tm,n in which a memory row m is susceptible
(grey boxes in Figure 7) are first accumulated by the memory
profiling tool. Then, the results of all M memory rows are
averaged. Finally, dividing the averaged value by the total
simulation time leads to the correction factor τS :

τS =

∑M ∑N
Tm,n

M · tsim
(3)

τS can only be calculated for RAM rows because obviously,
ROM rows are never overwritten by the user logic. RAM rows
in Block RAMs that are configured in read-first mode must be
handled in a similar way: In this mode, a memory row is read
out just before the write access and thus the whole time span
between the last and the current write access must be assumed
to be susceptible to upsets, i.e. τS = 1.

The memory profiling tool outputs one log-file per Block
RAM with detailed profiling information and one csv-file

with a summary of all results. For the case study, we simulated
a typical run. The final results are listed in Table II: In relation
to the total number of bits in all Block RAMs, the real number
of susceptible bits is much lower. Less than 34% of all bits are
actually accessed. Taking the correction factor τS into account,
this number is further reduced to only 14.2%.

With the profiling tool, we are able to quantify the number
of susceptible Block RAM bits. However, the quantification
of the failure modes is not done yet. As mentioned in the
introduction, a failure can either propagate to an output of
the FPGA or it can get trapped in a feedback loop. While
no special recovery action is necessary in the first case, the
latter failure mode necessitates a circuit reset. To get an idea
how many of the failures propagate into feedback loops, we
developed a netlist parser in C++. The tool takes an edif-file
as input and parses the netlist into a directed graph of C++
objects. Then, the tool is able to traverse the graph using a
Depth-first search (DFS) algorithm. The netlist is flattened in
such a way that the graph only comprises primitives (flip-flops,
RAMB16s etc.) as vertices. Within each vertex, all inputs are
connected to all outputs. In other words, it is assumed that a
failure which arrives at an input of a primitive can propagate
to any output of that primitive.

The implemented algorithm takes a set of primitives, here
RAMB16 blocks, as starting points. From the starting points,
all possible edges and vertices are explored until either i) an
output pin of the FPGA is found or ii) an input pin of a
primitive is found which was already visited in the current
exploration. In this case it is clear that the failure got caught
in a feedback loop. If at least one output pin of the source
primitive leads to a feedback loop, the second failure mode
(necessitating a reset) is assumed for that primitive.

Interestingly, nearly all (83 out of 84) Block RAMs inside
the JPEG processor propagate into feedback loops. For the
worst case, we simply assume that all upsets in susceptible
Block RAM necessitate a circuit reset. It is worth to mention
that several other circuits has been analysed with the same
method with varying results. While some highly pipelined
circuits do not comprise any feedback loops at all, this JPEG
processor has an especially high ratio of state-dependent logic.

C. User Flip-Flops
The number of user flip-flops can easily be determined using

the standard Xilinx toolchain or alternatively, by counting the
flip-flop primitives in the netlist graph. For instance, the JPEG
processor comprises 3,349 flip-flops. But again, it is unclear
how many of the flip-flops propagate into feedback loops.
Therefore, the netlist parser tool is used a second time, using
flip-flops primitives as starting points rather than Block RAM
primitives. Unsurprisingly, the results reveal a similar high
ratio: 3,268 out of 3,349 flip-flops propagate into feedback
loops. For the worst case, it is again assumed that all upsets
in flip-flops necessitate a circuit reset.

V. AVAILABILITY ANALYSIS

A. Radiation Environment
First, the bit upset rates for the configuration memory,

the Block RAMs, and the flip-flops in a particular radiation
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TABLE III
BIT UPSET RATES [1/BIT·DAY] FOR THE CASE STUDY

Memory Type Sentinel-3 (SPE) Galileo (SPE)

Configuration
memory

7.3E-07 2.9E-04 2.6E-07 9.4E-04

Block RAM 2.3E-06 1.1E-03 5.8E-07 3.7E-03
Flip-flops (all 0) 7.0E-07 2.0E-04 4.2E-07 6.8E-04
Flip-flops (all 1) 4.3E-06 1.8E-03 1.0E-06 5.9E-03

TABLE IV
MTBF [DAYS] FOR ALL FAILURE MODES

Mode Sentinel-3(SPE) Galileo (SPE) Recovery Action

FC/S 2.7 0.01 7.6 0.002 Reconf. OR Scrub-
bing

FC/SR 54.0 0.14 150.3 0.04 Reconf. OR (Scrub-
bing AND Reset)

FC/Re 3003.7 7.6 8366.6 2.3 Reconfiguration
FROM 17.4 0.04 68.4 0.01 Reconfiguration
FRAM 2.0 0.004 7.8 0.001 Reconf. OR Reset
FFF 119.0 0.3 403.2 0.09 Reconf. OR Reset

environment must be determined. The required heavy-ion
and proton fluxes are calculated according to ECSS-E-ST-
10-04C [14]: For cosmic rays, the ISO-15390 GCR model
is used while solar minimum conditions are assumed. For
trapped electrons, the AE8MAX model is used for Low Earth
Orbits (LEO) and the MEOv2 model for Medium Earth Orbits
(MEO). For trapped protons, the AP8MAX model is used
for both, LEO and MEO. The fluxes during solar particle
events (SPEs) are calculated using the CREME96 Worst Case
1 Day solar flare model. All fluxes are averaged over 100
orbits and thus take any anomalies into account. We followed
common practice and assumed 100 mil of solid spherical
aluminium shielding, although it was shown in the past that
this assumption is an underestimation for most spacecraft
electronics boxes [24].

Two missions of the European Space Agency (ESA) are
considered for the case study: Sentinel-3 (LEO, 814.5 km
altitude, 98.65◦ inclination) and Galileo (MEO, 23,222 km
altitude, 56◦ inclination).

The resulting upset rates for the configuration memory, the
Block RAMs and the flip-flops are listed in Table III. Under
normal conditions, the bit upset rates for Sentinel-3 are higher
than the rates for Galileo due to the influence of the inner
radiation belt. The opposite is true for SPEs as the lower orbit
offers a natural protection due to the geomagnetic shielding
of the Earth.

B. Stochastic Petri Net Models

For modelling, stochastic Petri nets are used that can ana-
lytically be solved with the TimeNET 4.1 tool [25].

First, the total number of estimated sensitive bits of each
failure mode (see Table I) is multiplied by the corresponding
bit upset rate (see Table III, for FFF , it is assumed that half of
the flip-flops is storing a logical 1 and the other half a logical
0). Then, since the stochastic Petri net method requires Mean
Time Between Failure (MTBF) values rather than failure rates,
the inverses of the resulting failure mode upset rates are used

as input parameters for the models. For instance, the MTBF
value for FC/S on Sentinel-3 is calculated as follows:

MTBF(FC/S) = (
7.3 · 10−7

bit · day
· 506, 503 bits)−1 = 2.7 days

(4)
The results for the three configuration memory failure

modes FC/S , FC/SR and FC/Re, for the read-only Block
RAM cells (FROM ), the normal Block RAM cells (FRAM ),
and the flip-flops (FFF ) are listed in Table IV. The last column
lists possible recovery actions for each failure mode.

1) No Redundancy: First, the availability of a single stream
processor is investigated. Without redundancy, no reliable
failure detector mechanism exists and as a consequence, failure
recovery must be done in a preventative manner, i.e. without
any knowledge about the health status of the processor. A strat-
egy solely based on scrubbing cannot be recommended due to
the failures which can get trapped in the user logic. Consulting
Table IV, two approaches can be applied, depending on how
the input data is streamed into the processor:

a) Approach 1 - Periodic Partial Reconfiguration: If
the input data is delivered in bursts, say 500 image frames,
and there is some time between the bursts to do a partial
reconfiguration, it is recommended to do such a periodic
reconfiguration just before the processing of each burst. The
benefit of this solution is its simplicity and the fact that the
processor can be recovered from all possible failure modes in
one go.

MOD_OK

mod_seu_ram_p

mod_seu_rom_p

MOD_F1
mod_seu_ff_p

mod_seu_cm_p

mod_seu_cm_srp

mod_seu_cm

mod_reconfig

Fig. 8. No redundancy. Petri net no. 1.

All stochastic Petri net models have a similar structure
with three basic nets that are linked to each other via logical
conditions. For the aforementioned case, the first net is shown
in Figure 8. The net models the health status of the processor:
If the token is on place MOD_OK, the processor is working
correctly. If one of the failure modes occurs (modelled by the
exponential transitions mod_seu_*), the token moves into
state MOD_F1. The failure recovery process is modelled by the
immediate transition mod_reconfig which is only enabled
when a trigger condition in the second net becomes true.

The second net, as depicted in Figure 9, models the data
flow through the processor. A token represents the data block
(here, a raw image frame). Transition df_proc_time is
deterministic and models the time the data block resides in
the processor. In case of the JPEG core, the frame rate is 20
Frames Per Second (FPS) and hence, a processing time of 50
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DF_START df_proc_time

DF_CHECK

df_mod_ok

df_mod_failed

DF_OK

DF_FAILED

df_a

df_b

DF_TMP

df_c

DF_RECONF_CNT
v_reconf_intvl

df_clr_reconf_cnt

Fig. 9. No redundancy. Petri net no. 2.

TABLE V
PROCESSOR AVAILABILITY (APPROACH 1)

Reconf. Interval 1 Sentinel-3 (SPE) Galileo (SPE)

5,000 0.9986 0.60 0.9996 0.24
500 0.99986 0.94 0.99996 0.82
50 0.999986 0.994 0.999996 0.98
5 0.999998 0.9993 0.9999995 0.998
1 (images) with the processing time of 1 image being equal to 50 ms

ms is used. After processing, the first net is checked for the
health status and the token moves either to place DF_OK or
DF_FAILED. Then, the token moves back to the start place
DF_START and another stochastic experiment begins. On the
way back to the start place, the token is duplicated and one
copy of the token moves to DF_RECONF_CNT. This place is
a counter which counts the number of processed data blocks.
If the reconfiguration interval threshold value is reached (here,
the number of image frames per burst), the counter place is
cleared and the failure recovery trigger condition becomes
true.

SYS_OK SYS_FAILED

sys_ok_again

sys_failed_again

Fig. 10. No redundancy. Petri net no. 3.

A third net is used for the modelling of the overall processor
availability. The currently processed data block can either be
counted as OK or failed, see Figure 10. The transitions in this
net are only enabled when the token is on place DF_OK or
DF_FAILED in the second net. Ultimately, the steady state
availability of the processor is determined by calculating the
probability that the token is on place SYS_OK.

For approach 1, Table V lists the availability figures for
different burst lengths. It becomes clear that a decent avail-
ability can be achieved for both orbits if the burst length, and
therefore the duration between each partial reconfiguration, is
not too long. However, it must be noted that the figures given
here describe the so-called inherent steady-state availability,
which does not include the planned downtime due to the
periodic reconfiguration.

b) Approach 2 - Periodic Reconfiguration and Periodic
Scrubbing: If the burst length is long or the probability
of FC/S is rather high, it might be worth to combine the
periodic partial reconfiguration with a more frequent periodic

TABLE VI
PROCESSOR AVAILABILITY (APPROACH 2)

Reconf.
Interval 1

Scrubbing
Interval 1

Sentinel-3 (SPE) Galileo (SPE)

5,000 500 0.999 0.671 0.99976 0.3394
50 0.9991 0.6797 0.99978 0.3442
5 0.99915 0.6805 0.999781 0.3446

500 50 0.99991 0.958 0.999976 0.870
5 0.999914 0.960 0.999978 0.875

50 5 0.999991 0.996 0.999998 0.986
1 (images) with the processing time of 1 image being equal to 50 ms

scrubbing. The Petri nets must be slightly modified to model
this case: First, tokens moving via mod_seu_cm arrive at
a new place called MOD_F2. Secondly, the token can leave
that place back to MOD_OK via a new deterministic transition
for scrubbing, analogous to mod_reconfig. To trigger that
transition, a second counter is added to the second net, parallel
to DF_RECONF_CNT.

For approach 2, the availability figures for different recon-
figuration and scrubbing intervals are listed in Table VI. If
the frequency of the scrubbing is ten times higher than the
frequency of the partial reconfiguration, a worthwhile increase
of the availability can be achieved. But, if the scrubbing
interval is further decreased the resulting increase of the
overall availability is only minimal. This result suggests that
a high scrubbing rate is not beneficial for all applications.

2) Redundancy with On-Demand Reconfiguration:
a) Approach 3 - Duplication with Comparison: If the

stream processor is duplicated, a comparator can be used
as failure detector. Then, the failure recovery process can
be triggered on demand. Since the processor is immediately
repaired and does not have to wait for the next recovery cycle,
the availability increases. In the following, the failure detector
itself is assumed to be fault-free.

While the failure detector is able to detect a failure mode
effect, it cannot determine the underlying failure mode. Hence,
the most reliable recovery approach is again a partial re-
configuration. And because it is unknown which instance of
the redundant processor is faulty, both must be reconfigured,
leading to an increased downtime.

b) Approach 4 - Triple Modular Redundancy: In con-
trast, if the processor is triplicated, a voter can be used for
failure detection but also for failure masking, which further
increases the availability.

To model this on-demand reconfiguration approach, the
counters can be removed from the second Petri net. Now,
the places DF_FAILED and DF_OK are used to trigger the
reconfiguration process. Due to the deterministic transition
df_proc_time, a worst-case failure detection time equal
the processing time of one data block is assumed, which
contributes to the downtime of a faulty processor instance.
The time required to reconfigure the faulty processor also
contributes to its downtime. This is modelled by transition
mod_reconfig_time in the first Petri net shown in Figure
11, where the model for the triplicated processor is depicted.
Now, three tokens are used, one for each redundant instance.
The MTBF values of the different failure modes is divided
by the number of the tokens in place MOD_OK. For example,
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mod_seu_ram_p

mod_seu_rom_p

mod_seu_ff_p

mod_seu_cm_p

mod_seu_cm_srp

mod_seu_cm

MOD_F1

MOD_OK
MOD_TMP

mod_reconfig_time mod_reconfig

Fig. 11. Redundancy with On-Demand Reconfiguration. Petri net no. 1.

TABLE VII
PROCESSOR AVAILABILITY (APPROACHES 3 AND 4)

Redundancy
Mode

Sentinel-3 (SPE) Galileo (SPE)

Duplicated 0.999998 0.9991 0.9999994 0.997
Triplicated 0.999999999998 0.9999997 0.9999999999999 0.999996

if three redundant instances are working correctly, the chance
that one of them fails is three times higher compared to a
single processor.

The results for the duplicated (approach 3) and triplicated
processor (approach 4) are listed in Table VII. Compared to the
periodic recovery approaches, the availability is in both cases
very high. The good performance of the duplicated processor
is due to the rather low ratio of the processing time of one
data block (50 ms) to the reconfiguration downtime (2 · 30 ms)
because only a few data blocks are affected by the downtime.
For larger data blocks, the situation might be significantly
different. The availability for the triplicated processor is so
high because a failed processor instance can be repaired in
the background without affecting the availability of the overall
system. It is only affected if a second instance fails before the
first faulty instance is repaired.

VI. ADVANTAGES OF BLOCK RAM PROFILING

As discussed in Section II, the susceptibility of the Block
RAM bits cannot be neglected in availability analysis of
spaceborne SRAM-based FPGAs due to the large amount of
Block RAMs used in some satellite payload data processing
applications. In order to substantiate this claim, the reliability
of a stream processor, to which no failure recovery method
is applied, will be analysed and compared for the following
three cases:

• Case (a): The susceptible Block RAM bits FRAM , deter-
mined by the Block RAM profiling tool, are taken into
account in the availability analysis.

• Case (b): The Block RAMs are fully neglected in the
availability analysis.

• Case (c): All Block RAM bits within the stream pro-
cessor (FRAM/A) are assumed to be susceptible in the
availability analysis.
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Fig. 12. Impact of Block RAM profiling on reliability results.

For illustration, the mission Sentinel-3 (SPE) is used in the
ensuing analysis. For cases (a) and (b), the MTBF values are
listed in Table IV. For case (c), where all Block RAM bits are
assumed to be sensitive, the corresponding MTBF value can
be calculated in the same way, but this time all 1,548,288
Block RAM bits must be taken into account, resulting in
MTBF(FRAM/A) = 50.73 sec.

Since the system becomes unreliable each time when one
of the failure modes occurs, its reliability diagram can be
represented by a series connection of blocks corresponding
to each failure mode. The reliability of a series system over
time can be calculated as follows:

R(t) = e
−t

n∑
i=1

λi

(5)

where t is the time and λi = 1/MTBF the failure rate of
mode i.

The reliability over time of the aforementioned three cases
is plotted in Figure 12. It can be seen from Figure 12 that the
reliability curve corresponding to case (c), where all Block
RAM bits are assumed to be sensitive, drops to zero very
quickly. The difference of the prediction between case (b),
where no Block RAMs are considered and case (c) can be
as high as 75%. However, since the Block RAM profiling
tool identifies only a fraction of Block RAM bits as sensitive,
the curve of the corresponding case (a) is the more realistic
estimate. The maximum difference of the prediction between
case (a) and the other cases is 37%. From this example, it
becomes clear that the impact of the susceptible Block RAM
bits cannot be ignored. Without any knowledge about the
usage of the Block RAMs, the actual reliability curve could
lie anywhere between case (b) and (c).

It has to be noted that the degree to which the total number
of the estimated sensitive Block RAM bits eventually affects
the estimated availability figure depends very much on the
failure recovery approach. As an example, Table VIII shows
the availability figures computed for the approach, in which a
single stream processor is periodically reconfigured (approach
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TABLE VIII
IMPACT OF BLOCK RAM PROFILING ON AVAILABILITY (APPROACH 1)

Reconf. Interval 1 Case (a) Case (b) Case (c)

5,000 0.60 0.83 0.19
500 0.94 0.98 0.77
50 0.994 0.998 0.97
5 0.9993 0.9997 0.997
1 (images) with the processing time of 1 image being equal to 50 ms

1). If the stream processor is repaired very frequently, say
every 5 images, the impact is rather low because at this point
of time, the probability that the stream processor is still healthy
is high for all three cases. However, if it is repaired less
frequently, e.g. every 5,000 images, the impact becomes much
more visible as evidenced by the top row in Table VIII.

Recently, the availability analysis method was validated
during a proton irradiation test campaign [26]. By means of the
proposed fault injection and Block RAM profiling technique,
the number of sensitive memory elements could be predicted
with such a precision that the estimated availability figure
differed from the measured one during the test by only 0.9%.

VII. CONCLUSIONS

In this paper, a novel methodology for a systematic avail-
ability analysis of stream processors, implemented on SRAM-
based FPGAs, has been presented. The proposed methodology
provides a new capability allowing the detailed analysis of a
circuit without a detailed knowledge of its internal structure.
The methodology is implemented as a set of tools integrated
together and is fully tested using a case study based on a
typical satellite payload data streaming system. A new con-
figuration memory failure classification algorithm is proposed
and a novel Block RAM profiling tool is developed and
incorporated allowing Block RAM failure quantification. The
proposed approach to availability analysis could easily be au-
tomated and is non-intrusive, i.e. it does not require any circuit
modifications. Hence, the method can serve as an essential tool
during the design and qualification phase of space electronics
systems that incorporate SRAM-based FPGAs, simplifying the
evaluation of the appropriate FDIR mechanisms. This is the
first implementation of an ESA standard availability aproach
with regards to SRAM-based FPGAs that addresses a gap in
the current space qualification process.
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