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ABSTRACT 
 
Airborne laser scanning (ALS) data are increasingly being used for land cover classification. The 
amplitudes of echoes from targets, available from full-waveform ALS data, have been found to be 
useful in the classification of land cover. However, the amplitude of an echo is dependent on various 
factors such as the range and incidence angle, which makes it difficult to develop a classification 
method which can be applied to full-waveform ALS data from different sites, scanning geometries and 
sensors. Additional information available from full-waveform ALS data, such as range and echo width, 
can be used to calibrate intensity values, and derive backscatter cross section. The backscatter cross 
section of a target is the physical cross sectional area of an idealised isotropic target, which has the 
same intensity as the selected target. The backscatter coefficient is the backscatter cross section per 
unit area. In this study, the amplitude, backscatter cross section and backscatter coefficient of echoes 
from ALS point cloud data collected from two different sites are analysed based on urban land cover 
classes. The application of decision tree classifiers developed using data from one study area on 
another demonstrates the advantage of using backscatter coefficient in classification methods, along 
with spatial attributes. It is shown that the accuracy of classification using backscatter coefficient 
(kappa coefficient 0.89) is higher than those using amplitude (kappa coefficient 0.67) or backscatter 
cross section (kappa coefficient 0.68) in the classification of urban areas. This attribute is especially 
useful for separating road and grass.       
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1. Introduction 
 
Airborne laser scanning (ALS) data are increasingly being used for land cover mapping. There are two 
distinct techniques used in ALS systems based on how the return signal is recorded – discrete return 
and full-waveform. Full-waveform ALS data give additional information about the objects in the path 
of the laser pulse, when compared to discrete return ALS data. In a full-waveform scanner, the 
return signal is the product of the transmitted laser pulse and the scattering function of the target or 
targets. The temporal shape of the return signal is often referred to as waveform. In the case of a 
single flat target perpendicular to the incident laser beam, the waveform is a smaller version of the 
transmitted signal in terms of shape. The waveform recording ALS systems record the entire time-
varying power of the return signal from all illuminated surfaces. The waveform from multiple targets 
is complex, and represents the sum of the signals from the individual targets. It is often decomposed 
into components representing the individual targets. Many approaches to the interpretation of ALS 
data are based on Gaussian decomposition. Its underlying assumption is that the scattering 
properties of a cluster of targets can be described by a Gaussian function. An extended target could 
be described by a series of Gaussian functions, where each pulse represents a cluster of targets too 
close to be differentiated. This method gives estimates of the location and scattering properties of 
the targets (Hofton et al., 2000; Mallet and Bretar, 2009; Wagner et al., 2006). 
 
Amplitude, echo width and the number of returns are the additional information obtained from full-
waveform data, which have been successfully used for classification. The maximum amplitude is a 
measure of the strength of the echo. The echo width could refer either to the full width at half the 
maximum (FWHM) amplitude, or the standard deviation, of the pulse in the Gaussian 
decomposition. The main methods used by the classification studies using full-waveform ALS data 
are decision trees (Ducic et al., 2006; Rutzinger et al., 2008) and support vector machines (Bretar et 
al., 2009; Mallet et al., 2008). Ducic et al. (2006) used a decision tree to classify ALS points into 
vegetation (trees and shrubs) and non-vegetation (grass, roof and road) using attributes from full-
waveform ALS data. In this study, although the points from grass and road could be separated based 
on amplitude, grass had similar range of amplitudes to building roofs. Since their aim was to classify 
points without using elevation or relationship to adjacent points, grass was grouped with non-
vegetation for generating the decision tree. Rutzinger et al. (2008) used a decision tree to classify 
points from full-waveform ALS data to detect tall vegetation – trees and shrubs, based on the 
homogeneity of echo width. Segment statistics were calculated by aggregating attributes such as 
amplitude and surface roughness for a training area. This was used to construct a decision tree to 
classify the ALS data. They achieved accuracies above 90% for the validation sites.  
 
The amplitude values would vary for a given target depending on the flying height or elevation 
differences, even within a single dataset. Multi-temporal analysis using amplitude values, from 
different ALS systems, scan geometry and atmospheric conditions, would require the values to be 
converted to comparable measurements. The additional information provided by the decomposition 
of full-waveform ALS data is suitable for calibration, whereby amplitude and echo width are 
converted to values proportional to the surface reflectance of the target (Coren and Sterzai, 2006; 
Höfle and Pfeifer, 2007; Kaasalainen et al., 2007; Wagner et al., 2008b). 
 
In radar remote sensing, the backscattering or backscatter cross section, also referred to as radar 
cross section is of the most interest. Since lidar (the technique used in laser scanning) is considered 
to be an extension of radar to shorter wavelengths, the radar cross section is often used to 
understand the characteristics of the return signal from laser scanning. The backscatter cross section 

of a target, usually represented by the Greek letter sigma (), is equal to the physical cross sectional 
area of an idealised isotropic target, which has the same intensity as the selected target. It has 
dimensions of area, in m2 (Wagner et al., 2006; Woodhouse, 2006). 
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The radar equation has been used to explain the strength of the return signal in ALS, and to derive 
the backscatter cross section. When measurements from different flight conditions and instruments 
are to be compared, the measured receiver power has to be converted into backscatter cross 
section. The backscatter cross section is derived from the range (distance from the sensor to the 
target), amplitude and width of an echo. The calibration constant is a single value that sums up the 
parameters that are constant for a particular flight taking into consideration the system and 
atmospheric parameters. The calibration constant can be estimated using reference targets with a 
known backscatter cross section, or a known surface reflectance at the wavelength of the sensor. 
Asphalt roads have been used for deriving the calibration constant based on an assumed or field-
measured reflectance value (Briese et al., 2008; Wagner et al., 2006). This is discussed further in 
section 3.3.  
 
The backscatter cross section need not correspond to the actual cross sectional area of the target, 
and for a small discrete target, the value would remain the same with a decrease or increase in the 
illuminated area. However, for an extended target, like bare ground, the backscatter cross section 
would increase or decrease in proportion to the illuminated area. This makes it difficult to compare 
the cross sections of targets, with similar scattering properties, but different physical areas. The 
backscatter coefficient is a normalised measure of the backscatter cross section irrespective of the 
area of the footprint (Woodhouse, 2006).                      
 
Backscatter cross section and backscatter coefficient have been suggested as suitable values for 
describing the scattering properties of targets, and for calibration (Wagner et al., 2008b). However, 
they have not yet been analysed as potential attributes in the classification of urban areas. Even in 
the case of decision tree classifiers using amplitude and echo width, a method developed based on 
values from one study area has not been used to classify data with a different scanning geometry 
from another study area. In this study, amplitude, backscatter cross section and backscatter 
coefficient are compared for use as attributes in the classification of urban areas into vegetation, 
roads and building roofs. The amplitude values in one study area are calibrated to obtain the 
backscatter cross section and backscatter coefficient of each point in the training data. Amplitude, 
backscatter cross section and backscatter coefficient are used to construct decision trees for 
classifying the ALS points. The decision trees are then used to classify data points from the second 
study area to assess the influence of the flying height and scan angle on these attributes, and on the 
accuracy of classification. 
 
Vegetation is subdivided into grass, shrubs and trees based on height (<0.5 m, 0.5-2.5 m and >2.5 
m), and buildings are subdivided into those with flat and pitched roofs. The other attributes used for 
classification are echo width, normalised elevation, average and standard deviation of slopes, 
standard deviation of aspect, height variation and number of echoes. The classes and the derivation 
of spatial attributes are discussed in more detail in Alexander et al. (2008). The accuracies of the 
three classifications of the second study area are compared. Aerial photographs and a digital 
topographic map (OS MasterMap®) are used only for analysis, and for creating training and 
reference data. 
 
 
2. Study Area and Datasets 
 
Full-waveform ALS datasets were collected from Bristol and Bournemouth using LiteMapper 5600 
Airborne Lidar Terrain Mapping System, in August 2006 and June 2008, respectively. The LiteMapper 
system makes use of RIEGL LMS-Q560 laser scanner. The sensor used in this system emits laser 
pulses at a wavelength of 1 550 nm. The system has a laser beam divergence angle of 0.5 mrad, 
which produces a footprint diameter of approximately 0.5 m (1000 x 0.5 x 10-3) on a target at nadir, 
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from a flying height of 1km. The footprint diameter increases with the range or flying height, and the 
off-nadir footprints are elliptical. The two datasets differ in the heights from which data were 
collected, and the maximum scan angles.  
 
In Bristol, data were captured at a height of approximately 950 m above ground level, at a speed of 
65 ms-1 with a laser scanning pulse rate of 50 kHz. The maximum scan angle for the dataset was 
22.5° from nadir. The point density ranged from 0.5-0.8 points m-2 per flight line. The average 
footprint diameter on the target at nadir with a laser beam divergence of 0.5 mrad is approximately 
0.475 m. An area of 1 km x 1 km was chosen from Easting 354 000 to 355 000 (longitude 2°39'50'' W 
to 2°38'59'' W) and Northing 178 000 to 179 000 (latitude 51°29'56'' N to 51°30'29'' N), which 
includes a range of land use and land cover types. In addition to stands of trees, there are trees 
along the road, shrubs in gardens in the residential areas as well as grassland. The land use includes 
residential and institutional areas and agricultural land. Four flight strips, with overlaps, covered the 
whole study area.  
 
The second study area is in Bournemouth (Figure 1), with an area of 0.5 km x 0.5 km from Easting 
408 750 to 409 250 (longitude 1°52'38'' W to 1°52'13'' W) and Northing 91 500 to 92 000 (latitude 
50°43'23'' N to 50°43'39'' N). It is a more complex site than the one in Bristol. Horseshoe common, in 
the middle of the study area, has a variety of trees on a sloping terrain. The road network is also 
complex with bridges and flyovers. The full-waveform data were collected from a height of 
approximately 300 m and a maximum scan angle of 30°. The study area was covered by the swath 
widths of seven flight lines. The footprint diameter on the target collected from a flying height of 
300 m at nadir is 0.15 m. The major axis of the elliptical footprint at the maximum scan angle of 30° 
is about 15% longer, and the area is about 54% larger. 
 

 
         

Figure 1. Aerial image of the study area in Bournemouth (Ordnance Survey © Crown Copyright. All Rights Reserved) 

 
 
3. Methodology 
 
The calibration constants for the two study areas can be calculated based on assumptions about the 
reflectance of asphalt at the wavelength of the sensor. Wagner et al. (2006) derived the value of the 
calibration constant based on the assumption that an asphalt road has a reflectance of 0.2 at a 
wavelength of 1 550 nm.  Briese et al. (2008) made use of a reflectometer developed by Riegl, to 
measure the reflectance of three surfaces of interest: two sections of asphalt road and one building 
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roof. The Riegl reflectometer made use of a laser diode operating at 1 550 nm, producing a spot of 
approximately 0.15 m diameter at a distance of 1-1.5 m. The reflectance of two Spectralon® 
reference targets, of reflectance 99% and 60%, were measured using the reflectometer and used to 
calculate the reflectance of the areas of interest. In this case, the reflectance of asphalt at the said 
wavelength was found to be 0.25. A reflectance of 0.25 is therefore used in this study. 
 
Initially, the calibration constants for the two study areas are calculated. The backscatter cross 
sections are calculated based on this value. The backscatter cross sections for the two study areas 
would have been comparable if the flying height and footprint diameters were the same. Since this is 
not the case, the backscatter coefficients are calculated by normalising the backscatter cross 
sections with the area of the footprint. Decision tree classifiers are generated using amplitude, 
backscatter cross section and the backscatter coefficient derived from the training points in Bristol. 
These decision tree classifiers are then applied on the data from Bournemouth. The classifications 
are compared to determine whether the calibrated intensity values give advantages over amplitude, 
in terms of accuracy. 
  
 
3.1 Pre-processing  
 
The raw waveforms from Bristol and Bournemouth were decomposed using the commercial package 
RiAnalyze 560. RiWorld 560 was used to transform the data into WGS Cartesian coordinates. The 
dataset was transformed to British National Grid, using Grid InQuest (Quest, 2009), before further 
analysis. The point density ranged from 0.5-0.8 points m-2 for each flight line in Bristol. All the echoes 
were used for the analysis, which along with the overlapping swath widths of the flight lines 
generated above 1 000 000 points giving an average point density of approximately 1 point m-2. The 
number of echoes denotes whether the point is one of a single, two, three or more hits of a single 
emitted pulse. 94.32% of the points were first echoes, 5.4% were second echoes, 0.28% third echoes 
and 0.06% fourth echoes. 88.97% of the points were single echoes, and only one point was a fifth 
echo. 
 
The dataset from Bournemouth contained 12 914 815 points from seven flight lines, providing a 
point density of above 50 points m-2. The points had to be thinned to make a better comparison with 
the data from Bristol, which was approximately 1 point m-2. A point shapefile was created with 
points at 1 m spacing in a grid within the study area. Data points that were nearest to the grid points 
were selected. In the case of multiple echoes, all echoes with the same time stamp were also added 
to the selection. After thinning, there were 337 198 points in an area of 250 000 sq. m in the dataset 
in Bournemouth. 
 
 
3.2 Attributes for generating decision trees 
 
Amplitude, elevation, echo width, echo number and the number of echoes are the attributes of 
individual points extracted from the full-waveform data. The amplitude values of roads and trees are 
lower than those of grass, shrubs and buildings. Although there are overlaps in the values, amplitude 
is a useful attribute in separating road and grass. The normalised elevation is useful in separating 
buildings from the other classes, especially road and grass. 
 
The spatial relationships between neighbouring points were derived based on a TIN, which was 
created from the elevation of all the points. The attributes used in the decision tree were average 
and standard deviation of slopes of TIN triangles attached to each point, standard deviation of 
aspect and height variation. 
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The height of points from the ground can be useful in distinguishing different surfaces. With the use 
of additional attributes derived from the TIN, it is hoped that the classifier would work even with a 
rough digital terrain model (DTM). A rough DTM was therefore created from the elevation of ALS 
points, making use of the lowest point in a 10 m grid. A TIN was created from these points. The 
terrain elevation obtained from this TIN surface was subtracted from the elevation of each point to 
obtain an estimate of the normalised elevation. 
 
 
3.3 Calculation of the Calibration Constants  
 
The theoretical backscatter cross section of an echo at nadir is (Briese et al., 2008; Höfle and Pfeifer, 
2007; Jelalian, 1991; Wagner et al., 2006): 
 

           
[1] 

where   is the backscatter cross section in m2,    is the reflectance of the target surface,   is the 
range (the distance from the sensor to the target) in m and   is the laser beam divergence angle in 
radians.  
 
From the radar equation, Wagner et al. (2006) derived the following equation for the ‘apparent’ 
cross section of each surface within the laser footprint: 
 

         
    

[2] 

where       is the calibration constant,   is the amplitude of the echo,   is the echo width 
Assuming a reflectance of 0.25 for asphalt, the calibration constant can be calculated from the 
equations, [1] and [2] as:  

      
       

    
 

[3] 

where   is the amplitude and    is the echo width of each point on the selected sections of asphalt 
road. The laser beam divergence angle (  , is 0.5 mrad for Riegl LMS-Q560. The width of the echo 
from the Riegl software corresponds to the FWHM of amplitude of the Gaussian pulse. This was 
converted to the standard deviation of the Gaussian using the formula (Weisstein, 2009): 
 

   
    

      
 

[4] 

Near-nadir points from asphalt road sections were selected from the study area in Bristol. The scan 
angle being almost 90o, almost horizontal sections were chosen to avoid the influence of incidence 
angle on the echo. Points with amplitude greater than 40 were removed so that points from white 
road markings were not included. There were 566 points from the nine road sections. The mean of 
the calculated calibration constants, 4.45.10-6, was used for the calculation of backscatter cross 
section and backscatter coefficients.  
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3.4 Derivation of Backscatter Cross Sections and Backscatter Coefficients 
 
The backscatter cross sections (  ) for each echo were calculated using equation [2]. The values 
increase with the area of the laser beam footprint on the target. For a particular beam width, the 
area of the footprint changes with the flying height at nadir. The cross section per unit area, denoted 
as  , is considered to be a better attribute for comparing the scattering characteristics of area-
extensive targets which produce single echoes from different sensors and flight parameters (Ulaby 
et al., 1982; Wagner et al., 2008b). The cross section per unit illuminated area (   ) is the most 
widely used parameter in radar remote sensing. However, this requires the incidence angle of each 
echo, and significant processing and modelling are necessary to estimate the local incidence angle 
on an inclined surface (Wagner et al., 2008b). Although the illuminated area changes with the 
incidence angle of the beam on a given surface, the scattering strength is often related to the cross 
section of the incoming beam for convenience (Schanda, 1986; Wagner et al., 2008b).  
 
Cross sectional area of the incoming beam (Wagner et al., 2008b), A, is: 
 

   
       

 
 

[5] 

where   is the distance from the sensor to the target in m and   is the laser-beam divergence angle 
in radians. 
 
The back scatter cross section per unit area of the incoming beam can be calculated as (Wagner et 
al., 2008b): 

   


 
 

 [6] 

Amplitude and the derived attributes,   and  , were used to generate decision trees to classify the 
full-waveform dataset.               
 
 
3.5 Generation of Decision Trees for Classification  
 
Training polygons were manually delineated using the attributes of the ALS points, OS MasterMap 
and an aerial image into the six land cover classes. The attributes of points within the training 
polygons representing the different classes could now be analysed. The attributes – amplitude, echo 
width, number of returns, average and standard deviation of slopes, standard deviation of aspect, 
height variation and normalised elevation – of the dataset from Bristol were used to generate a 
decision tree for classification. Decision trees were generated, replacing the amplitude by the 
backscatter cross section as an attribute. This was repeated using the backscatter coefficient. These 
three decision trees, using amplitude, backscatter cross section and backscatter coefficient, were 
then used to classify the data from Bournemouth.  
 
 
3.6 Classification of ALS Points  
 
A TIN was created from the thinned data points in Bournemouth, using elevation as the attribute. 
This was converted to TIN triangles and intersected with the points, to derive additional spatial 
attributes. The thinned dataset from Bournemouth now had the following attributes for each 
received echo: unique identifier, time stamp, easting, northing, elevation, amplitude, echo number, 
number of echoes, range, scan angle and echo width.  
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Ten sections of asphalt road were selected from the un-thinned Bournemouth dataset. The points 
selected were from road sections with scan angle from 89.5° to 90.5° and the range of heights less 
than 0.2 m. There were 1 898 points from the ten road sections. The mean of the calculated 
calibration constants, 17.4 x 10-6, was used for the calculation of backscatter cross section and 
backscatter coefficients for each point in the dataset. 
 
The three decision trees generated using the training data from Bristol were then used to classify the 
points. The attributes ‘class’ and ‘node’ were added to the existing attributes of each point. The 
points could now be displayed according to their class for visual analysis. The classification results 
using the three decision trees were compared, as discussed in the following section.  
 
 
3.7 Assessment of Accuracies  
 
Reference polygons belonging to the different classes were manually delineated using the attributes 
of the ALS points, and visual analysis of the aerial photograph and OS MasterMap. The points within 
these reference polygons were selected for assessing the accuracies of classification. There were 3 
520 points in all, consisting of 1 076 points from trees, 109 points from shrubs, 708 points from 
grass, 702 points from road, 399 points from flat roofs and 526 points from pitched roofs. The class 
of the manually referenced point was added as an attribute of a point before classification. The 
classification of points using the three decision trees were compared with the class of the reference 
data to get an estimate of the accuracies using the different attributes. 
 
 
4. Results 
 
The kappa coefficients, overall accuracies, average user’s accuracies and average producer’s 
accuracies of classification using the three decision trees are shown in Table 1. All the accuracies are 
the highest for the third classification using   as an attribute. The calibration constants in Bristol and 
Bournemouth were calculated as 4.45 x10-6 and 17.4 x 10-6 respectively. These were used to calibrate 
the intensities of the datasets from the two study areas, and estimate the backscatter cross sections 
and backscatter coefficients.  
 
 Table 1: Kappa coefficients, overall accuracies, average user’s accuracies and average producer’s accuracies of the 

classifications for the three decision trees using amplitude,  and   as attributes 
 

 Amplitude    
Kappa coefficient 0.67 0.68 0.89 
Overall Accuracy 73.44 74.52 91.53 
Average User's Accuracy  82.23 68.24 90.36 
Average Producer's Accuracy 78.93 76.70 91.11 

 
The classification using the decision tree with amplitude as an attribute is shown in Figure 2. A major 
misclassification is that of road at a higher elevation than the land below as a building (Figure 3). On 
visual analysis of the data, displayed by the assigned node number, the other major 
misclassifications are in the nodes using amplitude (Figure 4). The resulting leaf nodes are grass, 
road, trees and pitched roofs.   
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Figure 2: Points classified using the decision tree with amplitude as an attribute, converted to polygons by merging 
Thiessen polygons based on class. The points within the rectangle containing the misclassified road are shown in Figure 3. 

 

 
Figure 3: Section through the misclassified road (A). The section is through the rectangle shown in Figure 2.  
 

 
 
Figure 4: Nodes of the decision tree dependent on amplitude values for classification (within the rectangles) 

 
After pruning, the decision tree using   as an attribute had 31 nodes including 16 leaf nodes. Grass, 
road and flat roofs required only one leaf node each (Figure 5). As in the decision tree using 
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amplitude as an attribute, the greatest difficulty was in the separation of pitched roofs and trees. 
The classified points using the decision tree with   as an attribute are shown in Figure 6.  
 

 
Figure 5: Decision tree with   as an attribute. 

 
Figure 6: Points classified using the decision tree with the backscatter coefficient ( ) as an attribute, converted to polygons 
by merging Thiessen polygons based on class. (A) Road incorrectly classified as shrubs, and (B) water body incorrectly 
classified as road. 
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5. Discussion 
 
5.1 Comparison of the Calibration Constants 
 
The calibration constant in Bournemouth is nearly four times the calibration constant in Bristol. As 
noted in section 2, the average flying heights, in Bristol and Bournemouth, were 950 m and 300 m 
respectively. This accounts for much of the difference in the values of the calibration constants in 
the two study areas, as shown in equation [7]. From equation [3], the calibration constant is derived 
from the divergence angle of the laser beam, range, amplitude, and echo width of each point on the 
selected sections of asphalt road. The divergence angle of the laser beam is the same for the two 
study areas as the same sensor is used in both the cases. The ratio of the mean range of the selected 
points in Bournemouth to the mean range in Bristol is approximately 2.85. Similarly, the ratios of the 
mean amplitude and echo width are approximately 0.48 and 0.98 respectively. Therefore, the ratio 
of the calibration constants in Bristol,      , and Bournemouth,       , is: 
 

       
         

  
        

 ;         
         

  
        

 

 
     

     
  

  
        

  
        

  
  

  
 
 

 
   

  
 
   

   
                         

[7] 

where   is the laser beam divergence angle, and     and    are the average amplitudes and    and 
   are the average echo widths of points on the selected sections of asphalt road in Bristol and 
Bournemouth. 
 
The road sections were selected to have scan angles close to 90° to reduce the effects of scan angles 
on the amplitude and echo width. Even then, there were slight differences in the calculated 
calibration constants within each study area. The means of the calibration constants for all the 
points in the selected sections of road in both the study areas were used for the analysis. The mean 
of the calculated calibration constants in Bristol was found to be 4.45 x10-6, when the average of all 
the points was calculated. When the means of the sections were calculated, and the calibration 
constant was taken as the mean of these means, a value of 4.84 x10-6 was obtained. The slight 
differences in the values could be due to the differences in the age and material used for surfacing 
the roads, leading to differences in reflectance values. This could have an impact on the calibration 
constant, and thereby on the classification. Similarly, the mean of the calculated calibration 
constants in Bournemouth was found to be 17.38 x 10-6, when the mean of all the points was 
calculated. When the means of the sections were calculated, and the calibration constant was taken 
as the mean of these means, a value of 16.86 x 10-6 was obtained.  
 
 
5.2 Accuracies of Classification 
 

The three decision trees based on amplitude,  and   had different numbers of nodes after pruning. 
Since the decision tree using amplitude as an attribute contained 31 nodes, the two other decision 
trees were pruned further to have a maximum of 31 nodes for a better comparison. Points from no 
other class are classified as flat roof using any of the attributes. Their user’s accuracies are therefore 
100%. 
 
The average user’s and producer’s accuracies are the highest for the classification using  , and the 
accuracies for all the classes are above 70% (Table 2). The decision tree using   made use of five 
additional attributes – classified normalised elevation, height variation, average slope of TIN 
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triangles attached to each point, echo width and standard deviation of aspects of TIN triangles to 
provide an overall accuracy of 91.5% and a kappa coefficient of 0.89. Ten of the nodes in the 
decision tree using   required only three attributes for classification. Five nodes required four 
attributes, and one node required all six attributes. 
 
Some of the points classified as shrubs and within roads, were classified incorrectly due to their 
estimated elevations from the ground. Some of the other points incorrectly classified as shrubs are 
from vehicles, which would also have a normalised elevation greater than 0.5 m. Water has low 
reflectance in the infrared wavelengths, leading to the inland water body being classified as road 
(Figure 6). Flat roofs were classified based only on height, average slope and height variation. Grass 
and road were classified based on height and  . Average slope was used only to filter out points 
from trees in both grass and road. Echo width and   are used to separate trees and pitched roofs. 
The values for echo width are generally larger for trees than pitched roofs.  
 

The classification using  gave the highest number of correctly classified trees. It would also seem 
from Table 1 that the accuracies are comparable to the one using amplitude. However, it can be 

seen from Table 2 that all the points from grass are incorrectly classified using . The majority of 

them are classified as road. Although the producer’s accuracies for the classification using  are the 
highest for trees, shrubs and road, the accuracies for grass are 0%. It would therefore be better not 
to use this attribute for classification when all the classes are considered. 
 
Table 2: Error matrix showing points in each class in the reference data and from the decision tree classifications using 

amplitude, backscatter cross section () and backscatter coefficient ( ). User’s and producer’s accuracies of classifications 
for the three decision trees are also shown. 
 

 
 

Classified Points 

 Reference Points Trees Shrubs Grass Road F-Roof P-Roof Producer’s Accuracy 

Amplitude Trees 625 0 0 1 0 450 58.09 

 Shrubs 4 105 0 0 0 0 96.33 

 Grass 1 1 705 1 0 0 99.58 

 Road 0 0 361 341 0 0 48.58 

 F-Roof 7 23 27 3 284 55 71.18 

 P-Roof 1 0 0 0 0 525 99.81 

 User’s Accuracy 97.96 81.40 64.50 98.55 100.00 50.97  

 Trees 1029 3 0 2 0 42 95.63 

 Shrubs 2 107 0 0 0 0 98.17 

 Grass 0 1 0 707 0 0 0.00 

 Road 0 0 0 702 0 0 100.00 

 F-Roof 13 23 0 30 284 49 71.18 

 P-Roof 25 0 0 0 0 501 95.25 

 User’s Accuracy 96.26 79.85 0.00 48.72 100.00 84.63  

  Trees 973 1 0 3 0 99 90.43 

 Shrubs 4 105 0 0 0 0 96.33 

 Grass 1 1 669 37 0 0 94.49 

 Road 0 0 27 675 0 0 96.15 

 F-Roof 11 23 23 7 284 51 71.18 

 P-Roof 10 0 0 0 0 516 98.10 

 User’s Accuracy 97.40 80.77 93.05 93.49 100.00 77.48  
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The classification using amplitude was compared with the one using    (Table 3). The values 
representing the incorrectly classified points, which are more than 10% of the total number, are 
underlined in the table. There are 50 251 points that are classified as pitched roofs using amplitude 
and trees using   , of which only 3 848 (7.6%) points are within the building polygons from OS 
MasterMap. The majority can therefore be considered to be correctly classified using  .  
 
26 135 points are classified as grass using amplitude and road using   of which 15 215 (58.2%) points 
are within the polygons classified as road or track, roadside or path. Again, the majority of them are 
correctly classified using  . There are 3 098 points that are classified as shrubs using amplitude and 
trees using  . These misclassifications could be less important, as they are classified as vegetation in 
both the classifications.             
 
Table 3: Comparison of classifications using decision trees with amplitude and   as attributes 
 

 Backscatter Coefficient 

Amplitude Trees Shrubs Grass Road F-Roof P-Roof Total 
Trees 140 818 1 676 0 1 792 0 270 144 556 
Shrubs 3 098 19 367 0 0 0 0 22 465 
Grass 77 0 49 099 26 135 0 0 75 311 
Road 1 0 3 15 848 0 0 15 852 
F-Roof 0 0 0 0 4 162 0 4 162 
P-Roof 50 251 0 0 0 0 24 601 74 852 
Total 194 245 21 043 49 102 43 775 4 162 24 871 337 198 

 
 
5.3 Analysis of the Attributes 
 
The training data in Bristol, and the manually classified points in Bournemouth, were used for 
further analysis of the attributes related to intensity. The training data contains ‘purer’ data than the 
manually classified points. For example, the training points from a building would not include points 
from the edges. In the manually classified points, they are included to get a better idea about the 
classification accuracy. This has to be taken into consideration when the attributes are analysed.  
 
As noted earlier, grass, road, pitched roof and trees require intensity for their classification, and 
these classes are analysed in this section. The values of the echo amplitude for grass and road are 
more clearly separated in the Bristol data than in Bournemouth (Figure 7). There is considerable 
overlap between the amplitudes of pitched roofs and trees in Bournemouth. 
 

 
 
Figure 7: Frequency distribution of the amplitudes of echoes from grass, road, trees and pitched roofs in Bristol and 
Bournemouth   

 
The values for amplitude and backscatter cross section seem to be very different for the two study 
areas (Figure 8). The amplitude values for grass and road are higher in Bournemouth than in Bristol. 
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This is because of the differences in the altitudes from which the data were captured. The energy of 
the return signal is usually higher at a lower altitude, due to the reduction in the distance between 
the sensor and the target. The values for backscatter cross section are higher in Bristol than in 
Bournemouth, in contrast to the amplitudes. This could also be due to similar reasons as above. A 
higher flying height would mean a decrease in the energy of the return signal, and would require a 
larger area, or backscatter cross section, to represent the idealised scatterer, as described in section 
1. The value of the backscatter cross section used to separate grass and road in the decision tree 
classifier is also shown in Figure 8. Since it was derived from the training dataset in Bristol, it seems 
to separate grass and road in Bristol quite well. However, all the values for grass in Bournemouth are 
less than this value. This accounts for the null accuracies for grass using backscatter cross section. 

 
Figure 8: Frequency distribution of the amplitudes, backscatter cross sections and backscatter coefficients of echoes from 
grass and road in Bristol and Bournemouth. The values of the attributes used for separating grass and road in the decision 
tree classifiers are also shown. 
 

The amplitude values for trees and pitched roofs are higher in Bournemouth than in Bristol (Figure 
9). As seen in the case of grass and road, the backscatter cross sections are also higher in Bristol than 
in Bournemouth. The pitched roofs and trees can be differentiated better using  . In the case of 
multiple echoes, the values for   are derived by dividing the backscatter cross section of each point 
with the area of the circular footprints, and not with the area of each individual target. Therefore, 
there might be a difference between the values of   for single and multiple echoes in the case of 
trees.   
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Figure 9: Frequency distribution of the amplitudes, backscatter cross sections backscatter coefficients of echoes from 
pitched roofs and trees in Bristol and Bournemouth 
 

This was analysed further by separating the single echoes and the multiple echoes from trees in 
Bournemouth. In  , the multiple echoes from trees can be differentiated more easily than single 
echoes when compared with pitched roofs. This probably accounts for the incorrect classifications of 
trees as building roofs. This can also be seen from the values of the backscatter coefficients used in 
the decision trees (Figure 10). 
 

 
Figure 10: Backscatter coefficients of pitched roofs and trees in Bournemouth. The single and multiple echoes from trees 
are shown separately. The values of the attributes used for separating trees and pitched roofs in the decision tree 
classifiers are also shown. 

 
 
 6. Conclusion 
 
This study suggests that full-waveform data could be more useful than discrete return data for 
topographic mapping as intensity is a very useful attribute in classification, and calibration of 
intensity is currently possible only with full-waveform data. As the amplitude values are dependent 
on various factors such as flying height, scan angle and weather conditions, calibrated intensity 
might be necessary to make any classification method transferable. Backscatter coefficient, derived 
from echo amplitude, width and range, proved more useful than amplitude and backscatter cross 
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section in a decision tree classifier, when it has to be used on different datasets with differing flying 
heights and maximum scan angles, especially for natural and artificial ground. 
 
The reflectance of asphalt chosen for calculating the calibration constant could have an influence on 
the results of the classifications. The calibration constants for both the datasets were calculated 
assuming the reflectance of asphalt to be 0.25 from Briese et al. (2008). However, the fact sheet for 
the scanning system gives this value as 0.20. From equation [7], the chosen values did not make a 
difference to the ratio of the calibration constants, as long as they were the same for the two sites. 
The classification can probably be improved by on-site calibration before or after data capture. The 
calculation of normalised elevation is dependent on the accuracy of the DTM. While a rough DTM 
may be sufficient for an area with flat terrain, in complicated areas with bridges and flyovers, as in 
the study area in Bournemouth, a more accurate DTM might produce a better classification.  
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