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A theory of band-limited linear stochastic processes is described and it is re-

lated to the familiar theory of ARMA models in discrete time. By ignoring

the limitation on the frequencies of the forcing function, in the process of fit-

ting a conventional ARMA model, one is liable to derive estimates that are

severely biased. If the maximum frequency in the sampled data is less than the

Nyquist value, then the underlying continuous function can be reconstituted by

sinc function or Fourier interpolation. The estimation biases can be avoided by

re-sampling the continuous process at a rate corresponding to the maximum fre-

quency of the forcing function. Then, there is a direct correspondence between

the parameters of the band-limited ARMA model and those of an equivalent

continuous-time process.

Keywords: Stochastic Differential Equations, Band-Limited Stochastic Processes,

Aliasing and Interference

1. Introduction

It is common to assume that the differential equations that are used for modelling
stochastic processes in continuous time are driven by a continuous stream of in-
finitesimal impulses. These impulses, which constitute the increments of a Wiener
process, are composed of an infinity of sinusoidal elements of all frequencies in the
interval [0,∞).

Whereas a Wiener process is a fruitful mathematical abstraction that has many
important applications, it is not always appropriate to macroeconomic modelling.
An inspection of the periodograms of macroeconomic data sequences reveals that
their various components tend to reside in strictly limited frequency bands; and
it seems improbable that they should have arisen from the filtering of Wiener
processes.

It is more realistic to assume that such components originate in the filtering of
continuous white-noise processes that are band limited in the same manner as the
components themselves. However, in adopting this point of view, we are challenged
to produce a model of such a process. To achieve this is one of the purposes of this
paper. A further purpose is to examine the effects of using ordinary autoregressive
moving average (ARMA) models in an inappropriate way to derive parametric
representations of band-limited processes.

Conventional ARMA processes are driven by discrete-time white-noise forcing
functions, which have spectral density functions that are uniform across a range of
frequencies running from zero to the Nyquist frequency of π radians per sampling
interval, which is the limiting frequency that is observable in sampled data. When
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the driving process is band limited to a subset of the interval [0, π], there are liable
to be severe biases in the estimated parameters, unless some account is taken of
this fact. We will describe the steps that must be taken to obtain appropriate
estimates.

2. Evidence of Band-Limited Processes

We should begin by presenting some evidence to support the assertion that macroe-
conomic data sequences are commonly composed of components that fall within
limited frequency bands.

Figure 1 displays a sequence of the logarithms of the quarterly series of U.K.
consumption over the period from 1955 to 1994, which comprises a total of 160
observations. Interpolated through this sequence is a quadratic trend, which can
be taken to represent the growth path of consumption.

The deviations from this growth path are a combination of a low-frequency
motion, reflecting the business cycle, with some high-frequency fluctuations that
are due to the seasonal nature of economic activity. These deviations are repre-
sented in Figure 2, which also shows an interpolated continuous function that is
designed to represent the effects of the business cycle. Figure 3 shows that the
effect of taking the first differences of the logarithmic data is to emphasise the
seasonal fluctuations at the expense of the business cycle.

The periodograms of Figures 4–6 clearly reflect the features of the correspond-
ing data sequences. The periodogram is a discrete periodic function, which is a
function of the Fourier transform of the periodic extension of the data. A single cy-
cle of the periodogram occurs in the Nyquist interval [−π, π] or, equivalently, in the
interval [0, 2π]. However, since the data are real-valued, the periodograms are sym-
metric about the zero frequency and, therefore, they are characterised completely
by graphs over the interval [0, π]

Figure 4 is the periodogram of the saw tooth function that corresponds to the
periodic extension of the trended data. It owes its basic profile, which is that of a
rectangular hyperbola, to the radical disjunctions that occur at the points where
the end of one replication of the sample is joined to the beginning of the next
replication. The spike in the vicinity of the zero frequency is so dominant in this
periodogram that the remaining features, which are on a much smaller scale, are
almost invisible.

The periodogram of the differenced data, which is in Figure 5, shows that,
in eliminating the trend, the differencing strongly suppresses the low-frequency
components of the data, which include the business cycle.

The periodogram of the deviations from the quadratic trend, which is in Figure
6, gives a clear representation of the spectral effects both of the business cycle and
of the seasonal fluctuations, and it shows that they reside in separate frequency
bands.

The spectral structure extending from zero frequency up to π/8 belongs to
the business cycle. The prominent spikes located at the frequency π/2 and at
the limiting Nyquist frequency of π are the property of the seasonal fluctuations.
Elsewhere in the periodogram, there are wide dead spaces, which are punctuated
by the spectral traces of minor elements of noise.

The slowly varying continuous function z(t) interpolated through the devia-
tions of Figure 2 has been created by combining a set of sine and cosine functions of
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Figure 1. The quarterly series of the logarithms of consumption in the U.K., for the years

1955 to 1994, together with a quadratic trend interpolated by least-squares regression.
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Figure 2. The residual sequence from fitting a quadratic trend to the logarithmic con-

sumption data. The interpolated line, which represents the business cycle, has been

synthesised from the Fourier ordinates in the frequency interval [0, π/8].
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Figure 3. The differences of the logarithmic consumption data.

3



D.S.G. POLLOCK: Band-Limited Processes

0

0.2

0.4

0.6

0 π/4 π/2 3π/4 π

Figure 4. The periodogram of the logarithms of consumption in the U.K., for the years

1955 to 1994.

0

0.01

0.02

0.03

0 π/4 π/2 3π/4 π

Figure 5. The periodogram of the first differences of the logarithmic consumption data.
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Figure 6. The periodogram of the residual sequence obtained from the linear detrending

of the logarithmic consumption data.
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increasing frequencies, which are regularly spaced and which extend no further than
the limiting frequency of the business cycle, which is ωc = π/8. In the case of a sam-
ple of size T , the Fourier frequencies are the values ωj = 2πj/T ; j = 0, 1, . . . , [T/2]
where [T/2] is the integral part of T/2. Thus,

z(t) =
c∑

j=0

{αj cos(ωjt) + βj sin(ωjt)}

=
c∑

j=−c

ξje
iωjt with ωc = π/8,

(1)

where ξj = (αj − iβj)/2 and ξ−j = ξ∗j = (αi + iβj)/2. With ωc = 2πc/T = π/8
and T = 160, there is c = 10.

Some justification ought to be given for characterising the spectral structure
of a trended sequence in terms of the periodogram of its deviations from an in-
terpolated polynomial trend. If y is the vector of the data, then the vector of the
deviations is given by the formula

e = Q(Q′Q)−1Q′y, (2)

wherein Q′ is a submatrix of the pth-order matrix difference operator ∇p
T = (IT −

LT )p, which is obtained by deleting the first p rows. The difference operator
∇T = IT −LT is formed from the identity matrix IT = [e0, e1, . . . , eT−1] and from
the matrix LT = [e1, . . . , eT−1, 0], obtained by deleting the leading vector from IT

and appending column of zeros to the end of the array.
Thus, for example, in the case of a second-order difference operator, which is

appropriate to linear detrending, there is

∇2
6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
−2 1 0 0 0 0

1 −2 1 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
[

Q′
∗

Q′

]
. (3)

More generally, if ∇(z) = 1 − z is the difference operator, wherein z is an inde-
terminate algebraic symbol, then ∇p

T = ∇(LT )p and Q′ = [ep, . . . , eT−1]′∇p
T . It

is apparent from equation (2) that the residual vector contains exactly the same
information as the vector Q′y of differences.

The periodogram of the polynomial residuals allows us to discern the spectral
structure across the entire frequency range. The effect of increasing the degree
of the polynomial, which generates a more flexible trend, is to attenuate the low-
frequency elements relative to the high-frequency elements, but the bandwidths of
the components in question remain the same. Thus, we have a device for accurately
determining the domains of the various spectral structures that correspond to the
components of the data sequence.

Our objective is to characterise the dynamics of the business cycle via the
parameters of a fitted ARMA model. Such a model is liable to be applied to a
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seasonally-adjusted version of the data, of which the periodogram will lack the
spectral spikes at the seasonal frequency of π/2 and at the harmonic frequency of
π. A second-order autoregressive AR(2) model with complex roots is the simplest
of the models that might be appropriate to the purpose. The modulus of its roots
should reveal the damping characteristics of the cycles, and their argument should
indicate the angular velocity or, equivalently, the length of the cycles.

The parametric spectrum of an AR(2) model is supported on the entire fre-
quency range [0, π], which is to say that it is everywhere nonzero within this in-
terval. However, the observed business cycle appears to belong to a band-limited
process that has a zero-valued spectral density everywhere in the interval (π/8, π].

The consequence of this disparity is that an AR(2) model that is fitted directly
to the data is liable to deliver highly misleading estimates. Thus, it has been widely
reported that, when it is fitted to seasonally-adjusted quarterly data, the model
will deliver estimates that almost invariably imply real-valued roots, which fail
adequately to represent the dynamics of the business cycle. (See Pagan 1997, for
example.)

In order to estimate the parameters successfully, it is necessary to map the low-
frequency spectral structure of the business cycle onto the full interval [0, π]. This
involves creating a new data sequence at a lower sampling rate. It is also necessary
to ensure that nothing is carried into the interval [0, π] that does not belong to the
low-frequency structure. This is achieved by applying an anti-aliasing or cleansing
filter prior to resampling the data at the lesser rate.

In the process of describing the simple technique of resampling, we shall pro-
vide a model for the continuous-time band-limited process that generates the busi-
ness cycle component. The parameters of this process are also the parameters of a
discrete-time ARMA process that describes the resampled data.

3. The Sampling Process

To understand the methods that we propose to use in estimating the parameters
of a band-limited processes, it is necessary to consider the nature of the sampling
processes that deliver the discrete data on which econometric estimates are based.

Consider, therefore, the Fourier representation of a continuous real–valued
square integrable function x(t) defined over the real line. The following are the
related expressions for the function and its Fourier transform ξ(ω):

x(t) =
1
2π

∫ ∞

−∞
eiωtξ(ω)dω ←→ ξ(ω) =

∫ ∞

−∞
e−iωtx(t)dt. (4)

By sampling x(t) at the integer time points, a sequence {xt; t = 0,±1,±2, . . .} is
generated of which the transform ξS(ω) is a 2π-periodic function. In that case,

xt =
1
2π

∫ π

−π

eiωtξS(ω)dω ←→ ξS(ω) =
∞∑

k=−∞
xke−ikω, (5)

and ξS(ω) is described as the discrete-time Fourier transform of the data sequence.
At the sampled point xt, to which the expressions under (4) and (5) both

relate, there is,

xt =
1
2π

∫ ∞

−∞
eiωtξ(ω)dω =

1
2π

∫ π

−π

eiωtξS(ω)dω. (6)
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Figure 7. The sinc function wave-packet φ(t) = sin(πt)/πt comprising frequencies in

the interval [0, π].
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Figure 8. The sinc function wave-packet φ1(t) = sin(πt/2)/πt comprising frequencies

in the interval [0, π/2].

The equality of the two integrals implies that

ξS(ω) =
∞∑

j=−∞
ξ(ω + 2jπ). (7)

Thus, the function ξS(ω) is obtained by wrapping ξ(ω) around a circle of circum-
ference of 2π and adding the coincident ordinates. The two functions will coincide
at all frequencies in the interval [−π, π] if ξ(ω) = 0 for all |ω| ≥ π. Otherwise,
ξS(ω) will be subject to a process of aliasing, whereby elements of the continuous
function that are at frequencies in excess of π are confounded with elements at
frequencies less than π. Thus, the so-called Nyquist frequency of π radians per
period of observation represents the limit of what is directly observable in sampled
data.

If the condition is fulfilled that ξ(ω) = 0 for all |ω| ≥ π, then it should be
possible to reconstitute the continuous function x(t) from its sampled ordinates.
This is the burden of the famous Nyquist–Shannon sampling theorem—see Shannon
(1949, 1998)—which was foreshadowed in the work of Whittaker (1935).
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When ξ(ω) = ξS(ω) is a continuous function defined on the interval [−π, π], it
may be regarded as a periodic function of a period of 2π. Then, putting the RHS
of (5) into the LHS of (4), and taking the integral over [−π, π], in consequence of
the band-limited nature of the function x(t), gives

x(t) =
1
2π

∫ π

−π

{ ∞∑
k=−∞

xke−ikω

}
eiωtdω =

1
2π

∞∑
k=−∞

xk

∫ π

−π

eiω(t−k)dω. (8)

The integral on the RHS is evaluated as∫ π

−π

eiω(t−k)dω = 2
sin{π(t − k)}

t − k
. (9)

Putting this into the RHS of (8) gives

x(t) =
∞∑

k=−∞
xk

sin{π(t − k)}
π(t − k)

=
∞∑

k=−∞
xkφ(t − k), (10)

where the continuous function

φ(t − k) =
sin{π(t − k)}

π(t − k)
(11)

is the so-called sinc function, which is the Fourier transform of the following fre-
quency function:

φ(ω) =

⎧⎪⎨
⎪⎩

1, if |ω| ∈ (0, π);

1/2, if ω = ±π,

0, otherwise.

(12)

Equation (10) shows how the continuous function x(t) can be reconstituted from
the sampled ordinates {xt; t = 0,±1,±2, . . .}

In the case of a stationary stochastic process of an infinite duration, the sam-
pled sequence would not be square summable and, therefore, in a strict sense,
this proof of the interpolation via the Nyquist–Shannon Theory would not apply.
Nevertheless, the stationary process can be regarded as a limiting case.

However, it is also appropriate to consider a finite data sequence as the product
of a circular stochastic process. As we shall show, this leads to a modified theory of
interpolation. An infinite stationary sequence can be accommodated on this basis
by increasing circumference of the circle indefinitely.

The sequence of sinc functions φ(t−k); k ∈ Z = {0,±1,±2, . . .} constitutes an
orthogonal basis for the set of all functions band-limited to the frequency interval
[0, π]. To show this, let φ(ω) be the transform of φ(t) and consider the following
autoconvolution:∫

t

φ(t)φ(τ − t)dt =
∫

t

φ(t)
{

1
2π

∫
ω

φ(ω)eiω(τ−t)dω

}
dt

=
1
2π

∫
ω

φ(ω)
{∫

t

φ(t)e−iωtdt

}
eiωτdω

=
1
2π

∫
ω

φ(ω)φ(ω)eiωτdω.

(13)
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The symmetry of φ(t) allows us to write φ(τ − t) = φ(t − τ), whereas the idem-
potency of φ(ω) gives φ2(ω) = φ(ω). Together, these two conditions indicate that
φ(t) is its own autocorrelation function. Therefore, the condition

φ(t) = 0 for t ∈ {±1,±2, . . .} (14)

indicates that sinc functions separated by integer distances are mutually orthogo-
nal.

The sinc function φ(t) is represented in Figure 7. It is clear from this that
the values of the ordinates of the function at the nonzero integer points t ∈
{±1,±2, . . .} are zeros. Also, when the set of sinc functions {φ(t − k); k ∈ Z}
at unit displacements are sampled at the integer values of t, the result is nothing
but the set of unit impulses at the integer points. This constitutes a basis for the
set of all sequences defined over the set of integers.

The reconstruction or interpolation of a function in the manner suggested by
the sampling theorem is not possible in practice, because it requires summing an
infinite number of sinc functions, each of which is supported on the entire real
line. Nevertheless, a continuous band-limited periodic function, defined on a finite
interval, can be reconstituted from a finite number of wrapped or periodic sinc
functions, which are Dirichlet kernels by another name. The Dirichlet kernel is
obtained by sampling the sinc-function rectangle in the frequency domain.

Consider a continuous function x(t) defined on the interval [0, T ), where, with-
out loss of generality, T is taken to be an integer. (We may define the unit of time
accordingly, which will eventually correspond to an interval between sampled ob-
servations.) For brevity, we shall consider only the case where T is even. Since
the function on [0, T ) can also be regarded as a single cycle of a periodic function,
such that x(t + T ) = x(t), it can be represented via a Fourier series expansion

x(t) =
∞∑

j=−∞
ξje

iωjt ←→ 1
T

∫ T

0

x(t)e−iωjt, (15)

where ωj = 2πj/T is the jth harmonic frequency, which is a multiple of the funda-
mental frequency ω1 = 2π/T , which corresponds to a single cycle within the time
interval of length T .

If the function x(t) is limited by the Nyquist frequency, then the index j
is bounded by the integer value n = T/2. Then, the summation of the series
expansion runs from −n = −T/2 to n − 1 or, more conveniently, from 0 to T − 1.
(The change of index is allowable in consequence of the T -periodicity of the complex
exponential function.) In that case, the Fourier ordinates ξj are from the discrete
Fourier transform of T points sampled in the time domain, and there is

x(t) =
T−1∑
j=0

ξje
iωjt ←→ ξj =

1
T

T−1∑
t=0

xte
−iωjt. (16)

Putting the expressions for the Fourier ordinates into the finite Fourier series ex-
pansion of the time function and commuting the summation signs gives

x(t) =
T−1∑
j=0

{
1
T

T−1∑
k=0

xkeiωjk

}
eiωjt =

1
T

T−1∑
k=0

xk

T−1∑
j=0

eiωj(t−k). (17)

9



D.S.G. POLLOCK: Band-Limited Processes

The inner summation gives rise to the Dirichlet Kernel:

φ◦
n(t) =

T−1∑
t=0

eiωjt =
sin([n − 1/2]ω1t)

sin(ω1t/2)
. (18)

Thus, the Fourier expansion can be expressed in terms of the Dirichlet kernel,
which is a circularly wrapped sinc function:

x(t) =
1
T

T−1∑
t=0

xkφ◦
n(t − k). (19)

The functions {φ◦(t−k); k = 0, 1, . . . , T −1} are appropriate for reconstituting
a continuous periodic function x(t) defined on the interval [0, T ) from its sampled
ordinates x0, x1, . . . , xT−1. However, according to (16), the function can also be
reconstituted, in the manner of equation (1), from it Fourier ordinates as

x(t) =
T−1∑
j=0

ξje
iωjt =

[T/2]∑
j=0

{αj cos(ωjt) + βj sin(ωjt)} , (20)

where ξj = (αj − iβj)/2 and ξ−j = (αj + iβj)/2 and where [T/2] is the integral
part of T/2.

For economic data, the sampling interval is typically a month, a quarter or a
year. For financial data, it may be less. Whatever the case, it is unlikely that this
interval will correspond to an integer multiple of the critical rate of sampling of
whatever band-limited process might underlie the data. Therefore, it may not be
possible to achieve the critical rate by subsampling the data.

Nevertheless, if the Nyquist frequency exceeds the maximum frequency of the
process, then it will always be possible to resample the data at the critical rate.
This can be achieved, once the continuous function has been reconstituted, via the
formula of (20), from the relevant nonzero Fourier ordinates of the available data.

4. The Processes Underlying the Data

In this section, we shall describe the one-to-one correspondence that exists between
a continuous-time ARMA process supported on the Nyquist frequency interval
[−π, π] and the discrete-time ARMA process of which the ordinates are obtained
by sampling the continuous process at the critical rate.

The forcing function of a stationary linear stochastic process in discrete time
is a white-noise sequence {εt; t = 0,±1,±2, . . .} of independently and identically
distributed random variables. The corresponding continuous-time process ε(t) is
obtained by associating sinc functions to each of the sample ordinates in manner
of equation (10):

ε(t) =
∞∑

k=−∞
εkφ(t − k). (21)

The original sequence will be recovered by re-sampling this function at the
integer points. Sampling the function at other points that are not the integers, but

10
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which are separated by unit intervals, will also give rise to a white-noise sequence,
albeit one that will differ from the original sequence.

One should be aware that, if ε(t) is sampled at points that are not separated by
the unit intervals, then the resulting sequence will show serial correlation. There-
fore, in describing ε(t) as a continuous-time white-noise process, one must refer to
the unit sampling interval.

The autocovariance function of the continuous process ε(t) is γε(τ) =
E{ε(t)ε(t + τ)}. Without loss of generality, t can be taken to be an integer point,
with the effect that ε(t) = εt. Then,

γε(τ) =
∞∑

k=−∞
E(εtεk)φ(t + τ − k)

= σ2
εφ(τ),

(22)

which follows from the fact that

E(εtεk) =
{ 0, if j �= k,

σ2
ε , if j = k.

(23)

A continuous-time ARMA process supported on the Nyquist interval is derived
by associating a sinc function kernel to each or the ordinates of a discrete-time
ARMA process. Let {yt; t = 0,±1,±2, . . .} be the ordinates of the process and let

y(t) =
∑

k

ykφ(t − k) (24)

be the corresponding continuous-time trajectory. Then, the equation for the con-
tinuous ARMA process is

p∑
j=0

αjy(t − j) =
q∑

j=0

μjε(t − j), (25)

where α0 = 1.
The moving-average representation of this process is

y(t) =
∞∑

j=0

ψjε(t − j), (26)

where the coefficients are from the series expansion of the rational function
μ(z)/α(z) = ψ(z), wherein α(z) = α0 + α1z + · · · + αpz

p and μ(z) = μ0 + μ1z +
· · · + μqz

q are the autoregressive and moving-average polynomials respectively.
The autocovariance function of the continuous ARMA process is given by

γ(τ) = E

{[ ∞∑
i=0

ψiε(t − τ − i)
][ ∞∑

j=0

ψjε(t − j)
]}

=
∞∑

i=−∞
γiφ(τ − i),

(27)

11
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Figure 9. A continuous autocorrelation function of an AR(2) process, obtained via the

inverse Fourier transform of the spectral density function, together with the corresponding

discrete-time autocorrelations, calculated from the AR parameters.

where γi = σ2
ε

∑
j ψjψj+i is the ith autocovariance of the discrete-time process.

Thus, in theory, the continuous-time autocovariance function is obtained from the
discrete-time function by sinc-function interpolation. It can be seen that γ(τ) = γτ ,
when τ takes an integer value,

The autocovariance function γ(τ) is related to the spectral density function
f(ω) via the following Fourier integral transforms, which take the same essential
forms as those of equation (4):

γ(τ) =
∫ ∞

−∞
eiωτf(ω)dω ←→ f(ω) =

1
2π

∫ ∞

−∞
e−iωτγ(τ)dτ. (28)

Notice, however, that, here, the factor 1/2π is applied in the frequency domain as
opposed to the time domain. (Since the purpose of the factor is ensure that the
product of the Fourier transform and its inverse is unity, it can be placed in either
domain.)

In the absence of aliasing, the spectral density function of the continuous
process is identical, over the Nyquist interval [−π, π], to that of the discrete-time
process, and it is zero-valued outside the interval. By contrast, the spectrum of the
discrete-time process is a periodic function, which replicates the function defined
over the Nyquist interval in every preceding and succeeding interval of length 2π.

It follows that the spectrum f(ω) is also the discrete-time cosine Fourier trans-
form of the sequence {γτ ; τ = 0,±1,±2, . . .} of the discrete autocovariances:

f(ω) =
1
2π

∞∑
τ=−∞

γτe−iωτ =
1
2π

{
γ0 + 2

∞∑
τ=1

γτ cos(ωτ)
}

. (29)

In practice, this is liable to be calculated by setting z = exp{−iω} within the
autocovariance generating function

γ(z) = σ2
ε

μ(z)μ(z−1)
α(z)α(z−1)

. (30)

12
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The continuous autocovariance function γ(τ), which is the Fourier integral
transform of f(ω), must be evaluated, in practice, via a discrete Fourier transform.
By applying the discrete transform to a large number of ordinates sampled from
f(ω) evenly over the interval [−π, π], an accurate approximation of γ(τ) may be
obtained. An example is provided by Figure 9.

A continuous function y(t) that is limited by the frequency value ωc < π can
be expressed in the manner of (2) as

y(t) =
∞∑

j=−∞
yj

sin{ωc(t − j)}
ωc(t − j)

=
∞∑

j=−∞
yjφc(t − j), (31)

where j in an index that demarcates time intervals of s = π/ωc > 1 units. In
such circumstances, sampling at unit intervals, instead of sampling at the wider
intervals of s units, is liable to be described as oversampling.

The set of sinc functions {φc(t− j); k ∈ Z} constitutes an orthogonal basis for
functions limited to the interval [−ωc, ωc]. Let the sequence {ht; t = 0,±1,±2, . . .}
be the ordinates sampled from the function φc(t) a unit intervals of time. Then,
according to the Shannon–Nyquist theorem, there is

φc(t) =
∞∑

k=−∞
hkφ(t − k). (32)

Putting this expression into (31) gives the expression for y(t) in terms of the or-
thogonal basis corresponding to the Nyquist interval:

y(t) =
∞∑

j=−∞
yj

{ ∞∑
k=−∞

hkφ(t − j − k)

}
. (33)

The comparison of this expression with the more parsimonious expression of (24)
shows the advantage of employing a set of basis functions that cover the same
frequency interval as the function y(t).

The detriment of oversampling will be illustrated both via an empirical exam-
ple and in sampling experiments. Its consequences will also be analysed from the
point of view of the time domain with reference to the autocovariance function.

For the present, we may imagine that the process y(t) is supported on the fre-
quency interval [−π/2, π/2], and that it has been sampled at unit intervals. With-
out loss of generality, we may locate the sinc functions φ2(t−k) = sin(π([t−k]/2)πt
of the appropriate basis on the points {k = 0,±2,±4, . . .}. This is illustrated in
Figure 10.

When the observations are taken at successive integer points, the values sam-
pled at k ∈ {0,±2,±4, . . .}, will correspond to the amplitudes of individual sinc
functions, whereas those sampled at k ∈ {1,±3,±5, . . .} will comprise values sam-
pled from all of the basis functions.

The effect of oversampling, represented by the samples taken at the odd in-
tegers, may be described as interference. Interference is a counterpart to aliasing.
Aliasing arises when the data are sampled a too low a rate, which is when it can
be said that they are undersampled.
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Figure 10. The wave packets φ2(t) and φ2(t − k) suffer no interference when k ∈
{±2,±4,±6, . . .}.

The problems of interference and of aliasing, taken together, suggest that,
to obtain estimates of the ARMA parameters that are free of biases, it will be
necessary to sample the data at exactly the critical rate. However, the problem of
oversampling can be overcome by resampling the data.

First, the underlying continuous process may be reconstituted from the
nonzero Fourier ordinates of the band-limited process by the method of Fourier
interpolation, which is described by equation (1) and which is illustrated in Figure
2. Then, the reconstituted function can be sampled at intervals of s = π/ωc time
units, where ωc is the maximum frequency within the underlying process.

5. Alternative Estimates of an AR(2) Process

In this section, we shall demonstrate, via a practical example, the consequences of
ignoring the band-limited nature of the underlying process. In the first instance,
we shall also omit to cleanse the data of some residual noise contamination before
applying a conventional estimator of a second-order autoregressive model. The
consequence is that estimator delivers an autoregressive operator with real-valued
roots, where we would expect to find conjugate complex roots.

In the second instance, we shall cleanse the data completely by eliminating all
elements with frequencies in excess of the maximum value within the low-frequency
component of interest. In this case, the estimated autoregressive operator does
contain complex roots. The argument of the roots corresponds roughly to the pe-
riodicity of the dominant cycles within the data. However, their modulus assumes
a value that is close to unity, which underestimates the damping of the cycles.

We shall complete the section by demonstrating an appropriate estimation
procedure, which comprises both the cleansing of the data and their resampling.
We shall also offer an explanation for the conflicting outcomes of the two cases,
described above, where the data are not resampled.

The data in question will be the detrended consumption sequence that is
depicted in Figure 2. The autoregressive estimator of choice is the least-squares
estimator of Whittle (1951, 1962). This is just a case of the Yule–Walker estimator
with circular empirical autocovariances.

14
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Figure 11. The squared gain of a seasonal adjustment filter to be applied to the quarterly

detrended logarithmic consumption data.
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Figure 12. The seasonally-adjusted detrended logarithmic consumption data.

In the first approach, we work with seasonally-adjusted data. To obtain such
data, a filter is used that mimics the processes of seasonal adjustment that occur
within national central statistical offices. The frequency response of this filter is
shown in Figure 11. Figure 12 shows the seasonally-adjusted version of the data
sequence of Figure 2, and Figure 13 shows the extracted seasonal component.

The remarkable regularity of the seasonal component, which is not unusual
among such estimates, is an artefact of the filter that is complementary to the
seasonal-adjustment filter. This filter extracts from the data the elements at the
seasonal frequencies π/2 and π, together with a small proportion of what lies at
the adjacent frequencies.

The periodogram of the seasonally-adjusted data is show in Figure 14. In the
interval (π/8, π], which lies beyond the upper limit of the spectrum of the low-
frequency business cycle component, there are minor traces of a contaminating
noise, which serves to roughen the profile of the seasonally-adjusted data. The
smooth profile of the business cycle, from which this noise is absent, is shown in
Figure 2.

When it is applied to the seasonally-adjusted data, the Whittle estimator de-
livers an AR(2) model of which the parametric spectrum is show in Figure 15. The
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Figure 13. The seasonal component extracted from the detrended logarithmic consump-

tion data in the process of seasonal adjustment.
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Figure 14. The periodogram of the seasonally-adjusted data.

roots of the estimated autoregressive operator, which are real-valued, are show on
the left side Figure 17. This outcome is due to the presence of the noise con-
tamination in the seasonally-adjusted data; and its removal leads to very different
estimates.

The noise contamination can be removed from the data by setting to zero the
Fourier ordinates that lie in the interval (π/8, π]. The remaining ordinates are
employed in the Fourier synthesis that has given rise to the continuous business
cycle trajectory of Figure 2. Sampling this trajectory at the integer points gives
rise to the cleansed data to which an AR(2) is fitted.

The parametric spectrum of this model, which is shown in Figure 16, has a
prominent spike at a frequency that corresponds to the business cycle. The complex
roots of the autoregressive operator are shown on the right side of Figure 17, where
it can be seen that they are located virtually on the boundary of the unit circle.
The cycles generated by such a model would be subject to very little damping, and
they would show properties of regularity and persistence that are not found within
the data.

The appropriate estimator of the business cycle parameters is one that takes
account only of the information within the corresponding spectral structure and
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Figure 15. The spectrum of an AR(2) model fitted to the detrended, seasonally-adjusted

logarithmic consumption data, superimposed on the periodogram.
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Figure 16. The spectrum of an AR(2) model fitted to the detrended consumption data

cleansed of the elements of frequencies in excess of π/8.
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Figure 17. The poles of the AR(2) models fitted to the detrended logarithmic consump-

tion data. (a) is from unrestricted estimator and (b) is from the band-limited estimator.
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Figure 18. The periodogram of the subsampled anti-aliased data with the parametric

spectrum of an estimated AR(2) model superimposed.
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Figure 19. The poles of the AR(2) model fitted to 20 points subsampled at the rate of

1 in 8 from data that has been subjected to an anti-aliasing lowpass filter with cut off at

π/8 radians.

which maps this structure into the interval [0, π], which is the domain of an ordinary
ARMA model. To achieve this outcome, the data are sampled from the trajectory
of Figure 2 at 1/8th of the original rate of observation.

The periodogram of the cleansed and sub-sampled data is show in Figure 18,
with the parametric spectrum of an estimated AR(2) model superimposed. The
periodogram represents a rescaled version of the part of the periodogram of Figure
6, pertaining to the original data, that occupies the frequency range [0, π/8]; and
it appears to be well represented by the parametric spectrum.

The parameters of the fitted model are recorded in Table 1. The roots of the
autoregressive operator, which are also displayed in Figure 19, appear to give an
appropriate representation of the dynamic properties of the business cycle, both as
regards its frequency and its damping characteristics.
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Table 1. The parameters of the operator (1 + α1z + α2z
2) = (1 − λ1z)(1 −

λ2z), of an AR(2) model estimated from an empirical data sequence that has

been subsampled at the rate of 1 in 8 points after the application of a lowpass

anti-aliasing filter with a cut-off point at π/8 radians or 22.5 degrees. The

complex-valued, the roots may be expressed as λ1, λ2 = γ ± iδ = ρ exp{±θ}.

α1 = −1.63000 λ1 = 0.3150 + i0.5456 ρ = 0.63
α2 = 0.3969 λ2 = 0.3150 − i0.5456 θ◦ = 60.0

The parametric spectrum of the fitted AR(2) model differs in one significant
respect from the periodogram of the data. As a consequence of the successful de-
trending of the data, the periodogram has a zero-valued ordinate at zero frequency.
By contrast, the intercept of the spectrum with the vertical axis has a large value,
which tends to misrepresent the data.

The aberrant results of the first two experiments, in which the data are subject
to oversampling, can be explained by reference to the autocovariance function.
When the rate of sampling is excessive, the autocovariances will be sampled at
points that are too close to the origin, where the variance is to be found. In the
absence of noise contamination, their values will decline at a diminished rate. The
reduction in the rate of convergence is reflected in the modulus of the estimated
complex roots, which understates the rate of damping.

When there is a contamination that extends across the range of frequencies, its
variance will be added to the variance of the underlying process. Virtually nothing
will be added to the adjacent sampled ordinates of autocovariance function. There-
fore, the initial sampled autocovariances will decline at an enhanced rate. If this
rate of convergence exceeds the critical value, then there will be a transition from
cyclical convergence to monotonic convergence, and the estimated autoregressive
roots will be real-valued.

6. Simulation Experiments

The results that have been demonstrated with empirical data can be reaffirmed by
some sampling experiments based on pseudo-random data. The outcomes of the
experiments are readily intelligible when they are presented in a graphical form.

For these experiments, we adopt a band-limited model that corresponds to
the one that is represented by the parametric spectrum of Figure 18, of which the
parameters are recorded in Table 1. This AR(2) model, which has been estimated
from biannual data, has conjugate complex roots with arguments of ±π/3 radians
or ±60◦ and a modulus of 0.63.

The continuous process, generated from these parameters, may be sampled
at a rate corresponding to one observation per quarter to produce a band-limited
sequence that is supported on the frequency interval [0, π/8]. The band-limited
process has an angular velocity of π/24 radians or 7.5◦ per quarter and an effective
modulus or damping factor of 0.944. Each of the three experiments represented
by Figures 20–22 is based on 20 sequences of 160 observations, which have been
generated using a white-noise forcing function of unit variance.

In the first experiment, AR(2) models have been fitted to data that are free
of contamination. The results are shown in Figure 20. In this case, the majority
of the fitted models deliver conjugate complex roots. The complex roots have
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Figure 20. The spectra of 20 AR(2) models estimated from band-limited data supported

on the interval [0, π/8]. The spectrum of the AR(2) model used in generating the data

is described by the heavy black line.
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Figure 21. The spectra of 20 AR(2) models estimated from band-limited data contam-

inated by white noise. The spectrum of the AR(2) model used in generating the data is

described by the heavy black line.
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Figure 22. The spectra of 20 AR(2) models estimated from band-limited data subsam-

pled at the critical rate. The spectrum of the AR(2) model used in generating the data

is described by the heavy black line.
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moduli that considerably exceed the value of the damping factor of the band-
limited process. Figure 20 may be compared with Figure 16, where the data in
that case are supported of the interval [0, π/8], which is the pass band of a filter
that was applied, by implication, to the seasonally-adjusted data.

Amongst the estimated models, there are a fair number that have real-valued
roots. Their presence is a testimony to the fact that there is a considerable spectral
mass in the vicinity of zero frequency in the parametric spectrum of the model that
has been used in generating the band-limited pseudo-random data.

In the second experiment, white-noise contaminations have been added to the
pseudo-random band-limited data. Their variance is equal to 10% of the variance
of the band-limited AR(2) process. The parametric spectra of the fitted AR(2)
models are plotted in Figure 21 and the spectrum of the band-limited model used
in generating the data is superimposed upon them. None of the estimated models
delivers complex roots. Figure 21 may be compared with Figure 15, which shows
the effect of fitting an AR(2) model to some seasonally-adjusted empirical data.

In the third experiment, AR(2) models are fitted directly to the sets of 20
subsampled data points that underlie the band-limited sequences and that sum-
marise their information. Such points would also be obtained by taking one in
every eight of the points of the data sequences of the first experiment. On average,
the fitted models slightly underestimate the modulus of the complex roots of the
AR(2) process that has been used in generating the data. This reflects the well
know bias of the least-squares estimator in small samples.

These various outcomes are reflected in some further sampling experiments of
a numerical nature, of which the results are partially recorded in Table 2. Here, the
estimation procedures have been applied to 10,000 mutually independent pseudo-
random sequences of band-limited data generated by the AR(2) model.

Table 2. The averages of 10,000 replications of the parameter estimates of an

AR(2) model, derived from 160 sample points of a band-limited process.

The Data Processes No. of Roots Modulus Argument
points Degrees

Band limited AR(2)
with subsampling 20 0.2569 ± i0.5510 0.6161 ±65.36

Band limited AR(2)
without subsampling 160 0.8545 ± i0.1039 0.8608 6.9349
Band limited AR(2)

with noise 160 0.9531, 0.1289 — —

The results that are obtained when an ordinary AR(2) model is fitted to the
uncontaminated data bear some further investigation. Of the 10,000 fitted models,
6,412 comprised complex-valued autoregressive roots and 3,588 comprised real-
valued roots. By averaging the estimated parameters in the two categories, some
highly contrasting results are obtained, which are show in Table 3.
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Table 3. The averaged results of 10,000 estimations of the parameters of an

AR(2) operator (1 + α1z + α2z
2) = (1 − λ1z)(1 − λ2z), derived from 160

sample points of a band-limited process. When they are complex -valued, the

roots may be expressed as λ1, λ2 = γ ± iδ = ρ exp{±θ}.
The Average of all 10, 000 Estimates

α1 = −1.7089 λ1 = 0.8545 + i0.1039 ρ = 0.8606
α2 = 0.7409 λ2 = 0.8545 − i0.1039 θ◦ = 6.939

The Average of 6, 412 Estimates with Complex-Valued Roots
α1 = −1.8451 λ1 = 0.9226 + i0.1508 ρ = 0.9348
α2 = 0.8739 λ2 = 0.9226 − i0.1508 θ◦ = 9.2846

The Average of 3, 588 Estimates with Real-Valued Roots
α1 = −1.4655 λ1 = 0.9161
α2 = 0.5033 λ2 = 0.5494

Only a limited set of experiments have been reported in this section. Those
who wish to explore matters further may do so with the help of a computer program,
BLIMDOS.PAS, which can be downloaded from a website at the following address:

http://www.le.ac.uk/users/dsgp1/

7. Conclusions and Remarks

In this paper, we have presented a model for a band-limited stochastic process
in continuous time and we have demonstrated that, if the rate of sampling corre-
sponds to the maximum frequency within the data, then a sequence of sampled
ordinates can be described by an ordinary discrete-time ARMA model. In these
circumstances, it may be said that the sampling is at the critical rate.

We have concentrated on the case where the sampling is over-rapid and where
we can afford to reduce it, either by a process of subsampling or by resampling a
reconstituted version of the continuous signal. There are also cases to be considered
where the sampling rate is less than the maximum frequency of the data and
where there is an inevitable problem of aliasing. Such circumstances are already
accounted for in the existing literature under the rubric of temporal aggregation.

The available theory indicates that, if the data can be described, at the critical
rate of sampling, by an AR(p) autoregressive model of order p, then the subsampled
data will be described by an ARMA(p, p−1) model. The only proviso here is that,
in both cases, the sampling rate should be sufficiently rapid to accommodate the
dynamics implied by the autoregressive operator. Thus, the maximum value ωm

of the arguments associated with the roots of the operator must be less than the
Nyquist frequency of π radians per sample period.

Telser (1967) derived this result in the context of what he described as the skip
sampling of a discrete-time autoregressive process, whereas Phadke and Wu (1974)
and Pandit and Wu (1975) did so by considering the relations between continuous-
time linear stochastic processes driven by the increments of a Wiener process and
the models that can be fitted to the sampled data.

Our empirical example of a band-limited process is complicated by the fact
that it is a component of a composite process, which includes a trend. In this
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case, we have been able to represent the trend by a quadratic function in the
logarithmic data, which is virtually a linear function corresponding to a trajectory
of constant exponential growth. However, in general, we can expect that the orderly
development of the data will be disrupted, occasionally, by structural breaks and
outliers.

Such breaks will have a spectral traces that extend over the entire frequency
range; and these will tend to obscure the band-limited nature of the predominant
processes that underlie the data. This may be one of the reasons why econometri-
cians have tended to overlook an essential feature of many of their data sequences,
which is the localisation of the frequency bands in which their component parts
reside.
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