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Abstract

In “Basic Behavioral Models of Software Product Lines” (Science of Computer Programming, 123(1): 42–60, 2016), we estab-
lished an expressiveness hierarchy and studied the notions of refinement and testing for three fundamental behavioral models for
software product lines. These models were featured transition systems, product line labeled transition systems, and modal transi-
tion systems. It turns out that our definition of product line labeled transition systems is more restrictive than the one introduced
by Gruler, Leucker, and Scheidemann. Adopting the original and more liberal notion changes the expressiveness results, as we
demonstrate in this paper. Namely, we show that the original notion of product line labeled transition systems and featured transi-
tion systems are equally expressive. As an additional result, we show that there are featured transition systems for which the size of
the corresponding product line labeled transition system, resulting from any sound encoding, is exponentially larger than the size of
the original model. Furthermore, we show that each product line labeled transition system can be encoded into a featured transition
system, such that the size of featured transition system is linear in terms of the size of the corresponding model. To summarise,
featured transition systems are equally expressive as, but exponentially more succinct than, product line labeled transition systems.
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1. Introduction

Software Product Line (SPL) engineering is a software development technique enabling mass production and
customisation. Using this technique, a family of software systems is efficiently developed based on a common core
and by benefiting from systematic reuse of artifacts among products.

There are several quality assurance techniques such as model-based testing and model checking that require a
model describing the behavior of the system. Hence, several behavioral models have been proposed that can be
used for compactly and efficiently representing the behavior of the products in an SPL; examples of such models
are Featured Transition Systems (FTSs) [1], Product Line Calculus of Communicating Systems (PL-CCSs) [2], and
Modal Transition Systems (MTSs) [3] and different extensions of MTSs [4–7]. These formalisms are comparable in
terms of the types of behavior that they can capture and also in terms of their underlying formal model, i.e., Labeled
Transition Systems (LTSs).
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FTSs [1] are introduced as an extension of LTSs where the transitions are additionally labeled with feature expres-
sions. Each feature expression is a propositional formula in which the variables represent the features of a product
family. Feature expressions indicate the presence / absence of a transition in the model of each product (for more
details see Section 2.2). Using FTSs, the behavior of all products is represented in a whole model and different types
of analysis can be performed for all products at once using this model.

PL-CCSs [2] are an extension of Milner’s Calculus of Communicating Systems (CCSs) [8]. Using PL-CCSs, it
is possible to model alternative behavior. The syntax of PL-CCS is an extension of the syntax of CCS with a variant
operator, which represents an alternative choice between its operands. A choice can be resolved once and for all.
This means, in case of recursion, that if a variant choice is resolved in the first iteration, then it remains the same in
the future iterations. In [2], Product Line Labeled Transition Systems (PL-LTSs) are defined as the semantic domain
for PL-CCS models. In order to keep track of variant choices, a configuration vector is included in the state of PL-
LTSs. In each PL-LTS, the size of the vector is equal to the number of variant choices in the corresponding PL-CCS
term. The elements of the configuration vector can denote a choice that is either undecided or decided in favor of the
left-hand side or right-hand side variant.

In [9], we studied the comparative expressiveness of three of the above formalisms, namely FTSs, PL-CCSs and
MTSs, where as a part of the results, we concluded that the class of PL-LTSs is less expressive than the class of FTSs
(see Theorem 4 in [9]). In this work, it was assumed that in PL-LTSs in each step, only one of the variant choices
can be resolved. Based on this assumption each transition can change only one of the elements of the configuration
vector in the target state. This turns out to be an overly restrictive assumption compared to the definition given for the
PL-LTS transition rules in [2]. Considering this assumption, it was shown that PL-LTSs cannot capture some types of
behavior such as three-way choices which can be captured by FTSs.

In this paper, we relax the above-mentioned restriction and adapt the result to the original and more liberal defi-
nition of PL-LTSs [2]. We revisit the comparative expressiveness of FTSs and PL-LTSs with respect to the products
that they specify. We describe an encoding of FTSs into PL-LTSs and there by proving that for each FTS, the set of
LTSs that implement the FTS are also valid implementations for the PL-LTS resulting from the encoding. The results
show that the class of PL-LTSs is at least as expressive as the class of FTSs. We also show that the results provided in
[9], specifying that the class of FTSs is at least as expressive as the class of PL-LTSs still holds. Hence, we conclude
that the class of PL-LTSs and the class of FTSs are equally expressive. We also provide a comparative succinctness
analysis of the size of the PL-LTSs resulting from any sound encoding in terms of the number of states of the cor-
responding FTS. The results of the succinctness analysis show that FTSs are more succinct formalisms compared to
PL-LTSs to describe SPLs.

The rest of this paper is organized as follows. In Section 2, we review the basic definitions regarding FTSs and
PL-CCSs. In Section 3, we provide encodings between FTSs and PL-LTSs. In Section 4, we show that the class of
PL-LTSs, i.e., underlying semantic model of PL-CCSs, and the class of FTSs are equally expressive. In Section 5,
we provide a comparative succinctness analysis for the models resulting from encoding of FTSs. In Section 6, we
conclude the paper and present the directions of our ongoing and future work.

2. Preliminaries

In this section, we provide the definition of constructs and concepts that are used throughout the paper.

2.1. Feature Diagram

In SPL engineering, the commonalities and variabilities among products are described using features. A feature
is defined as “a prominent or distinctive user-visible aspect, quality, or characteristic of a software system” [10]. Each
product in an SPL is defined by a subset of features selected from the whole set of features of the SPL. There are
different relations between the features in an SPL. Feature models [11] are a common means to compactly represent
the set of products of an SPL in terms of its features.

A feature model is a hierarchical structure consisting of nodes and edges between them. Each node in a feature
model represents a feature in the SPL. The structure of a feature model is tree like. Each node can have a set of child
nodes. The features in an SPL can be optional, or mandatory. The mandatory features are present in all products of
the SPL, while the optional features may be present in a subset of the products. A group of sibling features (nodes) can
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have the alternative relation, which means only one of the features in the group can be included in a product in case
that the parent feature is selected. Also, a group of sibling features can have the or relation, which means one or more
features in the group can be included in a product if the parent feature is selected. There are cross tree relations such
as requires (resp. excludes), where the inclusion of a feature results in inclusion (resp. exclusion) of other features.
Each feature model can be represented by a propositional logic formula in which propositional variables represent the
features in the SPL [12].

Example 1. An example of a feature model is depicted in Fig. 1. The feature model corresponds to a vending machine
product line (the vending machine in this example is a simplified version of the one given in [9]).

Machine
m

Coin

o

Beverage

b

1e 1d

e d

Tea

t

Coffee

c

Cappuccino

p

Figure 1. a feature model example.

In this feature model features such as coin (o), beverage (b), and coffee (c) are mandatory and features tea (t)
and cappuccino (p) are optional. (The single letters given under each feature are used later to represent the features
in the propositional formulae.) The set of features coffee (c), cappuccino (p) and tea (t) have the or relation. Also,
features 1e (e) and 1d (d) have the alternative relation, which means the machine can take only one type of coin (euro
or dollar). The dashed two headed arrow represents the excludes relation between the cappuccino (p) and the 1d (d)
features.

We assume that B = {>,⊥} is the set of Boolean constants and B(F) denotes the set of all propositional formulae
generated by considering the elements of the feature set F as propositional variables. Each propositional formula
φ ∈ B(F) is called a feature expression.

2.2. Featured Transition System

As mentioned before, in FTSs, the behavior of all products can be compactly depicted in one model by exploiting
feature expressions as annotations. We give the formal definition of an FTS based on [1] as follows:

Definition 1 (FTS). A feature transition system is a 6-tuple (P, A, F,→,Λ, pinit), where

1. P is a set of states,

2. A is a set of actions,

3. F is a set of features,

4. →⊆ P × B(F) × A × P is the transition relation satisfying the following condition:

∀P,a,P′,φ,φ′
(
(P, φ, a, P′) ∈→ ∧ (P, φ′, a, P′) ∈→

)
=⇒ φ = φ′,

5. Λ ⊆ {λ : F → B} is a set of product configurations,
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6. pinit ∈ P is the initial state1.

Example 2. Consider the FTS given in Fig. 2. This FTS describes the behavior of the products in the vending machine
product line. In this paper, we consider the finite behavior of systems. Hence, Fig. 2 represents a part of the finite
behavior of the vending machine product line.

s0

s1

s2 s3

s4 s5 s6 s7 s8 s9

s10

s11

e/get euro coin d/get dollar coin

m/sugar m/no sugar

t/teac/coffee

p/cappuccino
p/cappuccino

t/tea c/coffee

m/sugar

m/sugar

m/sugar

p/get cappuccino

c/get coffee t/get tea

p/get cappuccino

c/get coffee

m/take cup

t/get tea

Figure 2. An FTS example.

The set of product configurations for this FTS is as follows:

{{m, o, b, e, c}, {m, o, b, d, c}, {m, o, b, e, c, t}, {m, o, b, d, c, t}, {m, o, b, e, c, p}, {m, o, b, e, c, p, t}}

Considering a feature expression φ ∈ B(F) and a product configuration λ ∈ Λ, we say λ satisfies φ, denoted by
λ |= φ, if the result of every substitution of the value of the variables in the feature expression φ according to λ is
satisfiable.

As mentioned above, each FTS represents the behavior of a set of products. We use LTSs as another formal
structure in this paper to describe the behavior of single products. An LTS is defined as follows.

Definition 2 (LTS). A labeled transition system is a quadruple (S, A,→, sinit), where S is a set of states, A is a set of
actions,→⊆ S × A × S is the transition relation, and sinit is the initial state.

Consider the LTS (S, A,→, sinit) and sinit = s0; an initial finite path in this LTS is a sequence such as ρ=s0 a1 s1

a2 · · · an sn, where ∀0≤i<n · si
ai+1
−−−→ si+1. We denote the set of all initial finite paths in LTS T by Paths(T ). By ρ(k),

we denote the kth state in path ρ. For ρ = s0 a1 · · · an sn, we define last(ρ) = sn. Furthermore, for a path ρ, Trace(ρ)
denotes the sequence of actions on the path. For example Trace(s0 a1 s1 a2 · · · an sn) = a1 a2 · · · an. We Assume
that LTS denotes the class of all LTSs.

1In the original definition of FTSs in [1], an FTS can have multiple initial states. Here, for the sake of a more succinct presentation we have
considered a single initial state for FTSs; however it is straightforward to extend the results to multiple initial states.
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2.2.1. Deriving Valid Products
Each FTS represents the behavior of a set of products. The behavior of each product can be represented using an

LTS. Hence, each FTS has a set of valid LTS implementations. Intuitively, an LTS can be considered an FTS in which
all the feature expressions on the transitions are true. To capture the behavior of a subset of products (or a single one),
a refinement relation is defined. The refinement relation formalises the notion of product derivation as follows [9]:

Definition 3 (Product-Derivation Relation for FTSs). Given an FTS fts = (P, A, F,→,Λ, pinit), an LTS l = (S, A,→
, sinit), and a product configuration λ ∈ Λ, a binary relation Rλ ⊆ P × S is called product-derivation relation if and
only if the following transfer properties are satisfied.

1. ∀P,Q,a,s,φ
(
P Rλ s ∧ P

φ/a
−−→ Q ∧ λ |= φ

)
⇒ ∃t · s

a
−→ t ∧ Q Rλ t,

2. ∀P,a,s,t
(
P Rλ s ∧ s

a
−→ t

)
⇒ ∃Q,φ · P

φ/a
−−→ Q ∧ λ |= φ ∧ Q Rλ t.

A state s ∈ S derives the product configuration λ from an FTS-specification P ∈ P, denoted by P `λ s, if there exists a
product-derivation relation Rλ such that P Rλ s.

We say that l is a valid implementation of fts, denoted by fts . l if and only if there exists a product configuration
λ ∈ Λ such that pinit `λ sinit.

Example 3. As an example, Fig. 3 depicts an LTS which implements the FTS in Fig. 2 and describes the behavior of
a product in the vending machine product line serving coffee and tea with and without sugar.

s0

s1

s2 s3

s5 s6 s7 s8

s10

s11

get euro coin

sugar no sugar

tea
coffee

tea coffee

sugar

sugar

get coffee

get tea

get coffee

take cup

get tea

Figure 3. An LTS implementing the FTS in Fig. 2.

2.3. Product Line Process Algebras

PL-CCS is an extension of Milner’s Calculus of Communicating Systems (CCS) [8] in which a new operator ⊕,
called binary variant, is introduced to represent the alternative relation between features. The syntax of this process
algebra is given in the following definition [2].
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Definition 4 (PL-CCS). Assuming the alphabet A = Σ ∪ Σ̄ ∪ {τ}, where Σ is a set of symbols and Σ̄ = {ā | a ∈ Σ} and
τ < Σ is a symbol for internal actions. The syntax of PL-CCS terms e is defined by the following grammar:

Nil | α.e | e + e′ | e ⊕ e′ | e ‖ e′ | e[ f ] | e\L,

where Nil denotes the terminating process, α._ denotes the action prefixing for action α ∈ A, _ + _ and _ ‖ _,
respectively, denote non-deterministic choice and parallel composition, _[ f ] denotes renaming by means of a function
f where f : A → A, for each L ⊆ A, _\L denotes the restriction operator (blocking actions in L), and finally _ ⊕ _
denotes a family of binary operators.

The difference between the introduced binary variant operator ⊕ and the ordinary alternative composition operator
+ in CCS is that the binary variant choice is made once and for all. As an example, consider the process terms
P = b.P + c.P and Q = b.Q ⊕ c.Q; recursive process P keeps making choices between b and c in each recursion,
while process Q makes a choice between b and c in the first recursion, and in all the following iterations the choice
is respected. This means that process Q behaves deterministically after the first iteration with respect to the choice
between b and c. For the sake of simplicity in the formal development of the theory, Gruler et al. assume that the ⊕
operators in each term are uniquely indexed with natural numbers. This means in every PL-CCS term, there is at most
one appearance of the operator ⊕i for each and every index i. We use the same assumption throughout the rest of the
paper, as well.

The semantics of a PL-CCS term is defined based on PL-LTSs [2], using a structural operational semantics. We
refer to [2] for the formal semantics of PL-CCS. Each state in a PL-LTS comprises a pair of an ordinary state, e.g., a
process term, and a configuration vector. The transitions of a PL-LTS are also labeled with configuration vectors. The
configuration vectors are used to keep track of the choices made about alternative behavior and are of type {L,R, ?}I

with I being an index set. The formal definition of a PL-LTS is as follows:

Definition 5 (PL-LTS). Let {L,R, ?}I denote the set of all total functions from an index set I to the set {L,R, ?}. A
product line labeled transition system is a quintuple (P × {L,R, ?}I , A, I,→, pinit) consisting of a set of states P ×
{L,R, ?}I , a set of actions A, an index set I, a transition relation→⊆ (P× {L,R, ?}I)× (A× {L,R, ?}I)× (P× {L,R, ?}I),
and an initial state pinit, satisfying the following restrictions:

1. ∀P,ν,a,Q,ν′,ν′′ (P, ν)
a,ν′
−−→ (Q, ν′′) =⇒ ν′ = ν′′.

2. ∀P,ν,a,Q,ν′,i (P, ν)
a,ν′
−−→ (Q, ν′) ∧ ν(i) ,? =⇒ ν′(i) = ν(i).

3. ∀P0,ν0,a,Q0,ν
′
0,i,P1,ν1,b,Q1,ν

′
1,i (P0, ν0)

a,ν′0
−−−→ (Q0, ν

′
0) ∧ (P1, ν1)

b,ν′1
−−−→ (Q1, ν

′
1) ∧ ν0(i) = ν1(i) =? ∧ ν′0(i) ,? , ν′1(i) =⇒

(P0, ν0) = (P1, ν1).

The first condition indicates that each transition in the model is labeled with the configuration vector in the target
state of the transition. The second condition shows that after making a variant choice which leads to assigning the
value of an element in the configuration vector to L or R, that value remains the same in the following steps. The
third condition indicates that the same choice cannot be resolved in multiple states in the model. This follows from
the definition of the semantics for PL-CCS terms in [2], where each variant operator is labeled with a unique index.
Assuming that in the above defined PL-LTS, pinit = (P0, ν0); an initial finite path in this PL-LTS is a sequence such as
(P0, ν0) {a1, ν1} (P1, ν1) · · · {an, νn} (Pn, νn) where ∀0≤i<n · (Pi, νi)

ai+1,νi+1
−−−−−−→ (Pi+1, νi+1). We denote the set of all such

paths for a PL-LTS plt by Paths(plt). We define the following relations between configuration vectors in a PL-LTS
which are used in the rest of the paper.

Definition 6 (Configuration Ordering). The preorder v on the set {L,R, ?} is defined as:

v= {(?, ?), (L, L), (R,R), (?, L), (?,R)}.

We lift this ordering relation to the level of configuration vectors by defining ν v ν′ ⇐⇒ ∀i∈I ν(i) v ν′(i), for any
ν, ν′ ∈ {L,R, ?}I .
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Using this relation we can specify if a configuration vector is more refined compared to the other (i.e. has less
undecided choices).

Definition 7 (Configuration Conflict). The relation ./ on the set {L,R, ?} is defined as:

./= {(L,R), (R, L)}.

We lift this relation to the level of configuration vectors by defining ν ./ ν′ ⇐⇒ ∃i∈I ν(i) ./ ν′(i), for any ν, ν′ ∈
{L,R, ?}I .

Using this relation we can specify if there is a conflict between two configuration vectors (i.e. there is at least one
element which is decided in both configuration vectors and the decision is not the same).

In order to define the set of LTS implementations of a PL-LTS, the product-derivation relation for PL-LTSs is
given as follows.

Definition 8 (Product-Derivation Relation for PL-LTSs). Let plt = (P × {L,R, ?}I , A, I,→, pinit) be a PL-LTS and let
l = (S, A,→, sinit) be an LTS. A binary relation Rθ ⊆ (P × {L,R, ?}I) × S (parameterized by product configuration
θ ∈ {L,R}I) is a product-derivation relation if and only if the following transfer properties are satisfied:

1. ∀P,Q,a,ν,ν′,s
(
(P, ν) Rθ s ∧ (P, ν)

a,ν′
−−→ (Q, ν′) ∧ ν′ v θ

)
⇒ ∃t · s

a
−→ t ∧ (Q, ν′) Rθ t ,

2. ∀P,a,ν,s,t
(
(P, ν) Rθ s ∧ s

a
−→ t

)
⇒ ∃Q,ν′ · (P, ν)

a,ν′
−−→ (Q, ν′) ∧ ν′ v θ ∧ (Q, ν′)Rθ t .

A state s ∈ S in an LTS is (the initial state of) a product of a PL-LTS (P, ν) with respect to a configuration vector
θ ∈ {L,R}I , denoted by (P, ν) `θ s, if ν v θ and there exists a product-derivation relation Rθ such that (P, ν) Rθ s.

We say that l is a valid implementation of the PL-LTS plt, denoted by plt ≺ l if and only if there exists a configu-
ration vector θ ∈ {L,R, ?}I such that pinit `θ sinit.

2.4. Encoding
In order to compare the expressiveness power between different modeling formalisms for SPLs, we give the

following definitions, respectively, for product line structure and encoding.

Definition 9 (Product Line Structure). A product line structure is a tuple M = (M, ~ �), where M is the class of the
intended product line models (in this paper FTSs and PL-LTSs) and ~ � : M→ LTS is the semantic function mapping
a product line model to a set of product LTSs that can be derived from the product line model.

Consider the tuple (FTS, ~�), which is a product line structure defined for the class of FTSs. For an arbitrary FTS
fts and arbitrary LTS l, it holds l ∈ ~fts�⇔ fts . l (see definition of fts . l in Section 2.2.1). Similarly, consider the tuple
(PL − LTS, ~�), which is the product line structure defined for the class of PL-LTSs. For an arbitrary PL-LTS plt and
arbitrary LTS l it holds l ∈ ~plt�⇔ plt ≺ l (see definition of plt ≺ l in Section 2.3).

Definition 10 (Encoding). An encoding from a product line structure M = (M, ~ �) into M′ = (M′, ~ �′ ), is defined
as a function E : M→M′ satisfying the following correctness criterion: ~ � = ~ �′ ◦ E.

We say that a product line structure M′ is at least as expressive as M if and only if there exists an encoding
E : M→M′. Also, we say that two product line structures M and M′ are equally expressive if and only if there exists
an encoding from M to M′ and vice versa.

3. Encodings between FTSs and PL-LTSs

In this section, we provide an encoding from FTSs to PL-LTSs and thereby show that PL-LTSs are at least as
expressive as FTSs. Furthermore, we provide a slight variation of the encoding from PL-LTSs into FTSs given in
[9], based on the more liberal definition of PL-LTSs. We show that based on the latter encoding, the class of FTSs
is at least as expressive as the class of PL-LTSs; thus, reinstating the results of [9] for the more liberal definition of
PL-LTS. The combination of these two encodings shows that PL-LTSs and FTSs are equally expressive.
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Definition 11 (FTS to PL-LTS Encoding). Consider an FTS such as fts = (P, A, F,→,Λ, pinit). The PL-LTS resulting
from the encoding, denoted by E(fts), is a quintuple (P̄, A, I,→, p̄init), where:

• P̄ ⊆ P × {L,R, ?}I ,

• A is the set of actions,

• I = {0, 1, · · · , |Λ| − 1} is the index set,

• p̄init = (pinit, {?}I) is the initial state,

• →⊆ P̄ × A × {L,R, ?}I × P̄, is the transition relation which is defined as follows.

Consider an arbitrary bijective function X : Λ → [0 · · · |Λ| − 1], where [0 · · · |Λ| − 1] is the set of all natural
numbers not greater than |Λ| − 1. For each product configuration λ ∈ Λ, we define νλ to be the configuration
vector such that ∀0≤ j≤|Λ| · ( j < X(λ)⇒ νλ( j) = R) ∧ ( j = X(λ)⇒ νλ( j) = L) ∧ ( j > X(λ)⇒ νλ( j) =?). Then,
the transition relation is the smallest set satisfying the following two conditions:

∀λ∈Λ · P
φ/a
−−→ Q ∧ P = pinit ∧ λ |= φ⇒ (pinit, {?}I)

a,νλ
−−−→ (Q, νλ)

∀λ∈Λ · P
φ/a
−−→ Q ∧ P , pinit ∧ λ |= φ⇒ (P, νλ)

a,νλ
−−−→ (Q, νλ)

In the above definition, all the choices are resolved in the first step and through the transitions emanating from the
initial state. After that, the configuration vectors remain the same.

Example 4. An example of encoding an FTS into a PL-LTS is depicted in Fig. 4. In this figure, part (a) represents an
FTS resulting from removing feature tea from the FTS in Fig. 2 and part (b) represents the PL-LTS resulting form the
encoding.

As can be seen the encoding results in a blow up of the size of the model. In the remainder of the paper, we
show that for some FTSs, such exponential blow up of the size after encoding, regardless of the applied encoding,
is unavoidable. Next, we show that the conditions of Definition 5 are satisfied by the PL-LTSs resulting after the
encoding.

Theorem 1. Each PL-LTS resulting from encoding an FTS, using the encoding given in Definition 11, satisfies the
conditions of Definition 5.

Proof. Consider an arbitrary FTS fts = (P, A, F,→,Λ, pinit) and the PL-LTS resulting from the encoding, E(fts) =

(P̄, A, I,→, p̄init). The first condition of Definition 5, is as follows: ∀(P,ν),(Q,ν′′)∈P̄,a∈A,ν′∈{R,L,?}I (P, ν)
a,ν′
−−→ (Q, ν′′) =⇒

ν′ = ν′′. It is trivial to see that the first condition in Definition 5 holds, due to the construction of the transition relation
in Definition 11.

Next, we consider the second condition in Definition 5, that is: ∀(P,ν),(Q,ν′)∈P̄,a∈A,i∈I (P, ν)
a,ν′
−−→ (Q, ν′) ∧ ν(i) ,? =⇒

ν′(i) = ν(i).
According to Definition 11, the transitions in E(fts) are defined using the following two rules:

1. ∀λ∈Λ · P
φ/a
−−→ Q ∧ P = pinit ∧ λ |= φ⇒ (pinit, {?}I)

a,νλ
−−−→ (Q, νλ)

2. ∀λ∈Λ · P
φ/a
−−→ Q ∧ P , pinit ∧ λ |= φ⇒ (P, νλ)

a,νλ
−−−→ (Q, νλ)

If the transition is due to rule 1, then ν(i) ,? cannot hold and hence this condition holds trivially. If the transition is
due to rule 2, the configuration vector in the target state of a transition is the same as the configuration vector in the
source state of the transition. Hence, the second condition in Definition 5 is satisfied.

Finally, we consider the third condition in Definition 5, that is: ∀(P0,ν0),(Q0,ν
′
0),(P1,ν1),(Q1,ν

′
1)∈P̄,a,b∈A,i∈I (P0, ν0)

a,ν′0
−−−→

(Q0, ν
′
0) ∧ (P1, ν1)

b,ν′1
−−−→ (Q1, ν

′
1) ∧ ν0(i) = ν1(i) =? ∧ ν′0(i) ,? , ν′1(i) =⇒ (P0, ν0) = (P1, ν1). According to

Definition 11, only the transitions emanating from the initial state of E(fts) have source and target states with different
configuration vectors. Since, E(fts) has a single initial state, the third condition in Definition 11 is preserved by
E(fts).

8
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s0, 〈?, ?〉
get coin, 〈L, ?〉

sugar, 〈L, ?〉 no sugar, 〈L, ?〉

coffee, 〈L, ?〉
cappuccino, 〈L, ?〉

cappuccino, 〈L, ?〉coffee, 〈L, ?〉

sugar, 〈L, ?〉
sugar, 〈L, ?〉

get cappuccino, 〈L, ?〉

get coffee, 〈L, ?〉
get cappuccino, 〈L, ?〉

get coffee, 〈L, ?〉

take cup, 〈L, ?〉

s0, 〈L, ?〉

s3, 〈L, ?〉s2, 〈L, ?〉

s4, 〈L, ?〉 s5, 〈L, ?〉 s8, 〈L, ?〉 s9, 〈L, ?〉

s10, 〈L, ?〉

s11, 〈L, ?〉

s0, 〈R,L〉

s3, 〈R,L〉s2, 〈R,L〉

s5, 〈R,L〉 s8, 〈R,L〉

s0, 〈R,R〉

s3, 〈R,R〉s2, 〈R,R〉

s5, 〈R,R〉 s8, 〈R,R〉

get coin, 〈R,L〉
get coin, 〈R,R〉

coffee, 〈R,L〉 coffee, 〈R,L〉

no sugar, 〈R,L〉sugar, 〈R,L〉

sugar, 〈R,L〉

take cup, 〈R,L〉

s10, 〈R,L〉

s11, 〈R,L〉

take cup, 〈R,R〉

s10, 〈R,R〉

s11, 〈R,R〉

get coffee, 〈R,L〉 get coffee, 〈R,L〉

sugar, 〈R,R〉 no sugar, 〈R,R〉

coffee, 〈R,R〉coffee, 〈R,R〉

get coffee, 〈R,R〉get coffee, 〈R,R〉

s0

s1

s2 s3

s4 s5 s8 s9

s10

s11

e/get euro coin d/get dollar coin

m/sugar m/no sugar

c/coffee

p/cappuccino p/cappuccino

c/coffee

m/sugar

m/sugar
p/get cappuccino

c/get coffee
p/get cappuccino

c/get coffee

m/take cup

E

(a)

(b)

Figure 4. Example of encoding an FTS to a PL-LTS.

Next, we give a slight variation of the encoding from PL-LTSs into FTSs given in [9].

Definition 12 (PL-LTS to FTS Encoding). Consider a PL-LTS plt = (P, A, I,→, pinit) with the set of product configu-
rations Θ; the FTS resulting from the encoding, denoted by E(plt), is a 6-tuple (P, A, F,→′,Λ, pinit), where:

• F =
⋃

i∈I{Li,Ri}.

• Λ =
⋃
θ∈Θ{

∧
i∈I θ(i)i}

9
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• The transition relation→′ is defined in the following way:

(P, ν)
a,ν
−−→ (Q, ν)

(P, ν)
a,>
→′ (Q, ν)

(P, ν)
a,ν′
−−→ (Q, ν′) φ =

∧
i∈I ν

′(i)i Ξ(I, ν, ν′)

(P, ν)
a,φ
→′ (Q, ν′)

,

where Ξ(I, ν, ν′) ⇐⇒ ∀i ∈ I · ν′(i) , ν(i) ∧ ∀ j<I ν
′( j) = ν( j). (In the above definition we assume the notations

ν(i)i and θ(i)i, which are used in construction of feature expressions and the product configurations, can be also
used for representing variables that stand for features, i.e., Li or Ri for i ∈ I.)

The difference between the encoding given in Definition 12 and the one given in Theorem 3 in [9], is in the
definition of the transition relation. In the definition of transition relation given in Theorem 3 in [9], in the description
of function Ξ it is assumed that only one of the elements of ν changes in each step. In Definition 12, we relax this
assumption according to the original and more liberal definition of PL-LTSs given in Definition 5.

4. Comparative Expressiveness

In this section, we first prove that the class of PL-LTSs is at least as expressive as the class of FTSs. Then, we
show that the result of the proof provided in [9], which shows that the class of FTSs is at least as expressive as the
class of PL-LTSs, remains the same considering the more liberal definition of PL-LTSs. Thus, we conclude that the
class of PL-LTSs and the class of FTSs are equally expressive.

Theorem 2. The class of PL-LTSs is at least as expressive as the class of FTSs.

Proof. It suffices to show that each LTS l that implements an arbitrary FTS fts is also a valid implementation of E(fts),
the PL-LTS resulting from applying the encoding given in Definition 11 to fts, and vice versa, i.e., ∀l ∈ LTS · fts . l⇔
E(fts) ≺ l. This means the proof of the theorem can be reduced to proving ~fts� = ~E(fts)�′ (see Definition 9).

Consider fts = (P, A, F,→,Λ, pinit) and E(fts) = (P̄, A, I,→, p̄init); we separate the bi-implication in the proof
obligation into the following two implications:

• ~fts� ⊆ ~E(fts)�′: In order to prove ~fts� ⊆ ~E(fts)�′, we show that ∀l ∈ LTS · l ∈ ~fts�⇒ l ∈ ~E(fts)�′.

Consider an arbitrary LTS l = (S, A,→, sinit) s.t. l ∈ ~fts�, which means that fts . l (see Section 2.4). We prove
E(fts) ≺ l and hence, l ∈ ~E(fts)�′.

Let Θ denote the set of product configuration vectors derived from the set Λ, i.e., Θ = {νλ | λ ∈ Λ}, where νλ
has the same definition as given in Definition 11. In order to prove E(fts) ≺ l, it suffices to show that for some
product configuration vector θ ∈ Θ, it holds that p̄init `θ sinit (see Section 2.3).

Next, we show that the above statement is satisfied by l and E(fts). Considering Definition 8, for any two
arbitrary states, (P, ν) ∈ P̄ and s ∈ S, (P, ν) `θ s holds if a product-derivation relation such as Rθ exists such that
(P, ν) Rθ s and Rθ satisfies the following properties:

(1) ∀P,Q,a,ν,ν′,s ·
(
(P, ν) Rθ s ∧ (P, ν)

a,ν′
−−→ (Q, ν′) ∧ ν′ v θ

)
⇒ ∃t · s

a
−→ t ∧ (Q, ν′) Rθ t ,

(2) ∀P,a,ν,s,t ·
(
(P, ν) Rθ s ∧ s

a
−→ t

)
⇒ ∃Q,ν′ · (P, ν)

a,ν′
−−→ (Q, ν′) ∧ ν′ v θ ∧ (Q, ν′)Rθ t .

Hence, in the next step we prove that such a relation exists and that the initial states are related by it.

Based on Definition 3, the assumption fts. l implies that for some λ ∈ Λ a product-derivation relation Rλ ⊆ P×S
exists which satisfies the following properties:

1. ∀P,Q,a,s,φ ·
(
P Rλ s ∧ P

φ/a
−−→ Q ∧ λ |= φ

)
⇒ ∃t · s

a
−→ t ∧ Q Rλ t

2. ∀P,a,s,t ·
(
P Rλ s ∧ s

a
−→ t

)
⇒ ∃Q,φ · P

φ/a
−−→ Q ∧ λ |= φ ∧ Q Rλ t,

10
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We define a binary relation Rθ ⊆ P̄ × S (where θ is a configuration vector in Θ) such that:

∀P ∈ P, s ∈ S · ∃λ ∈ Λ· ((P = pinit ∧ P Rλ s)⇔ (pinit, {?}I) Rθ s ∧ θ = νλ) ∧
((P , pinit ∧ P Rλ s)⇔ (P, νλ) Rθ s ∧ θ = νλ)

Consider the configuration vector λ that derives LTS l from FTS fts (based on Definition 8); let θ = νλ and Rθ be
a member of the above defined relation. Next, we prove that Rθ satisfies the properties of a product-derivation
relation (statements (1) and (2)).

Consider an arbitrary pair of states in Rθ, such as (P, ν) Rθ s; based on the definition given above for Rθ, it holds
P Rλ s, where we distinguish the following two cases: (P, ν) = p̄init and (P, ν) , p̄init.

– First, we prove that statement (1) is satisfied by Rθ.

∗ (P, ν) = p̄init.
Thus ν = {?}I and P = pinit (see Definition 11). Consider an arbitrary transition of the form
(pinit, {?}I)

a,νλ′
−−−→ (Q, νλ′ ); based on Definition 11, such a transition is resulting from encoding one

of the outgoing transitions from P in fts, i.e.:

∀a,Q,λ′ · (pinit, {?}I)
a,νλ′
−−−→ (Q, νλ′ )⇔ ∃φ, P · P

φ/a
−−→ Q ∧ λ′ |= φ ∧ P = pinit (1.i)

Considering property 1 satisfied by relation Rλ, P Rλ s implies the following statement:

∀a,Q,φ · (P
φ/a
−−→ Q ∧ λ |= φ) ⇒ ∃t · s

a
−→ t ∧ Q Rλ t (1.ii)

Based on the definition of Rθ, Q Rλ t ⇔ (Q, νλ) Rθ t ∧ θ = νλ. Hence, (Q, νλ′ ) Rθ t holds only in
case of λ′ = λ. Given that θ = νλ, based on the definition of the relation v (see Definition 6) it holds
νλ v θ (notice that for any λ′ ∈ Λ such that λ , λ′, based on the definition of νλ it holds νλ ./ νλ′ and
hence, νλ′ @ θ). Thus, from (1.i) and (1.ii), the following statement is derived:

∀a,Q · (pinit, {?}I)
a,νλ
−−−→ (Q, νλ) ∧ νλ v θ ⇒ ∃t · s

a
−→ t ∧ (Q, νλ) Rθ t (1.iii)

∗ (P, ν) , p̄init.
Thus, (based on the definition of Rθ) ν = νλ. Consider an arbitrary transition emanating from (P, νλ)
of the form (P, νλ)

a,νλ
−−−→ (Q, νλ); based on Definition 11, the configuration vector in the target state of

the outgoing transitions from (P, νλ) is νλ and such transition is resulting from encoding one of the
outgoing transitions from P in fts, i.e.:

∀a,Q · (P, νλ)
a,νλ
−−−→ (Q, νλ)⇔ ∃φ · P

φ/a
−−→ Q ∧ λ |= φ ∧ P , pinit (1.iv)

Considering property 1 satisfied by relation Rλ, P Rλ s implies the following statement:

∀a,Q,φ · (P
φ/a
−−→ Q ∧ λ |= φ) ⇒ ∃t · s

a
−→ t ∧ Q Rλ t (1.v)

Based on the definition of Rθ, Q Rλ t ⇔ (Q, νλ) Rθ t ∧ θ = νλ. Using the same reasoning as in the
previous case, from (1.iv) and 1.(v), the following statement is derived:

∀a,Q · (P, νλ)
a,νλ
−−−→ (Q, νλ) ∧ νλ v θ ⇒ ∃t · s

a
−→ t ∧ (Q, νλ) Rθ t (vi)

Considering (1.iii) and (1.vi), the following statement holds:

∀a,Q,P,ν,ν′ · ((P, ν) Rθ s ∧ (P, ν)
a,ν′
−−→ (Q, ν′) ∧ ν′ v θ)⇒ ∃t · s

a
−→ t ∧ (Q, ν′) Rθ t,

which means Rθ satisfies statement (1).

11
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– Next, we prove that statement (2) is satisfied by Rθ. Again we distinguish the two cases: (P, ν) = p̄init and
(P, ν) , p̄init.

∗ (P, ν) = p̄init.
Thus, ν = {?}I and P = pinit (see Definition 11).
Consider an arbitrary transition emanating from (pinit, {?}I) of the form (pinit, {?}I)

a,νλ′
−−−→ (Q, νλ′ ); based

on Definition 11, such a transition is resulting from encoding an outgoing transition from P, i.e.:

∀a,Q,λ′ · (pinit, {?}I)
a,νλ′
−−−→ (Q, νλ′ )⇔ ∃φ, P · P

φ/a
−−→ Q ∧ λ |= φ ∧ P = pinit (2.i)

Considering property 2 satisfied by relation Rλ, P Rλ s implies the following statement:

∀a,t ·
(
s

a
−→ t

)
⇒ ∃Q,φ · P

φ/a
−−→ Q ∧ λ |= φ ∧ Q Rλ t (2.ii)

Based on the definition of Rθ, Q Rλ t ⇔ (Q, νλ) Rθ t ∧ θ = νλ. Hence, (Q, νλ′ ) Rθ t holds only in
case λ′ = λ. Given that θ = νλ, based on the definition of the relation v (see Definition 6) it holds
νλ v θ and for all λ′ ∈ Λ such that λ , λ′ it holds νλ′ @ θ. Considering (2.i) and (2.ii), the following
statement holds:

∀a,t · s
a
−→ t ⇒ ∃a,Q · (pinit, {?}I)

a,νλ
−−−→ (Q, νλ) ∧ νλ v θ ∧ (Q, νλ) Rθ t (2.iii)

∗ (P, ν) , p̄init.
Thus, (based on the definition of Rθ) ν = νλ. Consider an arbitrary transition emanating from (P, νλ)
of the form (P, νλ)

a,νλ
−−−→ (Q, νλ), based on the Definition 11, the configuration vector in the target state

of the outgoing transitions from (P, νλ) is νλ; such a transition is resulting from encoding an outgoing
transition from P, i.e.:

∀a,Q · (P, νλ)
a,νλ
−−−→ (Q, νλ)⇔ ∃φ · P

φ/a
−−→ Q ∧ λ |= φ ∧ P , pinit (2.iv)

Furthermore, consider property 2 satisfied by relation Rλ; P Rλ s implies the following statement:

∀a,t ·
(
s

a
−→ t

)
⇒ ∃Q,φ · P

φ/a
−−→ Q ∧ λ |= φ ∧ Q Rλ t (2.v)

Given the definition of Rθ, Q Rλ t ⇔ (Q, νλ) Rθ t ∧ θ = νλ. Since, θ = νλ and based on Definition 6
it holds νλ v θ. Considering (2.iv) and (2.v), the following statement holds:

∀a, t · s
a
−→ t ⇒ ∃a,Q · (P, νλ)

a,νλ
−−−→ (Q, νλ) ∧ νλ v θ ∧ (Q, νλ) Rθ t (2.vi)

Considering (2.iii) and (2.vi), the following statement holds:

∀P,a,ν,s,t ·
(
(P, ν) Rθ s ∧ s

a
−→ t

)
⇒ ∃Q,ν′ · (P, ν)

a,ν′
−−→ (Q, ν′) ∧ ν′ v θ ∧ (Q, ν′)Rθ t,

which means that Rθ satisfies the second property of a product derivation relation.

Based on the assumption fts . l, it holds pinit `λ sinit. As shown above, Rθ satisfies the properties of a product
derivation relation given in Definition 8. Hence, based on the definition of Rθ it holds that pinit `λ sinit ⇒

(pinit, {?}I) `θ sinit. Thus, p̄init`θ sinit. This means E(fts) ≺ l and subsequently l ∈ ~E(fts)�′.

Hence, we conclude that ~fts� ⊆ ~E(fts)�′.

• ~E(fts)� ⊆ ~fts�.

Proof. In order to prove ~E(fts)�′ ⊆ ~fts�, we show that ∀l ∈ LTS · l ∈ ~E(fts)�′ ⇒ l ∈ ~fts�.

Consider an arbitrary LTS l = (S, A,→, sinit), s.t., l ∈ ~E(fts)�′ and subsequently E(fts) ≺ l (see Definition 10).
We prove fts . l and hence, l ∈ ~fts�.

12
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To prove fts . l, it suffices to show that for some product configuration λ ∈ Λ the following statement holds:
pinit`λsinit (see Definition 3).

Next, we show that the above statement is satisfied by l and fts. According to Definition 3, P `λ s holds if a
product-derivation relation such as Rλ exists such that P Rλ s and Rλ satisfies the following properties:

(1) ∀P,Q,a,s,φ ·
(
P Rλ s ∧ P

φ/a
−−→ Q ∧ λ |= φ

)
⇒ ∃t · s

a
−→ t ∧ Q Rλ t

(2) ∀P,a,s,t ·
(
P Rλ s ∧ s

a
−→ t

)
⇒ ∃Q,φ · P

φ/a
−−→ Q ∧ λ |= φ ∧ Q Rλ t

Hence, in the next step we prove the existence of a relation between states of l and fts that satisfies the above
properties.

Based on Definition 8, the assumption E(fts) ≺ l implies that for some θ ∈ Θ, a product-derivation relation
Rθ ⊆ P̄ × S exists, which satisfies the following properties:

1. ∀P,Q,a,ν,ν′,s ·
(
(P, ν) Rθ s ∧ (P, ν)

a,ν′
−−→ (Q, ν′) ∧ ν′ v θ

)
⇒ ∃t · s

a
−→ t ∧ (Q, ν′) Rθ t ,

2. ∀P,a,ν,s,t ·
(
(P, ν) Rθ s ∧ s

a
−→ t

)
⇒ ∃Q,ν′ · (P, ν)

a,ν′
−−→ (Q, ν′) ∧ ν′ v θ ∧ (Q, ν′)Rθ t .

Next, we define a binary relations Rλ (where λ is a product configuration in Λ) such that:

∀P∈P,s∈S · ∀θ∈Θ· ((pinit, {?}I) Rθ s⇔ ((P = pinit ∧ P Rλ s ∧ νλ = θ)) ∧
((P, νλ) Rθ s⇔ (P , pinit ∧ P Rλ s ∧ νλ = θ))

Assume that LTS l is derived from PL-LTS E(fts) with regards to the product configuration vector θ = νλ. Let
Rλ be a relation defined as above. Next, we prove that Rλ satisfies the properties of a product-derivation relation
(statements (1) and (2)).

– First, we prove that Rλ satisfies statement (1).
Consider an arbitrary pair (P, s) of states where P ∈ P and s ∈ S such that P Rλ s. Based on the definition
given for Rλ; it holds (P, ν) Rθ s, where θ = νλ, and ν = {?}I if P = pinit and (P, ν) Rθ s where ν = νλ and
θ = νλ if P , pinit. We distinguish the following two cases: P = pinit and P , pinit.

∗ First, we consider the case where P = pinit:

Based on Definition 11, each transition emanating from P such as P
φ/a
−−→ Q, is encoded as a transition

in PL-LTS E(fts), i.e.:

∀a,Q,λ′ · P
φ/a
−−→ Q ∧ P ∈ pinit ∧ λ′ |= φ⇔ (pinit, {?}I)

a,νλ′
−−−→ (Q, νλ′ ) (1.i)

Considering property 1 satisfied by relation Rθ, (pinit, {?}I) Rθ s implies the following statement:

∀a,Q,λ′ ·
(
(pinit, {?}I)

a,νλ′
−−−→ (Q, νλ′ ) ∧ νλ′ v θ

)
⇒ ∃t · s

a
−→ t ∧ (Q, νλ′ ) Rθ t (1.ii)

Based on the definition of Rλ, (Q, νλ′ ) Rθ t ⇔ Q Rλ′ t ∧ νλ′ = θ. Hence, Q Rλ t holds only in case
λ′ = λ. Thus, from (1.i) and (1.ii), the following statement is derived:

∀a,Q ·
(
P

φ/a
−−→ Q ∧ λ |= φ) ⇒ ∃t · s

a
−→ t ∧ Q Rλ t (1.iii)

∗ Next, we assume P , pinit:

Based on Definition 11, each transition emanating from P such as P
φ/a
−−→ Q, is encoded as a transition

in PL-LTS E(fts), i.e.:

∀a,Q,λ · P
φ/a
−−→ Q ∧ P , pinit ∧ λ |= φ⇔ (P, νλ)

a,νλ
−−−→ (Q, νλ) (1.iv)

Considering property 1 satisfied by relation Rθ, (P, νλ) Rθ s implies the following statement:
13
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∀a,Q,νλ ·
(
(P, νλ) Rθ s ∧ (P, νλ)

a,νλ
−−−→ (Q, νλ) ∧ νλ v θ

)
⇒ ∃t · s

a
−→ t ∧ (Q, νλ) Rθ t (1.v)

Based on the definition of Rλ, (Q, νλ) Rθ t ⇔ Q Rλ t ∧ νλ = θ. Thus, from (1.iv) and (1.v), the
following statement is derived:

∀a,Q ·
(
P Rθ s ∧ P

φ/a
−−→ Q ∧ λ |= φ

)
⇒ ∃t · s

a
−→ t ∧ (Q, νλ) Rθ t (1.vi)

Considering (1.iii) and (1.vi), the following statement holds:

∀P,Q,a,s,φ ·
(
P Rλ s ∧ P

φ/a
−−→ Q ∧ λ |= φ

)
⇒ ∃t · s

a
−→ t ∧ Q Rλ t,

which means that the relation Rλ satisfies statement (1).

– Next, we prove that Rλ satisfies statement (2).
Considering an arbitrary pair of states in Rλ, such as P Rλ s. Based on the definition given for Rλ, it holds
(P, ν) Rθ s, where θ = νλ, and ν = {?}I if P = pinit and (P, ν) Rθ s where θ = νλ and ν = νλ if P , pinit. For
the sake of clarity we distinguish the following two cases: P = pinit and P , pinit.

∗ First, we consider the case that P = pinit:

Based on Definition 11, each transition emanating from P, such as P
φ/a
−−→ Q is encoded as an outgoing

transition from (pinit, {?}I), i.e.:

∀a,Q,λ′ · P
φ/a
−−→ Q ∧ P = pinit ∧ λ′ |= φ⇔ (pinit, {?}I)

a,νλ′
−−−→ (Q, νλ′ ) (2.i)

Considering property 2 of relation Rθ, (pinit, {?}) Rθ s implies the following statement:

∀a,s,t ·
(
s

a
−→ t

)
⇒ ∃Q,νλ′ · (pinit, {?}I)

a,νλ′
−−−→ (Q, νλ′ ) ∧ νλ′ v θ ∧ (Q, νλ′ )Rθ t (2.ii)

Based on the definition of Rλ, (Q, νλ′ ) Rθ t ⇔ Q Rλ′ t ∧ νλ′ = θ. Hence, Q Rλ t holds only in case
λ′ = λ. Thus, from (2.i) and (2.ii), the following statement is derived:

∀a,s,t ·
(
P Rλ s ∧ s

a
−→ t

)
⇒ ∃Q,φ · P

φ/a
−−→ Q ∧ λ |= φ ∧ Q Rλ t (2.iii)

∗ Next, we assume P , pinit:

Based on Definition 11, each transition emanating from P, such as P
φ/a
−−→ Q, is encoded as an outgoing

transition from P, i.e.:

∀a,Q,λ · P
φ/a
−−→ Q ∧ P , pinit ∧ λ |= φ⇔ (P, νλ)

a,νλ
−−−→ (Q, νλ) (2.iv)

Considering property 2 satisfied by relation Rθ, (P, νλ) Rθ s implies the following statement:

∀a,νλ,s,t ·
(
s

a
−→ t

)
⇒ ∃Q,νλ · (P, νλ)

a,νλ
−−−→ (Q, νλ) ∧ νλ v θ ∧ (Q, νλ) Rθ t (2.v)

Based on the definition of Rλ, (Q, νλ) Rθ t ⇔ Q Rλ t ∧ νλ = θ. Thus, from (2.iv) and (2.v), the
following statement is derived:

∀a,s,t ·
(
s

a
−→ t

)
⇒ ∃Q,φ · P

φ/a
−−→ Q ∧ λ |= φ ∧ Q Rλ t (2.vi)

Considering two derived statements (2.iii) and (2.vi), the following statement holds:

∀P,a,s,t ·
(
P Rλ s ∧ s

a
−→ t

)
⇒ ∃Q,φ · P

φ/a
−−→ Q ∧ λ |= φ ∧ Q Rλ t

Hence, we conclude that Rλ satisfies statement (2).

14
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The assumption E(fts) ≺ l implies that p̄init `θ sinit. Based on the above proof, Rλ satisfies the properties
of a product derivation relation given in Definition 3. Hence, based on the definition of Rλ it holds that
(pinit, {?}I) `θ sinit ⇒ pinit `λ sinit. This means fts . l and subsequently l ∈ ~fts�.

Hence, we conclude that ~E(fts)�′ ⊆ ~fts�.

As is shown above ~ f ts� ⊆ ~E(fts)�′ and ~E(fts)�′ ⊆ ~fts�. Thus, ~fts� = ~E(fts)�, which means the class of
PL-LTSs is at least as expressive as the family of FTSs.

In the next theorem, we show that the class of FTSs is at least as expressive as class of PL-LTSs, which is the
same result as provided in [9], but based on a modified version of encoding given in the proof of Theorem 3, in [9]
(see Definition 12). The subsequent proof is almost identical to the proof of Theorem 3 in [9], as well.

Theorem 3. The class of FTSs is at least as expressive as the class of PL-LTSs.

Proof. Consider the encoding from PL-LTSs into FTSs given in Definition 12. The proof for the above theorem
remains the same as the proof of theorem 3, in [9] (by considering the modified encoding), which is as follows.
Assume plt = (P × {L,R, ?}I , A, I,→, pinit) is a PL-LTS and the FTS E(plt) = (P × {L,R, ?}I , A, F,→′,Λ, pinit), is the
result of applying encoding E on plt, based on Definition 12. For any (P, ν) ∈ P × {L,R, ?}I , we fix E(P, ν) = (P, ν).
We need to show that ~plt� = ~E(plt)�′. We divide the proof obligation into the following two cases:

• (~plt� ⊆ ~E(plt)�′): Let l ∈ ~plt�, where l = (S, A,→, sinit). Then pinit `θ sinit, for some θ ∈ {L,R}I . Define a
configuration λθ ∈ Λ as follows: λθ(Li) = > ⇐⇒ θ(i) = L and λθ(Ri) = > ⇐⇒ θ(i) = R. Furthermore,
consider the following relation Rλθ such that ∀(Q,ν′)∈P,s∈S · (Q, ν′)Rλθ s ⇐⇒ (Q, ν′) `θ s. It is straightforward to
show that Rλθ is a product derivation relation with regards to Definition 3.

• (~(P, ν)�′ ⊆ ~(P, ν)�): Let l ∈ ~E(plt)�′, where l = (S, A,→, sinit). Then pinit `λ sinit for some λ ∈ Λ. Let
θλ ∈ {L,R}I be a configuration vector defined as θλ(i) = L ⇐⇒ λ(Li) = > and θλ(i) = R ⇐⇒ λ(Ri) = >.
Define a relation Rθλ such that ∀(Q,ν′)∈P,s∈S · (Q, ν′)Rθλ s ⇐⇒ (Q, ν′) `θλ s. It is straightforward to verify that
Rθλ is a product derivation relation for PL-LTSs (see Definition 8).

Based on Theorem 2 and Theorem 3, we give the following corollary.

Corollary 1. The class of PL-LTSs and the class of FTSs are equally expressive.

Proof. Considering Theorem 2 the class of PL-LTSs is at least as expressive as the class of FTSs. Based on Theorem
3, the class of FTSs is at least as expressive as the class of PL-LTSs. Hence, considering Definition 10, we conclude
that the class of PL-LTSs and the class of FTSs are equally expressive.

5. Succinctness Analysis

In this section, we provide an analysis of the succinctness (the number of states and the configuration vector size
included in the states) of PL-LTSs resulting from encoding FTSs. We prove that for some FTSs the size of the PL-LTS
which is resulting from any sound encoding, is exponential in terms of the number of states of the FTS. Furthermore,
we show that for each PL-LTS a sound encoding into FTSs exists such that the size of the resulting FTS is linear in
terms of the size of PL-LTS. Hence, as a result we conclude that FTSs are in general exponentially more succinct than
PL-LTSs. In the rest of this section, we assume that E denotes all sound encodings from the class of FTSs into the
class of PL-LTSs. We consider the FTS fts depicted in Fig. 5. In this FTS, in each state si there is a variant choice
between features fxi and fyi i.e, in each valid product either the transition labeled fxi or the one with fyi (but not both)
must be present. We assume E(fts) = (P̄, A, I,→, p̄init) is the PL-LTS resulting from encoding fts using an arbitrary
encoding E ∈ E. The FTS fts has 2n non-trace equivalent LTS implementations each of which has exactly one path.
We assume Imp denotes the set of all such implementing LTSs.

First, we prove the following statement which is used to compute the least possible size of the configuration vector
in the states of E(fts), i.e., Ω(| I |). Consider two distinct LTS implementations derived from the PL-LTS E(fts); at
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least one state in E(fts) exists such that each of the considered LTSs implements a distinct outgoing transition from
that state. This in turn means that for each two distinct valid products (implementations) of the above mentioned
model, there should be at least one configuration vector corresponding to each of these products in the PL-LTS which
is refined by that product’s vector such that these configuration vectors are conflicting in at least one bit. We formalize
this in terms of the following lemma.

...
fx0

/a

fy0/b

fx2
/a

fy2/b

fxn
/a

fyn/b

s0 s1 s2 sn

Figure 5. FTS FT .

Lemma 1. Assuming two non-trace-equivalent LTSs, l1, l2 ∈ Imp, such as l1 = (S1, A,→1, s1
0) and l2 = (S2, A,→2, s2

0),
where p̄init `θ1 s1

0 and p̄init `θ2 s2
0. It holds that:

∃P,Q∈P̄,α∈A,ν,ν′∈I · (P, ν)
α,ν′

−−−→ (Q, ν′) ∧ (ν′ v θ1 ∧ ν
′ @ θ2) ∧

∃P,Q∈P̄,α∈A,ν,ν′∈I · (P, ν)
α,ν′

−−−→ (Q, ν′) ∧ (ν′ @ θ1 ∧ ν
′ v θ2)

Proof. Assuming that Paths(l1) = ρ1, Paths(l2) = ρ2, Σ = pref (Trace(ρ1)) ∩ pref (Trace(ρ1)), where pref (.) denotes
the set of the finite prefixes of a sequence. We consider σ ∈ Σ such that @σ′∈Σ · |σ| < |σ′| i.e., a maximal trace σ in
Σ. Assume |σ| = k; let ρ1(k) = s1

k , and ρ2(k) = s2
k , given that l1, l2 ∈ Imp are distinct it holds that: s1

k
α
−→1 s1

k+1 and

s2
k

β
−→2 s2

k+1 where α , β. Based on the condition (2) in Definition 8, it holds:

s1
k

α
−→1 s1

k+1 ⇒ ∃P1,Q1,ν1,ν
′
1
· (P1, ν1)

α,ν′1
−−−→ (Q1, ν

′
1) ∧ ν′1 v θ1

s2
k

β
−→2 s2

k+1 ⇒ ∃P2,Q2,ν2,ν
′
2
· (P2, ν2)

β,ν′2
−−−→ (Q2, ν

′
2) ∧ ν′2 v θ2,

Given that l1, l2 ∈ Imp it holds |Out(s1
k)| = 1 and |Out(s2

k)| = 1; hence ν′2 @ θ2 and ν′1 @ θ1 (otherwise, s1
k and s2

k should
have more than one outgoing transitions). Thus, it can be concluded that:

∃P,Q,α,ν,ν′ · (P, ν)
α,ν′

−−−→ (Q, ν′) ∧ (ν′ v θ1 ∧ ν
′ @ θ2) ∧

∃P,Q,α,ν,ν′ · (P, ν)
α,ν′

−−−→ (Q, ν′) ∧ (ν′ @ θ1 ∧ ν
′ v θ2)

Next, we provide a lower bound for the size of the configuration vector in the states of the PL-LTSs resulting from
encoding the FTS represented in Fig. 5.

Lemma 2. Let E ∈ E be an arbitrary encoding. The size of the configuration vector included in the states of E(fts)
(i.e., Ω(| I |)) is at least n.

Proof. Consider two non-trace-equivalent LTSs l1, l2 ∈ Imp, such as l1 = (S1, A,→1, s1
0) and l2 = (S2, A,→2, s2

0),
where p̄init `θ1 s1

0 and p̄init `θ2 s2
0. According to Lemma 1, it holds that:

∃P,Q,α,ν,ν′ · (P, ν)
α,ν′

−−−→ (Q, ν′) ∧ (ν′ v θ1 ∧ ν
′ @ θ2) ∧

∃P,Q,α,ν,ν′ · (P, ν)
α,ν′

−−−→ (Q, ν′) ∧ (ν′ @ θ1 ∧ ν
′ v θ2),

which means for any two arbitrary LTSs l1, l2 ∈ Imp it holds that: ∃ρ∈Paths(E(fts)) · last(ρ) = (Q, ν′) ∧ (ν′ v θ1 ∧ν
′ @

θ2) and ∃ρ∈Paths(E(fts)) · last(ρ) = (Q, ν′) ∧ (ν′ @ θ1 ∧ ν
′ v θ2). Thus, ∃(Q1,ν

′
1),(Q2,ν

′
2)∈P̄ · ν

′
1 ./ ν

′
2 (see Definition 7). This

means ∀l1,l2∈Imp ∃(Q1,ν
′
1),(Q2,ν

′
2)∈P̄ ∃i∈I · ν

′
1(i) ./ ν′2(i), hence for each two products selected from Imp, there are two states

in the PL-LTS that the configuration vectors in these states are conflicting. As |Imp| = 2n, the minimum size of the
configuration vector included in the state of the PL-LTS is log(2n) = n.
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Next, we prove the following theorem regarding the succinctness of the PL-LTSs resulting from encoding FTSs.

Lemma 3. Consider the class of all possible encodings from FTSs into PL-LTSs, denoted by E. There exists an FTS
such that the size of the encoded PL-LTS (the number of states) is exponential in the number of the states in that FTS,
regardless of which encoding is selected.

Proof. Let E ∈ E be an arbitrary encoding and E(fts) = (P̄, A, I,→, p̄init) be the PL-LTS resulting from the encoding.
Consider two distinct LTSs, l1, l2 ∈ Imp, such as l1 = (S1, A,→1, s1

0) and l2 = (S2, A,→2, s2
0), where p̄init `θ1 s1

0 and
p̄init `θ2 s2

0; according to Lemma 1, it holds that:

∃P,Q,α,ν,ν′ · (P, ν)
α,ν′

−−−→ (Q, ν′) ∧ (ν′ v θ1 ∧ ν
′ @ θ2) ∧

∃P,Q,α,ν,ν′ · (P, ν)
α,ν′

−−−→ (Q, ν′) ∧ (ν′ @ θ1 ∧ ν
′ v θ2),

Hence, for each two arbitrary LTSs l1, l2 it holds that ∃(Q1,ν
′
1),(Q2,ν

′
2)∈P̄ · ν

′
1 ./ ν

′
2. As |Imp| = 2n it holds that the size

of the set of states in E(fts) is at least 2n.
Hence, we conclude that the total number of the states in E(fts) is exponential in terms of the number of states in

fts.

Next, we prove that each PL-LTS can be encoded into an FTS using a sound encoding such that the size of the
FTS is linear in terms of the size of the PL-LTS.

Theorem 4. An encoding E ∈ E from PL-LTSs into FTSs exists such that for any PL-LTS P, the size of the model
resulting from the encoding of P is linear in terms of the size of P, i.e., |E(P)| = O(|P|) where | . | represents the number
of states.

Proof. Let (P × {L,R, ?}I , A,→, pinit) be an arbitrary PL-LTS. We consider the encoding given in Definition 12. The
corresponding FTS is denoted by (P × {L,R, ?}I , A, F,→′,Λ, pinit). The result of encoding a state in the PL-LTS such
as (P, ν) ∈ P × {L,R, ?}I is state (P, ν) in the FTS. Considering the transition relation given in Definition 12, the result

of encoding each transition (P, ν)
a,ν′
−−→ (Q, ν′), for either ν = ν′ or ν , ν′, is one transition in the FTS. Hence, it is

straightforward to see that the size of the FTS resulting from the encoding is linear in terms of the size of the original
PL-LTS.

6. Conclusion

In this paper, we compared the expressiveness of the PL-CCSs and FTSs. To this end, we used a more liberal
definition for PL-LTSs (which are considered as the semantic domain for PL-CCS terms) in comparison with our
previous work [9]. We described an encoding from the class of FTSs into the class of PL-LTSs. Then, we proved that
the set of LTSs that implement an FTS, are also valid implementations of the PL-LTS resulting from encoding the FTS
and vice versa. Furthermore, we showed that the class of FTSs is at least as expressive as the class of PL-LTSs, which
is the same result as provided in [9]. Thus, we conclude that the class of PL-LTSs and the class of FTSs are equally
expressive. We also provided a succinctness analysis of the models resulting from the encoding. The results show that
for some FTSs the size of the PL-LTS resulting from encoding the FTS (using any sound encoding) is exponential
in terms of the number of the states of the FTS. Furthermore, the results show that there exists an encoding from
PL-LTSs to FTSs for which the size of the FTS resulting from the encoding is linear in terms of the size of the original
PL-LTS. Hence, as a result we conclude that FTSs are in general exponentially more succinct than PL-LTSs.

Both in the present paper and in [9], we have only considered models with finite behavior; considering infinite
behavior in our study of comparative expressiveness is among the future work that we aim to pursue. Completing the
lattice of expressive power and succinctness given in [9] and in the present paper, by comparing the expressiveness and
succinctness of other formalisms, such as MTSs (for succinctness) and their extensions such as 1MTSs [4], DMTSs
[5], PMTSs [6] and MTSs with variability constraints [7], and also variations of process algebras such as Variant
Process Algebra [13] and DeltaCCS [14] with formalisms included in the lattice, is another avenue for our future
work.
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