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The concentration of measure phenomena were
discovered as the mathematical background of
statistical mechanics at the end of the XIX -
beginning of the XX century and were then explored
in mathematics of the XX-XXI centuries. At the
beginning of the XXI century, it became clear that
the proper utilisation of these phenomena in machine
learning might transform the curse of dimensionality
into the blessing of dimensionality.

This paper summarises recently discovered pheno-
mena of measure concentration which drastically
simplify some machine learning problems in high
dimension, and allow us to correct legacy artificial
intelligence systems. The classical concentration of
measure theorems state that i.i.d. random points are
concentrated in a thin layer near a surface (a sphere or
equators of a sphere, an average or median level set of
energy or another Lipschitz function, etc.).

The new stochastic separation theorems describe the
thin structure of these thin layers: the random
points are not only concentrated in a thin layer but
are all linearly separable from the rest of the set,
even for exponentially large random sets. The linear
functionals for separation of points can be selected in
the form of the linear Fisher’s discriminant.

All artificial intelligence systems make errors.
Non-destructive correction requires separation of the
situations (samples) with errors from the samples
corresponding to correct behaviour by a simple and
robust classifier. The stochastic separation theorems
provide us by such classifiers and a non-iterative
(one-shot) procedure for learning.
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1. Introduction: Five “Foundations”, from geometry to probability,
quantum mechanics, statistical physics and machine learning

It’s not given us to foretell
How our words will echo through the
ages,...

F.I. Tyutchev, English Translation by
F.Jude

The Sixth Hilbert Problem was inspired by the “investigations on the foundations of geometry”
[1], i.e. by Hilbert’s work “The Foundations of Geometry” [2], which firmly implanted the
axiomatic method not only in the field of geometry, but also in other branches of mathematics.
The Sixth Problem proclaimed expansion of the axiomatic method beyond existent mathematical
disciplines, into physics and further on.

The Sixth Problem sounds very unusual and not purely mathematical. This may be a reason
why some great works which have been inspired by this problem have no reference to it. The
most famous example is the von Neumann book [3] “Mathematical foundations of quantum
mechanics”. John von Neumann was the assistant of Hilbert and they worked together on the
mathematical foundation of quantum mechanics. This work was obviously in the framework of
the Sixth Problem, but this framework was not mentioned in the book.

In 1933, Kolmogorov answered the Hilbert challenge of axiomatization of the theory of
probability [4]. He did not cite the sixth problem but explicitly referred to Hilbert’s “Foundations
of Geometry” as the prototype for “the purely mathematical development” of the theory. But
Hilbert in his 6th Problem asked for more, for “a rigorous and satisfactory development of the
method of the mean values in mathematical physics”. He had in mind statistical physics and “in
particular the kinetic theory of gases”. The 6th chapter of Kolmogorov’s book contains a survey
of some results of the author and Khinchin about independence and the law of large numbers,
and the Appendix includes a description of the 0-1 laws in probability. These are the first steps to
a rigorous basis of “the method of mean values”. Ten years later, in 1943, Khinchin published a
book “Mathematical foundations of statistical mechanics” [5]. This has brought an answer to the
Sixth Problem one step closer, but again without explicit reference to Hilbert’s talk. The analogy
between the titles of von Neumann and Khinchin books is obvious.

The main idea of statistical mechanics, in its essence, can be called the blessing of dimensionality:
if a system can be presented as a union of many weakly interacting subsystems then, in the
thermodynamic limit (when the number of such subsystems tends to infinity), the whole system
can be described by relatively simple deterministic relations in the low-dimensional space of
macroscopic variables. More means less – in very high-dimensional spaces many differences
between sets and functions become negligible (vanish) and the laws become simpler. This point of
view on statistical mechanics was developed mainly by Gibbs (1902) (ensemble equivalence) [6]
but Khinchin made the following remark about this work: “although the arguments are clear
from the logical standpoint, they do not pretend to any analytical rigor”, exactly in the spirit of
Hilbert’s request for “a rigorous and satisfactory development”. The devil is in the detail: how
should we define the thermodynamic limit and in which sense the ensembles are equivalent? For
some rigorously formulated conditions, the physical statements become exact theorems.

Khinchin considered two types of background theorems: ergodic theorems and limit theorems
for high-dimensional distributions. He claimed that the foundations of statistical mechanics
should be a complete abstraction from the nature of the forces. Limit theorems utilize very
general properties of distributions in high dimension, indeed, but the expectations that ergodicity
is a typical and universal property of smooth high-dimensional multiparticle Hamiltonian
systems were not met [7]. To stress that the ergodicity problem is nontrivial, we have to refer
to the Oxtoby–Ulam theorem about metric transitivity of a generic continuous transformation,
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which preserves volume [8]. (We see that typical properties of continuous transformations differ
significantly from typical properties of smooth transformations).

Various programmes proposed for the mathematical foundation of statistical mechanics were
discussed, for example, by Dobrushin [9] and Batterman [10]. Despite the impressive proof of
ergodicity of some systems (hyperbolic flows or some billiard systems, for example), the Jaynes
point of view [11] on the role of ergodicity in the foundations of statistical mechanics now became
dominant; the Ergodic Hypothesis is neither necessary nor sufficient condition for the foundation
of statistical mechanics (Dobrushin [9] attributed this opinion to Lebowitz, while Jaynes [11]
referred to Gibbs [6], who, perhaps, “did not consider ergodicity as relevant to the foundation
of the subject”).

Through the efforts of many mathematicians, the limit theorems from probability theory and
results about ensemble equivalence from the foundation of statistical physics were developed
far enough to become the general theory of measure concentration phenomena. Three works
were especially important for our work [12–14]. The book [15] gives an introduction into
the mathematical theory of measure concentration. A simple geometric introduction into this
phenomena was given by Ball [16].

Perhaps, the simplest manifestation of measure concentration is the concentration of the
volume of the high-dimensional ball near the sphere. Let Vn(r) be a volume of the n-dimensional
ball of radius r. It is useful to stress that the ‘ball’ here is not necessarily Euclidean and means
the ball of any norm. Lévy [17] recognised this phenomenon as a very important property of
geometry of high-dimensional spaces. He also proved that equidistributions in the balls are
asymptotically equivalent in high dimensions to the Gaussian distributions with the same mean
value of squared radius. Gibbs de-facto used these properties for sublevel sets of energy to
demonstrate equivalence of ensembles (microcanonical distribution on the surface of constant
energy and canonical distribution in the phase space with the same mean energy).

Maxwell used the concentration of measure phenomenon in the following settings. Consider
a rotationally symmetric probability distribution on the n-dimensional unit sphere. Then its
orthogonal projection on a line will be a Gaussian distribution with small variance 1/n (for large
n with high accuracy). This is exactly the Maxwellian distribution for one degree of freedom in a
gas (and the distribution on the unit sphere is the microcanonical distribution of kinetic energy of
gas, when the potential energy is negligibly small). Geometrically it means that if we look at the
one-dimensional projections of the unit sphere then the “observable diameter” will be small, of
the order of 1/

√
n.

Lévy noticed that instead of orthogonal projections on a straight line we can use any η-
Lipschitz function f (with ‖f(x)− f(y)‖ ≤ η‖x− y‖). Let points x be distributed on a unit
n-dimensional sphere with rotationally symmetric probability distribution. Then the values of
f will be distributed ‘not more widely’ than a normal distribution around the mean value Ef ; for
all ε > 0

P(|f −Ef | ≥ ε)≤ 2 exp

(
− nε2

2cη2

)
,

where c is a constant, c≤ 9π3. Interestingly, if we use in this inequality the median value of f ,
Mf , instead of the mean, then the estimate of the constant c can be decreased: c≤ 1. From the
statistical mechanics point of view, this Lévy Lemma describes the upper limit of fluctuations
in gas for an arbitrary observable quantity f . The only condition is the sufficient regularity of f
(Lipschitz property).

Hilbert’s 6th Problem influenced this stream of research either directly (Kolmogorov and,
perhaps, Khinchin among others) or indirectly, through the directly affected works. And it keeps
to transcend this influence to other areas, including high-dimensional data analysis, data mining,
and machine learning.

On the turn of the millennium, Donoho gave a lecture about main problems of high-
dimensional data analysis [18] with the impressive subtitle: “The curses and blessings of
dimensionality”. He used the term curse of dimensionality “to refer to the apparent intractability
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of systematically searching through a high-dimensional space, the apparent intractability of
accurately approximating a general high-dimensional function, the apparent intractability of
integrating a high-dimensional function.” To describe the blessing of dimensionality he referred
to the concentration of measure phenomenon, “which suggest that statements about very high-
dimensional settings may be made where moderate dimensions would be too complicated.”
Anderson et al characterised some manifestations of this phenomenon as “The More, the Merrier”
[19].

In 1997, Kainen described the phenomenon of blessing of dimensionality, illustrated them with
a number of different examples in which high dimension actually facilitated computation, and
suggested connections with geometric phenomena in high-dimensional spaces [20].

The claim of Donoho’s talk was similar to Hilbert’s talk and he cited this talk explicitly. (“My
personal research experiences, cited above, convince me of Hilbert’s position, as a long run
proposition, operating on the scale of centuries rather than decades.”) The role of Hilbert’s 6th
Problem in the analysis of the curse and blessing of dimensionality was not mentioned again.

The blessing of dimensionality and the curse of dimensionality are two sides of the same
coin. For example, the typical property of a random finite set in a high-dimensional space is: the
squared distance of these points to a selected point are, with high probability close to the average
(or median) squared distance. This property drastically simplifies the expected geometry of data
(blessing) [21,22] but, at the same time, makes the similarity search in high dimensions difficult
and even useless (curse) [23].

Extension of the 6th Hilbert Problem to data mining and machine learning is a challenging
task. There exist no unified general definition of machine learning. Most classical texts consider
machine learning through formalisation and analysis of a set of standardised tasks [24–26].
Traditionally, these tasks are:

• Classification – learning to predict a categorical attribute using values of given attributes
on the basis of given examples (supervised learning);
• Regression – learning to predict numerical attributes using values of given attributes on

the basis of given examples (supervised learning);
• Clustering – joining of similar objects in several clusters (unsupervised learning) [27];
• Various data approximation and reduction problems: linear and nonlinear principal

components [28], principal graphs [29], independent components [30], etc. (clustering
can be also considered as a data approximation problem [31]);
• Probability distribution estimation.

For example, Cucker and Smale [24] considered the least square regression problem. This is
the problem of the best approximation of an unknown function f :X→ Y from a random sample
of pairs (x, y)∈X × Y . Selection of “the best” regression function means minimization of the
mean square error deviation of the observed y from the value f(x). They use the concentration
inequalities to evaluate the probability that the approximation has a given accuracy.

It is important to mention that the Cucker–Smale approach was inspired in particular by J.
von Neumann: “We try to write in the spirit of H. Weyl and J. von Neumann’s contributions to
the foundations of quantum mechanics” [24]. The J. von Neumann book [3] was a step in the
realisation of Hilbert’s 6th problem programme, as we perfectly know. Therefore, the Cucker–
Smale “Mathematical foundation of learning” is a grandchild of the 6th problem. This is the fourth
“Foundation” (after Kolmogorov, von Neumann, and Khinchin). Indeed, it was an attempt to give
a rigorous development of what they “have found to be the central ideas of learning theory”. This
problem statement follows Hilbert’s request for “rigorous and satisfactory development of the
method of mean values”, but this time the development was done for machine learning instead
of mathematical physics.

Cucker and Smale followed Gauss and proved that the least squares solution enjoys
remarkable statistical properties. i.e. it provides the minimum variance estimate [24]. Nevertheless,
non-quadratic functionals are employed for solution of many problems: to enhance robustness, to
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avoid oversensitivity to outliers, to find sparse regression with exclusion of non-necessary input
variables, etc. [25,26]. Even non-convex quasinorms and their tropical approximations are used
efficiently to provide sparse and robust learning results [32]. Vapnik [26] defined a formalised
fragment of machine learning using minimisation of a risk functional that is the mathematical
expectation of a general loss function.

M. Gromov [33] proposed a radically different concept of ergosystems which function
by building their “internal structure” out of the “raw structures” in the incoming flows of
signals. The essential mechanism of egrgosystem learning is goal free and independent of any
reinforcement. In a broad sense, loosely speaking, in this concept “structure” = “interesting
structure” and learning of structure is goal-free and should be considered as a structurally
interesting process.

There are many other approaches and algorithms in machine learning, which use some
specific ideas from statistical mechanics: annealing, spin glasses, etc. (see, for example, [34])
and randomization. It was demonstrated recently that the assignment of random parameters
should be data-dependent to provide the efficient and universal approximation property of
the randomized learner model [35]. Various methods for evaluation of the output weights
of the hidden nodes after random generation of new nodes were also tested [35]. Swarm
optimization methods for learning with random re-generation of the swarm (“virtual particles”)
after several epochs of learning were developed in 1990 [36]. Sequential Monte Carlo methods
for learning neural networks were elaborated and tested [37]. A comprehensive overview of the
classical algorithms and modern achievements in stochastic approaches to neural networks was
performed by Scardapane and Wang [38].

In our paper, we do not discuss these ideas, instead we focus on a deep and general similarity
between high-dimensional problems in learning and statistical physics. We summarise some
phenomena of measure concentration which drastically affect machine learning problems in high
dimension.

2. Waist concentration and random bases in machine learning
After classical works of Fisher [39] and Rosenblatt [40], linear classifiers have been considered as
inception of Data Analytics and Machine Learning (see e.g. [26,41,42], and references therein).
The mathematical machinery powering these developments is based on the concept of linear
separability.

Definition 2.1. Let X and Y be subsets of Rn. Recall that a linear functional l on Rn separates X and Y
if there exists a t∈R such that

l(x)> t> l(y) ∀ x∈X , y ∈Y.

A set S ⊂Rn is linearly separable if for each x∈ S there exists a linear functional l such that l(x)> l(y)

for all y ∈ S, y 6=x.

If X ⊂Rn is a set of measurements or data samples that are labelled as “Class 1”, and Y is a set
of data labelled as “Class 2” then a functional l separating X and Y is the corresponding linear
classifier. The fundamental question, however, is whether such functionals exist for the given X
and Y , and if the answer is “Yes” then how to find them?

It is well-known that if (i) X and Y are disjoint, (ii) the cardinality, |X ∪ Y|, of X ∪ Y does
not exceed n+ 1, and (iii) elements of X ∪ Y are in general position, then they are vertices of a
simplex. Hence, in this setting, there always is a linear functional l separating X and Y .

Rosenblatt’s α-perceptron [40] used a population of linear threshold elements with random
synaptic weights (A-elements) as layer before an R-element, that is a linear threshold element
which learns iteratively (authors of some papers and books called the R-elements “perceptrons”
and lose the complex structure of α-perceptron with a layer of random A-elements). The
randomly initiated elements of the first layer can undergo selection of the most relevant elements.
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According to Rosenblatt [40], any set of data vectors becomes linear separable after
transformation by the layer of A-elements, if the number of these randomly chosen elements
is sufficiently large. Therefore the perceptron can solve any classification problem, where classes
are defined by pointing out examples (ostensive definition). But this “sufficiently large” number
of random elements depends on the problem and may be large, indeed. It can grow for a
classification task proportionally to the number of the examples. The perceptron with sufficiently
large number of A-elements can approximate binary-valued functions on finite domains with
arbitrary accuracy. Recently, the bounds on errors of these approximations are derived [43]. It
is proven that unless the number of network units grows faster than any polynomial of the
logarithm of the size of the domain, a good approximation cannot be achieved for almost any
uniformly randomly chosen function. The results are obtained by application of concentration
inequalities.

The method of random projections became popular in machine learning after the Johnson-
Lindenstrauss Lemma [44], which states that relatively large sets of m vectors in a high-
dimensional Euclidean space Rd can be linearly mapped into a space of much lower dimension
n with approximate preservation of distances. This mapping can be constructed (with high
probability) as a projection on n random basis vectors with rescaling of the projection with a factor√
d [45]. Repeating the projection O(m) times and selecting the best of them, one can achieve the

appropriate accuracy of the distance preservation. The number of points m can be exponentially
large with n (m≤ exp(cn)).

Two unit random vectors in high dimension are almost orthogonal with high probability. This
is a simple manifestation of the so-called waist concentration [13]. A high-dimensional sphere is
concentrated near its equator. This is obvious: just project a sphere onto a hyperplane and use the
concentration argument for a ball on the hyperplane (with a simple trigonometric factor). This
seems highly non-trivial, if we ask: near which equator? The answer is: near each equator. This
answer is obvious because of rotational symmetry but it seems to be counter-intuitive.

We call vectors x, y from Euclidean space Rn ε-orthogonal if |(x,y)|< ε (ε > 0). Let x and
y be i.i.d. random vectors distributed uniformly (rotationally invariant) on the unit sphere in
Euclidean space Rn. Then the distribution of their inner product satisfies the inequality (see, for
example [16] or [46] and compare to Maxwellian and Lévy’s lemma):

P(|(x,y)|< ε)≥ 1− 2 exp

(
−1

2
nε2
)
.

Proposition 2.1. Let x1, . . . ,xN be be i.i.d. random vectors distributed uniformly (rotationally
invariant) on the unit sphere in Euclidean space Rn. For

N < e
ε2n
4

[
ln

(
1

1− ϑ

)] 1
2

(2.1)

all vectors x1, . . . ,xN are pairwise ε-orthogonal with probability P > 1− ϑ. [46]

There are two consequences of this statement: (i) in high dimension there exist exponentially
many pairwise almost orthogonal vectors in Rn, and (ii) N random vectors are ε-orthogonal
with high probability P > 1− ϑ even for exponentially large N (2.1). Existence of exponentially
large ε-orthogonal systems in high-dimensional spaces was discovered in 1993 by Kainen and
Kůrková [47]. They introduced the notion of quasiorthogonal dimension, which was immediately
utilised in the problem of random indexing of high-dimensional data [21]. The fact that an
exponentially large random set consists of pairwise ε-orthogonal vectors with high probability
was demonstrated in the work [46] and used for analysis of data approximation problem in
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random bases. We show that not only such ε-orthogonal sets exist, but also that they are typical
in some sense.
N randomly generated vectors xi will be almost orthogonal to a given data vector y (the angle

between x and y will be close to π/2 with probability close to one). Therefore, the coefficients
in the approximation of y by a linear combination of xi could be arbitrarily large and the
approximation problem will be ill-conditioned, with high probability. The following alternative
is proven for approximation by random bases:

• Approximation of a high-dimensional data vector by linear combinations of randomly
and independently chosen vectors requires (with high probability) generation of
exponentially large “bases”, if we would like to use bounded coefficients in linear
combinations.
• If arbitrarily large coefficients are allowed, then the number of randomly generated

elements that are sufficient for approximation is even less than dimension. We have to pay
for such a reduction of the number of elements by ill-conditioning of the approximation
problem.

We have to choose between a well-conditioned approximation problem in exponentially large
random bases and an ill-conditional problem in relatively small (moderate) random bases.
This dichotomy is fundamental, and it is a direct consequence of the waist concentration
phenomenon. In what follows, we will formally present another concentration phenomenon,
stochastic separation theorems [48,49], and outline their immediate applications in AI and
neuroscience.

3. Stochastic separation theorems and their applications in
Artificial Intelligence systems

(a) Stochastic separation theorems
Existence of a linear functional that separates two finite sets X ,Y ⊂Rn is no longer obvious
when |X ∪ Y|� n. A possible way to answer both questions could be to cast the problem as a
constrained optimization problem within the framework of e.g. support vector machines [26]. The
issue with this approach is that theoretical worst-case estimates of computational complexity for
determining such functions are of the orderO(|X ∪ Y|3) (for quadratic loss functions); a posteriori
analysis of experiments on practical use cases, however, suggest that the complexity could be
much smaller and than O(|X ∪ Y|3) and reduce to linear or even sublinear in |X ∪ Y| [50].

This apparent discrepancy between the worst-case estimates and a-posteriori evaluation of
computational complexities can be resolved if concentration effects are taken into account. If
the dimension n of the underlying topological vector space is large then random finite but
exponentially large in n samples are linearly separable, with high probability, for a range of
practically relevant classes of distributions. Moreover, we show that the corresponding separating
functionals can be derived using Fisher linear discriminants [39]. Computational complexity of
the latter is linear in |X ∪ Y|. It can be made sub-linear too in if proper sampling is used to
estimate corresponding covariance matrices. As we have shown in [49], the results hold for i.i.d.
random points from equidistributions in a ball, a cube, and from distributions that are products
of measures with bounded support. The conclusions are based on stochastic separation theorems
for which the statements for relevant classes of distributions are provided below.

Theorem 3.1 (Equidistribution in Bn(1) [48,49]). Let {x1, . . . ,xM} be a set ofM i.i.d. random points
from the equidustribution in the unit ball Bn(1). Let 0< r < 1, and ρ=

√
1− r2. Then

P

(
‖xM‖> r and

(
xi,

xM
‖xM‖

)
< r for all i 6=M

)
≥ 1− rn − 0.5(M − 1)ρn; (3.1)
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O

A`

A

O`
ρ = |A`O`| 

r = |O O`| 

|O A| < |O O`| 

Figure 1. Illustration to Theorem 3.1.

P

(
‖xj‖> r and

(
xi,

xj
‖xj‖

)
< r for all i, j, i 6= j

)
≥ 1−Mrn − 0.5M(M − 1)ρn; (3.2)

P

(
‖xj‖> r and

(
xi
‖xi‖

,
xj
‖xj‖

)
< r for all i, j, i 6= j

)
≥ 1−Mrn −M(M − 1)ρn. (3.3)

The proof of the theorem can be illustrated with Fig. 1. The probability that a single element,
xM , belongs to the difference Bn(1) \ Bn(r) of two n-balls centred atO is not smaller than 1− rn.
Consider the hyperplane

l(x) = r, where l(x) =

(
x,

xM
‖xM‖

)
.

This hyperplane partitions the unit ball Bn(1) centred atO into two disjoint subsets: the spherical
cap (shown as grey shaded area in Fig. 1) and the rest of the ball. The element xM is in the
shaded area and is on the line containing the vector OO′. The volume of this spherical cap does
not exceed the volume of the half-ball of radius ρ centred at O′ (the ball Bn(ρ) is shown as a blue
dashed circle in the figure). Recall that

P(A1&A2& . . .&Am)≥ 1−
∑
i

(1−P(Ai)) for any events A1, . . . , Am. (3.4)

This assures that (3.1) holds. Applying the same argument to all elements of the set S results in
(3.2). Finally, to show that (3.3) holds, observe that the length of the segment OA on the tangent
line to the sphere Sn−1(ρ) centred at O′ is always smaller than r= |OO′|. Hence the cosine of
the angle between an element from (Bn(1) \ Bn(r)) \ Bn(ρ) and the vector OO′ is bounded from
above by cos(∠(OA′, OO′)) = r. The estimate now follows from (3.4).

According to Theorem 3.1, the probability that a single element xM from the sample S =

{x1, . . . ,xM} is linearly separated from the set S \ {xM} by the hyperplane l(x) = r is at least

1− rn − 0.5(M − 1)
(

1− r2
)n

2
.

This probability estimate depends on both M = |S| and dimensionality n. An interesting
consequence of the theorem is that if one picks a probability value, say 1− ϑ, then the maximal
possible values of M for which the set S remains linearly separable with probability that is no
less than 1− ϑ grows at least exponentially with n. In particular, the following holds

Corollary 3.1. Let {x1, . . . ,xM} be a set ofM i.i.d. random points from the equidustribution in the unit
ball Bn(1). Let 0< r, ϑ< 1, and ρ=

√
1− r2. If

M < 2(ϑ− rn)/ρn, (3.5)

then P((xi,xM )< r‖xM‖ for all i= 1, . . . ,M − 1)> 1− ϑ. If

M < (r/ρ)n
(
−1 +

√
1 + 2ϑρn/r2n

)
, (3.6)
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then P((xi,xj)< r‖xi‖ for all i, j = 1, . . . ,M, i 6= j)≥ 1− ϑ.
In particular, if inequality (3.6) holds then the set {x1, . . . ,xM} is linearly separable with probability

p > 1− ϑ.

The linear separability property of finite but exponentially large samples of random i.i.d.
elements is not restricted to equidistributions in Bn(1). As has been noted in [22], it holds for
equidistributions in ellipsoids as well as for the Gaussian distributions. Moreover, it can be
generalized to product distributions in a unit cube. Consider, e.g. the case when coordinates
of the vectors x= (X1, . . . , Xn) in the set S are independent random variables Xi, i= 1, . . . , n

with expectations Xi and variances σ2i >σ
2
0 > 0. Let 0≤Xi ≤ 1 for all i= 1, . . . , n. The following

analogue of Theorem 3.1 can now be stated.

Theorem 3.2 (Product distribution in a cube [49]). Let {x1, . . . ,xM} be i.i.d. random points from the
product distribution in a unit cube. Let

R2
0 =

∑
i

σ2i ≥ nσ
2
0 ,

and 0< δ < 2/3. Then

P

(
1− δ≤

‖xj − x‖2

R2
0

≤ 1 + δ and
(
xi − x
R0

,
xM − x
‖xM − x‖

)
<
√

1− δ for all i, j, i 6=M

)

≥ 1− 2M exp
(
−2δ2R4

0/n
)
− (M − 1) exp

(
−2R4

0(2− 3δ)2/n
)

;

(3.7)

P

(
1− δ≤

‖xj − x‖2

R2
0

≤ 1 + δ and
(
xi − x
R0

,
xj − x
‖xj − x‖

)
<
√

1− δ for all i, j, i 6= j

)

≥ 1− 2M exp
(
−2δ2R4

0/n
)
−M(M − 1) exp

(
−2R4

0(2− 3δ)2/n
)
.

(3.8)

The proof is based on concentration inequalities in product spaces [14,51]. Numerous
generalisations of Theorems 3.1, 3.2 are possible for different classes of distributions, for example,
for weakly dependent variables, etc.

Linear separability, as an inherent property of data sets in high dimension, is not necessarily
confined to cases whereby a linear functional separates a single element of a set from the
rest. Theorems 3.1, 3.2 be generalized to account for m-tuples, m> 1 too. An example of such
generalization is provided in the next theorem.

Theorem 3.3 (Separation of m-tuples [52]). Let X = {x1, . . . ,xM} and Y = {xM+1, . . . ,xM+k}
be i.i.d. samples from the equidistribution in Bn(1). Let Yc = {xM+r1 , . . . ,xM+rm} be a subset of m
elements from Y such that

β2(m− 1)≤
∑

rj , rj 6=ri

(
xM+ri ,xM+rj

)
≤ β1(m− 1) for all i= 1, . . . ,m. (3.9)

Then

P (∃ a linear functional separating X and Yc)≥ max
ε∈(0,1)

(1− (1− ε)n)m
(

1− ∆(ε,m)
n
2

2

)M
,

(3.10)
where

∆(ε,m) = 1− 1

m

(
(1− ε)2 + β2(m− 1)√

1 + (m− 1)β1

)2

,

subject to:
(1− ε)2 + β2(m− 1)> 0, 1 + (m− 1)β1 > 0.
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The separating linear functional is again the inner product, and the separating hyperplane can
be taken in the form [52]:

l(x) = r; where l(x) =

(
x,

ȳ

‖ȳ‖

)
, r=

1√
m

(
(1− ε)2 + β2(m− 1)√

1 + (m− 1)β1

)
, (3.11)

and ε is the maximizer of the nonlinear program in the right-hand side of (3.10), and ȳ=
1
m

∑m
i=1 xM+ri . To see this, observe that ‖xM+ri‖ ≥ 1− ε, ε∈ (0, 1), for all i= 1, . . . ,m, with

probability (1− (1− ε)n)m. With this probability the following estimate holds:(
ȳ

‖ȳ‖ ,xM+ri

)
≥ 1

m‖ȳ‖

(
(1− ε)2 + β2(m− 1)

)
.

Hence
1

m
(1 + (m− 1)β1)≥ (ȳ, ȳ)≥ 1

m

(
(1− ε)2 + β2(m− 1)

)
,

and l(x) in (3.11) is the required functional (see also Fig. 1).
If the elements of Yc are uncorrelated, i.e. the values of β1(m− 1), β2(m− 1) are small, then

the distance from the spherical cap induced by linear functional (3.11) to the center of the ball
decreases asO(1/

√
m). This means that the lower-bound probability estimate in (3.10) is expected

to decrease too. On the other hand, if the elements of Yc are all positively correlated, i.e. 1≥ β1 >
β2 > 0, then one can derive a lower-bound probability estimate which does not depend on m.

Peculiar properties of data in high dimension, expressed in terms of linear separability,
have several consequences and applications in the realm of Artificial Intelligence and Machine
Learning of which the examples are provided in the next sections.

(b) Correction of legacy AI systems
Legacy AI systems, i.e. AI systems that have been deployed and are currently in operation, are
becoming more and more wide-spread. Well-known commercial examples are provided by global
multi-nationals, including Google, IMB, Amazon, Microsoft, and Apple. Numerous open-source
legacy AIs have been created to date, together with dedicated software for their creation (e.g.
Caffe [53], MXNet [54], Deeplearning4j [55], and Tensorflow [56] packages). These AI systems
require significant computational and human resources to build. Regardless of resources spent,
virtually any AI and/or machine learning-based systems are likely to make a mistake. Real-time
correction of these mistakes by re-training is not always viable due to the resources involved. AI
re-training is not necessarily desirable either, since AI’s performance after re-training may not
always be guaranteed to exceed that of the old one. We can, therefore, formulate the technical
requirements for the correction procedures. Corrector should: (i) be simple; (ii) not change the
skills of the legacy system; (iii) allow fast non-iterative learning; and (iv) allow correction of new
mistakes without destroying of previous corrections.

A possible remedy to this issue is the AI correction method [22] based on stochastic separation
theorems. Suppose that at a time instance t values of signals from inputs, outputs, and internal
state of a legacy AI system could be combined together to form a single measurement object,
x= (x1, . . . , xn). All n entries in this object are numerical values, and each measurement x
corresponds to a relevant decision of the AI system at time t. Over the course of the system’s
existence a set S of such measurements is collected. For each element in the set S a label “correct”
or “incorrect” is assigned, depending on external evaluation of the system’s performance.
Elements corresponding to “incorrect” labels are then filtered out and dealt with separated by
an additional subsystem, a corrector. A diagram illustrating the process is shown in Fig. 2. In
this diagram, the original legacy AI system (shown as Legacy AI System 1) is supplied with
a corrector altering its responses. The combined new AI system can in turn be augmented by
another corrector, leading to a cascade of AI correctors (see Fig. 2).

If distributions modelling elements of the set S are e.g. an equidistribution in a ball or an
ellipsoid, product of measures distribution, a Gaussian etc., then
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Figure 3. True positives removed as a function of false positives removed by a single-functional corrector [22].

• Theorems 3.1–3.3 guarantee that construction of such AI correctors can be achieved using
mere linear functionals.
• These linear functions admit a closed-form formulae (Fisher linear discriminant) and can

be determined in a non-iterative way.
• Availability of explicit closed-form formulae in the form of Fisher discriminant offers

major computational benefits as it eliminates the need to employ iterative and more
computationally expensive alternatives such as e.g. SVMs.
• If a cascade of correctors is employed, performance of the corrected system drastically

improves [22].

The results, perhaps, can be generalized to other classes of distributions that are regular enough
to enjoy the stochastic separability property.

The corrector principle has been demonstrated in [22] for a legacy AI system in the form of
a convolutional neural network trained to detect pedestrians in images. AI errors were set to be
false positives, and the corrector system had to remove labeled false positives by a single linear
functional. Detailed description of the experiment is provided in [22], and a performance snapshot
is shown in Fig. 3. Dimensionality n of the vectors x was 2000. As we can see from Fig. 3, single
linear functionals are capable of removing several errors of a legacy AI without compromising the
system’s performance. Note that AI errors, i.e. false positives, were chosen at random and have
not been grouped or clustered to take advantage of positive correlation. (The definition of clusters
could vary [27].) As the number of errors to be removed grows, performance starts to deteriorate.
This is in agreement with our theoretical predictions (Theorem 3.3).



12

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

Student AI Teacher AI

Internal representations of Student AI’s state

Labelling of internal representations

of Student AI’s state by Teacher AI 

C
o

rr
e

ct
io

n
s

Figure 4. AI Knowledge Transfer

(c) Knowledge transfer between AI systems
Legacy AI correctors can be generalized to a computational framework for automated AI
knowledge transfer whereby labelling of the set S is provided by an external AI system.
AI knowledge transfer has been in the focus of growing attention during last decade [57].
Application of stochastic separation theorems to AI knowledge transfer was proposd in [52], and
the corresponding functional diagram of this automated setup is shown in Fig. 4. In this setup a
student AI, denoted as AIs, is monitored by a teacher AI, denoted as AIt. Over a period of activity
system AIs generates a set S of objects x, x∈Rn. Exact composition of the set S depends on a
task at hand. If AIs outputs differ to that of AIt for the same input then an error is registered in
the system. Objects x∈ S associated with errors are combined into the set Y . The process gives
rise to two disjoint sets:

X = {x1, . . . ,xM}, X = S \ Y, and Y = {xM+1, . . . ,xM+k}.

Having created these two sets, knowledge transfer from AIt to AIs can now be organized in
accordance with Algorithm 1. Note that data regularization and whitening are included in the
pre-processing step of Algorithm 1. The algorithm can be used for AI correctors too. Similar to AI
correction, AI knowledge transfer can be cascaded as well. Specific examples and illustrations of
AI knowledge transfer based on stochastic separation theorems are discussed in [52].

(d) Grandmother cells, memory, and high-dimensional brain
Stochastic separation theorems are a generic phenomenon, and their applications are not
limited to AI and machine learning systems. An interesting consequence of these theorems for
neuroscience has been discovered and presented in [58]. Recently, it has been shown that in
humans new memories can be learnt very rapidly by supposedly individual neurons from a
limited number of experiences [59]. Moreover, neurons can exhibit remarkable selectivity to
complex stimuli, the evidence that has led to debates around the existence of the so-called
“grandmother” and “concept” cells [60–62], and their role as elements of a declarative memory.
These findings suggest that not only the brain can learn rapidly but also it can respond selectively
to “rare” individual stimuli. Moreover, experimental evidence indicates that such a cognitive
functionality can be delivered by single neurons [59–61]. The fundamental questions, hence, are:
How is this possible? and What could be the underlying functional mechanisms?

It has been shown in [58] that stochastic separation theorems offer a simple answer to these
fundamental questions. In particular, extreme neuronal selectivity and rapid learning can already
be explained by these theorems. Model-wise, explanation of extreme selectivity is based on
conventional and widely accepted phenomenological generic description of neural response to
stimulation. Rapid acquisition of selective response to multiple stimuli by single neurons is
ensured by classical Hebbian synaptic plasticity [63].
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Algorithm 1 AI Knowledge Transfer/Correction [52]

(i) Pre-processing

(a) Centering. For the given set S, determine the set average, x̄(S), and generate sets Sc

Sc = {x∈Rn |x= ξ − x̄(S), ξ ∈ S},
Yc = {x∈Rn |x= ξ − x̄(S), ξ ∈Y}.

(b) Regularization. Determine covariance matrices Cov(Sc), Cov(Sc \ Yc) of the sets Sc
and Sc \ Yc. Let λi(Cov(Sc)), λi(Cov(Sc \ Yc)) be their corresponding eigenvalues,
and h1, . . . , hn be the eigenvectors of Cov(Sc). If some of λi(Cov(Sc)), λi(Cov(Sc \
Yc)) are zero or if the ratio maxi{λi(Σ(Sc))}

mini{λi(Σ(Sc))} is too large, project Sc and Yc onto
appropriately chosen set of m<n eigenvectors, hn−m+1, . . . , hn:

Sr = {x∈Rn |x=HT ξ, ξ ∈ Sc},
Yr = {x∈Rn |x=HT ξ, ξ ∈Yc},

where H = (hn−m+1 · · ·hn) is the matrix comprising of m significant principal
components of Sc.

(c) Whitening. For the centred and regularized dataset Sr , derive its covariance matrix,
Cov(Sr), and generate whitened sets

Sw = {x∈Rm |x= Cov(Sr)−
1
2 ξ, ξ ∈ Sr},

Yw = {x∈Rm |x= Cov(Sr)−
1
2 ξ, ξ ∈Yr}.

(ii) Knowledge transfer

(a) Clustering. Pick p≥ 1, p≤ k, p∈N, and partition the set Yw into p clusters
Yw,1, . . .Yw,p so that elements of these clusters are, on average, pairwise positively
correlated. That is there are β1 ≥ β2 > 0 such that:

β2(|Yw,i| − 1)≤
∑

ξ∈Yw,i\{x}
(ξ,x)≤ β1(|Yw,i| − 1) for any x∈Yw,i.

(b) Construction of Auxiliary Knowledge Units. For each cluster Yw,i, i= 1, . . . , p,
construct separating linear functionals `i and thresholds ci:

`i(x) =
(
wi

‖wi‖ ,x
)
,

wi =
(
Cov(Sw \ Yw,i) + Cov(Yw,i)

)−1 (
x̄(Yw,i)− x̄(Sw \ Yw,i)

)
,

ci = minξ∈Yw,i

(
wi

‖wi‖ , ξ
)
,

where x̄(Yw,i), x̄(Sw \ Yw,i) are the averages of Yw,i and Sw \ Yw,i, respectively.
The separating hyperplane is `i(x) = ci.

(c) Integration. Integrate Auxiliary Knowledge Units into decision-making pathways
of AIs. If, for an x generated by an input to AIs, any of `i(x)≥ ci then report x
accordingly (swap labels, report as an error etc.)

4. Conclusion
Twenty-three Hilbert’s problems created important “focus points” for the concentration of efforts
of mathematicians for a century. The Sixth Problem differs significantly from the other twenty-
two problems. It is very far from being a purely mathematical problem. It seems to be impossible
to imagine it’s “final solution”. The Sixth Problem is a “programmatic call” [64], and it works:
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• We definitely know that the Sixth Problem had great influence on the formulation of the
mathematical foundation of quantum mechanics [3] and on the development of axiomatic
quantum field theory [65].
• We have no doubt (but the authors have no direct evidence) that Sixth Problem has

significantly affected research in the foundation of probability theory [4] and statistical
mechanics [5].
• The modern theory of measure concentration phenomena has direct relations to the

mathematical foundations of probability and statistical mechanics, uses results of
Kolmogorov and Khinchin (among others), and definitely helps to create “a rigorous and
satisfactory development of the method of the mean values...”.
• Some of the recent attempts of rigorous approach to machine learning [24] used parts of

the Sixth Problem programme [3] as a prototype for their conceptual approach.
• The modern idea of blessing of dimensionality in high-dimensional data analysis [18,19,48]

is, in its essence, an extension and further development of ideas from the mathematical
foundations of statistical mechanics.

The classical measure concentration theorems state that random points in a highly-dimensional
data distribution are concentrated in a thin layer near an average or median level set of a
Lipschitz function. The stochastic separation theorems describe the fine structure of these thin
layers: the random points are all linearly separable from the rest of the set even for exponentially
large random sets. Of course, for all these concentration and separation theorems the probability
distribution should be “genuinely” high-dimensional. Equidistributions in balls or ellipsoids or
the products of distributions with compact support and non-vanishing variance are the simple
examples of such distributions. Various generalizations are possible.

For which dimensions does the blessing of dimensionality work? This is a crucial question. The
naïve point of view that dimension of data is just a number of coordinates is wrong. This is the
dimension of the dataspace, where data are originally situated. The notion of intrinsic dimension
of data is needed [66,67]. The situation when the number of data points N is less (or even much
less) than the dimension d of the data space is not exotic. Moreover, Donoho [18] considered the
property d >N as a generic case in the “post-classical world” of data analysis. In such a situation
we really explore data on a d− 1 dimensional plane and should modestly reduce our high-
dimensional claim. Projection of data on that plane can be performed by various methods. We
can use as new coordinates projections of points on the known datapoints or Pearson’s correlation
coefficients, when it is suitable, for example, when the datapoints are fragments of time series or
large spectral images, etc. In these new coordinates the datatable becomes a square matrix and
further dimensionality reduction could be performed using good old PCA (principal component
analysis), or its nonlinear versions like principal manifolds [28] or neural autoencoders [68].

A standard example can be found in [69]: the initial dataspace consisted of fluorescence
diagrams and had dimension 5.2 · 105. There were 62 datapoints, and a combination of correlation
coordinates with PCA showed intrinsic dimension 4 or 5. For selection of relevant principal
components the Kaiser rule, the broken stick models or other heuristical or statistical methods
can be used [70].

Similar preprocessing ritual is helpful even in more “classical” cases when d <N . The
correlation (or projection) transformation is not essential here, but formation of relevant features
with dimension reduction is important. If after model reduction and whitening (transformation
of coordinates to get the unit covariance matrix, step i.c in Algorithm 1) the new dimension
D& 100 then for . 106 datapoints we can expect that the stochastic separation theorems work
with probability > 99%. Thus separation of errors with Fisher’s linear discriminant is possible,
and many other “blessing of dimensionality benefits” are achievable. Of course, some additional
hypotheses about the distribution functions are needed for a rigorous proof, but there is
practically no chance to check them a priori and the validation of the whole system a posteriori
is necessary. In smaller dimensions (for example, less than 10), nonlinear data approximation
methods can work well capturing the intrinsic complexity of data, like principal graphs do [29,71].



15

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

We have an alternative: either essentially high-dimensional data with thin shell concentrations,
stochastic separation theorems, and efficient linear methods, or essentially low-dimensional data
with efficient complex nonlinear methods. There is a problem of the ‘no man’s land’ in-between.
To explore this land, we can extract the most interesting low-dimensional structure and then
consider the residual as an essentially high-dimensional random set, which obeys stochastic
separation theorems. We do not know now a theoretically justified efficient approach to this
area, but here we should say following Hilbert: “Wir müssen wissen, wir werden wissen” (“We
must know, we shall know”).
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