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ABSTRACT 

 

A short review of cellular automata models in ecology is given. Introduction of a spatial dimension 

into a discrete-time Markov chain leads to a class of cellular automata called spatio-temporal Markov 

chains (STMC). The behaviour of the model is determined by its temporal and spatial orders. It is 

proved that STMC models have ergodic distributions in certain cases for spatial order 0. Simulations 

suggest that STMC models of higher spatial order also have ergodic distributions. The model of 

Dytham (1995) is demonstrated to be an STMC. Modelling population dynamics of three plant species 

on a lawn, two STMC models of different order are compared. The model validation shows a good 

agreement for Glechoma hederacea, but large deviations for Lolium perenne and Trifolium repens. 

The species-dependent performance of the models can be explained by selective grazing. 

Modifications of the transition matrices are used to examine possible causes of the deviations. 

 

Keywords: Markov chains, cellular automata, spatio-temporal modelling, spatially explicit models, 

vegetation dynamics 

 

 

1. Introduction 

 

In ecology there is an increasing interest in spatially explicit models. On a large scale 

they are used to model landscape dynamics and changes in land use or vegetation 

cover, while on a small scale single or several populations of animal or plant species 

are of interest. Spatially explicit models are expected to increase our ability to 

accurately model populations subject to complex processes, to create basic ecological 

knowledge and to improve the application of landscape ecology to conservation and 

land management problems (Dunning et al., 1995; Kareiva and Wennergren, 1995; 

Turner et al., 1995). 

 Vegetation cover plays an important role in the human environment, being the 

nutritional basis for higher organisms such as animals and man. Because species in 

plant communities generally show aggregated distributions at one scale or more and 

competition between sessile organisms occurs mainly between neighbours, attention 

has to be paid to the spatial arrangements of plants in the field (Silvertown et al., 

1992). Dynamic models of ecological communities should not neglect the spatial 

aspect, though most of them do so (Green, 1989). The simplification of using a non-

spatial model may lead to invalid forecasts, because spatial relationships can 

radically change conditions for persistence and coexistence (Czárán and Bartha, 

1992). Bascompte and Solé (1995) point out that quite complex patterns may emerge 

from simple spatio-temporal models. Explaining complexity from simple local rules 

is particularly attractive for modellers. Applying only non-spatial analyses, these 

complex patterns may easily be misinterpreted.  
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2. Cellular Automata 

 

Cellular automata are dynamic models that are discrete in time, space and state. A 

simple cellular automaton A is defined by a lattice L, a state space Q, a 

neighbourhood template  and a local transition function f (Adamatzky, 1994):  

 

A= L, Q, , f  

 

Each cell of L can be in a discrete state out of Q. The cells can be linked in different 

ways. In the simplest case they are connected geometrically according to a spatial 

order, such as in a one- or two-dimensional square grid or in hexagonal plots. The 

cells are indexed by numbers s I, where I is the index set.  

Cells can change their states in discrete time-steps. Usually cellular automata are 

synchronous, i.e. all cells change their states simultaneously. The fate of a cell is 

dependant on its neighbourhood and the corresponding transition function f. 

Frequently used neighbourhood templates for two-dimensional square grids are the 

Moore-neighbourhood consisting of the central cell and eight adjacent cells, and the 

von Neumann-neighbourhood, containing the central cell and four adjacent cells. In a 

slight modification of Li (1995) we call the Moore-neighbourhood ‘second order’ 

and the von Neumann-neighbourhood ‘first order’. The corresponding transition rules 

can be deterministic or stochastic (Czárán and Bartha, 1992) and are denoted in the 

form 
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where at

s  represents the state of cell s at time t, r is the range of the neighbourhood of 

cell s, and f is the local transition function representing the transition rules. The set of 

values { a st

s I} is also called a configuration of the cellular automaton at time t. 

Probably the most popular cellular automaton is Conway’s LIFE (Gardner, 1971). 

If several rules are used, the order of processing these rules may be particularly 

important for the model results (Gilpin, 1990; Ruxton, 1996). 

Discussing the significance of cellular automata to ecological theory, Phipps 

(1992) draws the conclusion that, as far as applications to natural systems are 

concerned, stochastic rules usually have a better analogy to the system than 

deterministic ones, though sometimes their heuristic value is less. For theoretical 

contributions to the understanding of cellular automata see Wolfram (1983; 1984) 

and Adamatzky (1994).  

Cellular automata have a broad range of applications, for example modelling 

chemical reactions with spatial diffusion, the development of spiral galaxies, for 

phase transitions and crystal growth, but also quite often to model biological and 

ecological systems (Wolfram, 1983; Molofsky, 1994). Extensive literature exists 

today about applied modelling with cellular automata. Table 1 shows some selected 

references in alphabetical order. Further references concerning applications to 

ecology are given by Phipps (1992) and Balzter et al. (1996). 

 Cellular automata sometimes appear under different names, such as individual-

based dynamical automaton model (IBDA (Wiegand et al., 1994)), cellular space, 
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modular computer, iterative computer and tessellation automaton (Smith III, 1971). 

These belong to the class of methods of emergent computation (Olson and Sequeira, 

1995) which process changes of several objects simultaneously. 

 Kareiva and Wennergren (1995) point out that a strength of these models is their 

capability of modelling ecosystems with respect to spatial segregation, which is often 

a condition for coexistence of predator and prey populations. 

 Silvertown et al. (1992) model interspecific competition between five grass 

species. The cellular automaton consists of a 40x40 square grid and uses a first order 

neighbourhood. Its rules are time-invariant and based upon the observed extent of 

invasion across boundaries between the species grown in hexagonal plots in an 

experiment taken from the literature. Silvertown et al. take the transition matrix of a 

Markov chain and restore the spatial dimension important in real plant communities. 

The transition probabilities are weighted by the number of adjacent cells occupied by 

the invading species, but not for the persistent species. Thus, cells tend to remain in a 

given state longer than would be expected if the self-transition probabilities were also 

weighted. For an alternative way of weighting the probabilities see Acevedo et al. 

(1995). 

The model of Silvertown et al. (1992) combines two important properties, the 

stochasticity of Markov chains and the spatial dimensions of cellular automata. 

 

 

3. Stochastic Spatio-Temporal Models 

 

3.1. Introducing a Spatial Dimension to a Markov Chain 

 

Consider a discrete-time Markov chain. The elements of the state space Z are 

possible outcomes of a group of discrete random variables X t Tt ii
( )  that are in 

certain states at several equidistant times t T , whereT t t{ , ,...}0 1
 is the parameter 

space of the Markov chain. 

 In terms of the Markov model the transition probabilities from one state to another 

are denoted as  

 

P X i X i pt n t n i in n n n
( )

1 11   (1) 

 

the probability that random variable X tn 1
 will be in state in 1

 at time tn 1
 under the 

condition that X tn
 was in state in

 at the previous time-step. The Markov property is 

then expressed by Eq. 2. 

 

P X i X i X i X i X i P X i X it n t n t n t t t n t nn n n n n
( , ,..., , ) ( )

1 1 1 0 11 1 1 0 1  (2) 

 

In other words the probability distribution of the outcomes of a single trial depends 

solely on the outcome of the immediately preceding trial and this temporal first order 

dependence is the same for all t Ti
. A Markov chain is completely defined by (i) 

the initial state probability distribution p t( )0  and (ii) the matrix of transition 

probabilities P pij[ ] . Here we consider the transition probabilities as time 

independent and the time-steps as approximately equidistant, so that they can be 

enumerated by {0, 1,..., T} instead of {t0, t1,...,tn}. 

 A state probability distribution p p j{ }is called stationary if  
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p p pj i ij

i

.  

 

Let pij

t( )  denote the probability that an object in state i will be in state j after t time-

steps. Then every irreducible aperiodic Markov chain belongs to one of the following 

two classes (Feller, 1957; Stewart, 1994): i) Either the states are all transient or all 

null states; in this case  

 

lim ( , )( )

t
ij

tp i j0  

 

and no stationary distribution exists, or ii) all states are ergodic, that is  

 

lim ( , )( )

t
ij

t

jp i j0 ,  

 

where { j} is the unique stationary distribution. For an irreducible aperiodic Markov 

chain, however, a limiting distribution always exists. The limiting distribution is 

ergodic if it is independent of the initial state distribution vector p( )0 . It is calculated 

using Eq. 3 (Stewart, 1994). 

 

lim( ( ) )
t

tp P0  (3) 

 

where  is a matrix consisting of equal rows, p( )0  is the initial state probability 

vector and P t  is the transition matrix raised to the t-th power. The vector of the 

limiting distribution  is any row of the matrix . 

 Including a spatial dimension of the data into the model, we let every site pass 

separately through the Markov chain, noting its location. This results in spatial maps 

of states for each time-step. This Markov chain is spatial, because the location of 

each site (plot, object) that moves through the chain is considered important. 

 Here, another approach of introducing a spatial dimension into a Markov model 

will be mentioned. Acevedo et al. (1995) model forest dynamics by a semi-Markov 

process. They parameterise the semi-Markov model with previously performed 

simulations of the deterministic forest model ZELIG. A spatial dimension is then 

introduced, whereby environmental factors (temperature, soil moisture and soil 

fertility) with values ranging from 0 to 1 are stored in a geographic information 

system (GIS), used to adjust the parameters of the semi-Markov model for each cell. 

Results are transferred back to the GIS for display and analysis. Each of the cells is 

modelled as a mosaic of smaller, gap-scale plots and its state is given as the 

proportion of area covered by several cover types. The three environmental factors 

are multiplied to calculate a compound limiting factor for each role and every cell. 

Transition probabilities are weighted with these limiting factors. To include 

neighbourhood effects new variables are obtained by averaging the layers of cover 

maps for each type i of all cells surrounding the cell. The transition probabilities are 

then multiplied by a correction factor to ensure that the probabilities of each row sum 

up to one (Acevedo et al., 1995). 

 

 

3.2. Cellular Automata as Spatio-Temporal Markov Chains 
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Let us now consider a cellular automaton with a first order neighbourhood. The 

transition of a cell during a time-step is thus dependent on the configuration of states 

of nine cells one time-step ago. First we modify the time index of a simple Markov 

chain to a purely spatial index, then we consider a spatio-temporal cellular automaton 

model. If not stated otherwise we assume the time and space indices to be 

equidistant. 

 Regarding the index set I={0,1,...,T} of a Markov chain as a spatial index leads to 

the theory of Markov random fields (Guttorp, 1995; Li, 1995). The Markov property 

for one spatial dimension is then formulated by Eq. 4 and is independent of the 

direction of the indices t I. 

 

P X i X i X i X i X i

P X i X i X i

t t t t t k t k t t t m t m

t t t t t t

( , ..., , , ..., )

( , )

1 1 1 1

1 1 1 1

 (4) 

 

Writing XZ to denote X s Zs , , X is a Markov random field, if X is a Z
G
-valued 

random vector satisfying Eq. 5. X-s indicates the vector of random variables at all 

sites except site s and i-s is the vector of states of all sites except site s. 

 

P X i X i P X i X i p x xs s s s s s s ss s s
( ) ( ) ( )  (5) 

 

where ps are local characteristics at site s, that can be site specific, but here are 

considered as stationary (identical for each s), and s is the neighbourhood of s. Note 

that the neighbourhood of s in a Markov random field does not include site s. 

 Markov random fields are used e.g. for image restoration, smoothing, interpolation 

and edge detection. Considering rectangular lattices a Markov random field is called 

first order if the neighbourhood consists of four adjacent cells, second order if it 

consists of eight adjacent cells, and third order if the neighbourhood contains 24 cells 

(Li, 1995). Markov random fields are equivalent to Gibbs random fields (Li, 1995). 

 The concept of a Markov random field does not refer to time, which shall now be 

introduced. Furthermore, the Moore-neighbourhood of cellular automata includes 

both its eight neighbours and the central cell one time-step previously, while the 

Markov random field forecasts the state of the central cell depending on its eight 

neighbours at one time. Extending the time index t to both a spatial and a temporal 

dimension, we get { X s t, } as a set of random variables that are both spatially 

( s { , , ,...}012 ) and temporally ( t { , , ,...}012 ) ordered. s can be a one-, two or more-

dimensional space. Let us redefine s as the set of cells of the Moore-neighbourhood 

of cell s, is t,  as the state of cell s at time t and i t,  the vector of the states of all cells 

of the grid at time t. Then the spatio-temporal Markov property is expressed by Eq. 6. 

 

P X i X i X i X i

P X i X i

s t s t t t t t

s t s t t ts s

( , ,..., )

( )

, , , , , , , ,

, , , ,

1 1 1 1 0 0

1 1

 (6) 

 

The transition probabilities of a cell s thus only depend upon the values in its 

neighbourhood one time-step previously. This type of model is called a spatio-

temporal Markov chain (STMC). It is temporally first order and spatially second 

order, denoted STMC(1,2). Clearly, it may be extended to higher orders. The 
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introduction of space in a Markov chain assuming spatial independence as it was 

described in section 3.1. is a special case of such an STMC model, namely 

STMC(1,0). 

 In conclusion, any cellular automaton satisfying the following conditions is an 

STMC: 

1. Spatial dependence: The future of cell s depends on a neighbourhood s. s can be 

restricted to the central cell s, resulting in an STMC(t,0) which is a simple, non-

spatial Markov chain. 

2. Temporal Dependence: The future states of cells must depend on the past states. 

The structure of dependence must be Markovian, i.e. the transition rules must be of 

the form stated in Eq. 7. 

 

 

4. Applications 

 

4.1. Competition of two Plant Species 

 

In a theoretical approach, Dytham (1995) uses a cellular automaton to model the 

persistence of two plant species in environments with different habitat destruction 

patterns. Dytham (1995) assumes that two competing species can only coexist if one 

is the competitive dominant (species c) and the other possesses superior dispersal 

abilities (species d). There are four possible patch states in his model: patch 

permanently destroyed, patch empty but available for colonisation, patch occupied by 

species c and patch occupied by species d. Colonisation has a range of only one 

patch. Therefore, the probability of a patch being colonised is higher if more of its 

direct neighbours contain the species. During each discrete time-step an occupied cell 

can become extinct with probability 0.1. The rate of colonisation is 0.2 for the 

superior and 0.5 for the inferior competitor, and each of the eight adjacent patches 

can be colonised. Species c always wins against species d, while species d can only 

colonise empty cells. Extinctions and colonisations occur during the same time-step, 

but for a newly colonised patch it is impossible to immediately produce propagules. 

The impact of four habitat destruction patterns on population dynamics is simulated 

on a grid of 50x50 cells. Dytham’s results indicate that species coexistence heavily 

depends not only on the amount of available habitat, but also on the destruction 

pattern. 

 A sensitivity analysis of the model to the starting proportions of the two species is 

also performed by Dytham (1995). For the gradient habitat destruction pattern the 

results are not significantly different for proportions of 0.1, 0.25 and 0.5 occupation 

of the remaining habitat for each species (ANOVA p>0.05). The number of empty 

cells also does not differ significantly, if the model runs for 1000, 1500 or 2000 time-

steps (ANOVA p>0.05). 

 Dytham’s model is an STMC(1,2). The model’s state space is Q={x,e,c,d}, where 

x means ‘destroyed’, e ‘empty’, c ‘occupied by species c’ and d ‘occupied by species 

d’. The model uses the second order neighbourhood of nine cells. It is not possible to 

estimate all transition probabilities accurately, because obviously there are 262,144 

possible state vectors X ,t of the neighbourhood from which transitions can occur, and 

the lattice L is comprised of only 2,500 cells. Nevertheless, some probabilities can be 

inferred from the concept of the model, for example 

P X c X x x x x e x x c xs t ts, , ( , , , , , , , , ) .1 0 2 , which is the probability of an empty 

cell being colonised by species c, given that at time t all neighbours are permanently 
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destroyed except the one colonised by species c. Although a detailed mathematical 

analysis of the model was not performed, the acceptance of the H0-hypotheses in the 

sensitivity analysis is presumably caused by the Markov property. Simulations by the 

authors show that STMC models often tend towards a limiting distribution, which in 

some cases is ergodic. Without mathematical proof, we propose that in this case an 

ergodic distribution exists, independent of the initial configuration. If this is true, 

convergence should be achieved in far less than 1000 time-steps, which would 

explain the model behaviour.  

 

 

4.2. Vegetation Dynamics 

 

Vegetation samples were taken by the authors from a 616 m
2
 lawn each June from 

1993 to 1996. The study site is located at the Agricultural Nursery at Justus-Liebig-

University in Giessen, Germany. Vegetation sampling followed the point-quadrat 

method, yielding spatial data for approximately 40 plant species. Study site and 

methodology are described more thoroughly in Balzter et al. (1995). Population 

dynamics of three plant species are modelled with a cellular automaton. The species 

are Lolium perenne, the perennial ryegrass, a widely used forage grass which is also 

common in lawns in sports fields, Trifolium repens, white clover, belonging to 

leguminosae and also used as a forage plant, and Glechoma hederacea, the ground 

ivy, a common ruderal species usually found on the edges of tracks. All three species 

spread generatively and by above-ground stolons. Percentage cover is used to 

characterise population dynamics. It is defined as the proportion of bare ground that 

would be shaded by a plant species if the sun were to shine in directly perpendicular 

to the ground surface. Because different plant species usually overlap, percentage 

cover usually exceeds 100% in dense communities and is less than 100% in sparse 

communities. 

 The data are spatially ordered in 12 columns and 10 rows resulting in a lattice L of 

120 cells. Two modelling approaches are conducted: an STMC(1,0) and an 

STMC(1,2) model. The state space of both models is Q={0,1}, state 0 meaning 

‘species absent’ and 1 ‘species present’. For STMC(1,0) the transition probability 

from state i into state j is estimated as the number of cells, that are in state i at time t-

1 and in state j at time t, divided by the number of cells in state i at time t-1. The 

transitions are pooled over time, i.e. transitions from 1993 to 1994 and 1994 to 1995 

are counted together. Table 2 gives the transition matrices of this model. Preliminary 

results are given in Balzter et al. (1996)
1
. 

 In the STMC(1,2) model there are 512 different possible neighbourhood 

configurations X
s t, . To ensure sufficient accuracy for the probability estimation, 

given the low number of observations, the set of possible neighbourhoods is grouped 

into five intervals according to the sum of cells in the neighbourhood occupied by the 

species (Table 3). Afterwards, pooled transitions from group i to state j are counted 

in the way described for the STMC(1,0) model above. The resulting 5x2 transition 

matrices are shown in Table 4. At the edges a problem arises with incomplete 

neighbourhoods, whereby cells are ‘reflected’ over the border to give the same 

number of neighbours. Reflection is presumably more appropriate to vegetation data 

than other methods (see Haefner et al., 1991, for a comparison of methods), because 

                                                           
1
 The STMC(1,2) model was called ‘Moore neighbourhood model’ and the STMC(1,0) was called 

‘spatial Markov chain’ there. 
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the surroundings of the area are heterogeneous (a track, various hedges and cherry 

trees). 

 STMC(1,0) and STMC(1,2) yield similar results. Some graphical presentations are 

shown in Figure 1, suggesting the existence of ergodic distributions. This is proved 

for the STMC(1,0) model, because all states are aperiodic classes of positive 

recurrent states and the state space is finite (Heller et al., 1978). Table 5 shows the 

ergodic distributions for the STMC(1,0) and the limiting distributions for the 

STMC(1,2) model. Whether the limiting distributions of the STMC(1,2) model are 

ergodic, i.e. independent of the initial configuration, is not clear, although there is 

some evidence from simulation runs with different initial configurations, all of which 

result in the same limiting distribution. 

 The STMC(1,2) model is now approximated by a simple Markov chain with a new 

state space, further abbreviated as the APPROX model. Considering the 

neighbourhood configurations of the STMC(1,2) model as states in the APPROX 

model, we define new random variables Yt as the sum over the neighbourhood of cell 

s at time t:  

 

Y Xt k t

k s

,  

 

The state space is then QAPPROX={0,1,...,9}. An example for a transition matrix of the 

APPROX model is given by Table 6. The APPROX model is used to simplify the 

calculation of limiting distributions for the STMC(1,2) model. The APPROX model 

has ergodic distributions for Lolium perenne and Trifolium repens. For Glechoma 

hederacea the transition matrix is modified, because there are no transitions 

observed, which leave states 5, 7, 8 and 9, but there are transitions leading into states 

5 and 7. States 8 and 9 could thus be eliminated and the transitions from i=5 and i=7 

are assumed to be random, i.e. pij 0125.  for all j. 

 Although the assumption of spatial independence is violated, the ergodic 

distributions of the APPROX model come fairly close to the predictions of the 

STMC(1,2) model for Lolium perenne and Trifolium repens (Table 6). The deviating 

result for Glechoma hederacea is probably caused by the modification of the 

transition matrix. 

 Model validation is performed using the data from June 1996, which is equivalent 

to the prediction of time-step 1. The APPROX model is not validated, because it is 

simply an approximation of the STMC(1,2) model. The results are shown in Table 7.  

 
2
-tests are performed in two steps, first testing STMC(1,0) vs. STMC(1,2) vs. 

observations in a 3 x 2 table and, if in this test H0 was rejected, testing all three 

pairwise comparisons in 2 x 2 tables. The first 
2
-tests indicate significant differences 

for Lolium perenne (p<10
-15

) and Trifolium repens (p<10
-15

), but homogeneity for 

Glechoma hederacea (p=0,38). For Lolium perenne and Trifolium repens STMC(1,0) 

and STMC(1,2) do not differ significantly (p=1 and p=0,49), but both models are 

different from the observations in 1996 (all p<10
-14

). Balzter et al. (1996) argue that 

the STMC(1,2) model predictions for Glechoma hederacea are unlikely to match 

reality in the long-run, because the limiting distribution is higher than is expected 

from ecological intuition. However, this model seems to produce reasonable output 

for a short time. The limiting distribution and thus ecological equilibrium is probably 

never reached in reality anyway, because in most ecosystems the environment is 

likely to change over longer time intervals, influencing the dynamics of the 

organisms and the underlying probabilities of the stochastic processes (Lippe et al., 

1985). Successions in ecological communities seldom reach equilibrium or climax 
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states. Instead communities tend towards a relative climax until environmental 

conditions change. For grazed communities the climax depending on the herbivore 

population is called the zootic climax (Daubenmire, 1968). Possibly the model gives 

a good fit for the near future of Glechoma, but fails to predict long-term changes. 

This is due to a violation of the model assumption that the transition probability 

matrices be stationary over time, including constancy of environmental conditions.  

 Assuming a preference of rabbits for forage plants supports our hypothesis. It 

could explain the species-dependent validity of the model results. To improve the 

model fit the transition matrices for Lolium and Trifolium are changed arbitrarily. In 

order to obtain predicted values for 1996 as small as the observed 5% for Lolium and 

16% for Trifolium, the transition matrices must be presented as in Table 8. The 

probabilities of changing the state from a colonised plot (or a plot with many 

colonised neighbours) to an empty plot are higher than the estimates from Tables 2 

and 3. Catastrophic reductions in population size must have occurred, for the survival 

probabilities (present to present) to decrease and the extinction probabilities (present 

to absent) to increase so significantly between 1995 and 1996. 

 

 

5. Discussion 

 

Finding appropriate rules for the cellular automaton model is a crucial task. Either 

the rules are improved iteratively (bottom-up approach; Kummer et al., 1994), or 

rules are identified by a specific algorithm (top-down approach; Adamatzky, 1994). 

Great care must be taken when the structure of spatio-temporal dependence is 

defined. Neighbourhood definition affects model results in a species-specific way. 

Maybe the spatio-temporal correlation structure of the examined variables can give 

hints for selection of the correct temporal and spatial orders of the model. 

Correlograms for different time and space lags could be applied to determine the 

correct neighbourhood and the appropriate temporal dependence. 

 A major problem with stochastic population models is the influence of unobserved 

(and often unobservable) variables that affect the probability structure over time. 

Although proper planning of the sampling scheme can sometimes avoid this 

difficulty, exhaustive sampling of all relevant factors is either not always possible or 

too expensive. In our study of the lawn dynamics in Giessen, the size of the rabbit 

population is suspected to be of particular importance. Although this was taken into 

account by the authors as a possible cause for changing transition probabilities over 

time (Balzter et al. 1996), the rabbit population was initially expected to take a longer 

period than three years to influence vegetation dynamics so drastically. However, the 

interpretation of transition probabilities provides knowledge about the examined 

system. Considering the strong decrease of Lolium and Trifolium, the true 

probabilities of colonising an empty plot must have been near 0. 

The low observed values in 1996 for Trifolium repens and Lolium perenne can be 

explained by an unexpectedly strong increase in the size of the rabbit population 

from 1993 to 1996. We assume that certain plant species (forage plants as Lolium 

perenne and Trifolium repens) are preferred food plants for these herbivores 

compared to others and that selective grazing can facilitate growth of other 

populations like Glechoma hederacea. This mechanism could cause changes in the 

transition matrices, which can no longer be assumed to be stationary in time. 

Examples for strong effects of grazing by small mammals on vegetation are well 

known. Batzli and Pitelka (1970) exclude small rodents (meadow mice) from 

grasslands in California and find that, in the two years following exclosure, food 
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plants like Lolium multiflorum and Avena fatua contribute over 60% to the 

vegetational volume on areas without grazing but less than 30% on grazed areas. The 

decrase in forage species under rodent grazing is highly significant (ANOVA 

p<0.01). They also observe a strong influence of rainfall (ANOVA p<0.0005) 

resulting in increased growth of Lolium multiflorum and Avena fatua, which 

nevertheless is still greater on ungrazed areas. Ricklefs (1979) mentions the rapid 

regeneration of native pine Callitiris in New South Wales following the introduction 

of the myxomatosis virus that dramatically reduced the rabbit population. 

 Unobserved variables can be incorporated into the model in different ways: i) The 

variable is roughly estimated and taken as a covariate on an ordinal scale. The 

transition probabilities are corrected according to a specified rule and the 

improvement of the new model is examined. ii) The stochastic processes can be 

made more complex by introducing unobserved states that themselves follow a 

Markov chain and that affect the states of vegetation. This methodology of Hidden 

Markov models is applied to precipitation data by Zucchini and Guttorp (1991). iii) 

The influence of the unobserved variable can be determined in seperate field trials 

under controlled conditions. Regression analyses or related statistical methods 

quantify this influence deterministically. iv) The deviation of the predictions from 

observations can stimulate the generation of new hypotheses, which can then be 

tested in future studies. Scanlan and Archer (1991) provide another way of including 

external factors into Markovian models. They model vegetation dynamics with 

simple Markov chains, but take into account the weather dynamics by assuming two 

weather states (dry and wet) and estimating two transition matrices seperately. Which 

matrix governs the next transition is determined by randomly choosing the next 

weather state. 

 The extension of Markov chain theory to spatio-temporal models is a promising 

field. As modelling becomes more complex, the need for a theoretical framework of 

these models increases. We argue that model behaviours from the Silvertown model 

and the Dytham model (and hypothetically many others) could be explained 

mathematically if theorems on the behaviour of spatio-temporal Markov chains 

(STMC) were found, where the behaviour of the distribution in the limit is of 

particular interest. This would allow important conclusions to be drawn regarding 

observed ecological phenomena, like competition, coexistence, succession or spatial 

patchiness. 
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Table 1 

Use of cellular automata. 

 

Authors Topics 

Balmann (1993) economic rural development 

Balzter et al. (1996) three plant populations in a lawn 

Bockstael et al. (1995) land use, ecological and economic development 

Colasanti and Grime (1993) succession on resource gradients 

Crawley and May (1987) competition between annual and perennial plant species 

Darwen and Green (1996) extinction of a population 

Dytham (1995) coexistence between two plant species 

Ellison and Bedford (1995) impacts of a power plant to a wetland community 

Epperson (1995) distribution of genotypes of individuals 

Flamm and Turner (1994) land cover 

Gerhardt et al. (1990) excitable media in physics 

Green (1989) effects of fire, dispersal and spatial pattern on a forest 

Hassell et al. (1991) host-parasite interactions in insect populations 

Karlson and Jackson (1981) community structure of sessile invertebrates 

Kummer et al. (1994) spread of rabies in fox populations 

Liu et al. (1995) effects of a forest management plan on a bird species 

Loh and Hsieh (1995) succession in a savanna landscape 

Marsula and Ratz (1994) effect of fire on a serotine plant species 

Molofsky (1994) pattern formation in theoretical populations 

Ratz (1994) effect of fire in boreal forests 

Silvertown et al. (1992) five competing grass species 

Van Tongeren and Prentice (1986) succession of heathland after fire 

Wiegand et al. (1994)  semi-arid shrub ecosystem 

Wilkie and Finn (1988) land use change 

Winkler et al. (1994) dry grassland community 

 

 
Table 2 

Transition matrices for the STMC(1,0) model and the three plant species. 0=species absent, 1=species present. 

 

 Lolium perenne Trifolium repens Glechoma hederacea 

from to           0      1              0      1              0      1 

0 (absent) 

1 (present) 
055 045

045 055

. .

. .
 

053 047

023 077

. .

. .
 

0 92 0 08

0 62 0 38

. .

. .
 

 

 
Table 3 

Grouping of neighbourhood states for the STMC(1,2) model. Numbers are the sums of neighbouring cells 

occupied by the species. Because percentage cover is smallest for Glechoma hederacea , followed by Lolium 

perenne and finally Trifolium repens, the classification is species-dependent. 

 

neighbourhood 

group 

Lolium perenne Trifolium repens Glechoma 

hederacea 

0 0 0 0 

1 1-2 1-2 1 

2 3-4 3-4 2 

3 5-7 5-7 3 

4 8-9 8-9 4-9 
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Table 4 

Transition matrices for the STMC(1,2) model using five neighbourhood groups for the three plant species. 

 

 Lolium perenne Trifolium repens Glechoma hederacea 

from neighbourhood 

group 

 

to           0      1 

 

             0      1 

 

             0      1 

0 

1 

2 

3 

4 

0 91 0 09

052 0 48

054 0 46

0 46 054

0 41 059

. .

. .

. .

. .

. .

 

100 0 00

054 0 46

050 050

0 27 0 73

018 082

. .

. .

. .

. .

. .

 

0 99 0 01

0 73 0 27

086 014

0 29 0 71

0 33 0 67

. .

. .

. .

. .

. .

 

 

 

Table 5 

Ergodic distributions of the STMC(1,0) model and the approximating model to the STMC(1,2) model 

(APPROX) and limiting distributions of the STMC(1,2) model. Values for STMC(1,0) and APPROX are 

calculated by Eq. 3, while values for STMC(1,2) are obtained by simulations from the means of the results of 10 

simulation runs and time-steps 81...100. 
*
 indicates a modified transition matrix, see text. 

 

 Lolium perenne Trifolium repens Glechoma hederacea 

state: 0 (absent) 1 (present) 0 (absent) 1 (present) 0 (absent) 1 (present) 

STMC(1,0) 0.50 0.50 0.33 0.67 0.89 0.11 

APPROX 0.49 0.51 0.26 0.74 0.79
*
 0.21

*
 

STMC(1,2) 0.50 0.50 0.28 0.72 0.34 0.66 

 

 
Table 6 

Example for a transition probability matrix of the APPROX model for Trifolium repens. Relative frequencies of 

transitions from the sums of one to another second order neighbourhood. 

 

occupied 

cells: 

0 1 2 3 4 5 6 7 8 9 

0 0.29 0.29 0.14 0.00 0.14 0.00 0.14 0.00 0.00 0.00 

1 0.50 0.00 0.00 0.25 0.00 0.00 0.25 0.00 0.00 0.00 

2 0.00 0.00 0.05 0.40 0.00 0.25 0.15 0.10 0.05 0.00 

3 0.00 0.00 0.11 0.15 0.19 0.04 0.15 0.15 0.11 0.11 

4 0.00 0.00 0.10 0.26 0.16 0.07 0.23 0.07 0.00 0.13 

5 0.00 0.00 0.03 0.09 0.09 0.06 0.17 0.20 0.23 0.14 

6 0.00 0.00 0.00 0.00 0.03 0.21 0.21 0.26 0.10 0.21 

7 0.00 0.00 0.00 0.03 0.08 0.18 0.21 0.23 0.10 0.18 

8 0.00 0.00 0.00 0.00 0.00 0.13 0.30 0.13 0.22 0.22 

9 0.00 0.00 0.00 0.00 0.07 0.00 0.27 0.20 0.13 0.33 

 

 
Table 7 

Comparison of percentage cover values forecasted for 1996 by the STMC(1,0) and the STMC(1,2) model vs. 

observed values. 

 

 Lolium perenne Trifolium repens Glechoma hederacea 

STMC(1,0) 51 % 66 % 11 % 

STMC(1,2) 51 % 70 % 17 % 

observed 5 % 16 % 16 % 
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Table 8 

Changed transition matrices to improve model fit for Lolium perenne and Trifolium repens.  

 

 STMC(1,2)  STMC(1,0) 

from neighbourhood group  

to     0      1 

from state  

to     0      1 

0 

1 

2 

3 

4 

0 99 0 01

0 90 010

0 80 0 20

0 80 0 20

0 70 0 30

. .

. .

. .

. .

. .

 

0 

1 

 

 

 

0 99 0 01

0 80 0 20

. .

. .
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Fig. 1. Predictions of percentage cover over 100 time-steps predicted by the STMC(1,2) model. Means of 10 

simulation runs. (a) Lolium perenne, (b) Trifolium repens, (c) Glechoma hederacea. 


