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 15 
Abstract 16 

Landscape patterns in a region have different sizes, shapes and spatial arrangements, 17 

which contribute to the spatial heterogeneity of the landscape and are linked to the distinct 18 

behavior of thermal environments. There is a lack of research generating landscape metrics 19 

from discretized percent impervious surface area data (ISA), which can be used as an 20 

indicator of urban spatial structure and level of development, and quantitatively characterizing 21 

the spatial patterns of landscapes and land surface temperatures (LST). In this study, linear 22 

spectral mixture analysis (LSMA) is used to derive sub-pixel ISA. Continuous fractional 23 

cover thresholds are used to discretize percent ISA into different categories related to urban 24 

land cover patterns. Landscape metrics are calculated based on different ISA categories and 25 

used to quantify urban landscape patterns and LST configurations. The characteristics of LST 26 

and percent ISA are quantified by landscape metrics such as indices of patch density, 27 

aggregation, connectedness, shape and shape complexity. The urban thermal intensity is also 28 

analyzed based on percent ISA. The results indicate that landscape metrics are sensitive to the 29 

*Manuscript
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variation of pixel values of fractional ISA, and the integration of LST, LSMA. Landscape 30 

metrics provide a quantitative method for describing the spatial distribution and seasonal 31 

variation in urban thermal patterns in response to associated urban land cover patterns. 32 

Keywords: Urban; Linear spectral unmixing; Percent impervious surface area; Threshold 33 

continuum; Land surface temperature; Landscape metrics 34 

1. Introduction 35 

The urban heat island (UHI) effect is due primarily to the increased use of impervious 36 

surface materials, the decrease of vegetation cover and water-permeable surfaces and the 37 

emission of heat by human activities (Kato and Yamaguchi, 2005). Its magnitude is 38 

exacerbated by global climate change. Land surface temperature (LST) is impacted by 39 

surface–atmosphere interactions and energy fluxes between the land surface and the 40 

atmosphere (Wan and Dozier, 1996). Past studies measuring LST and heat fluxes have been 41 

mainly based on ground observations and digital model simulation (Voogt and Oke, 2003; 42 

Weng et al., 2004). Generally, ground observation studies describe detailed seasonal 43 

variations of thermal environments, but the number of observations is usually limited due to 44 

physical and economic constraints (Voogt and Oke, 2003). Advances in remote sensing have 45 

enabled the use of satellite data at various spatial and temporal resolutions for estimating 46 

surface temperatures over entire urban regions (Xian and Crane, 2006; Zhang et al., 2009). 47 

Thus, satellite remote sensing has been used extensively for a description of thermal patterns 48 

and simple correlation analysis of spatially heterogeneous urban land use patterns (Pu et al., 49 

2006; Amiri et al., 2009; Imhoff et al., 2010; Deng et al., 2013). 50 

Many previous remote sensing studies of the urban environment have used the 51 

Normalized Difference Vegetation Index (NDVI) as a descriptor for urban climate patterns 52 

(Lo et al., 1997; Gallo et al., 1999; Yuan and Bauer, 2007). However, NDVI measurements 53 

are subject to seasonal variations due to vegetation phenological cycles. Furthermore, the 54 

relationship between NDVI and LST is known to be non-linear (Price, 1990; Owen et al., 55 

1998; Chen et al., 2006). Therefore, NDVI alone is considered insufficient for quantitatively 56 
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studying urban environments. Impervious surfaces are defined as any impenetrable material, 57 

such as rooftops, roads, parking lots and other man-made surfaces that prevent infiltration of 58 

water into the soil (Arnold and Gibbons, 1996).  59 

Impervious surface areas (ISA) are stable and not affected by seasonal changes, and are 60 

therefore an important parameter for the analysis of LST and urban thermal patterns (Lu and 61 

Weng, 2006; Zhou et al., 2014). At the scale of 20-50 m it is common in many cities to have 62 

mixed pixels that are only partially covered by ISA. Due to this mixed pixel problem, in many 63 

cities traditional per-pixel classifiers cannot effectively handle the complex fine-scale urban 64 

landscape patterns. A solution is to use percent ISA rather than a crisp classification to 65 

characterize urban land cover patterns (Lu and Weng, 2006; Frazier and Wang, 2011). The 66 

vegetation–impervious–soil (VIS) model assumes that the spectral signature of land cover in 67 

urban environments is a linear combination of vegetation, impervious surfaces, and soil when 68 

water surfaces can be ignored (Ridd, 1995). The VIS model is an effective way of coping with 69 

the mixed-pixel problem (Smith, 1990; Rashed, 2008; Michishita et al., 2012). Continuous 70 

percent ISA information on a scale from 0% to 100% also reveals central business districts 71 

(CBD) and urban residential areas with varying densities and patterns, rural developed centers 72 

and relatively undeveloped areas (Zhang et al., 2009). For the purpose of developing effective 73 

climate change adaptation strategies in urban environments it is important to analyze the 74 

relationship between LST and percent ISA in urban environments as an alternative approach 75 

to traditional land cover based methods. 76 

Landscape/land use/land cover patches in a region have different sizes, shapes and 77 

spatial arrangements. These contribute to the spatial heterogeneity of the landscape, and have 78 

significant effects on urban thermal environments (Zhang et al., 2013; Liu and Weng, 2008; 79 

Maimaitiyiming et al., 2014). To understand the dynamics of patterns and processes and their 80 

interactions in the landscape, methods for accurately quantifying the spatial landscape 81 

patterns and their seasonal changes are required. A series of landscape metrics have been 82 

developed to characterize spatial landscape patterns and their impacts on the environment 83 

(Frazier and Wang, 2011; Liu and Weng, 2008; Riitters, 1995; Gustafson, 1998; Yue et al., 84 
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2007). When applied to the study of urban LST patterns, these landscape metrics have often 85 

been calculated based on ‘hard’, binary classifications of ISA and other land cover categories 86 

(Liu and Weng, 2008; Li et al., 2011). 87 

However, in the published literature such landscape metrics have not yet been calculated 88 

from percent ISA, i.e. a ‘soft’ classification of ISA, to our knowledge. This may be because 89 

these metrics cannot be computed directly for percent ISA. This paper has tested a new 90 

method for discretizing sub-pixel ISA data at gradually increasing thresholds using two 91 

different approaches: the range approach and the threshold continuum approach. Based on 92 

converting continuous ISA fractions to discrete ISA classes by these two methods, landscape 93 

metrics can be calculated for each discrete ISA class. This provides the advantage that 94 

sub-pixel information on percent ISA provides more realistic descriptions of urban landscape 95 

structure than ‘hard’ land cover classifications. In addition to the absolute fraction of ISA, the 96 

effects of different spatial patterns of percent ISA on the magnitude of urban LST is 97 

quantified here with landscape metrics including the indices of patchiness, edge length, fractal 98 

dimension and texture. Since these metrics are sensitive to the variations of the sub-pixel ISA 99 

values, we can analyze quantitatively how different spatial patterns of different percent ISA 100 

zones contribute to the overall urban thermal characteristics and patterns in a city. The results 101 

of this analysis of micrometeorological seasonal variability will provide valuable information 102 

for the validation of predicted climatic change at the local scale. 103 

2. Study area and data 104 

The study area is Fuzhou City, located on the southeast coast of China (Fig. 1). Like 105 

many other Chinese cities, the population of Fuzhou is rapidly increasing (from 5.2 million in 106 

1989 to 6.5 million in 2001) leading to increased urban expansion. Compared with the 107 

warmer summer climate, the weather in Fuzhou in spring, autumn and winter is relatively 108 

similar. Therefore, two images were selected to quantify the effects of the two major climatic 109 

seasons: A Landsat 5 TM image (acquired on June 15, 1989) and a Landsat 7 ETM+ image 110 

(acquired on March 4, 2001). Landsat bands 1–5 and 7 images have a spatial resolution of 30 111 
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m, and the thermal infrared band (band 6) has 120 m spatial resolution for TM and 60 m for 112 

ETM+. 113 

 114 

Fig. 1. Location of the study area showing the Landsat 7 ETM+ image (Red = band 4, Green 115 

= band 3, Blue = band 2). This Figure is reproduced from Zhang, Y., Balzter, H., Wu, X. 116 

(2013). 117 

 118 

An IKONOS image acquired on 29 October 2000 with 4 m spatial resolution and aerial 119 

photographs acquired on 20 May 1988 with 2 m spatial resolution were used to validate the 120 

retrievals of ISA from Landsat data. All images were reprojected to the Universal Transverse 121 

Mercator (UTM) projection, based on the geocoded high resolution IKONOS image and 122 

aerial photograph. The RMSE of the georectification was <0.3 pixels (<9 m). 123 

We used the radiative transfer equation to retrieve LST from the Landsat data. This 124 

method has three steps (Zhang et al., 2009; Yuan and Bauer, 2007): The first step is to convert 125 

the digital numbers of the bands to top-of-atmosphere (TOA) radiance (Schroeder et al., 126 

2006), and then to further convert TOA radiance of visible and near-infrared bands to surface 127 

reflectance by applying an atmospheric correction. Step 2 is to convert TOA radiance of the 128 

thermal band to surface-leaving radiance using the atmospheric correction tool MODTRAN 129 

4.1 to remove the effects of the atmosphere (Berk et al., 1999). The surface-leaving radiance 130 

LT is calculated using Eq. (1) (Barsi et al., 2005): 131 

LT = (Lλ−Lμ−τ (1−ε) Ld)/τ ε     (1) 132 

where Lμ, τ and Ld are respectively the upwelling radiance, atmospheric transmission and 133 

downwelling radiance, and ε is the emissivity of the surface specific to the target type.  134 

ε can be calculated based on NDVI and land cover type (Sobrino et al., 2001; Van and 135 

Owe, 1993). Therefore, ε provides an emissivity map of the surface with 30 m resolution. In 136 

Eq. (1), Lλ is TOA radiance image with 120 m resolution for TM band 6 and 60 m resolution 137 

for ETM+ band 6. Lμ, Ld and τ are scalars. Therefore, Eq. (1) is also a process of merging Lλ 138 
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with the ε map. The resolution of LT was set to 30 m even though LT is calculated from the 60 139 

m resolution TM/ETM+ band 6.  140 

In the final step the radiance is converted to surface temperature using the 141 

Landsat-specific estimate of the Planck curve (Chander and Markham, 2003).  142 

3. Methods 143 

3.1 Overall approach 144 

An overview of the research design is shown in Fig. 2. Sub-pixel ISA is used as an 145 

indicator of the degree of impervious surfaces and the urban spatial extent. It indicates the 146 

level of urban development. LSMA is used to derive sub-pixel ISA values for urban land 147 

cover patterns. The percent ISA is further classified into groups by the range approach and the 148 

threshold continuum approach. The main advantage of the range approach over the threshold 149 

approach is that the spatial distribution patterns of the urban thermal environment can be 150 

analyzed and compared in different urban development density zones. In the range approach, 151 

the urban development densities are defined by the ISA threshold values as 10–30% for 152 

low-density; 30–50% for medium density; and >50% for high-density. 153 

To contrast two different methods of discretizing metric scale percent ISA data, the 154 

threshold continuum approach is used to reclassify the percent ISA at 4 threshold values set 155 

at >10%, >30%, >50% and >70% respectively. In the continuum threshold approach, pixels 156 

with percent ISA values are also discretized and assigned a value, but unlike the range 157 

approach it creates classes of all pixels with >10% ISA as class 1, >30% ISA class 158 

2, …, >70%. 159 

Landscape pattern metrics are then calculated from the discretized percent ISA data to 160 

characterize the spatial structure of urban land cover patterns. Lastly, the LST maps from the 161 

two Landsat acquisitions are analyzed in relation to landscape structure derived from the 162 

discretized percent ISA. 163 

Fig. 2. Flow chart showing the steps for deriving percent ISA, percent ISA discretization, 164 

landscape metrics calculation and analysis with LST. 165 

 166 
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3.2. The derivation of urban percent ISA 167 

Impervious surface is closely related to urban land cover patterns, and percent ISA can 168 

be used to map the urban extent. Therefore, the sub-pixel technique of Linear Spectral 169 

Mixture Analysis (LSMA) can be used to extract fractional land cover values from 170 

TM/ETM+ imagery. The LSMA approach assumes that the reflectance spectrum measured by 171 

a sensor is a linear combination of the spectra of all endmembers within the pixel and that the 172 

spectral proportions of the endmembers represent proportions of the area covered by distinct 173 

features on the ground (Adams, 1995; Mustard and Sunshine, 1999; Mitraka et al., 2012). The 174 

spectral reflectance in band i can be described as: 175 

Ri = k ik i
1
f R  

n

k
      (2) 176 

where n is the number of end members, fk the fraction of end member k within the pixel, Rik 177 

the spectral reflectance of end member k in band i and εi the residual error for band i. The 178 

fractions of one pixel must sum to 1 and all fractions must be greater than or equal to zero. 179 

These conditions can be described by: 180 

k
1
f

n

k
= 1       (3) 181 

fk ≥ 0 for k = 1, …, n. 182 

The fractional cover of each urban component is estimated using Eq. (2) and (3). 183 

Endmember selection is a critical step in LSMA for extracting percent ISA. There are 184 

various endmember extraction algorithms used to select endmembers prior to spectral 185 

unmixing, including Pixel Purity Index (PPI), N-FINDR, Automatic Morphological 186 

Endmember Extraction (AMEE), the simplex growing algorithm (SGA) (Plaza et al., 2002; 187 

Chang et al. 2006). The PPI method finds the image endmembers automatically and the PPI 188 

algorithm works as a simple technique designed to search for a set of vertices of a convex hull 189 

in an image cube. In this study, image endmembers identifying spectrally pure pixels were 190 

derived by the PPI and the extremes of the image feature space. A Minimum Noise Fraction 191 

(MNF) transformation was initially applied to the imagery to reduce inherent noise. In 192 

applying the PPI analysis to the MNF output to rank the pixels based on relative purity and 193 
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spectral extremes, the PPI was computed by repeatedly projecting n-dimensional scatterplots 194 

on a random unit vector. The algorithm records the extreme pixels in each projection and the 195 

total number of times that each pixel was marked as extreme. By setting a PPI threshold, the 196 

region of interest (ROI) of pure pixels was determined. Within this ROI, endmember classes 197 

were selected by choosing pixels at the edges of the point cloud in three-dimensional 198 

scatterplots as pure pixels. All LSMA procedures were undertaken in ENVI 4.5. 199 

In accordance with the VIS model (Ridd, 1995), the urban environment was assumed to 200 

consist of four fundamental components: water, vegetation, impervious surfaces and soil. 201 

Because the spectral features of water are similar to those of low-albedo impervious areas and 202 

the water surfaces in the images were the river flowing through the city, water was masked 203 

out from the images. The spectral response of the impervious component in the urban 204 

environment varied widely. Two main categories of impervious surface components, bright 205 

ISA (such as concrete) and dark ISA (such as asphalt), were respectively assumed as a 206 

high-albedo and a low-albedo component (Lu and Weng, 2006). Therefore, four endmembers, 207 

vegetation, high-albedo impervious surfaces, low-albedo impervious surfaces and soil, were 208 

defined in the study. A constrained least-squares solution was then applied to spectrally 209 

unmix the six TM/ETM+ bands into four fraction images. The high-albedo and low-albedo 210 

impervious surfaces were added up to an image of total percent ISA. ISA is often biased due 211 

to the heterogeneity of urban landscapes and the limitation of remotely sensed data in spectral 212 

and spatial resolutions. The high-albedo fraction image also included some soil areas. Bare 213 

soil areas are mainly distributed alongside the river; therefore soil does not have a significant 214 

effect on the estimation of urban percent ISA. 215 

Using the high-resolution imagery as validation data, the accuracy of percent ISA was 216 

assessed by comparing the accumulated fraction estimates in selected test areas with the 217 

impervious surface areas extracted from the high resolution aerial photos and the IKONOS 218 

image. The acquisition years of the aerial photos and IKONOS image are nearly same year as 219 

the acquisition years of TM/ETM+ imagery. The iterative self-organizing data analysis 220 

technique algorithm (ISODATA) was used to extract ISA from aerial photos and the 221 
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IKONOS image respectively and further to accumulate the area of ISA in the selected test 222 

areas as reference data. This approach was deemed sufficient because the two dates in which 223 

the aerial photos and IKONOS image acquired were nearly the same date as those of the 224 

TM/ETM+ imagery, in which the land cover type nearly had not changed between the two 225 

dates. 226 

3.3. Percent ISA discretization  227 

Fractional values of percent ISA have to be modified before landscape metrics can be 228 

calculated since these metrics can only be calculated based on a hard classification. Hence, 229 

the fractional values were classified into discrete groups using thresholds of percent ISA. The 230 

two approaches, namely the range approach and the threshold continuum approach, were 231 

used. 232 

The range approach reclassifies pixels based on proportional ranges. Each proportional 233 

range has an upper and lower limit. Sporadic, isolated pixels and patches can be found in the 234 

results sometimes when the range approach is used. Therefore, the threshold continuum 235 

approach was also used as an alternative to the range approach. The threshold continuum 236 

approach treats the landscape as a gradually changing gradient and eliminates problems 237 

associated with the range approach by aggregating all pixels with values greater than a 238 

threshold value. Pixels exceeding a threshold are reclassified in a binary scheme. Percent ISA 239 

was also reclassified into discrete maps of ISA presence-absence using the threshold 240 

continuum approach. All pixels with ISA proportions greater than or equal to the threshold 241 

breakpoints were assigned a value of 1 and included in the landscape metrics calculations, and 242 

all other pixels were assigned 0 and excluded from the landscape metrics calculations. In this 243 

way, landscape structure can be examined for different degrees of imperviousness. 244 

 245 

3.4. Computation of landscape metrics 246 

The number of land use/land cover (LULC) categories, their proportions and spatial 247 

structure evidently affect LST (Weng et al., 2004; Liu and Weng, 2008). Because percent ISA 248 

is an indicator of urban spatial structure and the level of urban development, landscape 249 

metrics based on this metric can characterize land cover patterns and their impact on the 250 
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thermal environment better than a ‘hard’ land cover classification. Five landscape metrics 251 

were derived from the discretized percent ISA and used to analyze the landscape patterns and 252 

LST in both seasons. The five landscape metrics were generated using the computer program 253 

FRAGSTATS (McGarigal et al., 2002). The metrics are briefly introduced below. 254 

Patch density (PD) is a metric of landscape structure. The number of patches per unit 255 

area of a specific LULC category measures the spatial heterogeneity of a given landscape. PD 256 

for a particular LULC category can serve as an index of landscape fragmentation. The PD of a 257 

given LULC type can be derived as: 258 

PD = 610N / A        (4) 259 
where N = total number of patches in the landscape, A = total landscape area (m2). PD in eq. (4) 260 

is expressed as units per 100 hectares. 261 

The aggregation index (AI) identifies the tendency of spatial aggregation of specific patch 262 

types. AI is calculated from an adjacency matrix of pixels, which is indicative of the 263 

frequency with which different pairs of patch types (including adjacencies between the same 264 

patch types) appear side-by-side in the landscape (McGarigal et al., 2002): 265 

AI ijg / [ max ( ijg ) 100 ]   (5) 266 

where gij = number of like adjacencies between pixels of patch type i based on the 267 

single-count method, max(gij) = maximum number of like adjacencies. 268 

Cohesion measures the physical connectedness of patches at fractional ISA thresholds 269 

and is computed from patch area and perimeter (Schumaker, 1996). Higher cohesion values 270 

indicate a more connected landscape and lower values indicate fragmented and less connected, 271 

however cohesion will equal zero when the landscape consists of a single patch. 272 

COHESION = { [1−
1

N

ij
j

p / (
1

N

ij
j

p * ija 1/2 )] / (1−1/A1/2) }* 100      (6) 273 

pij= the perimeter of patch i of class j, aij= the area of patch i of class j, A= the total number of 274 

cells, N= the number of patches of class j. Cohesion values are unit-less and range from 0 to 275 

100. 276 

Landscape Shape Index (LSI) measures shape complexity of patches. It is given as: 277 
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LSI = P / (4 * A1/2)      7  278 

where P is the total perimeter edges in the landscape and A is the total area of the landscape. 279 

Perimeter-area fractal dimension index (PAFRAC) is used to measure shape complexity 280 

of patch types and provides a measure of human impact on the landscape. It is based on the 281 

assumption that natural boundaries have complex shapes, and that as human disturbance 282 

increases the PAFRAC decreases, approaching 1. Thus the PAFRAC represents shape 283 

complexity representing human-induced disturbance. PAFRAC can be derived as: 284 

 PAFRAC 2 / 285 

{[ 2

1 1 1 1 1 1 1 1 1 1
(ln ln ) ( ln )( ln )] / [( ln ) ln ]

ij

m n m n m n m n m n

ij ij ij ij p ij
i j i j i j i j i j

N p a p a N p }  (8) 286 

Where aij = area of the patch ij, pij = perimeter of the patch ij, N = total number of patches. 287 

4. Results and discussion 288 

4.1. Urban percent ISA results 289 

Fig. 3 shows the endmember fractions of impervious surface in study area, the fraction 290 

values range from 0 to 100% for two dates, with lowest values in black and highest values in 291 

white. The mean root mean square (RMS) over the image is 0.01, which suggests a good fit of 292 

this model. These fractions provide a measure of the physical properties of the urban land 293 

cover patterns in the scene at two different dates, thus helping reveal the morphological 294 

patterns of urban neighborhoods. The percent ISA covers a continuous range from 0% to 295 

100%, where the higher percent ISA threshold values capture the more developed land and 296 

high-density residential areas. Thus, the ISA proportional ranges can define the urban 297 

development densities.298 

 299 

(a) (b) 300 

Fig. 3. Percent ISA images from LSMA of six TM/ETM+ reflective bands: (a) 1989 and (b) 301 

2001 (Four sample plots delineated with polygons represent test sites for accuracy 302 

assessment). 303 

 304 
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Fig. 3 shows the spatial patterns of the percent ISA on the two acquisition dates. The 305 

changes in ISA over time vary remarkably between the core of the city and its periphery. This 306 

suggests that patterns of percent ISA and morphological changes in these areas are primarily 307 

between land cover classes and less within classes. On the periphery of the city impervious 308 

surfaces have increased because of urban expansion. The urban vegetation in the study area in 309 

the winter months is green. Fig. 3 shows that percent ISA of some pixels in urban areas is 310 

higher in the summer of 1989 in comparison to spring 2001. Planning in Fuzhou has 311 

increasingly included a trend towards ecological urban landscape design, and thus in the more 312 

recent image of 2001 a higher vegetation cover is found in the highly developed areas 313 

compared to 1989.  314 

In the non-urban areas land cover change has occurred between 1989 and 2001. In some 315 

areas, land cover change is taking place at the sub-pixel scale but is not yet detectable at the 316 

pixel scale. Thus, a crisp classification would likely result in a misleading conclusion that no 317 

change is taking place in some areas of Fuzhou. Fractional cover can be used to quantify the 318 

magnitude of change because of its capability to deal with uncertainties resulting from the 319 

difficulty in determining a firm threshold value to separate areas of change from those of no 320 

change. 321 

4.2. Accuracy analysis of percent ISA derivation by area 322 

ISA was extracted from high-resolution air photo/IKONOS data using ISODATA, and 323 

was used to assess the accuracy of the percent ISA coarser resolution estimates from Landsat. 324 

Four test areas were chosen (Fig. 3) for the accuracy analysis, based on the criterion that the 325 

main land cover type had not changed between the aerial photos (acquired in 1988)/IKONOS 326 

(acquired in 2000) data and the Landsat TM (acquired in 1989)/ETM+ (acquired in 2001) data. 327 

The sites were selected in order to avoid temporal between-class land cover change 328 

influencing the accuracy assessment of the endmember-derived impervious surface fraction 329 

from the Landsat data using the high-resolution IKONOS/air photo data as surrogate ‘ground 330 

truth’. Table 1 shows the results of the accuracy assessment of the Landsat-derived percent 331 

ISA images. An area accumulation was carried out by multiplying percent ISA with the pixel 332 

area of 30 m * 30 m = 900 m2. 333 
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 334 

Table 1 Results of accuracy assessment of LSMA percent ISA fractions. Areas measured in 335 

km2. 336 

 337 

Because of urban expansion and land cover change, the urban area in 2001 is larger than 338 

in 1989. The results indicate that there is good agreement between the Landsat-derived ISA 339 

fractions and the reference ISA estimates from the airphotos and IKONOS. The four test sites 340 

have small total mean differences of ISA when compared to the reference data for both dates 341 

(Table 1). The accuracy of impervious surface fractions was slightly lower in 1989. One 342 

likely reason for this is that the image quality, the interpretation of the aerial photos and the 343 

TM image are less precise than the IKONOS and ETM+ results. Generally, the overall 344 

accuracy analysis results are consistent with the individual results per site. In addition, Chen 345 

et al. (2010) and van der Meer et al. (2012) have pointed out that if the spectra of endmembers 346 

are highly correlated (collinearity or multi-collinearity), the inversion of spectral unmixing 347 

becomes unstable and the estimated fractions are sensitive to random error. Because the focus 348 

of this study is on urban land cover and thermal patterns, the correlation between endmembers 349 

and its impacts on the accuracy of fraction estimation was not analyzed in detail. 350 

4.3. Percent ISA and LST 351 

The proportional ranges 0-10%, 10-30%, 30-50%, 50-70% and 70-100% were used to 352 

reclassify percent ISA into 5 separate groups for indicating the levels of urban development 353 

(Fig. 4). The threshold continuum approach was also used to reclassify the sub-pixel data at 4 354 

threshold values set at >10%, >30%, >50% and >70% respectively. Reclassifying percent ISA 355 

in this manner to generate landscape metrics for each range is suitable for an analysis of urban 356 

LST for each range of ISA. The main advantage of this approach over the threshold approach 357 

is that the spatial distribution patterns of the urban thermal environment can be analyzed and 358 

compared in different urban development density zones. The threshold continuum approach 359 

was also used to reclassify the sub-pixel data at 4 threshold values set at >10%, >30%, >50% 360 

and >70% respectively. The urban development densities were further defined by the ISA 361 
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threshold values as 10–30% for low-density; 30–50% for medium density; and >50% for 362 

high-density. 363 

 364 

(a) (b) 365 

 366 

Fig. 4. Discretized maps of percent ISA in the study area using the range approach: (a) 367 

1989 and (b) 2001. 368 

As illustrated by the ISA maps in Fig. 4, the higher percent ISA threshold values capture 369 

the more developed land in the city. The percent ISA analysis captures the spatial variation of 370 

the urbanization dynamics and the direction of change (increase, decrease) in both seasons. 371 

Table 2 shows the categories of urban percent ISA in the study area. The areal extent of 372 

percent ISA >10% increased from 254.53 km2 in 1989 to 289.49 km2 in 2001. The decrease in 373 

the category 10–30% ISA was small. The 30%–50% ISA category shows a significant 374 

decrease. The largest increase of 87.77% occurred in the category >70% ISA, which means 375 

that high density urban development was the dominant mode of urbanization over the 12 year 376 

period. The increase of ISA in the categories of 50–70% ISA and >70% ISA was more 377 

pronounced than the decrease of ISA in the 30–50% ISA category. Obviously, these zones 378 

appeared in the outskirts of the city by 2001 as urbanization expanded into non-urban areas, 379 

especially the <10% ISA category. 380 

 381 

Table 2 The spatial extent (km2) of each category of urban percent ISA in 1989 and 2001 and 382 

change in spatial extent between the two periods. 383 

 384 

Fig. 5 shows the LST maps for both dates in the study area. Stratified by degree of 385 

percent ISA, the mean and standard deviation (SD) of LST for each ISA category derived 386 

from either the range approach or the threshold continuum approach are shown in Table 3. 387 

 388 
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 389 

 390 

Fig. 5. Spatial distribution patterns of LST from the TM image acquired on June 15, 1989 (a) 391 

and ETM+ image acquired on March 4, 2001 (b). 392 

 393 

Table 3 The mean and standard deviation (SD) of LST for each ISA category in 1989 and 394 

2001. 395 

 396 

Table 3 shows that the high-density urban areas (percent ISA >50%, 50%-70%, and 397 

>70%) have a higher mean LST exceeding 301 K for 1989. However, in 2001 the mean LST 398 

of these denser areas was nearly the same as that of the lower density urban areas of >30% 399 

and 30%-50% ISA, with temperatures around 289 K. The main reason for this difference is 400 

seasonal variation.  401 

There is some homogenization and expansion of high density urban areas over the study 402 

region in 2001 compared to 1989. This is further supported by the comparison of the SD of 403 

LST for the percent ISA categories. Analyzing the change trends of the SDs of LST for >30% 404 

and 30%–50% ISA with those for >50%, 50%–70% and >70% ISA, the data showed that the 405 

SDs of LST for 50%–70% and >70% ISA decreased more in 2001 compared to 1989. In the 406 

percent ISA categories 50%–70% and >70%, the SDs of LST are much larger in 1989 407 

compared to 2001, although this difference in SD of LST could also be partly attributed to 408 

seasonal fluctuations of LST, as mean LST and its SD in early spring (March 2001) would be 409 

expected to be less than in summer (June 1989). It is obvious that the SDs of LST are 410 

generally larger for urban areas than those of the areas with percent ISA <10%, indicating that 411 

the urban landscapes would have experienced a wider variation in LST than the natural 412 

vegetation areas because of the mix of LULC types. The larger SDs of LST were found to be 413 

associated with >70% percent ISA (more than 5 K in summer and 1.8 K in early spring) 414 

(a) (b) 
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related to transport infrastructure and industrial land. Residential areas and public facilities are 415 

usually included in the 30%-50% and 50%-70% ISA categories and had a relatively small SD 416 

owing to their spatial homogeneity. The SDs of LST were relatively small for the low-density 417 

residential areas because the greater homogeneity contributes to lower LST variation in these 418 

areas. 419 

In Table 3, the threshold continuum approach was used for partitioning percent ISA into 420 

discrete classes. A comparison of the range approach and threshold continuum approach 421 

showed differences in both the number of pixels and the distribution of pixels across the 422 

ranges. Table 3 also shows that the means and SDs of LST varied for each ISA category 423 

between the two approaches. For the range approach, the number of pixels in each of the four 424 

ranges was approximately uniform. When pixels are reclassified using the threshold 425 

continuum approach, all pixels above the threshold value are cumulative. Therefore, a larger 426 

number of pixels are analyzed at each threshold continuum value compared to the range 427 

method. The SD of LST at each threshold continuum value is obviously larger than that of the 428 

range method for this reason. There is also a continuous gradual decline in the number of 429 

pixels as the threshold increases, indicating a progressively changing landscape. 430 

From the analysis above, we infer that the range approach is better suited for an analysis 431 

of the specific ranges of land cover with comparatively uniform pixels. Compared to the 432 

range approach, the threshold continuum method is more suitable for characterizing the 433 

landscape along a continuum of established minimum land cover proportions such as related 434 

to the degree of urban ISA expansion. When using the threshold continuum approach, low 435 

thresholds usually include a wide variation of land covers and therefore characterize a 436 

heterogeneous landscape. By combining these two discretization approaches to analyze LST 437 

patterns as in Table 3, we can quantitatively analyze the impact of each percent ISA zone on 438 

the whole urban LST and thermal environment. 439 

4.4. Urban thermal intensity analysis 440 

The UHI effect is defined as an average value that represents the difference between the 441 

mean surface temperature of urban and rural surrounding areas (Sobrino et al., 2012). The 442 
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LST of vegetated surfaces is comparatively low, and these areas are usually in rural areas with 443 

percent ISA <10%. Here, we defined the UHI intensity as the difference of the urban area 444 

with higher LST and the mean LST value of the area with percent ISA <10%. The spatial 445 

extent of the high intensity area covered by the aggregated cluster of urban pixels whose LST 446 

is higher than the rural LST can be obtained by a predefined threshold value.  447 

Fig. 6 shows the frequency of the urban thermal intensity occurrences between the urban 448 

and suburban area of Fuzhou in 1989 and 2001 as histograms, in which an LST difference >4 449 

K was defined as the threshold value. Fig. 6 was obtained from the difference between the 450 

LST inside the urban area and the non-urban area with percent ISA <10%. It is clear that (1) 451 

although the trends of the intensity occurrences were similar for both dates, the differences of 452 

the maximum LST value peaked at 11 K in 1989 and at 9 K in 2001 because of seasonal 453 

variation; (2) the statistics of the thermal intensity are also influenced by the spatial resolution 454 

of LST. In this study, the spatial resolution of the LST maps was 30 m. In future, there is a 455 

need to analyze the scaling properties of the urban thermal intensity. 456 

 457 

Fig. 6. Histogram of urban thermal intensity in Fuzhou in 1989 and 2001. 458 

 459 

Fig. 6 shows that the frequency of the pixels ≥4 K varied greatly between both dates 460 

because of seasonal variation, especially in the zone of 5-8 K. An analysis with discretized 461 

percent ISA in Fig. 4 and LST in Fig. 5 shows that the zones with LST differences of 5-7 K 462 

were mainly in the high density development areas (>50% ISA). The land cover categories in 463 

these zones were usually the urban impervious surfaces such as buildings, streets etc. 464 

predominantly made of concrete, stone, and metal. Those zones with LST differences >7 K in 465 

2001 and >8 K in 1989 were mainly some CBD areas, some roads, industrial land, and bare 466 

soil areas. Therefore, a quantitative analysis of the spatial distribution patterns of the thermal 467 

intensity and percent ISA is significant for urban planning  and ecological construction. As 468 

urbanization occurred, these zones have appeared in the outskirts of the city and are visible in 469 

the 2001 imagery. However, Fig. 6 shows that the spatial extent of the urban thermal intensity 470 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 

18 
 

was larger and its values were higher in the summer of 1989 than that in the early spring of 471 

2001 due to seasonal influences. 472 

4.5. ISA pattern change analysis using landscape metrics 473 

The landscape metric results for the range and the threshold continuum approach for 474 

discretization show different patterns (Table 4 and 5).  475 

 476 

Table 4 Landscape metric values based on range approach for both dates. 477 

 478 

 479 

Table 5 Landscape metric values based on threshold continuum approach for both dates. 480 

 481 

Table 4 shows that the change trends of PD in different ISA categories were similar 482 

between 1989 and 2001. The values increased from 1989 to 2001 because urban expansion 483 

led to higher patch density, but the values in the 30%-50% ISA class span a larger range 484 

(13.39-26.56) because PD changes more extensively. This means that the spatial 485 

heterogeneity of the impervious surface components in the landscape has increased because of 486 

urbanization. In the 10%-30% ISA class, the PD values spanned a relatively small range.  487 

LSI and PAFRAC in Table 4 also showed the same trend as PD, increasing in all four 488 

ISA zones from 1989 to 2001, and the values of PAFRAC showed a slight variation. It is 489 

noticeable that the LSI and PAFRAC show more variability in the 30%-50% and 50%-70% 490 

ISA categories comparatively. In the urbanization process, the structure of the urban 491 

landscape was quite complex and the diversity of landscape elements was high. The ISA 492 

patches in the urbanized parts of the study area became increasingly fragmented and less 493 

connected over time, leading to increasing urban landscape complexity. Therefore, PD, LSI 494 

and PAFRAC all increased as the impervious urban areas expanded. The LSI increased in all 495 

the four ISA zones of Table 4, showing that the landscape structure became more irregular 496 

and complex between the two dates, especially in the last three ISA zones. The total patch 497 

edge length in relation to area as expressed in the LSI increased, meaning a higher degree of 498 
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urban landscape fragmentation. The diversity of landscape components in four ISA zones is 499 

increasing with the enhancement of the urban growth preference from 1989 to 2001, but 500 

landscape geometrical complexity and patch fragmentation have different trends of change 501 

under different urban development modes. 502 

Unlike PD, LSI and PAFRAC, the values of AI in Table 4 decreased from 1989 to 2001 503 

as percent ISA increased. AI decreases if the amount of adjacencies of patches of the same 504 

class declines over time. This means that spatial aggregations of ISA decreased as the urban 505 

expansion resulted in higher fragmentation of discretized ISA patches in the four ISA zones. 506 

Urban landscape patterns in the three zones were generally more complex in 2001 than in 507 

1989, which can be explained by the fact that there was more vegetation cover interspersed 508 

within the developed areas in 2001 in comparison to 1989. In the 30%-50% and 50%-70% 509 

ISA zones, the values of AI decreased more than other ISA zones from 1989 to 2001. 510 

In Table 4, the COHESION metric decreased in the three zones with less than 70% ISA 511 

but slightly increased in the >70% ISA zone. In Table 2, the areas of 50%-70% and >70% 512 

ISA significantly increased from 1989 to 2001 and urban expansion occurred more in these 513 

two zones than in any other. In Table 4, the values of metrics in the 30%-50% and 50%-70% 514 

ISA zones generally exhibited larger variation. This is indicative of the complexity or 515 

heterogeneity of landscapes in the two zones because of the urban landscape patterns change. 516 

Urban expansion and the change of landscape patterns influenced the density, aggregation, 517 

connectedness, shape and perimeter-area fractal dimensions of ISA patches in different urban 518 

developed areas, especially in the 30%-50% and 50%-70% ISA zones. 519 

The two percent ISA discretization methods had a differential effect on the landscape 520 

metrics (Table 4 and 5). In all five metrics tested in Table 4, the values of the range 521 

discretization vary relatively little across the percent ISA ranges. In contrast, the values of the 522 

threshold continuum approach (Table 5) changed significantly across different thresholds. We 523 

observed relatively large change across percent ISA thresholds, while for the threshold 524 

continuum approach we also uncovered considerable fluctuations in the results. Generally, the 525 

change trends of landscape metrics between two dates in Table 5 are similar to those in Table 526 
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4. However, the results show that landscape metrics results can vary significantly across the 527 

landscape depending on fractional cover values. A comparative interpretation of Table 4 and 528 

5 illustrates the impact of percent ISA on urban landscape structure. This is useful for 529 

identifying those ISA proportions that lead to the greatest changes in urban landscape 530 

structure and the impact of spatial structural patterns on the thermal environment.  531 

4.6. Pattern analysis of LST and landscape metrics for different seasons 532 

Landscape patches in a region are linked to distinct properties of the thermal environment. 533 

Fig. 7 depicts plots of mean LST and landscape patterns for different percent ISA zones in 534 

Fuzhou for both years. The percent ISA zonal distribution patterns are characterized with the 535 

structural landscape metrics and LST. Besides LULC, the season has an influence on the LST 536 

distribution pattern. LST in 1989 showed higher variability than in 2001 due to the seasonal 537 

effect. There are similar trends in landscape metrics in four percent ISA categories between the 538 

two dates, however, the landscape metrics in 2001 show a larger variation. The trends indicate 539 

that the 10%-30% ISA zones exhibit the lowest landscape metric and LST values. The metrics 540 

span a larger range in the 10%-30% to 30%-50% ISA zones. Especially for LSI, the metric 541 

increased to maximum values in ISA zone 30%-50%, and then decreased sharply as the LST 542 

increased. This is indicative of the shape change of ISA patches, and the greater complexity or 543 

heterogeneity of landscapes in medium and high urban development densities because urban 544 

expansion resulted not only in an increase in absolute ISA extent but also in different urban 545 

landscape structures. 546 

In Fig. 7a and b, the rates of increase of LST were lower than those of AI and 547 

COHESION, especially in the high density urban area. For example, for the 30%-50%; 548 

50%-70% and >70% ISA categories, mean LST increased from 300.3 K to 301.1 K and to 549 

302.6 K in 1989; 287.6 K to 288.4 K and to 289.5 K in 2001, respectively. However, 550 

COHESION increased from 93.77 to 95.43 and to 98.03 in 1989, and 77.2 to 89.51 and to 551 

99.12 in 2001. In medium and high density urban areas, AI and COHESION had positive 552 

relationships with LST, and LSI had a negative relationship with LST. The implication of this 553 
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finding is that a greater degree of adjacency of patches with the same degree of ISA tends to 554 

coincide with a more pronounced UHI effect.  555 

 556 

 557 

Fig. 7. The 1989 and 2001 landscape metrics and mean LST for each percent ISA category in 558 

urban areas. 559 

 560 

Quantifying the spatial distribution of ISA patterns with landscape metrics generated 561 

from percent ISA and LST over time can indicate the process of urban expansion and its 562 

impacts on the thermal environment. This analysis can also provide knowledge for climate 563 

change adaptation policies in cities. 564 

5. Conclusions 565 

Land use change resulted from urbanization leads to changing landscape patterns and 566 

thermal properties. Urban structures are amongst the most complex ones on the Earth’s 567 

surface (Bechtel and Daneke, 2012; Bechtel, 2012). In this paper, sub-pixel ISA was derived 568 

from Landsat data by LSMA and its accuracy assessed with high spatial resolution IKONOS 569 

imagery and aerial photographs.  570 

A new method for deriving landscape metrics from percent ISA by discretizing soft 571 

classifications of percent ISA using the range approach and the threshold continuum approach 572 

over heterogeneous urban areas is presented. The characteristics of the landscape and LST 573 

patterns in Fuzhou are explored for the two main seasons using an interpretation of landscape 574 

pattern metrics from FRAGSTATS. The information provided by quantifying the 575 

relationships between ISA and landscape metrics with LST provided a perspective on the 576 

understanding of urban morphology and the urban thermal environment going beyond 577 

conventional urban remote sensing studies. Although the Landsat data had only one thermal 578 

channel which limited the achievable accuracy of the LST retrieval, it was possible to analyze 579 

the urban thermal characteristics. The results provide new knowledge on the climate 580 

(a) (b) 
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adaptation potential of specific spatial urban landscape patterns of impervious surfaces in 581 

cities. 582 

The main results of this research have shown that: 583 

(i) In addition to the absolute amount of impervious surface area, the spatial structural 584 

arrangement of such surfaces matters in determining urban land surface temperature, at least 585 

in some cities such as Fuzhou. 586 

(ii) The range and continuum threshold approach are a useful framework for 587 

understanding the dynamics of urban thermal environments. A comparison of the range and 588 

continuum threshold approach shows that ISA impacts on the urban thermal environment. If 589 

the percent ISA is to be derived more accurately, the results of the proposed method may be 590 

improved. 591 

(iii) In the city of Fuzhou, urban expansion and the change of landscape patterns 592 

influenced the density, aggregation, connectedness, shape and perimeter-area fractal 593 

dimensions of ISA patches. In medium and high density urban areas, AI and COHESION 594 

generated from discrete percent ISA are shown to have positive relationships with LST, and 595 

LSI has a negative relationship with LST. 596 

There are several areas for future work arising from this study. 597 

(i) Landscape metrics are sensitive to the discrete percent ISA zones. Future work needs 598 

to analyze percent ISA rates of change at various thresholds to determine if there are 599 

significant factors operating in the landscape at specific land cover proportions and whether 600 

optimal and critical thresholds for landscape characterization can be identified; 601 

(ii) Multi-temporal studies of the thermal environment of a single city that has obvious 602 

variations of temperature patterns over four seasons are needed. In addition, comparisons of 603 

spatial-temporal patterns of LST and landscape metrics for cities over four seasons would be 604 

useful to examine the transferability of our findings to other climate zones; 605 

(iii) Urban landscape patterns were distinguished by percent ISA in this study. In future, 606 

local micro-climatic zones such as urban core, urban dense, community area, industrial area, 607 
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and so on can be combined with different percent ISA categories to analyze the urban thermal 608 

environment more accurately. 609 
 610 

 611 
References 612 

Adams, J. B., Sabol, D. E., Kapos, V., Filho, R. A., Roberts, D. A., Smith, M. O., et al., 1995. 613 

Classification of multispectral images based on fractions of endmembers: Application to land 614 

cover change in the Brazilian Amazon. Remote Sensing of Environment 52, 137–154. 615 

Amiri, R., Weng, Q., Alimohammadi, A., Alavipanah, S. K., 2009. The spatial-temporal 616 

dynamics of land surface temperatures in relation to fractional vegetation cover and land 617 

use/cover in the Tabriz urban area, Iran. Remote Sensing of Environment 113, 2606−2617. 618 

Arnold, C. L. Jr., Gibbons, C. J., 1996. Impervious surface coverage the emergence of a key 619 

environmental indicator. Journal of the American Planning Association 62, 243−258. 620 

Barsi, J. A., Schott, J. R., Palluconi, F. D., Hook, S. J., 2005. Validation of a web-based 621 

atmospheric correction tool for single thermal band instruments. Proceedings, SPIE, 622 

Bellingham, WA. 623 

Bechtel, B. Daneke, C., 2012. Classification of local climate zones based on multiple earth 624 

observation data. IEEE Transactions on Geoscience and Remote Sensing 5, 1191–1202. 625 

Bechtel, B., 2012. Robustness of annual cycle parameters to characterize the urban thermal 626 

landscapes. IEEE Geoscience and Remote Sensing letters 9, 876–880. 627 

Chander, G., Markham, B., 2003. Revised Landsat-5 TM radiometric calibration procedures 628 

and post calibration dynamic ranges. IEEE Transactions on Geoscience and Remote Sensing 629 

41, 2674–2677. 630 
Chang, C., Wu, C., Liu, W., Ouyang, Y., 2006. A new growing method for simplex-based 631 

endmember extraction algorithm,” IEEE Transactions on Geoscience and Remote Sensing 632 

44(10), 2804−2819. 633 

Chen, X. L., Zhao, M. Z., Li, P. X., Yin, Z. Y., 2006. Remote sensing image-based analysis of 634 

the relationship between urban heat island and land use/cover changes. Remote Sensing of 635 

Environment 104, 133–146. 636 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 

24 
 

Chen, X., Chen, J., Jia, X. & Wu, J., 2010. Impact of collinearity on linear and nonlinear 637 

spectral mixture analysis. In: BENEDIKTSSON, J. A. (ed.) 2nd Workshop on Hyperspectral 638 

Image and Signal Processing (WHISPERS): Evolution in remote sensing. Reykjavik, Iceland: 639 

IEEE. 640 

Deng, C., Wu, C., 2013. Estimating very high resolution urban surface temperature using a 641 

spectral unmixing and thermal mixing approach 23, 155−164. 642 

Frazier, A. E., Wang, L., 2011. Characterizing spatial patterns of invasive species using 643 

sub-pixel classifications. Remote Sensing of Environment 115, 1997−2007. 644 

Gallo, K. P., Owen, T. W., 1999. Satellite based adjustments for the urban heat island 645 

temperature bias. Journal of Applied Meteorology 38, 806–813. 646 

Gustafson, E. J., 1998. Quantifying landscape spatial pattern: What is the state of the art?. 647 

Ecosystems 1, 143–156. 648 

Imhoff, M. L., Zhang, P., Wolfe, R. E., Bounoua, L., 2010. Remote sensing of the urban heat 649 

island effect across biomes in the continental USA. Remote Sensing of Environment 114, 650 

504–513. 651 

Kato, S., Yamaguchi, Y., 2005. Analysis of urban heat-island effect using ASTER and ETM+ 652 

data: Separation of anthropogenic heat discharge and natural heat radiation from sensible heat 653 

flux. Remote Sensing of Environment 99, 44−54. 654 

Li, J., Song, C., Cao, L., et al., 2011. Impacts of landscape structure on surface urban heat 655 

islands: A case study of Shanghai, China. Remote Sensing of Environment, 115, 3249–3263. 656 

Liu, H., Weng, Q., 2008. Seasonal variations in the relationship between landscape pattern 657 

and land surface temperature in Indianapolis, USA. Environmental Monitoring and 658 

Assessment 144, 199–219. 659 

Lo, C. P., Quattrochi, D. A., Luvall, J. C., 1997. Application of high resolution thermal 660 

infrared remote sensing and GIS to assess the urban heat island effect. International Journal of 661 

Remote Sensing 18, 287–304. 662 
Lu, D., Weng, Q., 2006. Use of impervious surface in urban land-use classification. Remote 663 

Sensing of Environment 102, 146−160. 664 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 

25 
 

Maimaitiyiming,  M., Ghulam, A., Tiyip, T., et al., 2014. Effects of green space spatial 665 

pattern on land surface temperature: Implications for sustainable urban planning and climate 666 

change adaptation. ISPRS Journal of Photogrammetry and Remote Sensing 89, 59−66. 667 

McGarigal, K., Cushman, S. A., Neel, M. C., Ene, E., 2002. FRAGSTATS: Spatial Pattern 668 

Analysis Program for Categorical Maps. Computer software program produced by the authors 669 

at the University of Massachusetts, Amherst. Available at the following web site: 670 

www.umass.edu/landeco/research/fragstats/fragstats.html. 671 

Michishita, R., Jiang, Z., Xu, B., 2012. Monitoring two decades of urbanization in the Poyang 672 

Lake area, China through spectral unmixing. Remote Sensing of Environment 117, 3–18. 673 

Mitraka, Z., Chrysoulakis, N., Kamarianakis, Y., Partsinevelos, P., Tsouchlaraki, A., 2012. 674 

Improving the estimation of urban surface emissivity based on sub-pixel classification of high 675 

resolution satellite imagery. Remote Sensing of Environment 117, 125–134. 676 

Mustard, J. F., Sunshine, J. M., 1999. Spectral analysis for earth science: Investigations using 677 

remote sensing data. In A. N. Rencz (Ed.), Remote sensing for the earth sciences: Manual of 678 

remote sensing, vol. 3 (3rd ed.), John Wiley & Sons Inc., New York, pp. 251–307. 679 

Owen, T. W., Carlson, T. N., Gillies, R. R., 1998. An assessment of satellite remotely sensed 680 

land cover parameters in quantitatively describing the climatic effect of urbanization. 681 

International Journal of Remote Sensing 19, 1663–1681. 682 
Plaza, Martínez, P., Gualtieri, J. A., Pérez, M. R., 2002. Automated identification of 683 

endmembers from hyperspectral data using mathematical morphology. Image and Signal 684 

Processing for Remote Sensing VII, Proceedings of SPIE 4541, 278−287. 685 

Price, J. C., 1990. Using spatial context in satellite data to infer regional scale 686 

evapotranspiration. IEEE Transactions on Geoscience and Remote Sensing 28, 940–948. 687 

Pu, R., Gong, P., Ryo, M., Todashi, S., 2006. Assessment of multi-resolution and multi-sensor 688 

data for urban surface temperature retrieval. Remote Sensing of Environment 104, 211–225. 689 

Rashed, T., 2008. Remote sensing of within-class change in urban neighborhood structures. 690 

Computers, Environment and Urban Systems 32, 343–354. 691 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 

26 
 

Ridd, M. K., 1995. Exploring a V-I-S (vegetation-impervious surface-soil) model for urban 692 

ecosystem analysis through remote sensing: comparative anatomy for cities. International 693 

Journal of Remote Sensing 16, 2165–2185. 694 

Riitters, K. H., O’Neill, R. V., Hunsaker, C. T., et al., 1995. A factor analysis of landscape 695 

pattern and structure metrics. Landscape Ecology 10, 23–39. 696 

Schroeder, T. A., Cohen, W. B., Song, C. H., Canty, M. J., Yang, Z. Q., 2006. Radiometric 697 

correction of multi-temporal Landsat data for characterization of early successional forest 698 

patterns in western Oregon. Remote Sensing of Environment 103, 16–26. 699 

Berk, A., Anderson, G. P., Acharya, P. K., et al., 1999. MODTRAN4 User's Manual, Air 700 

Force Research Laborary, North Andover, MA, USA, pp. 10–35. 701 

Schumaker, N., 1996. Using landscape indices to predict habitat connectivity. Ecology 77, 702 

1210–1225. 703 

Smith, M. O., Ustin, S. L., Adams, J. B., Gillespie, A. R., 1990. Vegetation in deserts: I. A 704 

regional measure of abundance from multispectral images. Remote Sensing of Environment 705 

31, 1−26. 706 

Sobrino, J. A., Oltra-Carrió, R., Sòria, G., Bianchi, R., Paganini, M., 2012. Impact of spatial 707 

resolution and satellite overpass time on evaluation of the surface urban heat island effects. 708 

Remote Sensing of Environment 117, 50–56. 709 

Sobrino, J. A., Raissouni, N., Li, Z. L., 2001. A comparative study of land surface emissivity 710 

retrieval from NOAA data. Remote Sensing of Environment 75, 256–266. 711 

Van De Grienzd, A. A., Owe, M., 1993. On the relationship between thermal emissivity and 712 

the normalized difference vegetation index for nature surfaces. International Journal of 713 

Remote Sensing 14, 1119–1131. 714 

Van Der Meer, F. D. & Jia, X. P., 2012. Collinearity and orthogonality of endmembers in 715 

linear spectral unmixing. International Journal of Applied Earth Observation and 716 

Geoinformation 18, 491–503. 717 

Voogt, J. A., Oke, T. R., 2003. Thermal remote sensing of urban climates. Remote Sensing of 718 

Environment 86, 370−384. 719 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 

27 
 

Wan, Z., Dozier, J., 1996. A generalized split-window algorithm for retrieving land-surface 720 

temperature from space. IEEE Transactions on Geoscience and Remote Sensing 34, 892–905. 721 

Weng, Q., Lu D., Schubring J., 2004. Estimation of land surface temperature-vegetation 722 

abundance relationship for urban heat island studies. Remote Sensing of Environment 89, 723 

467–483. 724 

Xian, G., Crane, M., 2006. An analysis of urban thermal characteristics and associated land 725 

cover in Tampa Bay and Las Vegas using Landsat satellite data. Remote Sensing of 726 

Environment 104, 147–156. 727 

Yuan, F., Bauer, M. E., 2007. Comparison of impervious surface area and normalized 728 

difference vegetation index as indicators of surface urban heat island effects in Landsat 729 

imagery. Remote Sensing of Environment 106, 375–386. 730 

Yue, W., Xu, J., Tan, W., Xu, L., 2007. The relationship between land surface temperature 731 

and NDVI with remote sensing: application to Shanghai Landsat 7 ETM+ data. International 732 

Journal of Remote Sensing 28, 3205–3226. 733 

Zhang, Y., Odeh, I., Han, C., 2009. Bi-temporal characterization of land surface temperature 734 

in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. 735 

International Journal of Applied Earth Observation and Geoinformation 11, 256–264. 736 

Zhang, Y., Odeh, I., Ramadan, E., 2013. Assessment of land surface temperature in relation to 737 

landscape metrics and fractional vegetation cover in an urban/peri-urban region using Landsat 738 

data. International Journal of Remote Sensing, 34, 168–189. 739 

Zhang, Y., Balzter, H., Wu, X., 2013. Spatial–temporal patterns of urban anthropogenic heat 740 

discharge in Fuzhou, China, observed from sensible heat flux using Landsat TM/ETM+ data. 741 

International Journal of Remote Sensing, 34, 1459–1477. 742 

Zhou, D., Zhao, S., Liu, S., Zhang, L., Zhu, C., 2014. Surface urban heat island in China's 32 743 

major cities: Spatial patterns and drivers. Remote Sensing of Environment 152, 51–61. 744 

 745 

 746 

List of Figure Captions 747 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 

28 
 

Figure 1 Location of the study area showing the Landsat 7 ETM+ image. 748 

Figure 2  Flow chart showing the steps for deriving percent ISA, percent ISA discretization, 749 
landscape metrics calculation and analysis with LST. 750 

Figure 3 Percent ISA images from LSMA of six TM/ETM+ reflective bands: (a) 1989 and 751 
(b) 2001 (Four sample plots delineated with polygons represent test sites for 752 
accuracy assessment). 753 

Figure 4 Discretized maps of percent ISA in the study area using the range approach: (a) 754 
1989 and (b) 2001. 755 

Figure 5 Spatial distribution patterns of LST from the TM image acquired on June 15, 1989 756 
(a) and ETM+ image acquired on March 4, 2001 (b). 757 

Figure 6   Histogram of urban thermal intensity in Fuzhou in 1989 and 2001. 758 

Figure 7 The 1989 and 2001 landscape metrics and mean LST for each percent ISA 759 
category in urban areas. 760 

List of Table Captions 761 

Table 1    Results of accuracy assessment of LSMA percent ISA fractions. Areas measured 762 
in km2. 763 

Table 2    The spatial extent (km2) of each category of urban percent ISA in 1989 and 2001 764 
and change in spatial extent between the two periods. 765 

Table 3    The mean and standard deviation (SD) of LST for each imperviousness category 766 
in 1989 and 2001. 767 

Table 4    Landscape metric values based on range approach for both dates. 768 

Table 5    Landscape metric values based on threshold continuum approach for both dates. 769 



 
 
 
 
 
 
 
 

 
Fig. 1. Location of the study area showing the Landsat 7 ETM+ image (Red = band 4, Green = band 3, 

Blue = band 2). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Flow chart showing the steps for deriving percent ISA, percent ISA discretization, landscape metrics 
calculation and analysis with LST. 
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Fig. 3. Percent ISA images from LSMA of six TM/ETM+ reflective bands: (a) 1989 and (b) 2001 (Four 

Landsat TM/ETM+ imagery 

Sub-pixel percent ISA by LSMA 

Discretized percent ISA using thresholds from a range approach and a continuum 
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sample plots delineated with polygons represent test sites for accuracy assessment). 
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Fig. 4. Discretized maps of percent ISA in the study area using the range approach: (a) 1989 and (b) 
2001.  

 

 

 

 

 

 

 

 

 

 

Fig. 5. Spatial distribution patterns of LST from the TM image acquired on June 15, 1989 (a) and 
ETM+ image acquired on March 4, 2001 (b) (local time). 

 
 
 
 
 
 
 
 
 
 

Fig. 6. Histogram of urban thermal intensity in Fuzhou in 1989 and 2001. 
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Fig. 7. The 1989 and 2001 landscape metrics and mean LST for each percent ISA category in urban areas. 
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Table 1 Results of accuracy assessment of LSMA percent ISA fractions. Areas measured in km2. 

ISA sites 

Area of ISA from 

accumulated fraction 

from TM image in 1989 

ISA area of reference 

data from aerial 

photos in 1988 

Average 

difference 

Area of ISA from 

accumulated fraction from 

ETM+ image in 2001 

ISA area of reference 

data from IKONOS 

image in 2000 

Average 

difference 

Site 1 1.570 1.662 5.86% 1.675 1.587 5.25% 

Site 2 1.712 1.865 8.94% 1.683 1.766 4.93% 

Site 3 1.224 1.396 14.05% 1.297 1.467 13.11% 

Site 4 0.963 1.034 7.37% 1.169 1.321 13.00% 

Total 5.469 5.957 8.92% 5.824 6.141 5.44% 

 

Table 2 The spatial extent (km2) of each category of urban percent ISA in 1989 and 2001 and change in 
spatial extent between the two periods. 

Year/percent ISA 10–30% ISA 30–50% ISA 50–70% ISA >70% ISA Total urban area 

1989 (km2) 4.57 109.58  81.43  58.95 254.53 

2001(km2)  4.42  76.09  98.29  110.69 289.49 

Changes(km2) -0.15  -33.49  16.87  51.74  

Percent change -3.28% -30.56% 20.72% 87.77%  

 

Table 3 The mean and standard deviation (SD) of LST for each imperviousness category in 1989 and 2001. 
percent ISA  >10% 10%–30%   >30% 30%–50%   >50% 50%–70%   >70% 

Mean 1989 LST (K) 301.09 299.63 301.1 300.07 301.78 301.15 302.64 

SD of 1989 of LST (K) 4.03 1.02 4.07 1.27 5.06 4.08 5.11 

Mean 2001 LST (K) 289.02 287.78 289.03 288.27 289.3 289.00 289.52 

SD of 2001 of LST (K) 1.92 1.79 1.93 1.86 1.65 1.53 1.82 

 
Table 4 Landscape metric values based on range approach for both dates. 

Landscape metrics/ Percent ISA  10%-30%   30%-50%   50%-70%   >70% 

 1989 2001 1989 2001 1989 2001 1989 2001 

PD 3.67 3.89 13.39 26.56 9.01 17.47 5.90 8.24 

AI 20.96 18.65 59.91 37.68 60.29 47.48 74.35 71.68 

COHESION 48.72 41.35 93.77 77.2 95.43 89.51 98.03 99.12 

LSI 56.29 56.84 140.47 180.84 119.95 174.02 66.37 101.81 

PAFRAC 1.53 1.54 1.55 1.61 1.55 1.63 1.50 1.50 

 
Table 5 Landscape metric values based on threshold continuum approach for both dates. 

Landscape metrics/ Percent ISA    >10%   >30%   >50%   >70% 

 1989 2001 1989 2001 1989 2001 1989 2001 

PD 6.01 8.15 6.08 8.23 5.51 6.53 5.9 8.24 

AI 84.28 83.39 84.25 83.39 80.89 91.924 74.35 71.68 

COHESION 99.57 99.7 99.56 99.69 98.89 99.65 98.03 99.12 

LSI 83.73 94.91 84.54 95.63 76.28 97.48 66.37 101.81 

PAFRAC 1.44 1.49 1.43 1.49 1.49 1.48 1.50 1.50 

 

Table


