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Abstract

Individual animal movement has been a focus of intense research and considerable contro-

versy over the last two decades, however the understanding of wider ecological implications of

various movement behaviours is lacking. In this paper, we consider this issue in the context

of pattern formation. Using an individual-based modelling approach and computer simula-

tions, we first show that density dependence (“auto-taxis”) of the individual movement in a

population of random walkers typically results in the formation of a strongly heterogeneous

population distribution consisting of clearly defined animals clusters or patches. We then show

that, when the movement takes place in a large spatial domain, the properties of the clusters

are significantly different in the populations of Brownian and non-Brownian walkers. Whilst

clusters tend to be stable in the case of Brownian motion, in the population of Levy walkers

clusters are dynamical so that the number of clusters fluctuates in the course of time. We

also show that the population dynamics of non-Brownian walkers exhibits two different time

scales: a short time scale of the relaxation of the initial condition and a long time scale when

one type of dynamics is replaced by another. Finally, we show that the distribution of sample

values in the populations of Brownian and non-Brownian walkers is significantly different.

Keywords: animal movement, individual-based modelling, density-dependence, pattern

formation, long transients
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1 Introduction

Spatial distributions of ecological populations are rarely uniform. Distinctly heterogeneous

or even ‘patchy’ distributions are ubiquitous in different ecosystems and are seen at different

spatial and temporal scales [44, 45]. This phenomenon—also referred to as aggregation or

patchiness [18, 44] or, more generally, ecological pattern formation [59]—is known to have im-

portant implications for population dynamics [55, 66, 87], nature conservation and renewable

resource management [16, 92, 93], agriculture and forestry [1, 39, 75, 81, 90], monitoring and

pest control [62, 64, 67], etc. Correspondingly, the factors and processes resulting in ecological

pattern formation have been a focus of substantial empirical and theoretical research for a few

decades. Several mechanisms have been identified that can result in a heterogeneous spatial

population distribution [51, 52] (see also [65] for a brief review). Pattern formation on large

(landscape or regional) spatial scales usually occurs on a multi-annual or multi-generational

time scale as the corresponding mechanisms involve the population growth. Large scale pat-

terns are often attributed to the interplay between dispersal and the inter-specific interactions

[43] such as the interaction of a given species with its predator or its prey [51, 52] or more

generally with a resource that limits its population growth, e.g. water in case of vegetation

patterns [40, 42]. Alternatively, large scale patterns can arise from the effect of spatially cor-

related external factors [50] that may result in synchronization between disconnected habitats

[32, 47, 73]. In a more general case, large scale patterns emerge as a result of a combined

effect of the population growth, dispersal and environmental noise [7].

Meanwhile, a distinctly heterogeneous population distribution is also often seen on a much

smaller, ‘within generation’ time scale where population reproduction is not directly involved,

and on a much smaller spatial scale, e.g. within a given forest, lake, meadow or farm field

where animals of a given species are aggregated or grouped together to create flocks, swarms,

herds etc. [41, 58] or simply well-defined patches of the population density [1, 56, 63]. Unless it

can be attributed to a distinct environmental heterogeneity (e.g. animal grouping at a better

feeding ground), this phenomenon is thought to be either a consequence of animal ‘sociality’

[17, 23] or the effect of the density-dependence of the movement [48, 85]. The specific animal’s

reaction can be of somewhat different type. In the former case, the animal adjusts its movement

velocity to those of the animals around, hence resulting in a collective movement as is often

seen in swarms, flocks and herds [23, 41]. In the latter case, the animal’s movement direction

correlates with the direction of the population density gradient. Although the movement

speed of different animals is not necessarily correlated in this case, the movement direction of

a given animal tends to be towards areas with higher population density; the phenomenon that

is known as taxis [38, 53, 85, 86]. We mention here that these two types are not exhaustive

and more complicated types of density dependence can happen too [31].

In either of the above cases, the small-scale, within-generation patterns in the spatial pop-

ulation distribution emerge as a result of a response of individual animals to the presence

of their conspecifics; hence, the properties of individual animal movement are at the core of

it [84]. However, the specific dynamical mechanisms often remain obscure. Over the last

two decades, there has been an intense debate on the issue of individual animal movement.
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Traditional approaches used to regard it as a Brownian motion [35, 77] where the dispersal

kernel decays with the distance very fast (exponential or faster) and hence the probability

of long-distance travel is suppressed. More recently, there was a trend to associate animal

movement with Levy flights [71, 79, 88]: the movement type with a much higher probability

of long-distance travel described by a ‘fat-tailed’ dispersal kernel (e.g. power law) [89]. Whilst

details of this debate are outside of the scope of this paper, one aspect that has been almost

completely overlooked so far (but see [68]) is the ecological consequences of the movement

behaviour on the population level. Our study aims to bridge this gap by investigating the

effect of various types of the individual movement on the pattern formation.

In this paper, we consider a mechanistic individual-based model that relates the formation of

a patchy spatial distribution of the population abundance to the density-dependent individual

animal movement. We first consider the case where the animals perform Brownian motion

(i.e. are described by a Gaussian dispersal kernel, the normal distribution) and show that

the density dependence of the movement leads to formation of distinct animals groups or

clusters. We then consider the case of animals performing non-Browninan motion (described

by a power law kernel) to show that, in combination with the density dependence, it leads to

pattern formation with different properties. For a power law kernel, the population tends to

be less aggregated than for an equivalent Gaussian kernel and the clusters (patches) appear

to be less stable, in particular allowing for dynamical transition between different states. The

distribution of sample values is shown to be essentially different too.

2 Model

In order to simulate animal movement with different properties and its effect on the emerging

spatial population distribution, we use the individual-based modelling approach [11, 22, 33,

84]. Correspondingly, the position of each individual animal is described explicitly at some

designated moments of time, tk, k = 0, 1, . . ., tk+1 = tk + ∆t where ∆t is the time increment.

In a general case, ∆t can vary with time. In this paper, we consider it to be constant, ∆t = 1;

therefore, {tk} is a set of positive integers.

We restrict our study to a system with one spatial dimension (1D). In terms of a more

realistic movement of animals walking or crawling on the surface, e.g. (x, y) plane, this may

correspond to either a transect across the habitat or to a narrow stripe, so that we are only

concerned with the x coordinate of the animals but not with their y coordinate. Extension of

our results onto a 2D system will be briefly discussed in Section 4.

Let us consider a population of N animals. Given the location of the nth animal is known

at time t, its position at the next moment (t+ 1) is simulated as

xn(t+ 1) = xn(t) + ∆x, (1)

where the increment ∆x thus gives the size of a ‘step’ made by the animal along its movement

path during the time increment ∆t = 1. The movement starts from some initial location,

xn(0) = xn,0.
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Once sufficient information about ∆x is available, the movement process is fully defined.

Following [14, 33, 84], we consider ∆x to be a random variable distributed according to a

certain probability density function ρ(∆x). We refer to function ρ(∆x) as the dispersal kernel.

For the sake of simplicity, we assume that all animals have identical movement behaviour so

that function ρ is the same for all animals.

We mention here that the randomness of the movement step is a subtle and somewhat

controversial issue. It is more likely to reflect the incompleteness of the available information

about the complex process of animal’s decision-making rather than the randomness in the

strict sense (for a detailed discussion of the “bugbear of randomness”, see [84]). However,

the theoretical framework describing individual animal movement as a random walk, at least

on certain spatial and temporal scales, has been shown to be in a very good agreement with

empirical studies and is widely accepted as an adequate research setup [6, 14, 36, 84, 89].

Since the main purpose of this study is to reveal possible population-level consequences of

different patterns of individual movement (in particular, Brownian and non-Brownian motion),

we consider two qualitatively different cases. In the first case, the dispersal kernel is a normal

distribution with the zero mean and the variance σ2:

ρ (∆x) = ρG
(
∆x|0, σ2

)
=

1√
2πσ2

exp

(
−(∆x)2

2σ2

)
. (2)

We will refer to animals performing the movement described by (2) as Brownian walkers.

In the second case, the dispersal kernel is described by a power law using the following

parametrization [27]:

ρ (∆x) = ρP (∆x|k, γ) =
C

(k + |∆x|)γ
, (3)

where k > 0 and γ > 1 are parameters of the distribution and C = 0.5(γ − 1)kγ−1 is the

normalizing coefficient to ensure that the total probability is one, i.e.
∫∞
−∞ ρ(ξ)dξ = 1. Note

that parameter k has the dimension of length, hence it has the meaning of a characteristic

distance of the movement process (cf. Section 3 in [37]). For γ ≤ 3, the stochastic movement

described by Eq. (3) is often referred to as Levy flight2. For convenience, we will refer to

animals performing the movement described by dispersal kernel (3) as non-Brownian walkers,

and in the particular case 1 < γ ≤ 3 as Levy walkers. Asymptotically, i.e. for large ∆x,

the dispersal kernel (3) coincides with the Lomax distribution [49] which is a special case of

Pareto distribution Type II [4]. We mention here that, being originally introduced as a model

to describe the distribution of wealth in the society [60], Pareto distributions were later used

to describe a broad range of phenomena in natural sciences, including animal movement [89].

We consider the movement in a closed domain so that, for any n, 0 < xn(t) < L at any

t. The closed boundaries at x = 0 and x = L are modelled by introducing an additional

rule. Let the value of ∆x generated for the (n + 1)th step be such that either xn(t + 1) < 0

or xn(t + 1) > L. Then this value of ∆x is aborted, hence effectively changing the animal’s

2In ecological literature, it is sometimes also referred to as a Levy walk, which is not entirely correct as the

Levy walk is a different stochastic process, e.g. see [89].
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decision to leave, and a new ∆x is generated to make sure that the animal remains inside the

domain, i.e. 0 < xn(t+ 1) < L.

2.1 Density-dependent movement

In the simulation procedure described above, all animals move independently, i.e. the presence

of their conspecifics in a vicinity of their location does not have any effect on their choice

of the next movement step. As is mentioned in the introduction, this is not always true. A

moving animal often reacts to the presence of other animals, i.e. by correlating the direction of

its movement with the population density gradient, so that the individual movement becomes

density dependent.

In order to account for the taxis-type density dependence, we need to modify the individual-

based modelling approach. Firstly, we introduce the ‘perception radius’ R ≥ 0 [69, 78]. This

is the distance in each direction (in the 1D case, left or right) over which an animal can detect

the presence of other animals. At any moment t, only those animals that are within the region

[xn(t) − R, xn(t) + R] are taken into account and hence can affect the movement. Note that

if R = 0, then there is no density dependence and the animals will perform unbiased random

movement, cf. Eqs. (1–2).

Secondly, we introduce a parameter P to quantify the strength of the directional bias,

0 ≤ P ≤ 1. Let nl and nr be the total number of animals that are counted (within the

perception radius), respectively, to the left and right of the given animal. Let u be an auxiliary

random variable uniformly distributed over interval Ω where Ω is defined as follows:

Ω = [P − 1, P ] if nl < nr, Ω = [−P, 1− P ] if nl > nr, (4)

Ω = [−0.5, 0.5] if nl = nr.

In general, the absolute value of the movement step of the density-dependent movement and its

direction are affected by different factors; hence, we consider them to be uncorrelated. Thus,

they can be regarded as mutually independent random variables. The probability density

of having the movement step of a given value, say ∆xd, is then given by a product of the

probability density of making a step of a given length |∆x| and the probability of moving left

or right. Therefore, any realization of this random variable can be written as

∆xd = sign(u) · |∆x|, (5)

where ∆x is the movement step of the unbiased (density-independent) movement, e.g. as given

by (2) or (3).

If P = 1, then the animal always moves along the gradient of the population density. For

P = 0.5, the probability of u being positive or negative is exactly 0.5, so that the move-

ment becomes unbiased (effectively, density-independent). Values of P < 0.5 correspond to

a negative density-dependence where the animal is more likely to move against the gradient

(towards the area with lower population density); we do not consider this case here. In the

simulations below, we consider 0.5 < P < 1. Note that, in this case, a given animal does
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not move deterministically left or right simply depending on whether nl > nr or nl < nr. In

order to account for the complexity of movement decisions, we therefore have assumed that

a certain degree of randomness is always present, i.e. the animal can with some probability

move against the gradient of the population density, not necessarily along the gradient (as is

expected on average).

In order to make the model complete, we need to specify what happens if a given animal

meets another animal during its movement step, i.e. if its final position after the step is behind

another animal. In this paper, we consider the rule that the moving animal does not stop

until it reaches its final destination, i.e. its movement step is not terminated if it comes close

to another animal. (Alternatives to this rule will be discussed in Section 4.) Note that it does

not mean that the animal has to jump other each other: here we recall that our 1D model

corresponds to a narrow stripe rather than a line, so passing-by is possible.

Sample trajectories generated by the above rules are shown in Fig. 1 (obtained for P = 0.75

and R = L, i.e. in the case of a global coupling where each animal can see all other animals).

It is readily seen that, as a result of the density-dependent movement, the animals tend to

group together to form a ‘cluster’. This observation agrees with intuitive expectations and, by

itself, is hardly surprising. What is not intuitive is the properties of the arising spatial pattern

(e.g. how many clusters can emerge) and how they depend on the movement parameters P ,

R and σ (or γ and k). We address this question in the next section.
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Figure 1: Individual movement paths of 50 insects over 500 time steps in the case of density-

dependent movement with P=0.75 and R = 10 generated by the density-dependent random walk

model using Gaussian dispersal kernel (2) with σ = 0.02. Each insect is represented by a different

colour. At time t = 0, the population is randomly distributed over the domain 0 ≤ x ≤ 10 with

constant probability density.

Since our focus is on the dispersal of the population rather than individuals, it is more

convenient to describe the population distribution over space by the population density rather

than by an array of the coordinates for all individuals. In order to calculate the population

density, we split the domain to a number of ‘bins’; the number of animals inside a given bin

6



divided by the length of the bin will approximate the population density at the location of the

bin. The distribution of the population density over space then takes the form of a histogram.

Now, since the purpose of this study is to analyze the dynamics of the population clusters

(patches) as a function of the movement parameters, we need a formal definition of the cluster.

We say that a group of adjacent bins forms a cluster if:

1. for a given parameter 0 < b < 1, there is a bin in the group (‘major bin’) that contains

a proportion of the total number of animals that is larger than b;

2. any bin on either side of the ‘major bin’ belong to the given cluster if it contains the

number of animals larger than 0.2% of the total number.

3 Simulation results

Our goal is to reveal typical properties of the emerging spatial population distribution in

the population of animals performing density-dependent individual random movement (as

described in the previous section) subject to the properties of the dispersal kernel (Gaussian or

power law, see Eqs. (2–3)) and the strength of the density-dependence as given by parameters

P and R. For the initial condition, we consider that the population is distributed uniformly

(in the statistical sense) over the domain. Mathematically, it means that the initial location

of each individual is generated using the probability density function ρ0(x) that does not

depend on space; for a 1D domain of length L, ρ0 = 1/L = const. An example of the initial

population distribution is shown in Fig. 2. Note that, due to the random nature of the initial

distribution, the exact profile changes with each new simulation run. Here and below (unless
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Figure 2: Example of the initial distribution. The total number of N = 1000 animals is distributed

uniformly (in the statistical sense, i.e. with constant probability density) over the domain of length

L = 10. The domain is split into one hundred bins of equal size ∆x = 0.1; the horizontal axis shows

the bin number, so that the corresponding coordinate x = 0.1×bin number. Each column shows the

number of animals in a given bin.
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explicitly stated otherwise), we consider the population of N = 1000 animals moving in the

domain of length L = 10 (in abstract units). The domain is split into one hundred bins, so

that the spatial width of each domain is 0.1. For the proportion defining the boundaries of

the cluster, the value b = 0.02 is used (i.e. 2% of the total population).

We mention here that our choice of parameters here and below is largely hypothetical. The

goal of this paper is to make an insight into some generic properties of the population dynam-

ics rather than to analyse the dynamics of a specific population. It is not our purpose here

to compare the simulation results to real field or laboratory data obtained for a real animal

species. Looking for ‘true’ parameter values is therefore hardly necessary, if possible at all,

given the schematic nature of our model. Instead, our purpose is to reveal the difference be-

tween the spatiotemporal patterns emerging for the two different movement types and between

the systems properties arising in different parameter ranges (i.e. ‘small’ vs ‘large’, and/or to

establish what is ‘small’ and what is ‘large’) with a particular focus on understanding the

effect of the directional bias as quantified by the parameter P.

3.1 Normal distribution: Brownian walkers

We begin with the case where the dispersal kernel is given by a normal distribution; see Eq. (2).

We consider animal movement in a large spatial domain, so that the characteristic movement

step is much less than the domain size, σ/L � 1 (this condition will be relaxed in Section

3.3). Typical simulation results are shown in Fig. 3. It is readily seen that the evolution of

the initial population distribution due to the individual density-dependent movement results

in the aggregation of the population into several clusters or patches. The population density

(i.e. the number of animals per bin) is high in the center of the cluster but close to zero

between the clusters.

Apparently, there is not much difference between the population distributions shown in the

left and right panels of the last row of Fig. 3, which corresponds to a large time. The question

is whether the system evolves to a stationary spatial distribution and, if yes, what is the

characteristic time scale for the convergence to the steady state. In order to make an insight

into these matters, for each cluster we calculate its size (the total number of animals in the

cluster) and its width (the distance between the left-most and right-most bins in the cluster).

Figure 4 shows the size and width of the four clusters shown in Fig. 3 vs time. It is readily seen

that the system never reaches the steady state in a strict sense as some random fluctuations

around the steady state persist at all times, albeit being relatively small. The time required

for the convergence to the quasi-steady state dynamics appears to depend on the size of the

cluster; the larger the cluster, the longer the convergence time is. This is seen particularly

well in Fig. 4b. Whilst for the smallest cluster (cluster 4) its width approaches its steady state

value (up to small random fluctuations) at t ≈ 300, for the largest cluster (cluster 1) it does

not happen until t ≈ 700. Interestingly, the convergence occurs at a somewhat different rate

for the size of the cluster and for its width. For the two smallest clusters, i.e. cluster 2 and

cluster 4, their size stabilizes already at t ≈ 150 (see Fig. 4a) but their width does not reach

its ‘final’ value until t ≈ 300 and t ≈ 400, respectively (Fig. 4b). For the intermediate cluster
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Figure 3: Population density over space at different moments of time emerging from a random-

uniform initial distribution, cf. Fig. 2. Each column shows the number of animals in a given bin.

Movement parameters are σ = 0.02, P = 0.6 and R = 1, other parameters are the same as in Fig. 2.

For the convenience of a further discussion, clusters are numbered, 1 to 4, left to right; see panel (a).

3, its size stabilizes at t ≈ 250 and its width at t ≈ 550.

Based on the simulation results (note that Fig. 3 shows only one typical example from a large

number of simulations performed) we conclude that the random-uniform initial distribution

in the course of time evolves to the formation of clearly defined clusters. Interestingly, for the

same parameter values the number of clusters emerging in the large time limit is not always the

same. This is obviously a result of the inherent randomness of the system’s dynamics which

is rooted in the randomness of the individual animal movement. As just one example, Fig. 5

(obtained for the same parameters as Fig. 3) shows the evolution of the initial distribution that

results in five clusters instead of four. Thus, for a given value of the movement parameters,

the pattern formation in the course of the system’s dynamics is described by the probabilities

(frequencies) of observing a distribution with a different number of clusters (see Tables 1–3

below).

The number of clusters (more precisely, the distribution of the probabilities for each number

of clusters) is different depending on the movement parameters. Figure 6 shows the population

distribution over space obtained in case the perception radius is R = 2, other parameters and
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Figure 4: The cluster size and width over time, (a) and (b) respectively, for the population dynamics

shown in Fig. 3. The parameters are the same as in Fig. 3. The curve numbering in panel (a)

corresponds to cluster numbering in Fig. 3; note that the relative order of the curves is different from

Fig. 3.

the initial distribution being the same as in Fig. 3. Obviously, in this case only two clusters

are formed.

Now we investigate how the frequency of different cluster numbers depends on the movement

parameters such the perception radius R, the directional bias P and the standard deviation

of the dispersal kernel σ. This question has been addressed through extensive numerical

simulations. For a given parameter set, one hundred simulations were run, each of them until

t = 3000. For each of the thus obtained one hundred spatial population distributions, the
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Figure 5: Population density over space obtained at t = 200 at a different realization (i.e. a different

simulation run) of the system. Parameters are the same as in Fig. 3. The dashed vertical lines show

the clusters’ boundaries. The different number of clusters, i.e. five instead of four, is the result of the

inherent stochasticity of the dynamics.
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Table 1: The probability for different numbers of clusters obtained in simulations for different values

of the perception radius R. Other parameters are P = 0.6 and σ = 0.02. For any given parameter

set, the probabilities were calculated based on one hundred simulation runs.

No. of clusters R = 1 R = 2 R = 3 R = 4 R = 5

1 0 0 0.33 1 1

2 0 0.69 0.67 0 0

3 0.03 0.31 0 0 0

4 0.53 0 0 0 0

5 0.41 0 0 0 0

6 0.03 0 0 0 0

Table 2: The probability of different numbers of clusters obtained in simulations for different values

of the directional bias P . Other parameters are R = 1 and σ = 0.02. For any given parameter set, the

probabilities were calculated based on one hundred simulation runs. Note that for these parameters

the number of clusters less than three has never been observed.

No. of clusters P = 0.6 P = 0.7 P = 0.8 P = 0.9 P = 1

3 0 0.01 0.01 0.01 0.02

4 0.51 0.56 0.48 0.42 0.42

5 0.45 0.4 0.47 0.52 0.5

6 0.04 0.03 0.04 0.05 0.06

Table 3: The probability for different numbers of clusters obtained in simulations for a different

balance between the random and directional movement as quantifies by parameters σ and P , respec-

tively. The perception radius is chosen as R = 1. For any given parameter set, the probabilities were

calculated based on one hundred simulation runs. Note that the probabilities do not add up to one

as in some simulations no stable clusters are formed (see also Fig. 8 and the comments in the text).

σ = 0.02 σ = 0.05 σ = 0.1

No. of clusters 3 4 5 6 2 3 4 5 2 3 4

P = 0.52 0.12 0 .72 0.05 0 0.12 0.19 0 0 0 0 0

P = 0.55 0.05 0.61 0.31 0 0 0.55 0.38 0 0.33 0.25 0

P = 0.6 0.1 0.42 0.43 0.05 0 0.23 0.71 0.04 0.07 0.73 0.13

number of clusters were counted, and for each number of clusters its frequency was calculated.

The results are summarized in Tables 1–3. Whilst the dependence of the results on the

perception radius is intuitive, i.e. the number of clusters tends to decrease with an increase

in R (see Table 1, also cf. Fig. 1 obtained for R = L = 10), the dependence on P is not.

It is readily seen from Table 2 that, even in the case P = 1 when the movement becomes

‘more deterministic’ (the animal always move along the population density gradient), the
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Figure 6: Population density over space obtained at different moments for the perception radius

R = 2, other parameters are the same as in Fig. 3.

system retains its stochastic nature as the evolution of the initial conditions can still lead to

a different number of clusters.

We also notice that, with an increase in σ, not only the number of clusters tends to decrease

(cf. Table 3) but also their shape changes; in particular, they become less aggregated. A typical

example is shown in Fig. 7. The effect of σ will be further investigated in Section 3.3.

Since parameter P quantifies the strength of the directional bias, one can expect that for the

values of P close to 0.5 (where the bias disappears), the random component of the movement

may be prevailing over the directional component and therefore clusters may become poorly

defined or do not emerge at all. This is indeed what is observed in the simulations. Figure 8

shows the spatial population distribution at a large time (t = 9000) obtained for P = 0.52. It

is readily seen that the population is now distributed over the space more uniformly than it

was for larger values of P . Altogether, it leads to the conclusion that the formation of clearly

defined clusters is a result of the directional density-dependent individual animal movement.

A question arises here as to how stable is the number of clusters in the course of time. We

have addressed it by means of long-term simulations. We have observed that the system’s
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Figure 7: Population density over space at (a) t = 100 and (b) t = 10000 obtained for movement

parameters σ = 0.1414, P = 0.6 and R = 1, other parameters are the same as above.

dynamics has two different time scales. For values of σ sufficiently small (e.g. σ ≤ 0.1) and

the values of P not too close to the critical value 0.5 (e.g. P ≥ 0.55), clearly shaped clusters

are formed by the time t ∼ 500. Once emerged, this pattern can remain unchanged (subject

to just small variations in the clusters size and width, cf. Fig. 4) over a considerable time,

up to t = 5000 or even longer. However, this appears to be a transient state rather than an

asymptotical one as the number of clusters then can change suddenly to another value. An

example of this dynamics is shown in Fig. 9: over the first stage, the number of clusters in the

pattern is five (cf. Fig. 5) but it suddenly changes to four at t ≈ 5000. Once a new pattern

with a different number of clusters emerges, it then remains unchanged; we did not observe

any further changes in long-term simulations.

The dynamics becomes essentially different in case of either σ becoming sufficiently large

or P sufficiently small. One example is shown in Fig. 10 where the number of clusters never
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Figure 8: Population density over space obtained at t = 9000 for P = 0.52 and σ = 0.1, other

parameters are the same as in Fig. 3.
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Figure 9: (a) Population density over space obtained at t = 50000 for σ = 0.02, R = 1 and P = 0.6,

other parameters are the same as above; (b) the number of the clusters in the pattern vs time. Note

the abrupt transition from five to four at t ≈ 5000.

stabilizes. We will call this type of spatiotemporal pattern “dynamical clusters”. Similarly

to the previous case (cf. Fig. 9), the dynamics has a few different time scales corresponding

to different stages of the dynamics. Over the first stage, the number of clusters fluctuates

wildly (for the parameters of Fig. 10, between zero and four). At approximately t = 2500, the

dynamics partially stabilizes by decreasing the range of fluctuations in the number of clusters

between one and three. Another change occurs at t ≈ 12000 when the fluctuations in the

number of clusters occurs predominantly between one and two (occasionally jumping up to

three). No further changes in the dynamics is observed at larger time.
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Figure 10: (a) Population density over space obtained at t = 50000, parameters are the same as in

Fig. 8; (b) the number of the clusters in the pattern vs time.
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3.2 Power law: Levy walkers

Now we are going to consider the case where the individual movement is described by a power

law as in Eq. (3). In order to make a sensible comparison between the results obtained for the

dispersal kernel given by the normal distribution (see the previous section) and those obtained

for the power law (see below), a certain condition of equivalence must be established. For

distribution with a finite variance, one way for doing that is to equalize the variance of different

probability distributions. However, this approach does not work in the most interesting case

of fat-tailed distributions, i.e. Eq. (3) with 1 < γ ≤ 3, because the dispersal kernel (3) does

not have a finite variance then. We therefore use a different approach [6], namely, we equalize

the survival probabilities, i.e. the probabilities for the moving animal to remain within a given

domain over a given interval. Let xt be the location of a given animal at a given time t, then

the probability that at the next observation time (t+ 1) the animal will remain within a given

distance r of its previous location, i.e. xt − r < xt+1 < xt + r, is calculated as follows:

P (xt − r < xt+1 < xt + r) =

∫ r

−r
ρ(ξ)dξ. (6)

For the two probability distributions, see Eqs. (2) and (3), we obtain, respectively:

P (xt − r < xt+1 < xt + r) = erf

(
r√
2σ2

)
, (7)

and

P (xt − r < xt+1 < xt + r) = 1− kγ−1

(k + r)γ−1
. (8)

Setting the the survival probability at a hypothetical value 0.9 and taking into account that

erf−1(0.9) = 1.16, we solve Eqs. (7) and (8) for r and equate the results (since r is the same),

thus arriving at the following relation between the parameters:

k = 1.16
√

2σ2
(

10
1

γ−1 − 1
)−1

. (9)

Therefore, for a given normal distribution with variance σ2, parameter k of the ‘equivalent’

(in the sense explained above) power law distribution (3) is given by relation (9).

Our simulations show that, in the population of Levy walkers, the random-uniform initial

condition evolves to an aggregated (patchy) population distribution, apparently similar to the

case of normal distribution. Typical results are shown in Fig. 11. However, we readily observe

that, apart from the generic property of the system to form spatial patterns, the population

of Levy walkers exhibits different properties compared to the population of the Brownian

walkers with the equivalent Gaussian kernel. In particular, clusters are now much wider and

less regular in shape. Moreover, the number of clusters is not fixed any more, cf. the middle

and the bottom panels in Fig. 11. A more detailed insight into the temporal dynamics (see

Fig. 12) shows how the number of clusters fluctuates with time in an irregular manner. For the

first period of t ≈ 25000 of the system’s dynamics, the number of clusters fluctuates between
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Figure 11: Clusters emerging in the population performing Levy flight (3) with γ = 2. Parameter

k = 0.0036 is calculated using the equivalence condition (9) with σ = 0.02. Other parameters are

R = 1 and P = 0.6, i.e. the same as in Fig. 3.

four and five. The system stays in the state with four clusters for most of the time (see the solid

horizontal line in the left-hand side half of the figure) but makes short occasional excursion

to the alternative state with five clusters. For convenience, we call this type of dynamics the

“4/5-dynamics”. Interestingly, the 4/5 dynamics is not sustainable and appears to be a very

long transient. At t ≈ 25000, the dynamics changes. Starting from t ≈ 25000, the number of

clusters fluctuates between three and four (being three for most of the time). We refer to this

dynamics as “3/4-dynamics”.
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The number of clusters and their distribution at different time steps.

For the power law standard case, we had no stability in the number of
clusters in the system. The standard case for the power law has
parameters: R = 1, k = 0.0036, γ = 2, N = 1000, P = 0.6, L = 10.

J.R. Ellis (University of Birmingham) An IBM study of spatial patterns 13th April 2018 15 / 20

Figure 12: Number of clusters vs time, parameters are the same as in Fig. 11. Over the first 25000

units of time, the number fluctuates between four and five (4/5-dynamics), at later time the number

fluctuates between three and four (3/4-dynamics).

We want to emphasize that the long term transient dynamics shown in Fig. 12 has nothing

to do with the usual transients caused by the effect of the initial conditions. In order to

demonstrate that, we describe the system’s dynamics by the number of transitions between

the states with different number of clusters (e.g. between four and five for 0 < t < 25000) per

one hundred time units. Figure 13 shows how this quantity changes with time. It is readily

seen that the initial population distribution converges to the quasi-steady 4/5-dynamics by

t ≈ 3000. The system therefore exhibits two different time scales. The shorter time scale
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Figure 13: Average number of transitions per given time between the states with different number

of clusters. Averaging was done over one hundred simulation runs. Parameters are the same as in

Fig. 11. Convergence of the initial distribution to the quasi-steady “4/5-dynamics” is clearly seen as

the number of transitions stabilizes within a certain range (as shown by the dashed horizontal lines)

at t ≈ 1500.
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corresponds to the relaxation of the initial conditions to the 4/5 dynamics (Fig. 13), and the

longer time-scale is the lifetime of the quasi-steady 4/5 dynamics before the system undergoes

a fast transition to the asymptotical 3/4-dynamics at t ≈ 25000.

Now we are going to check whether our results are sensitive to the value of threshold b

which is a part of our definition of clusters. Whilst the results obtained for the equivalent

population of Brownian walkers are not sensitive to the value of the threshold as the clusters

are well defined (cf. Fig. 9), in the population of Levy walkers the clusters are volatile and

the answer to the above question is by no means obvious. We therefore address this issue by

analysing simulation results using different values of b. Results of the analysis are shown in

Fig. 14. Note that here we use a simulation run different from that shown in Fig. 12, hence

the results obtained for the same value b = 0.02 are similar but not identical, even though

obtained for the same parameter values. It is readily seen that the number of clusters can

become sensitive to the value of b when b becomes large. Remarkably, neither the existence of
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with different
thresholds.

There are clear
differences in the
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found when the
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Figure 14: Sensitivity to the threshold density b defining cluster boundaries: number of clusters vs

time for b = 0.005 (top), b = 0.01 (middle) and b = 0.02 (bottom). Parameters are the same as in

Fig. 11.
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dynamical clusters nor the existence of the long-term transient is sensitive to b. We therefore

conclude that these are genuine properties of the population dynamics of Levy walkers.

We mention here that, due to the inherent stochasticity of the system, the duration of the

long transient is essentially a random value. In our simulations, we observed that the timing

of the transition to the asymptotical state can be anywhere between t ∼ 15000 and t ∼ 45000

(and occasionally taking smaller or larger values too). Also, in different simulations runs the

4/5 dynamics may include occasional excursions to the state with just three clusters, and

the asymptotical state 3/4 may exhibit relatively frequent excursions to the state with five

clusters.

An interesting question is how the properties of the system’s dynamics may be different for

different values of the exponent γ. Intuitively, one can expect that for sufficiently large values

of γ the dynamics may become more similar to that of Brownian walkers, because power law

distribution (3) with γ > 3 possesses a finite variance and hence converges to the normal

distribution by the virtue of the Central Limit Theorem (although the convergence of power

law to the normal distribution is slow). This is corroborated by simulations. Figure 15 shows

the results obtained for γ = 4. It is readily seen that dynamical clusters do not exist in this

case; the number of clusters do not fluctuate with time; see Fig. 15, right. Clusters themselves

are well defined, similar to what was observed in the case of Brownian walkers, cf. Fig. 15

(left) and the bottom of Fig. 3. Interestingly, long term transient dynamics is observed also

for γ = 4: the system does not converge to its final state of three clusters until t = 10000.

We have also checked the opposite case, i.e. very superdiffusive values 1 < γ < 2; see the

top row in Fig. 16. For comparison, the bottom row shows the case with γ = 2 (Fig. 16c)

and γ = 4 (Fig. 16d). It is readily seen that for γ = 1.1 (Fig. 16a) there are no clusters, so

that the population is spread all over the domain. As γ increases, areas of high population

density becomes visible. For γ = 1.5 (Fig. 16b), the number of clusters fluctuates in time
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Figure 15: Population dynamics of animals performing the power law walk (3) with γ = 4: (left)

spatial population distribution obtained at t = 20000, (right) number of clusters vs time. Parameters

are the same as in Fig. 11.
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Figure 16: The distribution of animals for different values of γ. The corresponding values of pa-

rameter k are calculated from equating survival probabilities to that of the normal distribution with

σ = 0.02. (a) γ = 1.1, (b) γ = 1.5, (c) γ = 2 and (d) γ = 4. All the distributions are shown at

t = 50000. Parameters are the same as in Fig. 3.

from 0 to 3, the case of two clusters being most common (seen at approximately one half of

the time steps). With a further increase in γ, clusters becomes clearly visible starting from

γ ≈ 2, these values they are dynamic and their number fluctuates with time (cf. Figs. 12 and

14). For γ ≥ 4, clusters are well defined and stable; the population is strongly aggregated

with high population density inside the clusters and approximately zero between the clusters.

3.3 Effect of the domain’s finiteness

In the simulations above, we focused on the case of a large domain, i.e. where the characteristic

movement step (as given by the value of the standard deviation σ of the normal distribution

(2) or by the value of parameter k in case of the power-law distribution (3)) is much smaller

than the size L of the domain, i.e. σ/L � 1 and k/L � 1. Arguably, in this case the effect

of the domain boundedness is small and the animal movement mimics closely the correspond-

ing movement in an unbounded space. A question arises here as to whether the significant
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difference that we observed above between the properties of the spatial pattern emerging in

the population of Brownian walkers and the population of Levy walkers would remain in case

the effect of the domain boundedness becomes more prominent, i.e. when σ/L or k/L are not

small any more.

Recall that in our model animals cannot leave the domain; see the second paragraph after

Eq. (3). Effectively, it means that the tail of the distribution is cut off. Although this cutoff

changes the asymptotical properties of the distribution (in particular, making the variance

finite), in case σ/L� 1 or k/L� 1 the remaining part of the dispersal kernel that is actually

used to generate movement steps is of significantly different shape. The different shape of

dispersal kernels determines the difference in the emerging patterns.

However, the situation is different in the opposite case of a small domain, i.e. σ/L� 1 or

k/L � 1. In this case, since the maximum value of the movement step ∆x ≤ L, ∆x/σ � 1

and ∆x/k � 1. Therefore, both the normal distribution and the power-law distribution can

be well approximated by the first two terms in their Taylor expansion, that is

ρ (∆x) ≈ 1√
2πσ2

[
1− (∆x)2

2σ2

]
and ρ (∆x) ≈ C

kγ

[
1−

(
|∆x|
k

)γ]
, (10)

respectively. The functional form of the distributions therefore becomes similar (especially,

in case γ = 2) and hence one can expect that the emerging patterns, if any, should have

similar properties. In fact, any stable clusters are unlikely to appear at all: in a sufficiently

small domain, both distributions are approximately constant (keeping only the first terms in

Eqs. (10)), which means that the position of each animal at each movement step is drawn from

a uniform probability distribution. Here we recall that this is the way how we generate the

initial distribution (cf. Fig. 2). Therefore, in the case of a small domain (or large characteristic

movement step), the animal movement is unlikely to result in the formation of clusters.

These heuristic arguments are confirmed by numerical simulations. Figure 17a shows the

spatial distribution of the population density across the domain of length L = 10 obtained

at t = 3000 for the normal distribution (2) with σ = 50; other parameters are the same

as in Fig. 3. It is readily seen that there are no clusters; in fact, at any time t > 0 the

distribution is not much different from the initial distribution (not shown here for the sake

of brevity). The latter observation is confirmed by statistical measures: the variance of the

initial population distribution and the distribution obtained at t = 3000 is 9.80 and 8.95,

respectively. For comparison, Fig. 17b shows the spatial population distribution obtained at

t = 3000 in simulations with the equivalent power-law kernel, i.e. Eq. (3) with k = 9.114, other

parameters are the same. Similarly to the above, there are no clusters. The spatial distribution

remains approximately uniform; the variance calculated for t = 1 (not shown) and t = 3000

(Fig. 17b) is 9.76 and 10.79, respectively. Note that these values are not much different from

the values obtained in the case of normal distribution. We therefore conclude that, in case of a

small domain, the population dynamics of Brownian walkers and Levy walkers are practically

indistinguishable.

We have also checked how the results may change for a larger value of the perception

radius R. For that, we performed simulations with R = 10 and other parameters the same
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Figure 17: A histogram showing the population distributions at t = 3000 in the case of (a) the

normal distribution of the movement steps obtained for σ = 50, other parameters are the same as in

Fig. 3, and (b) the equivalent power law distribution. In both cases R = 1.

as in Fig. 17. The results that we obtained (not shown here for the sake of brevity) are

very similar to the above. No clusters are formed and the population spatial distribution is

approximately uniform across the domain.

We now notice that, even in the case of a large domain, e.g. for σ/L � 1 in the case of

the normal distribution, the tail of the distribution never actually works, because the animal

is not allowed to leave the domain. Similar observation obviously applies to the power law

distribution, which means that its fat tail is in fact truncated. The truncated power law

distribution has a finite variance, and that opens a possibility of using a different equivalence

condition between the two dispersal kernels, namely by equating the variance. The question

therefore arises as to how different the properties of the emerging spatiotemporal patterns

obtained for the two movement types are going to be if they are compared in a different way

– see below.

In order to address this issue, we perform the simulations as follows. Firstly, we consider

the population dynamics of Levy walkers for parameters γ = 2, k = 0.0036, R = 1 and

P = 0.6, i.e. as in Fig. 11. We pool together the movement step sizes made by all animals in

the population (N = 1000) over the first ten thousand time steps. For the resulting data set

of the movement steps (altogether, 107 random numbers), we calculate the variance to obtain

the value σ2
PLT ≈ 0.02, so that the corresponding standard deviation is σPLT ≈ 0.1414. We

then simulate the dynamics of the population of the Brownian walkers subject to the new

equivalence condition:

σ = σPLT , (11)

keeping all other parameters the same as above. The results are shown in Fig. 18. It is

readily seen that now the difference between the patterns emerging in the population of Levy

walkers (Fig. 11) and in the equivalent population of Brownian walkers (as defined by (11))

is less drastic than it was previously (cf. Fig. 3). Yet the patterns remain clearly different;

in particular, the population is much stronger aggregated and the clusters are more clearly
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Figure 18: The distribution of insects across space obtained for σ = 0.1414 (other parameters are

R = 1, P = 0.6, N = 1000 and L = 10, i.e. the same as in Fig. 3) and shown at (a) t = 1000 and (b)

t = 10000.

shaped in the population of Brownian walkers. We therefore conclude that not only the large-

distance asymptotics of the dispersal kernel but also its shape at intermediate distances plays

an important role in shaping the population dynamics.

3.4 Statistical properties of the spatial patterns

3.4.1 Morisita index

As we have shown above, density-dependent individual movement normally results (for values

of the variance not too large and the directional bias not too weak) in the formation of strongly

heterogeneous spatial population distribution consisting of several clusters. Whilst this is

clearly seen in the simulations results, the question is whether this self-organized heterogeneity

could be described in a more quantitative way. There are several measures or indices that

are used in statistical ecology for this purpose, e.g. see [29] for a short review. In particular,

the Morisita index [54] has been widely used to quantify the heterogeneity of the spatial

distribution [2, 26, 30]:

IM = Q

∑Q
k=1 nk(nk − 1)

N(N − 1)
. (12)

The Morisita index provides a measure of how likely it is that two randomly selected individuals

in a given distribution are found within the same bin compared to that of a random distribution

[54]. It can be proved that, if the individuals are distributed randomly (with a constant

probability density) then IM is close to one, and it is greater than one if the individuals are

aggregated [34].

Using the definition (12), we have calculated IM for several different spatial population

distribution as given by Figs. 3, 8, 11 and 15. The results are shown in Table 3.4.1. Obviously,
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Table 4: The Morisita index calculated for various spatial population distributions. N.D. and P.L.

stand for the normal distribution and the power law distribution, respectively; see Eqs. (2–3).

Sources Dispersal kernel Number of clusters Morisita index, IM
1 Fig. 3 (t = 100) N.D. 4 1.817

2 Fig. 3 (t = 200) N.D. 4 3.438

3 Fig. 3 (t = 500) N.D 4 8.065

4 Fig. 3 (t = 1000) N.D. 4 8.872

5 Fig. 8 N.D. 2 1.204

6 Fig. 11 (t = 100) P.L. (γ = 2) 4 1.230

7 Fig. 11 (t = 10000) P.L. (γ = 2) 4 1.352

8 Fig. 11 (t = 30000) P.L. (γ = 2) 3 1.346

9 Fig. 15 P.L. (γ = 4) 3 7.120

the Morisita index is an adequate measure of the population aggregation: the conclusion as

to which distribution is more aggregated based on the visual comparison appears to be in full

agreement with IM values. However, it is also readily seen that the Morisita index fails to

distinguish between distribution with different number of clusters. For instance, the IM value

is close in the cases shown in rows 3 and 9 of the table; however, the number of clusters in the

corresponding distributions is different. Similarly, the IM value is approximately the same (up

to the second digit) in rows 5 and 6, but the number of clusters is different. Also, the Morisita

index is incapable of distinguishing between the different movement types: whilst rows 3 and

5 correspond to the Brownian walk, the distributions indexed in rows 6 and 9 are obtained

for the power-law walk.

3.4.2 Sample frequency distributions

In the above, we have shown that different patterns of individual animal movement result in

an emerging spatial population distribution with apparently different properties. The number

of clusters, their size, shape, and their stability provide convenient theoretical measures to

distinguish between the population distributions emerging in the populations of Browian and

non-Brownian walkers. However, although providing useful information about the pattern as

a whole, they hardly provide any information about the local population density (such as is

given, in our approach, by the population size in any given bin). Meanwhile, considering the

problem in a more practical perspective, it is the local information that ecologists normally

obtain in empirical studies, e.g. through sampling. The number of samples collected in any

given animal population census can vary quite significantly from, very rarely, being hundreds or

even thousands of samples [1, 56, 83] to, rather typically, one or two dozen [7, 8] or, sometimes,

a few or just one [5, 70]. Therefore, ecologists often have to operate with scarce spatial

information that does not resolve details of the strongly heterogeneous population spatial

distribution. As a result, the global properties of the distribution such as the location and the

number of clusters (patches) remain obscure. An example is shown in Fig. 19a where red lines
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Figure 19: (a) Snapshot of the population spatial distribution obtained in the case of power law

kernel (3) with γ = 2 and k = 0.0036 with other movement parameters as R = 1 and P = 0.6, vertical

red lines indicates the hypothetical location where samples are taken. (b) Frequency distribution of

sample values (all one hundred bins are used) obtained for the snapshot shown in (a). (c) Frequencies

obtained from pooled multiple simulations, see details in the text; red curve shows the fitting of the

data with a lognormal distribution, R2 = 0.996.
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indicate the location where the samples were collected and hence the population density (or its

proxy, e.g. trap count) is known. Note that in this example none of the distribution maxima has

been sampled. We therefore investigate whether differences between population distributions

can be picked up and quantified based on local or spatially unstructured information such

as an array of values of the population density for a given species (or their proxy, e.g. trap

counts) collected on a sampling grid with no reference to population aggregation.

One way to analyse the sampling data, especially in the absence of knowledge of the spatial

pattern, is to consider the frequency distribution of sample values. This approach was used in

several empirical studies [7, 13, 15, 28, 74] and was shown to provide valuable insight into the

properties of the corresponding population dynamics [62, 80]; see also [9, 94] for a more general

framework. In order to demonstrate how to relate a given spatial pattern to the frequency

distribution of sample values, let us consider the snapshot of the population distribution shown

in Fig. 19a. We assume that the population sizes in different bins are statistically independent
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Figure 20: Frequency distribution of sample population density values obtained for the spatial

population distributions simulated for different dispersal kernels: (a) power law (3) with γ = 3, (b)

power law (3) with γ = 4, (c) power law (3) with γ = 5 and (d) normal distribution (2). Red curves

show data fitting by a power law; see Table 5.

26



so that information obtained from all bins can be used, which gives an array of one hundred

values of the population density. These numbers are arranged according to their frequencies

resulting in the histogram shown in Fig. 19b. The obtained frequency distribution has a

jagged, irregular shape, which indicates that one hundred values is not enough to produce a

stable, sensible distribution of sample values. To obtain a histogram with a better defined

shape, we therefore pool together results of multiple simulation runs. For the given parameter

set, the simulations were repeated fifty times, thus producing altogether the pool of 5000 bin

values that were then arranged into a histogram; see Fig. 19c. It is readily seen that the

histogram of sample value frequencies now has a much smoother shape; in particular, it can

be fitted very well by a lognormal distribution, cf. the red curve.

We now repeat the above procedure for different values of the power law exponent γ and for

the normal distribution. Results are shown in Fig. 20. We readily observe that the properties

of spatial population distributions (not shown here for the sake of brevity) emerging in the

cases where individual movement is described by the power law (3) with γ ≥ 3 is significantly

different from the case γ = 2 which corresponds to Levy flights. Results obtained for larger

values of γ are almost indistinguishable from the results obtained for the normal distribution,

cf. Figs. 20c and 20d. All four frequency distributions shown in Fig. 20 can be fitted well by a

power law, see Table 5 (note that the accuracy of the fitting increases with an increase in γ);

however, it does not provide any sensible fitting for the sample value distribution obtained for

γ = 2.

Table 5: Best-fit parameter values and R2 values for the fitting of the sample frequency histograms

shown in Fig. 20 by a power law p(x) = c(h+ x)−µ.

c h µ R2

γ = 3 1.264 · 106 10.42 3.110 0.992

γ = 4 1578 0.8501 1.405 0.999

γ = 5 798.4 0.3977 1.261 1

Normal distribution 286.7 0.09068 1.035 1

4 Discussion and concluding remarks

Spatial distribution of ecological populations is often distinctly heterogeneous [18, 45, 44] and

this is known to have profound implications for the population dynamics as well as for eco-

logical monitoring and population management [16, 39, 64, 67, 75, 81, 90, 92, 93]. Whilst

considerable progress has been done over the last two decades in the understanding of this

phenomenon [45, 51, 52, 59], the effect of many relevant factors on the ecological pattern

formation remains obscure and many questions yet wait to be answered, so that the problem

remains to be a focus of research and discussion [65]. In particular, the role of individual

movement behavior remains poorly understood, in spite of arguably being a key factor in
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spatial ecology [10, 57]. Here we attempted to relate the problem of understanding of popu-

lations spatial patterning to another major focus in ecology, namely, to the effect of different

individual movement patterns [68, 84, 89]. We have considered the spatial dynamics of a pop-

ulation where animals perform either Brownian or non-Brownian motion. In our simulation

model, the individual movement is described by a dispersal kernel (probability distribution

of travelled distances) which is parameterized, respectively, by the normal distribution or by

a power law. Individual movement is modulated by density-dependence, so that an animal’s

advance towards areas with a higher population density is more likely.

Having performed intense computer simulations for movement parameters varying over a

broad range, we have obtained the following results:

• Density-dependent individual movement results in the formation of animals clusters

(patches of high population density), e.g. see Figs. 3, 5 and 11. The number of emerg-

ing clusters is a random variable, so that the population’s aggregation properties are

described by a probability distribution for a different number of clusters to appear (see

Tables 1–3), not by a single number. The probability distribution (and hence the typical

number of clusters) depends on the movement parameters such as the perception radius,

the strength of density-dependence (directional bias) and the characteristic size of the

movement step;

• In the case where the directional bias is sufficiently strong and the movement domain is

large, the properties of the animals clusters differ significantly between the populations

of Brownian walkers (dispersal kernel described by a normal distribution) and Levy

walkers (power law kernel with the exponent γ = 2). Whilst in the population of

Brownian walkers the number of clusters, once they have formed, does not change with

time, in the equivalent population of Levy walkers the clusters are dynamical so that

in the course of time the system experience fast transitions between the states with

different number of clusters (see Figs. 11, 12 and 14). In case of the power law random

walk with γ > 3, the emerging clusters are stable;

• The population dynamics of Levy walkers exhibits two different transient time scales.

The shorter time scale trel is associated with the ‘usual’ relaxation of the initial conditions

(see Fig. 13). However, the initial distribution converges to a quasi-steady state, not an

asymptotic state. The other, much longer time scale tLT � trel is associated with the

lifetime of the quasi-steady state. At time t ∼ tLT , the system experience a fast transition

from the quasi-steady state to its asymptotic state (e.g. from the 4/5-dynamics to the

3/4-dynamics, see Fig. 12). The system’s dynamics therefore exhibits long term transient

behaviour (cf. [25]);

• The frequency distribution of local population density values (‘samples’) shows essen-

tially different properties for the population of Levy walkers (γ = 2) and that of Brownian

walkers. With an increase in γ, the frequency distribution experiences a gradual trans-

formation, so that for larger values of γ it becomes virtually undistinguishable from the

one obtained for the population of Brownian walkers (see Fig. 20).
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In order to compare between the population dynamics of Brownian walkers and that of

Levy walkers, we had to establish a certain condition of equivalence between the two different

movement processes. We used a condition based on equating the survival probabilities; see

Eqs. (7–9). A question may arise about the robustness of this criterium with regard to the

spatial and temporal scales involved [3]. Also, the sensitivity of the results to the chosen value

of the survival probability Ps is a matter of discussion (Ps = 0.9 in our simulations), i.e. how

different the results could be for a different value of Ps. With regard to the latter, we notice

that, the larger Ps is, the larger the part of the kernel is that is included into the calculation.

For the kernels of different type, it means that the effect of their different shape is going to

be greater for larger values of Ps. Therefore, an increase in Ps is likely to make the difference

between the two movement processes even more significant. In the opposite situation when

Ps is small, only the central part of the kernel is included, so that the difference between the

Gaussian and the power law is insignificant, cf. Eqs. (10).

In this paper, we restricted our investigation to a hypothetical 1D case, i.e. the system

with one spatial dimension. We want to emphasize that the 1D case is not at all abstract

(in particular, it does not imply that animals live on a line): in terms of a more realistic 2D

movement, the 1D system could correspond to either a narrow stripe or a transect across the

movement area. Yet the question remains as to how different the system’s dynamics may be

if the movement is considered in a fully isotropic 2D case, i.e. without any constraints on the

values of y-coordinate. Arguably, the answer depends on the strength of animal’s behavioural

response to meeting its conspecific. Especially in the case of movement in a narrow stripe,

the animal’s movement path would often pass very close to another animal. When movement

occurs in the 2D space, such close encounters would happen much less frequently. In this

paper, we assumed that the response is neutral, i.e. the animal keeps moving along its path

without altering the movement direction or the movement step. In this case, the difference

between the 1D and 2D cases is unlikely to be significant.

An obvious alternative to the above assumption is the case where the animal’s response is

not neutral, e.g. the moving animal would likely decide to stay close to its conspecific and hence

to terminate its movement step. Terminating the movements step changes the asymptotics

of the dispersal kernel by truncating its tail and hence diminishes the difference between

Brownian and non-Brownian walkers. Since encounters would happens much less often in

the 2D case than in the 1D case (and even less frequently in the 3D case), one can expect

that the population dynamics would be significantly different in different spatial dimensions.

In particular, one can expect that the difference between the Brownian and non-Brownian

walkers will be more drastic in a higher dimensional space.

We also notice that in the case of Brownian walkers, assuming that the environment is

isotropic, the ‘full’ 2D movement splits to a product of two 1D movements for x and for

y, i.e. ρ (∆r) = ρ (∆x) ρ (∆y) where ∆r is the movement step along the 2D path, (∆r)2 =

(∆x)2 + (∆y)2, and each of ρ (∆x) and ρ (∆y) is given by (2). Therefore, in the case of

Brownian walkers an intuitive extension of our results onto the 2D case is straightforward;

in particular, one can expect the emergence of animal clusters with the properties similar to

those observed in our 1D simulations.
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In the case of non-Brownian walkers, especially for γ < 3, extension of our results onto

the 2D case is less straightforward. Although it seems intuitive that the main features of the

population dynamics, such as the formation of clusters, should remain valid also in that case,

it becomes difficult to make any prediction about the shape and spacing of the clusters. This

requires a separate study and will become a focus of future work.

Our investigation is partially motivated by a recent study on the distribution and movement

of grey slug Deroceras reticulatum in agricultural fields [20, 64]. Spatial distribution of slugs

was shown to be remarkably patchy, with some of the patches being stable throughout the

season but not necessarily between the seasons. Preliminary correlation analysis performed

in the course of above study did not reveal any significant correlation between the distribu-

tion of slugs and the physical properties of soil [20]. Currently available information about

movement pattern of individual slugs is meagre [19, 21, 24, 61] and does not allow for any

conclusion about the movement pattern. There is, however, some empirical evidence that

movement of slugs exhibits density-dependance as individual slugs respond to the presence of

their conspecifics by following their trails [91], hence their movement along the gradient of the

population density is more likely. The pattern formation scenarios reported in this paper can

therefore be a plausible explanation of the slugs aggregation in agricultural fields, although

currently available data does not allow for a quantitative comparison between theory and data.

Further empirical research is therefore needed, in particular to reveal whether the individual

slug movement can be classified into the Brownian or non-Brownian types and to quantify the

strength of the density dependence.
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