University of Leicester
Browse
Extracellular matrix proteomics identifies molecular signature of symptomatic carotid plaques.pdf (2.4 MB)

Extracellular matrix proteomics identifies molecular signature of symptomatic carotid plaques

Download (2.4 MB)
journal contribution
posted on 2018-04-30, 12:25 authored by S. R. Langley, K. Willeit, Athanasios Didangelos, L. P. Matic, P. Skroblin, J. Barallobre-Barreiro, M. Lengquist, G. Rungger, A. Kapustin, L. Kedenko, C. Molenaar, R. Lu, T. Barwari, G. Suna, X. Yin, B. Iglseder, B. Paulweber, P. Willeit, J. Shalhoub, G. Pasterkamp, A. H. Davies, C. Monaco, U. Hedin, C. M. Shanahan, J. Willeit, S. Kiechl, M. Mayr
BACKGROUND: The identification of patients with high-risk atherosclerotic plaques prior to the manifestation of clinical events remains challenging. Recent findings question histology- and imaging-based definitions of the "vulnerable plaque," necessitating an improved approach for predicting onset of symptoms. METHODS: We performed a proteomics comparison of the vascular extracellular matrix and associated molecules in human carotid endarterectomy specimens from 6 symptomatic versus 6 asymptomatic patients to identify a protein signature for high-risk atherosclerotic plaques. Proteomics data were integrated with gene expression profiling of 121 carotid endarterectomies and an analysis of protein secretion by lipid-loaded human vascular smooth muscle cells. Finally, epidemiological validation of candidate biomarkers was performed in two community-based studies. RESULTS: Proteomics and at least one of the other two approaches identified a molecular signature of plaques from symptomatic patients that comprised matrix metalloproteinase 9, chitinase 3-like-1, S100 calcium binding protein A8 (S100A8), S100A9, cathepsin B, fibronectin, and galectin-3-binding protein. Biomarker candidates measured in 685 subjects in the Bruneck study were associated with progression to advanced atherosclerosis and incidence of cardiovascular disease over a 10-year follow-up period. A 4-biomarker signature (matrix metalloproteinase 9, S100A8/S100A9, cathepsin D, and galectin-3-binding protein) improved risk prediction and was successfully replicated in an independent cohort, the SAPHIR study. CONCLUSION: The identified 4-biomarker signature may improve risk prediction and diagnostics for the management of cardiovascular disease. Further, our study highlights the strength of tissue-based proteomics for biomarker discovery. FUNDING: UK: British Heart Foundation (BHF); King's BHF Center; and the National Institute for Health Research Biomedical Research Center based at Guy's and St Thomas' NHS Foundation Trust and King's College London in partnership with King's College Hospital. Austria: Federal Ministry for Transport, Innovation and Technology (BMVIT); Federal Ministry of Science, Research and Economy (BMWFW); Wirtschaftsagentur Wien; and Standortagentur Tirol.

History

Citation

Journal of Clinical Investigation, 2017, 127 (4), pp. 1546-1560

Author affiliation

/Organisation/COLLEGE OF LIFE SCIENCES/School of Medicine/Department of Infection, Immunity and Inflammation

Version

  • VoR (Version of Record)

Published in

Journal of Clinical Investigation

Publisher

American Society for Clinical Investigation

issn

0021-9738

eissn

1558-8238

Acceptance date

2017-01-19

Copyright date

2017

Available date

2018-04-30

Publisher version

https://www.jci.org/articles/view/86924

Language

en