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Abstract

Gaussian process methods are proposed for nonparametric functional regression for both

scalar and functional responses with mixed multidimensional functional and scalar predic-

tors. The proposed models allow the response variables to depend on the entire trajecto-

ries of the functional predictors. They inherit the desirable properties of Gaussian process

regression, and can naturally accommodate both scalar and functional variables as the

predictors, as well as easy to obtain and express uncertainty in predictions. The numer-

ical experiments show that the proposed methods significantly outperform the competing

models, and their usefulness is also demonstrated by the application to two real datasets.

Keywords: Functional regression, Functional principal component analysis, Gaussian

process regression, Nonparametric methods, Semi-metric

1. Introduction

The fast progress in information technology has provided the ability of recording very

large datasets that offer the opportunity to observe phenomena in a more accurate way

by generating data samples over very fine grids. The information in such high-dimensional

datasets varies over some continuum which allows such data to be treated as a collection

of mathematical objects, that is, as a collection of curves or of surfaces. For example, time
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series in financial engineering, imaging records in medicine, or spectrometric wavelengths in

chemometrics can be considered as a discrete approximation of continuous variables. Such

kind of data are termed as functional data, and the statistical methodology designated to

deal with this kind of data is called functional data analysis (FDA). Under the functional

data context, a curve is a random function, which is also considered as a sample from a

stochastic process. FDA is the statistical analysis of datasets consisting of such random

functions. FDA can reveal more statistical information contained in the smoothness and

the derivatives of the functions, which distinguishes it from the multivariate data analysis

(Ramsay and Silverman, 2005).

Among others one of the most important problems in FDA is functional regression

which describes the relationship between the predictor and the response variable, where

at least one of them is of functional nature. The first functional regression model was

formulated by Hastie and Mallows (1993), and has ever since been extensively studied and

further developed by Ramsay and Silverman (2005) and many other researchers.

For functional regression problems two main streams of methodologies exist in the lit-

erature: functional parametric models and functional nonparametric methods. Ramsay

and Silverman (2005) studies in details the functional linear models and considers various

cases such as scalar response with functional predictors, functional response with scalar

predictors and functional response with functional predictors. Later on a large number

of further extensions and developments have been proposed, for instance the generalised

functional linear model (Müller and Stadtmüller, 2005), the Gaussian process functional re-

gression models (Shi et al., 2007; Shi and Wang, 2008; Wang and Shi, 2014), the functional

quadratic regression model (Yao and Müller, 2010), the penalized function-on-function re-

gression (Ivanescu et al., 2015), and references therein. On the other hand, Ferraty and Vieu

(2006) introduces functional nonparametric regression methods with functional predictors

and scalar response, based on kernel-type methods. Báıllo and Grané (2009) proposes a

local linear regression estimator and studies its asymptotic behaviour, and Ferraty et al.

(2012) extends the kernel methods to the case of functional response. Preda (2007), Lian

(2007) and Tang et al. (2015) use the reproducing kernel Hilbert spaces (RKHS) framework
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in the nonparametric functional regression. Müller et al. (2013) and McLean et al. (2014)

propose the continuously additive models and the functional generalized additive model for

the scalar response case, respectively.

In this paper we introduce Gaussian process methods for nonparametric functional re-

gression, where the response can be either scalar or functional with mixed multidimensional

functional and scalar predictors. Gaussian process regression (GPR), as a nonparametric

regression method, has been widely used and proven to be powerful and effective in various

fields, due to many desirable properties, such as the existence of explicit forms, the ease of

obtaining and expressing uncertainty in predictions, the ability to capture a wide variety of

behaviour through covariance functions, and a natural Bayesian interpretation. We refer to

the seminal book by Rasmussen and Williams (2006) for details. Shi et al. (2007) first ap-

plies GPR methods to functional data, which is further developed by Shi and Wang (2008),

Shi and Choi (2011) and Wang and Shi (2014). However in the above works the functional

response variable depends on the functional predictors at the current time only, therefore

their models are types of the concurrent functional models (Ramsay and Silverman, 2005;

Maity, 2017). In this paper we propose Gaussian process methods for functional regression

where the response variable depends on the entire trajectories of the functional predictors.

The proposed methods enjoy the intrinsic desirable properties of GPR, and can naturally

incorporate both scalar and functional variables of high dimension as the predictors, as well

as easy to obtain the predictive variance. Since bandwidth selection, which usually needs

cross validation, is not required in our models, the proposed methods are much faster in

computation than some of the existing kernel methods considered in the numerical exam-

ples at the same time of significantly improved prediction accuracy. And due to the nature

of GPR, the dimension of the predictors has little impact on the computational time, so

the models can easily deal with high dimensional predictors. Our numerical examples show

that the proposed methods significantly outperform the existing methods in comparison.

The rest of the paper is organised as follows. Section 2 briefly reviews the GPR methods

and then introduces the Gaussian process nonparametric regression methods for functional

data with scalar response and functional response. The proposed methods are evaluated
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by the simulation studies in Section 3, and are applied to two real datasets in Section 4.

Finally, Section 5 concludes the paper with some discussions.

2. Methodology

2.1. Gaussian process regression

This section provides a brief introduction to Gaussian process regression methods; see

Rasmussen and Williams (2006) for more complete discussion.

Consider a problem of nonlinear regression

y = f(x) + ε,

where the function f(·) : Rp 7→ R is unknown and needs to be estimated. By Gaussian

process method f(·) is assumed to follow a Gaussian process with mean function µ(·) and

covariance function k(·, ·). Given n pairs of observations (x1, y1), . . . , (xn, yn), we have

yi = f(xi) + εi,

where {εi}i=1,...,n are independent and identically distributed normal random noises with

mean 0 and variance σ2. It follows that (y1, . . . , yn)
T has an n-variate normal distribution

(y1, . . . , yn)
T ∼ N(µ, K),

where µ = (µ(x1), . . . , µ(xn))
T is the mean vector and K is the n× n covariance matrix of

which the (i, j)-th element Kij = k(xi, xj) + σ2δij . Here δij = 1 if i = j and 0 otherwise.

Let x∗ be any test point and y∗ be the corresponding response value. Then the

joint distribution of (y1, . . . , yn, y
∗)T is an (n + 1)-variate normal distribution with mean

(µ(x1), . . . , µ(xn), µ(x
∗))T and covariance matrix





K K∗

K∗T k(x∗, x∗) + σ2





where K∗ = (k(x∗, x1), · · · , k(x
∗, xn))

T .

The conditional distribution of y∗, given y = (y1, · · · , yn)
T , is then N(ŷ∗, σ̂∗2) with

ŷ∗ = µ(x∗) +K∗TK−1(y − µ),

σ̂∗2 = k(x∗, x∗) + σ2 −K∗TK−1K∗.
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In GPR, the covariance function k(·, ·) plays a crucial role in the predictive mean and

variance. Covariance functions contain our presumptions about the function we wish to

learn and define the closeness and similarity between data points. As a result, the choice

of covariance function may have profound impacts on the performance of a GPR model.

A wide range of covariance functions have been proposed and discussed; see for example

Rasmussen and Williams (2006) and Shi and Choi (2011). In this paper we will adopt the

most commonly used covariance function - the squared exponential covariance function:

k(xi, xj) = v exp

(

−
1

2

p
∑

d=1

wd(xid − xjd)
2

)

, (1)

and assume the mean function µ(x) to be 0.

The hyper-parameters {v, w1, . . . , wp} in (1) and the noise variance σ2 can be estimated

by the maximum likelihood method. The log-likelihood of the training data is given by

L(v, w1, . . . , wp, σ
2) = −

1

2
log detK −

1

2
yTK−1y −

n

2
log 2π.

And the derivative of the log-likelihood with respect to each parameter (denoted by a

generic notation θ) is:

∂L

∂θ
= −

1

2
tr

(

K−1∂K

∂θ

)

+
1

2
yTK−1∂K

∂θ
K−1y.

Hence standard gradient based numerical optimisation techniques, such as Conjugate Gra-

dient method, can be used to maximise the log-likelihood function L(v, w1, . . . , wp, σ
2) to

obtain the estimates of the parameters.

2.2. Gaussian process for functional regression

2.2.1. Functional regression with scalar response and mixed predictors

Now suppose that y is a scalar response in R, X(t) a q-dimensional functional predic-

tor (t ∈ T ), and z a p-dimensional scalar predictor. Consider the problem of nonlinear

regression

y = f(X, z) + ε,
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where f(·, ·) is an unknown functional operator, and ε ∼ N(0, σ2). We assume that f(·, ·)

follows a Gaussian process with mean 0 and covariance function k(·, ·, ·, ·), defined as

k(Xi, Xj, zi, zj) = v exp

(

−
1

2

p
∑

d=1

wd(zid − zjd)
2 −

1

2

q
∑

d=1

ηd‖Xid −Xjd‖
2
d

)

, (2)

where ‖ · ‖d denotes the semi-metric defined for the dth component of the functional pre-

dictor. Semi-metrics as a closeness measure for functional data are discussed in Ferraty

and Vieu (2006), and it is demonstrated that semi-metric spaces are better adapted than

metric spaces in the functional context. Ferraty and Vieu (2006) introduces three families

of semi-metrics, which are based on functional principal component analysis (FPCA), on

derivatives and on partial least squares (PLS), respectively. The first two of them are used

in our numerical examples so are briefly presented below for completeness.

Let X1, . . . ,Xn be a sample of curves which are identically distributed as the functional

random variable X = {X (t); t ∈ T }.

Semi-metric based on FPCA is defined as

dPCA
q (Xi,Xj) =

√

√

√

√

q
∑

k=1

(
∫

[Xi(t)− Xj(t)]vk(t)dt

)2

,

where v1, . . . , vq are the orthonormal eigenfunctions of the covariance operator ΓX (s, t) =

E(X (s)X (t)) associated with the largest q eigenvalues.

Semi-metric based on derivatives is defined as

dderivq (Xi,Xj) =

√

∫

(

X
(q)
i (t)− X

(q)
j (t)

)2

dt,

where X (q) denotes the qth order derivative of X .

We refer to Ferraty and Vieu (2006) for the practical implementation of the semi-

metrics. As commented in the above book, FPCA-type semi-metrics are suitable for rough

datasets, while derivatives-type ones are adapted to smooth datasets. This rule of thumb

will be adopted in our numerical examples. How to choose the best semi-metric in practice

remains an open question (Ferraty and Vieu, 2006). It should be noted that the semi-

metrics in (2) can be chosen differently for different components of the functional predictor

as appropriate.
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Given n observations (X1, z1, y1), . . . , (Xn, zn, yn), it yields that (y1, . . . , yn)
T has an

n-variate normal distribution

y = (y1, . . . , yn)
T ∼ N(0, K),

where K is the n× n covariance matrix with the (i, j)-th element Kij = k(Xi, Xj , zi, zj) +

σ2δij . Hence the parameters in the model {v, w1, . . . , wp, η1, . . . , ηq, σ
2} can be estimated

by maximising the following log-likelihood function

L(v, w1, . . . , wp, η1, . . . , ηq, σ
2) = −

1

2
log detK −

1

2
yTK−1y −

n

2
log 2π.

Let (X∗, z∗) be a test input and y∗ be the corresponding response value. Following the

same argument as in Subsection 2.1, the predictive mean ŷ∗ and variance σ̂∗2 of y∗ are

given by

ŷ∗ = K∗TK−1y,

σ̂∗2 = k(X∗, X∗, z∗, z∗) + σ2 −K∗TK−1K∗,

where K∗ = (k(X∗, X1, z
∗, z1), · · · , k(X

∗, Xn, z
∗, zn))

T .

2.2.2. Functional regression with functional response and mixed predictors

Let Y (t) be an L2-continuous stochastic process on T , µ(t) be its mean function and

C(t, t′) its covariance function. By the functional principal component analysis (FPCA),

Y (t) can be decomposed as

Y (t) = µ(t) +

∞
∑

j=1

βjφj(t), t ∈ T ,

where βj’s are uncorrelated random variables with mean zero and variance λj , λ1 ≥ λ2 ≥

· · · ≥ 0 are the eigenvalues and φ1(t), φ2(t), . . . are the associated eigenfunctions of the

covariance function C(·, ·).

Now we consider the following functional regression model with functional response

Yi(t) = f(Xi(·), zi) + εi(t), (3)

where f(·, ·) is an unknown functional operator, depending on a q-dimensional functional

predictor X(t) and a p-dimensional scalar predictor z, εi(t) (i = 1, . . . , n) are independent
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white noise processes with variance σ2
ε , and Yi(t) (i = 1, . . . , n) are independent samples

from Y (t) with noises.

Let Ỹi(t) be the smoothed version of Yi(t), then by FPCA, we have

Ỹi(t) = µ(t) +

∞
∑

j=1

βijφj(t), t ∈ T , (4)

where, for any j > 0 and i = 1, . . . , n, βij =
∫

T
(Ỹi(t) − µ(t))φj(t)dt is the jth principal

component score of the ith sample.

To obtain an approximation of Ỹi(t), we truncate (4) at the first J terms so that

Ỹi(t) = µ(t) +
J
∑

j=1

βijφj(t), t ∈ T . (5)

Therefore the regression function f(·, ·) can be represented by the relationships between

βij and Xi(t) and zi, that is, for any j (j = 1, . . . , J),

βij = rj(Xi(t), zi) + eij , i = 1, . . . , n,

where eij ∼ N(0, σ2
j ) and rj(·, ·) is a functional operator representing the relationship

between the jth principal component of Y (t) and the predictors. In this paper we propose

to use Gaussian process methods to model rj(·, ·), that is, for j = 1, . . . , J , rj(·, ·) is assumed

to follow a Gaussian process with mean function 0 and the following covariance function

k(j)(Xl, Xm, zl, zm) = v(j) exp

(

−
1

2

p
∑

d=1

w
(j)
d (zld − zmd)

2 −
1

2

q
∑

d=1

η
(j)
d ‖Xld −Xmd‖

2
d

)

.

Thus, for a given j, we have n training data points (X1, z1, β1j), . . . , (Xn, zn, βnj) in the

Gaussian process regression model, where {βij}
n
i=1 are the response values and {Xi}

n
i=1

and {zi}
n
i=1 are the corresponding functional and scalar predictor values. It follows that

(β1j , . . . , βnj)
T has an n-variate normal distribution

βj = (β1j , . . . , βnj)
T ∼ N(0, K(j)),

whereK(j) is the n×n covariance matrix with the (l, m)-th elementK
(j)
lm = k(j)(Xl, Xm, zl, zm)+

σ2
j δlm. Therefore the parameters {v(j), w

(j)
1 , . . . , w

(j)
p , η

(j)
1 , . . . , η

(j)
q , σ2

j} can be estimated by

maximising the following log-likelihood function

L(v(j), w
(j)
1 , . . . , w(j)

p , η
(j)
1 , . . . , η(j)q , σ2

j ) = −
1

2
log detK(j) −

1

2
βT
j (K

(j))−1βj −
n

2
log 2π.
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Hence, given a test input (X∗(t), z∗), let Y ∗(t) be the corresponding functional response

and β∗
j be its jth principal component score for j = 1, . . . , J . Then the predictive mean β̂∗

j

and variance σ̂∗2
j of β∗

j can be obtained by

β̂∗

j = (K(j)∗)T (K(j))−1βj ,

σ̂∗2
j = k(j)(X∗, X∗, z∗, z∗) + σ2

j − (K(j)∗)T (K(j))−1K(j)∗,

where K(j)∗ = (k(j)(X∗, X1, z
∗, z1), · · · , k

(j)(X∗, Xn, z
∗, zn))

T .

Consequently the predictive mean and variance of the functional response Y ∗(t) are

given by

Ŷ ∗(t) = µ̂(t) +
J
∑

j=1

β̂∗

jφj(t), (6)

σ̂∗2(t) = σ̂2
µ(t) +

J
∑

j=1

σ̂∗2
j φ2

j(t) + σ̂2
ε , (7)

where σ̂2
ε denotes the variance of ε(t) which can be estimated from the smoothing method

used (Ramsay and Silverman, 2005), and µ̂(t) and σ̂2
µ(t) are the estimated mean function

and its variance respectively which can be obtained by, for example, local linear estimator

(Degras, 2011) or polynomial spline estimator (Cao et al., 2012).

In practice, the functional response and the functional predictors are observed at dis-

crete observation points, so the eigenfunctions and the principal component scores can be

obtained numerically (Ramsay and Silverman, 2005). Besides, the number of principal

components J plays an important role on the accuracy of prediction. In practice J can be

chosen by cross validation, or such that (5) provides a good approximation, for example,

such that the cumulative percentage of the variation explained by the first J components,

measured by the ratio
∑J

j=1 λj/
∑∞

j=1 λj , exceeds 99% of the total variation.

3. Simulation studies

To demonstrate the effectiveness of the GPR methods we conduct two simulation exam-

ples in this section: one is for the case with scalar response and functional predictor and the

other for functional response and functional predictor. Because not all the existing models

9



t
0 0.5 1 1.5 2 2.5 3 3.5

X
(t

)

-4

-3

-2

-1

0

1

2

3

4

Figure 1: Sample predictor curves for the case of scalar response.

used for comparison are able to deal with mixed predictors, only functional predictors are

considered in the simulation studies.

Scalar response. The data are simulated as follows. Let X1, . . . , Xn be n = 50 samples

of a functional predictor such that

Xi(tj) = ai cos(ωitj) +

j
∑

k=1

Wik, (8)

where a1, . . . , an are n independent real random variables uniformly distributed in [0.2, 2],

ω1, . . . , ωn are n independent real random variables uniformly distributed in [1.5, 2.5], 0 =

t1 < t2 < · · · < t100 = π are equally spaced points, and the Wik’s are i.i.d. samples of a

normal distribution with mean 0 and variance 0.01.

The regression function f(·) and the response variable are defined as, for i = 1, . . . , n,

f(Xi) =

∫ π

0

X2
i (t)dt, yi = f(Xi) + εi

with εi ∼ N(0, 0.04). An example of the predictor curves is shown in Figure 1.

As the predictor curves are not smooth, the FPCA-type semi-metric is used in our

model. The performance of the proposed Gaussian process nonparametric regression method

(GPNR) is compared with three existing nonparametric methods and two frequently used
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Table 1: Means and standard deviations (in brackets) of squared prediction errors for scalar

response

Kernel LL-Trig LL-Eig FL-Eig FL-Trig GPNR

0.1681 0.0698 0.0680 0.4926 0.4813 0.0259

(0.5003) (0.1339) (0.1311) (1.1121) (1.1482) (0.0759)

parametric functional linear models, namely: the kernel estimator discussed in Ferraty

and Vieu (2006) (Kernel), the local linear estimator proposed by Báıllo and Grané (2009)

with the Fourier trigonometric basis (LL-Trig) and with the eigenfunctions (LL-Eig), the

functional linear models based on the trigonometric expansion (FL-Trig) and on the eigen-

functions (FL-Eig) (Ramsay and Silverman, 2005; Cai and Hall, 2006). For both the kernel

and the local linear estimators the Gaussian kernel is used, and the kernel bandwidth and

the number of terms in the series expansion are chosen via cross validation procedure; see

Báıllo and Grané (2009) for more details on the implementation of the estimators. FL-

Trig is the linear estimator based on the trigonometric expansion of the covariates and

regularised using roughness penalties, while FL-Eig is based on expanding the functional

predictor in terms of its covariance eigenfunctions. The cut-off in the expansion and the

smoothing parameter in the penalties are chosen via cross validation. The means and the

standard deviations of the squared prediction errors between the true regression values and

the predictions obtained from the above six methods via leave-one-out cross validation are

calculated. The above procedure is repeated for 20 times and the averages of the means

and the standard deviations are reported in Table 1.

Since the regression function is highly nonlinear, the functional linear models perform

much worse than the nonparametric methods as expected. And, among the latter, the

GPNR significantly outperforms the others, and our experiment shows that it is much

faster than the local linear estimators (2.3 seconds by GPNR versus 44.8 seconds by LL-

Trig and 236.8 seconds by LL-Eig on our desktop computer for each repetition) and is

comparable with the kernel estimator (2.4 seconds).
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Figure 2: Sample predictor curves and response curves for the case of functional response.

Functional response. For the ease of comparison, we adopt the same simulation example

as in Ferraty et al. (2012), which is described as follows for completeness.

Let X1, . . . , Xn be n = 250 samples of a functional predictor defined by (8). The

regression function f(·) and the response variable are defined as, for i = 1, . . . , 250 and

j = 1, . . . , 100,

f(Xi)(tj) =

∫ tj

0

X2
i (u)du, Yi(tj) = f(Xi)(tj) + εi(tj),

where the error term εi(tj) is the mixture of the additive and structural errors, that is,

εmix
i (tj) described in Ferraty et al. (2012). As demonstration ten predictor curves and the

corresponding response curves are shown in Figure 2.

We split the original sample into two sets: the learning sample (Xi, Yi)i=1,...,200 and the

test sample (Xi, Yi)i=201,...,250. In the Gaussian process nonparametric regression method

(GPNR), the B-spline basis is used to smooth the response curves Yi(t), and the FPCA

decomposition is then applied to the smoothed curves. The FPCA-type semi-metric is

adopted for the functional predictors as the curves are not smooth. To examine the effect

of the number of principal components (PCs) on the accuracy of the prediction, we use

different choices in the model and calculate the mean squared prediction errors between

the predicted and the true regression values for the fifty test samples. They are presented
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Table 2: Mean squared prediction errors (MSE) for functional response case with different number

of principal components (PCs)

Number of PCs 2 3 4 5 6 7

Cumulative % 95.79 98.89 99.62 99.83 99.93 99.96

MSE 114.8792 43.0786 23.7840 22.1508 19.6952 19.6952

in Table 2.

We also compare the performance of our model with four existing methods: the kernel

method discussed in Ferraty et al. (2012) (Kernel), the functional additive model pro-

posed by Müller and Yao (2008) (FAM), the penalized function-on-function regression

proposed by Ivanescu et al. (2015) (PFFR), and the functional linear model (FLM) stud-

ied in Yao et al. (2005). The kernel method is performed using R routines available at

https://www.math.univ-toulouse.fr/staph/npfda/, and the detailed implementation of this

method is provided in Ferraty et al. (2012). FAM and FLM are conducted using PACE

package (http://www.stat.ucdavis.edu/PACE/), where Gaussian kernel is used to estimate

the additive model components and generalised cross-validation (GCV) is used to choose

the tuning parameters. PFFR is implemented using the function pffr() in the R package

‘refund’. The mean squared prediction errors by these four methods are presented in Table

3.

It can be seen from Table 2 that the prediction accuracy increases with the increasing

number of PCs in the GPNR model until the number of PCs reaches six when the cu-

mulative percentage of the variation accounted for by the selected PCs is nearly 100% of

the total variation and the prediction accuracy can not be improved any further. And it

is apparent that our GPNR model significantly outperforms the other four models, even

using only two PCs in the model, and the Kernel method performs the second best. Since

the regression function is nonlinear, the PFFR which deals with linear function-on-function

regression and the FLM do not provide satisfactory predictions as can be expected.

The prediction results by the GPNR with six PCs, Kernel and FAM for four randomly

selected samples are shown in Figure 3.
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Table 3: Mean squared prediction errors for functional response

Kernel FAM PFFR FLM

377.1323 450.0289 1552.72 1704.25
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Figure 3: Four randomly selected predictions for functional response. Solid lines are the true

regression curves, dashed lines are the prediction by GPNR (with 95% confidence bands), dotted

lines by Kernel, and dash-dot lines by FAM.
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Figure 4: A graphical display of spectrometric curves.

4. Real data

We now apply our Gaussian process nonparametric regression methods to two real

datasets.

4.1. Spectrometric data

The first dataset is the spectrometric data, which have been studied by Ferraty and Vieu

(2006) and are downloadable from the Nonparametric Functional Data Analysis website

(http://www.math.univ-toulouse.fr/staph/npfda/). We refer to Ferraty and Vieu (2006)

for the detailed description of the data. The spectrometric curves are shown in Figure 4.

The task is to predict fat content from the spectrometric curves, therefore the response is

the fat content and the predictor is the spectrometric curves.

As done in Ferraty and Vieu (2006), the original sample is split into two subsamples:

the learning sample contains the first 160 units and the testing sample contains the last 55

units. Since the spectrometric curves are smooth, the semi-metric based on derivative of

order two is used in our model. The mean squared prediction errors by various methods

are reported in Table 4.

It is noted that a slightly different spectrometric dataset was studied by Yao and Müller
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Table 4: Mean squared prediction errors for spectrometric data

LL-Trig LL-Eig FL-Eig FL-Trig GPNR

4.4495 3.7255 7.5261 6.8888 2.1157

(2010) to demonstrate the usefulness of their proposed functional quadratic regression

model (FQR). When applied to the above data, the mean squared prediction error by FQR

is 148.0210. Also recall that in Section 7.2 of Ferraty and Vieu (2006) the mean squared

prediction errors for the same dataset using the kernel methods are as follows: 3.5 by the

conditional expectation (i.e. regression) method, 3.61 by the conditional mode method,

and 3.44 by the conditional median method. It is obvious that the prediction accuracy by

our model is significantly better than all the competitors.

4.2. Leeds renal anaemia data

Patients with reduced kidney function not only require dialysis to remove waste products

from their blood, but they also produce less erythropoietin (EPO), the natural stimulus

to the production of red blood cells in the bone marrow. As a consequence most dialysis

patients suffer renal anaemia to some degree and require regular injections with either

a synthetic EPO, for example Erythropoietin Beta (EB), or a modified epoetin such as

Darbepoetin Alpha (DA). The dose of epoetin to be given to each patient is determined by

monitoring the haemoglobin (Hb) concentration from a blood sample, such that their Hb

levels are controlled within relatively narrow limits. If Hb levels are too low then patients

become symptomatic of anaemia and if too high then there may be pro-thrombotic risks

to their dialysis treatment and vascular tree. The primary therapeutic concern is how to

maintain the Hb level of each patient by giving a suitable dose of exogenous epoetin.

In this example, we look at the data collected from 74 patients who received DA in

Leeds, UK. Figure 5 shows the monthly Hb measurements recorded and the dose levels

of the agent DA received for these patients for the period of 12 months. More detailed

description of the data is given in Shi et al. (2012). The objective is to use the dose levels

to predict the Hb levels, hence the functional response is the Hb level and the dose level of
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Figure 5: Leeds renal data: (a) the Hb levels recorded for 74 patients for the period of 12 months;

(b) the dose levels of the agent DA received by the patients in the same period.

Table 5: Mean squared prediction errors (MSE) for renal anaemia data with different number of

principal components (PCs)

Number of PCs 2 3 4 5 6 7 8 9

Cumulative % 99.3 99.5 99.7 99.8 99.9 99.95 99.97 100.00

MSE 1.5778 1.3528 1.1977 1.1657 1.1182 1.1267 1.1242 1.1237

DA is the functional predictor.

We apply the Gaussian process nonparametric regression method (GPNR) to the data,

where the B-spline basis is used to smooth the response curves and the FPCA-type semi-

metric is adopted for the functional predictor. The mean squared prediction errors by

leave-one-out cross validation using different number of principal components in the model

are presented in Table 5 and plotted in Figure 6. For comparison the four existing models

(Kernel, FAM, PFFR and FLM) are also applied to the same data, and the mean squared

prediction errors by these four methods are given in Table 6.

As shown in Table 5 and Figure 6, the prediction accuracy increases with the increas-

ing number of PCs in the GPNR model until the number of PCs reaches six when the
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Figure 6: Leeds renal data: MSE for different number of principal components.

Table 6: Mean squared prediction errors for renal anaemia data with different models

Kernel FAM PFFR FLM

1.2861 1.9622 1.1303 1.9479
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cumulative percentage of the variation accounted for by the selected PCs is 99.9% of the

total variation, after which the MSE has slight increase and remains almost constant. The

proposed GPNR model with six PCs provides the most accurate predictions among all the

models in comparison. Even using only four PCs, the GPNR model still outperforms the

Kernel, FAM and FLM methods, and just slightly worse than the PFFR model.

5. Conclusion

We have introduced Gaussian process methods for nonparametric functional regression

with either scalar response or functional response. Unlike the Gaussian process functional

regression models proposed in Shi et al. (2007) which is a type of the concurrent functional

models, our proposed methods allow response variables to depend on the entire trajec-

tories of the functional predictors. The proposed methods provide a flexible yet efficient

framework for nonparametric functional regression. They inherit the desirable properties

of GPR methods, and are able to incorporate prior knowledge and specifications about the

regression function and the proximity between functional data by selecting different co-

variance functions. The proposed methods naturally incorporate both multiple scalar and

multiple functional variables as the predictors, which has not been studied in the literature

in the context of nonparametric functional regression, and the predictive variance (hence

the uncertainty in prediction) can easily be obtained. The numerical experiments show

that the proposed methods significantly outperform the competing methods, and in the

case of scalar response it is much faster than the closest competitor (local linear regression

methods). Another advantage of the proposed methods is that, since the dimension of the

predictors has little impact on the computational time, our methods are able to cope with

very high dimensional scalar and functional predictors.

In this paper we only consider the most commonly used covariance function - squared

exponential covariance function. Although the numerical examples show it is effective and

very robust, it will be useful to explore other covariance functions in this context, such

as Matérn class (Rasmussen and Williams, 2006) and the spectral mixture (Wilson and

Adams, 2013), and the sensitivity of the methods to the type of covariance functions.
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Another possible extension of the work concerns nonparametric methods for functional

data clustering. Ferraty and Vieu (2006) studies this problem using kernel-type methods. It

will be interesting to investigate how the Gaussian process nonparametric methods perform

in this aspect.
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