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Abstract 

Gaussian process regression (GPR) has long been shown to be a powerful and effective 

Bayesian nonparametric approach, and has been applied to a wide range of fields. In this 

paper we present a new application of Gaussian process regression methods for the modelling 

and forecasting of human mortality rates. The age-specific mortality rates are treated as time 

series and are modelled by four conventional Gaussian process regression models. 

Furthermore, to improve the forecasting accuracy we propose to use a weighted mean 

function and the spectral mixture covariance function in the GPR model. The numerical 

experiments show that the combination of the weighted mean function and the spectral 

mixture covariance function provides the best performance in forecasting long term mortality 

rates. The performance of the proposed method is also compared with three existing models 

in the mortality modelling literature, and the results demonstrate that the GPR model with the 

weighted mean function and the spectral mixture covariance function provides a more robust 

forecast performance. 
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1. Introduction 

The idea of Gaussian process models can date back to Krige (1951), and had subsequently 

been further developed in spatial statistics (where it is more widely known as kriging) 

(Cressie, 1993). O’Hagan (1978) proposed to use Gaussian processes to define prior 

distributions over functions and applied the theory to one-dimensional curve fitting. Over the 

last few decades, Gaussian process methods have widely been adopted and further developed 

in machine learning community; see for example MacKay (1992, 2003), Neal (1992, 1996, 

1997), Seeger (2003, 2004), Snelson et al (2004), Quiñonero-Candela and Rasmussen (2005), 

Rasmussen and Williams (2006), Shi and Choi (2010), and the references therein. Neal (1996) 

has shown that many Bayesian regression models based on neural networks converge to 

Gaussian processes as the number of hidden units tends to infinity, and the hyperparameters 

of the neural network model determine the characteristic length scales of the Gaussian 

process. Therefore, Gaussian processes have been suggested as a replacement for supervised 

neural networks in nonlinear regression and classification. 

Gaussian process models as a type of nonparametric method have been applied in various 

fields due to many desirable properties, such as the existence of explicit forms, the ease of 

obtaining and expressing uncertainty in predictions, the ability to capture a wide variety of 

behaviour through covariance functions, and a natural Bayesian interpretation. They have 

been shown to be effective and powerful for the problems of regression, classification, 

interpolation and extrapolation (forecasting). For the problem of forecasting, Girard et al 

(2003) studied multiple-step ahead prediction for nonlinear dynamic systems. Brahim-

Belhouari and Bermak (2004) proposed to use Gaussian process regression for time series 

forecasting problem. Mori and Ohmi (2005) used Gaussian process for short-term load 

forecasting in smart grids. Banerjee et al (2008) proposed Gaussian predictive process models 

for large spatial data sets. Alamaniotis et al (2011) and Alamaniotis and Tsoukalas (2016) 

performed short-term load forecasting using an ensemble of Gaussian processes. Wu et al 

(2012) studied tourism demand forecasting in Hong Kong. Claveria et al (2016) applied 

Gaussian process regression to the study of Spain’s tourism markets. Other examples of 

Gaussian process models in forecasting include Chapados and Bengio (2007), Ahmed et al 

(2010), Andrawis et al (2011), Ben Taieb et al (2012), Roberts et al (2013), among others.  

In this paper we present a new application of Gaussian process method in the modelling and 

forecasting of human mortality rates. The growing aged population, especially in developed 
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countries, has given rise to significant changes in both social structures and economic 

conditions. Assessing and forecasting the demographic mortality trends is hence of great 

interests to researchers due to its considerable impact on social welfare, resource allocation 

and governmental budgeting. In addition to biological, medical and behavioural methods, 

statisticians have developed very different and purely mathematical methods to model the 

mortality patterns. Lee and Carter (1992) first introduced their statistical model which was 

then named after them as Lee-Carter model. Lee-Carter model has further been developed by 

a series of extensions and modifications, including Bell (1997), Lee and Miller (2001), Booth 

et al (2002), Renshaw and Haberman (2003), Liu and Yu (2011). Hyndman and Ullah (2007) 

generalised the Lee-Carter model by treating the mortality rates in each year as a curve and 

applying functional data analysis approach (Ramsay and Silverman, 2005). Chiou and Müller 

(2009) further extended this method and introduced a moving window approach to collect 

observed data curves with respect to the birth year of cohorts falling into that window. Lee-

Carter model has also been extended to study the mortality for multiple populations; see, for 

example, Li and Lee (2005), Oeppen (2008), Cairns et al (2011), Hyndman et al (2013), de 

Jong et al (2016), among others. Booth et al (2006) compared the forecasting performance of 

some of the variants and extensions of Lee-Carter model. 

In this paper we propose to use Gaussian process regression (GPR) method to model and 

forecast mortality rates. Unlike most of the existing methods in mortality modelling which 

treat the mortality rates for all ages in a year as a whole and study their evolution over time, 

we consider the mortality rates for any specified age over time as a time series and assume 

that they have Gaussian process priors. The advantages of this treatment include that it can 

capture different patterns in mortality evolution over time for different ages and make use of 

GPR’s ability in probabilistic forecasting. We consider four conventional Gaussian process 

regression models and also propose to incorporate a weighted mean function with the spectral 

mixture covariance function for the problem of mortality modelling. The weighted mean 

function models the long term trend, and the spectral mixture covariance function enables 

that various covariance structures in mortality rates for different age groups can be captured 

and hence mitigates the difficulty in choosing suitable covariance functions in GPR. The 

combination of these two provides better forecasting results, compared with the conventional 

GPR models. The performance of this model is also compared with Lee-Miller model (Lee 

and Miller, 2001), Booth-Maindonald-Smith model (Booth et al, 2002) and the functional 

demographic model (Hyndman and Ullah, 2007). The numerical results demonstrate that the 
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GPR model with the weighted mean function and the spectral mixture covariance function 

provides a more robust forecast performance. 

The rest of the paper is organised as follows. In Section 2, we briefly introduce Gaussian 

process regression models, followed by a detailed description on how this method can be 

applied to mortality modelling and forecasting. In Section 3, the GPR models are applied to 

the French total mortality data and are compared with some existing models in the mortality 

modelling literature. Conclusion and discussions are given in Section 4. 

 

2. Methodology 

2.1. Gaussian process regression (GPR) 

Let 𝑦 ∈ ℝ be a response variable and 𝑡 ∈ ℝ the covariate variable. Consider the following 

nonlinear regression model with noise: 

𝑦 = 𝑓(𝑡) + 𝜀,    

where 𝜀~𝑁(0, 𝜎2)  represents the measurement error and 𝑓(∙): ℝ → ℝ  is an unknown 

function. By Gaussian process method,  𝑓(∙) is treated as a random function and is assumed 

to have a Gaussian process prior with a mean function 𝜇(∙) and a covariance function 𝑘(∙,∙). 

The covariance function relates one point to another and is defined as: 

𝑘(𝑡, 𝑡′; 𝜃) = 𝐶𝑜𝑣(𝑓(𝑡), 𝑓(𝑡′)),          

where 𝜃 denotes the set of hyper-parameters which need to be estimated.  

Therefore, given the observed data 𝒟 = {(𝑡1, 𝑦1), … , (𝑡𝑛, 𝑦𝑛)}, we have 

𝑦𝑖 = 𝑓(𝑡𝑖) + 𝜀𝑖 

where {𝜀𝑖}𝑖=1,⋯,𝑛  are independent and identically distributed normal random noises with 

mean 0 and variance 𝜎2. Hence the joint distribution of 𝑦1, 𝑦2, … , 𝑦𝑛 is multivariate normal: 

𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑛)𝑇~𝑁𝑛(𝝁, 𝜳),       

where the mean 𝝁 has entries 𝜇𝑖 = 𝜇(𝑡𝑖) and 𝜳  is an 𝑛 × 𝑛 matrix whose (𝑖, 𝑗)th element is 

given by 
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𝛹𝑖𝑗 = 𝐶𝑜𝑣(𝑦𝑖, 𝑦𝑗) = 𝑘(𝑡𝑖, 𝑡𝑗; 𝜃) + 𝜎2𝛿𝑖𝑗,   ⑴ 

where 𝛿𝑖𝑗 is the Kronecker delta. 

Suppose that 𝑡∗ is a test point and 𝑦∗ is the corresponding response value. Then, given the 

training data 𝒟, the conditional distribution of 𝑦∗ is normal with the following mean and 

variance (Rasmussen and Williams, 2006): 

𝐸(𝑦∗|𝒟) = 𝜇(𝑡∗) + 𝝍𝑇(𝑡∗)𝜳−1(𝒚 − 𝝁) ,              ⑵ 

𝑉𝑎𝑟(𝑦∗|𝒟) = 𝑘(𝑡∗, 𝑡∗; 𝜃) + 𝜎2 − 𝝍𝑇(𝑡∗)𝜳−1𝝍(𝑡∗) ,  ⑶ 

where 𝝍(𝑡∗) = (𝑘(𝑡∗, 𝑡1; 𝜃), … , 𝑘(𝑡∗, 𝑡𝑛; 𝜃))𝑇  is the covariance between 𝑓(𝑡∗)  and 𝒇 =

(𝑓(𝑡1), … , 𝑓(𝑡𝑛))𝑇, and 𝜳 is the covariance matrix of (𝑦1, 𝑦2, … , 𝑦𝑛)𝑇 defined in (1).  

The unknown parameters in the GPR model include the hyper-parameters 𝜃 in the covariance 

function, the noise variance 𝜎2 and any parameters (denoted generically by 𝛽) in the mean 

function 𝜇(∙).  They can be estimated by maximising the following marginal log-likelihood 

𝑙(𝜃, 𝜎2, 𝛽|𝒟) = −
1

2
log (det(𝜳)) −

1

2
(𝒚 − 𝝁)𝑇𝜳−1(𝒚 − 𝝁) −

𝑛

2
log(2𝜋). ⑷ 

  

2.2. Gaussian process regression models for mortality forecasting 

Let 𝑦𝑥(𝑡) denote the log of the mortality rate for age x in year t. We assume that there is an 

underlying function 𝑓𝑥(𝑡) that we are observing with error at discrete points of t. Suppose that 

our observations are {𝑡𝑖, 𝑦𝑥(𝑡𝑖)}, 𝑥 = 0, … , 𝑚, 𝑖 = 1, … , 𝑛, where 𝑚 is the maximum age of 

interest and 𝑛 is the number of years. Then 

𝑦𝑥(𝑡𝑖) = 𝑓𝑥(𝑡𝑖) + 𝜀𝑖,𝑥,                                                             

 where 𝜀𝑖,𝑥 represents the random observation error and is assumed to be independent and 

identically distributed normal random variable 𝑁(0, 𝜎𝑥
2) for a given 𝑥 and 𝑖 = 1, … , 𝑛. Based 

on the observations we are interested in forecasting 𝑦𝑥(𝑡) for any 𝑥 ∈ {0, … , 𝑚}  and 𝑡 =

𝑡𝑛+1, … , 𝑡𝑛+ℎ.  

For a given age 𝑥 , we assume that 𝑓𝑥(∙) follows a Gaussian process prior with a mean 

function 𝜇𝑥(∙) and a covariance function 𝑘𝑥(∙,∙). Therefore, for each 𝑥 we can build a GPR 
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model for the unknown function 𝑓𝑥(∙)  as discussed in the previous subsection, and the 

forecast mean and variance of the mortality rate at a future year 𝑡∗ , 𝑦𝑥(𝑡∗), can then be 

obtained by the equations (2) and (3).  

Since the log mortality rates over time for most ages display an overall decreasing trend, a 

linear function in 𝑡 is used as the mean function in the above GPR models, that is: 

𝜇𝑥(𝑡) = 𝛼𝑥 + 𝛽𝑥𝑡,     ⑸ 

where 𝛼𝑥 and 𝛽𝑥 are constants for the given 𝑥. In Gaussian process regression, the covariance 

function plays an important role in the predictive mean and variance. Covariance functions 

contain our presumptions about the function we wish to learn and define the closeness and 

similarity between data points. As a result, the choice of covariance function has a profound 

impact on the performance of GPR models. A wide range of covariance functions have been 

proposed and discussed in the literature; see for example Rasmussen and Williams (2006) 

and Shi and Choi (2011). In this paper we consider three commonly used stationary 

covariance functions, namely squared exponential (SE), Matern (MA) (with degree of 

freedom equal to 3/2) and rational quadratic (RQ), and the spectral mixture covariance 

function (SM) introduced by Wilson and Adams (2013).  

The SE, MA and RQ covariance functions have the following forms:  

𝑘𝑥(𝑡, 𝑡′) = 𝑘𝑆𝐸(𝜏) = 𝜎𝑆𝐸
2  exp{−𝜏2 (2𝑙𝑆𝐸

2⁄ )},             

𝑘𝑥(𝑡, 𝑡′) = 𝑘𝑀𝐴(𝜏) = 𝜎𝑀𝐴
2 (1 + √3𝜏 𝑙𝑀𝐴⁄ ) exp(− √3𝜏 𝑙𝑀𝐴⁄ ),     

𝑘𝑥(𝑡, 𝑡′) = 𝑘𝑅𝑄(𝜏) = 𝜎𝑅𝑄
2 (1 + 𝜏2 (2𝛼𝑙𝑅𝑄

2 )⁄ )−𝛼,   (α > 0)     

where 𝜏 = 𝑡 − 𝑡′. Note that in the above covariance functions the dependence of the hyper-

parameters on age 𝑥 is omitted for the sake of simplicity in notations. 

The spectral mixture (SM) covariance function is derived by modelling a spectral density      

the Fourier transform of a kernel     with a Gaussian mixture. Considering a mixture of 𝑄 

Gaussians on ℝ, where the 𝑞th component has mean 𝜇𝑞 and variance 𝜐𝑞
2, and letting 𝜏 = 𝑡 −

𝑡′, then the spectral mixture covariance function is expressed as 

𝑘𝑆𝑀(𝜏) = ∑ 𝜔𝑞
𝑄
𝑞=1 exp{−2𝜋2𝜏2 𝜐𝑞

2}cos(2𝜋𝜏𝜇𝑞),     ⑹ 
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where the weights  {𝜔𝑞}𝑞=1,⋯,𝑄  specify the contribution of each component. The hyper-

parameters {𝜔𝑞,  𝜇𝑞 ,  𝜐𝑞
2}𝑞=1,⋯,𝑄 can be estimated by maximising the log-likelihood (4). 𝑄 is 

the number of mixture components and in our numerical examples we have found that 𝑄 = 4 

is sufficient.  

2.2.1. GPR model with weighted mean function and SM kernel 

In the GPR models, the prior mean function has a significant impact on the forecast 

performance since the extrapolation tends to move to the prior mean in the long run. In 

mortality modelling, it is often the case that more recent data tend to have more impact on the 

results than those in the distant past: the more recent the data point is, the greater influence it 

tends to have on the future mortality rates. However, the mean function defined by (5) is 

modelled by a linear regression on the training data, which means each data point in the past 

carries equal weight on the mean function. Therefore, we propose to model the prior mean 

function by assigning different weights to the training data points, that is, using weighted 

least squares (WLS) method to estimate the parameters in the mean function. Furthermore, it 

can be seen from the numerical examples presented later that the mortality rates for different 

age groups exhibit very different patterns over time. Therefore different covariance functions 

may be needed for different age groups, which is not straightforward and is time consuming. 

However, it is noted that the spectral mixture covariance function can support a broad class of 

stationary covariance functions and enables that various covariance structures in mortality 

rates for different age groups can be captured, and hence mitigates the difficulty in choosing 

suitable covariance functions in the GPR models. Therefore we propose to use a weighted 

mean function and the spectral mixture covariance function in the Gaussian process 

regression for the modelling and forecasting of mortality rates. This model makes use of the 

strengths of both mean function and covariance function and provides a unified method and 

improved performance for both short term and long term mortality forecasts, as shown in our 

numerical examples. 

For a given age 𝑥, the parameters of the linear mean function (5), 𝛼𝑥 and 𝛽𝑥, are estimated by  

minimising the error: 

𝑒 = ∑ 𝑤𝑖[𝑦𝑥(𝑡𝑖) − 𝛼𝑥 − 𝛽𝑥𝑡𝑖]
2𝑛

𝑖=1 ,     

where 𝑤𝑖 is the weight for the 𝑖th year. Here we assume the weights to be equal to the inverse 

of the time distance to the first year to be forecasted, namely 𝑡0 (in the numerical example 
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later on, 𝑡0 =1991), therefore  𝑤𝑖 = 1 (𝑡0 − 𝑡𝑖⁄ ) for 𝑖 = 1, … , 𝑛. It is noted that other weights 

can be used for the mean function, and if the weights involve tuning parameters, they can be 

determined by cross validation. 

Let 𝑾 = diag{𝑤1, … , 𝑤𝑛} and 

𝑿 = [
1 𝑡1

⋮ ⋮
1 𝑡𝑛

] , 𝒚𝑥 = (𝑦𝑥(𝑡1), … , 𝑦𝑥(𝑡𝑛))𝑇, 

then, 𝛼𝑥 and 𝛽𝑥 are estimated by 

(
𝛼𝑥̂

𝛽𝑥̂
) = (𝑿𝑇𝑾𝑿)−1𝑿𝑇𝑾𝒚𝑥 . 

The hyper-parameters in the spectral mixture covariance function (6), {𝜔𝑞 ,  𝜇𝑞 ,  𝜐𝑞
2}𝑞=1,⋯,𝑄, 

and the noise variance 𝜎𝑥
2 can then be estimated by maximising the marginal log-likelihood 

(4). 

 

3. Applications of GPR methods in French mortality rates 

In this section we apply the GPR models to French total mortality rates and compare their 

forecasting performances. The performance of the proposed GPR model with the weighted 

mean function and the SM covariance function is also compared with three existing models in 

the literature.  

The data are obtained from the Human Mortality Database (2010), consisting of the observed 

French total mortality rates for ages 0-100 from the year 1950 to 2010. As demonstration 

Figure 1 shows the log mortality rates for ages 0, 10, 20, 30, 40, 50 and 100. It can be 

observed that, although the mortality rates generally rise with the increase of age, the 

mortality rates at birth are relatively high due to babies being born with illness or 

complications and also vulnerable to illness before their immune system develops. The 

mortality rates at age 20 are also relatively high because accidental deaths rise during late 

teen and early twenties. Overall, the log mortality rates for all ages show a downward trend 

over time, but it can be seen that for different age groups the mortality rates exhibit different 

patterns, especially for ages 20 and 30.  
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Figure 1. Log French total mortality rates for ages 0, 10, 20, 30, 40, 50 and 100 observed from 1950 to 2010. 

 

3.1. Forecasting comparison of the GPR models 

To compare the performances of the different GPR models, we select 20 age groups, namely, 

ages 0, 1, 2, 5, 10, 12, 15, 18, 20, 22, 25, 28, 30, 40, 50, 60, 70, 80, 90 and 100, to carry out 

analysis. The data for each age group are split into two parts: the data from 1950 to 1990 are 

used as training data and those from 1991 to 2010 as testing data. Five GPR models, that is, 

the models with the linear mean function (5) and the four different covariance functions 

(squared exponential, Matern, rational quadratic and spectral mixture, denoted by SE, MA, 

RQ and SM respectively) as well as the proposed GPR with the weighted mean function and 

the SM covariance function (denoted by WM-SM), are fitted to the training data for each age 

group separately. The parameters in each model are estimated using 100 random initial values 

and the ones that give the largest marginal likelihood are used as the estimates. Then the 

mortality forecasts are made for the years from 1991 to 2010 and are compared with the 

actual values. As demonstration Figures 2 illustrates the forecasting results by different 

models for the 40-year age group. The root mean squared errors (RMSE) between the 

forecasted values and the actual values for each age group are reported in Table 1.  
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Figure 2. The forecasted mortality rates for 40-year age group using different GPR models. The solid lines 

are the observed and the dashed lines are the forecasted means and the 95% confidence intervals. 
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Age SE MA RQ SM WM-SM 

0 

1 

2 

5 

10 

12 

15 

18 

20 

22 

25 

28 

30 

40 

50 

60 

70 

80 

90 

100 

0.2094 

0.1475 

0.2757 

0.1385 

0.4997 

0.3307 

0.3498 

0.8013 

0.3516 

0.6957 

0.2426 

0.3870 

0.4752 

0.1017 

0.3026 

0.0403 

0.0863 

0.1267 

0.0796 

0.1158 

0.1825 

0.3491 

0.1023 

0.3759 

0.4289 

0.3086 

0.3023 

0.5920 

0.4245 

0.4796 

0.2485 

0.1888 

0.2810 

0.1111 

0.0499 

0.0899 

0.0376 

0.1438 

0.0797 

0.1158 

0.1818 

0.2332 

0.0945 

0.3706 

0.4275 

0.3091 

0.3371 

0.5112 

0.4808 

0.4533 

0.3061 

0.2067 

0.2445 

0.1201 

0.0540 

0.1025 

0.1021 

0.1398 

0.0797 

0.1158 

0.1435 

0.3163 

0.0996 

0.3743 

0.4223 

0.3125 

0.3341 

0.4384 

0.5661 

0.4628 

0.3080 

0.1929 

0.2074 

0.1026 

0.0784 

0.1182 

0.1396 

0.1378 

0.0798 

0.1526 

0.0919 

0.1685 

0.2047 

0.1850 

0.3610 

0.2132 

0.2356 

0.3251 

0.3878 

0.4125 

0.3367 

0.3052 

0.3217 

0.1003 

0.0386 

0.0705 

0.0622 

0.0528 

0.0588 

0.0695 

Average 0.2879 0.2446 0.2435 0.2493 0.2001 

 

Table 1. The RMSEs between the forecasted values and the actual values for each age group by different 

GPR models. 

 

It can be seen from Table 1 that, although the GPR models with the linear mean function and 

different covariance functions perform similarly for some age groups (for example the 40-

year age group), the choices of the covariance functions still have a significant impact on 

forecasting accuracy for many other age groups. Taking SE as an example, it performs the 

best for the 20-year age group, but does poorly for the 50-year group. On the other hand, 

WM-SM may not provide the best prediction accuracy for some age groups (for example the 

25 and 30 age groups), it does significantly improve the overall forecasting accuracy. The 

average RMSE by WM-SM is the smallest, while RQ comes the second smallest. Wilcoxon 

signed rank test for the median RMSE by WM-SM being smaller than that of RQ gives a p-

value of 0.0191, which indicates the former does outperform the latter. The above results 

show that for a given age group the performance of GPR models largely depend on the choice 
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of covariance functions, but the WM-SM model mitigates this difficulty and provides better 

overall performance in terms of forecasting accuracy. 

Additionally, we also consider the metric of standardised negative log Gaussian predictive 

density, which is defined as follows (Rasmussen and Williams, 2006): 

SLL =  
1

2
log(2𝜋𝜎∗

2) +
(𝑦−𝑦∗)2

2𝜎∗
2 −

1

2
log(2𝜋𝜎2) −

(𝑦−𝑦̅)2

2𝜎̅2 , 

where 𝑦 is the true observation, 𝑦∗ and 𝜎∗
2 are the predictive mean and variance by the model 

of interest, and 𝑦̅ and 𝜎2 are the sample mean and variance of the training data. Hence the 

SLL will be zero for the trivial model which predicts using a Gaussian distribution with the 

mean and variance of the training data and negative for better methods. The average SLLs 

over the forecasting period (1991 to 2010) for all 20 age groups by the five models (SE, MA, 

RQ, SM and WM-SM) are -4.6377, -2.3908, -2.9271, -3.1939, -4.0299, respectively. Only SE 

has smaller average SLL than WM-SM, but we have found that it is due to the very large 

predictive variances produced by SE, as can be seen in Figure 2. 

 

3.2. Comparison of forecasted mortality curves  

We now compare the forecast accuracy of the WM-SM GPR model with some existing 

models in the literature, namely, Lee-Miller model (Lee and Miller, 2001), Booth-

Maindonald-Smith model (Booth et al, 2002) and the functional demographic model 

(Hyndman and Ullah, 2007).  

To construct the forecasted mortality curves for a future year, we select 20 age groups (0, 1, 2, 

5, 10, 12, 15, 18, 20, 22, 25, 28, 30, 40, 50, 60, 70, 80, 90 and 100), and fit a WM-SM GPR 

model for each of them. The mortality curve for all ages (0-100) is then obtained by 

piecewise cubic spline interpolation. The rationale for age selection is that we want to have 

dense points in the areas with large variation and sparse points in those with small variation. 

Our experiment shows that there is no significant difference in the results if more or slightly 

different age groups are used. Lee-Miller model (LM in short), Booth-Maindonald-Smith 

model (BMS) and the functional demographic model (FDM) are implemented using R 

package ‘demography’.  
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The four models (WM-SM GPR, LM, BMS and FDM) are applied to the French total 

mortality data using a rolling window approach. That is, we use the data for years from 1950 

to 𝑍 (where 𝑍 = 1981, … , 1990) to train the models and forecasts are then made for up to 

20-year horizon, i.e., to forecast the mortality rates for 𝑍 + 1, … , 𝑍 + 20. The forecasts are 

compared with the actual mortality rates (on log scale) and the RMSEs between the forecast 

mortality curves and the actual ones over the 20-year horizon for 𝑍 = 1981, … ,1990 are 

calculated. As illustration Figure 3 presents the forecasted mortality curves and the 95% 

confidence intervals for the year 1995 (5-year horizon), 2000 (10-year horizon), 2005 (15-

year horizon) and 2010 (20-year horizon) by WM-SM GPR model, based on the training data 

from 1950 to 1990 (i.e. 𝑍 = 1990). The means and the standard deviations of the ten RMSEs 

(corresponding to 𝑍 = 1981, … ,1990) for all 20 forecasting horizons are reported in Table 2, 

and the means at different horizons by the four models are also plotted in Figure 4.  

 

 

Figure 3. The forecasted mortality curves for 1995, 2000, 2005 and 2010 by WM-SM GPR model, based on 

the data from 1950 to 1990. The solid lines are the actual values and the dashed lines are the forecasted 

values and the 95% confidence intervals. 
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Horizon LM BMS FDM WM-SM 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

0.0962 (0.0172) 

0.1096 (0.0185) 

0.1217 (0.0202) 

0.1351 (0.0192) 

0.1475 (0.0183) 

0.1590 (0.0150) 

0.1674 (0.0185) 

0.1747 (0.0216) 

0.1821 (0.0249) 

0.1879 (0.0257) 

0.1937 (0.0269) 

0.1983 (0.0253) 

0.2074 (0.0219) 

0.2177 (0.0181) 

0.2271 (0.0138) 

0.2393 (0.0117) 

0.2537 (0.0154) 

0.2689 (0.0196) 

0.2834 (0.0204) 

0.2978 (0.0219) 

0.0779 (0.0126) 

0.0906 (0.0166) 

0.1044 (0.0164) 

0.1174 (0.0221) 

0.1287 (0.0264) 

0.1399 (0.0341) 

0.1484 (0.0401) 

0.1571 (0.0443) 

0.1673 (0.0507) 

0.1757 (0.0523) 

0.1857 (0.0552) 

0.1936 (0.0565) 

0.2054 (0.0573) 

0.2175 (0.0557) 

0.2286 (0.0528) 

0.2417 (0.0464) 

0.2562 (0.0463) 

0.2709 (0.0515) 

0.2860 (0.0596) 

0.3008 (0.0678) 

0.0574 (0.0052) 

0.0652 (0.0062) 

0.0782 (0.0070) 

0.0929 (0.0096) 

0.1089 (0.0095) 

0.1276 (0.0112) 

0.1452 (0.0146) 

0.1637 (0.0122) 

0.1822 (0.0149) 

0.1987 (0.0112) 

0.2128 (0.0165) 

0.2237 (0.0157) 

0.2378 (0.0193) 

0.2528 (0.0335) 

0.2646 (0.0447) 

0.2788 (0.0508) 

0.2931 (0.0531) 

0.3064 (0.0523) 

0.3185 (0.0468) 

0.3305 (0.0392) 

0.0553 (0.0105) 

0.0686 (0.0114) 

0.0801 (0.0079) 

0.0911 (0.0128) 

0.1030 (0.0149) 

0.1245 (0.0129) 

0.1338 (0.0173) 

0.1441 (0.0202) 

0.1553 (0.0264) 

0.1633 (0.0269) 

0.1740 (0.0308) 

0.1820 (0.0297) 

0.1921 (0.0316) 

0.2078 (0.0301) 

0.2205 (0.0274) 

0.2343 (0.0211) 

0.2496 (0.0172) 

0.2646 (0.0101) 

0.2795 (0.0154) 

0.2932 (0.0213) 

 

Table 2. The means and the standard deviations (in bracket) of the ten RMSEs by LM, BMS, FDM and 

WM-SM GPR. 

  

Figure 4. The average of the ten RMSEs by LM, BMS, FDM and WM-SM GPR. 
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It can be seen from the table and the figure that, the performances of WM-SM GPR and FDM 

are indistinguishable for short term forecasting (from 1- to 6-year forecasting horizons). But 

from 7-year horizon onwards, the GPR model substantially outperforms the FDM model. On 

the other hand, the performance of WM-SM GPR model is almost equal to those of LM and 

BMS for long term forecasting (for 16- to 20-year horizons). However, the former has much 

better accuracy for 1- to 15-year horizons than the latter two, particularly than LM model. In 

the mid-term (from 7- to 15-year horizons), the WM-SM GPR model is systematically better 

than the other three. Therefore, the WM-SM GPR model provides robust performance for 

both short term and long term forecasting with improved forecasting accuracy for mid-term, 

when compared with the other three models.  

 

4. Conclusion and discussion 

We have introduced Gaussian process regression as a new approach for modelling and 

forecasting mortality rates. We considered four commonly used Gaussian process regression 

models and also proposed to incorporate a weighted mean function with the spectral mixture 

covariance function for the problem of mortality modelling, which mitigated the difficulty in 

choosing suitable covariance functions in GPR modelling. The numerical examples showed 

that the proposed GPR model improved the overall forecasting accuracy of mortality rates, 

compared with the conventional GPR models. The performance of this model was also 

compared with Lee-Miller model, Booth-Maindonald-Smith model and the functional 

demographic model using the French total mortality rates. The numerical results 

demonstrated that the proposed GPR model provided a more robust forecast performance. 

In contrast to Lee-Carter model and most of its variants, which directly act on the historical 

mortality curves for forecasting, the GPR models provide a different angle to handle this 

forecasting problem. We treat the mortality rates for each age group over time as a time series 

and assume that it follows a Gaussian process. After forecasts are made for some age groups 

for a future year, the mortality rates at the other ages can be obtained by interpolating the 

forecasted mortality rates to all age groups. The forecasting accuracy may depend on the 

choice of the age groups to be modelled. In our example, 20 age groups were selected, 

including 0, 1, 2, 5, 10, 12, 15, 18, 20, 22, 25, 28, 30, 40, 50, 60, 70, 80, 90, 100-year groups. 

The reason for choosing these age groups is that, the mortality rates tend to be very variable 
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from age 0 to age 30 while they increase almost linearly from age 30 to age 100. Hence we 

need denser grids for interpolation in the interval from 0 to 30 and fewer points from the age 

30 onwards. Our experiment showed that there was no significant difference in the results if 

more or slightly different age groups were used. Although the topic of this paper concerns 

human mortality modelling and forecasting, the idea can also be used in similar demographic 

problems such as fertility and migration modelling. 

Another issue to be discussed is the weights chosen for the historical data in the mean 

function. When forecasts are made for long horizons, the correlations between the future 

points and the historical points become very low and the predictions by Gaussian process 

regression will converge to the mean function in long term. The weights for the historical 

data partially determine the mean function and therefore can also impact the accuracy of 

forecasts. In this paper we used the inverse of the time distances as the weights assigned to 

historical data for all the age groups. It is of course possible to use other weights, and if the 

weights involve tuning parameters, they can be determined by the cross validation. 

Furthermore, in this paper the mean function and the covariance function used for each age 

group are independent of the other age groups. However, as can be expected the mortality 

rates for different ages are closely correlated, especially between the neighbouring ages, it is 

therefore worth further investigating how to build mean functions and covariance functions 

taking the correlations into account. 
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