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Abstract

Gaussian process regression (GPR) is a Bayesian non-parametric technology that has

gained extensive application in data-based modelling of various systems, including

those of interest to chemometrics. However, most GPR implementations model only a

single response variable, due to the difficulty in the formulation of covariance function

for correlated multiple response variables, which describes not only the correlation

between data points, but also the correlation between responses. In the paper we

propose a direct formulation of the covariance function for multi-response GPR, based

on the idea that its covariance function is assumed to be the “nominal” uni-output

covariance multiplied by the covariances between different outputs. The effectiveness

of the proposed multi-response GPR method is illustrated through numerical examples

and response surface modelling of a catalytic reaction process.

Keywords: Block coordinate descent, Covariance function, Cholesky decomposition,

Gaussian process regression, Multiple response

1. Introduction

In recent years, Gaussian process regression (GPR) has received significant atten-

tion as a powerful statistical tool for data-driven modelling. In chemometrics and re-

lated areas, GPR has been applied to calibration of spectroscopic analysers [6, 16, 26],

response surface modelling [27], dynamic process modelling [11, 15], system identifi-

cation [5] and ensemble learning [12, 26], among others. The popularity of GPR is
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partly due to its theoretical link to Bayesian non-parametric statistics [9, 17], infinite

neural networks [14], kernel methods in machine learning [4, 24], and spatial statistics

(where it is more widely known as kriging) [8]. In addition, various empirical studies

have demonstrated that GPR attains prediction accuracy that is at least comparable to

(and in many cases better than) other models such as neural networks [15, 21, 26, 27].

Despite the high uptake of GPR for various modelling tasks, there still exists some

outstanding issues with the GPR method. Of particular interest in this paper is the

need to model multiple response variables. Traditionally, one response variable is

treated as a Gaussian process, and multiple responses are modelled independently

without considering their correlation. This pragmatic and straightforward approach

was taken in many applications (e.g. [7, 26, 27]), though it is not ideal. A key to

modelling multi-response Gaussian processes is the formulation of covariance function

that describes not only the correlation between data points, but also the correlation

between responses. Neal [14] suggested to share all covariance terms between different

outputs but the noise variance; however this approach may not be adequate because

it has a single hyper-parameter (the noise variance) to differentiate multiple outputs.

An alternative method, termed dependent GPR, is to treat Gaussian processes as the

outputs of stable linear filters, i.e. the covariance function is indirectly parameterised

by using these linear filters [2]. A specific covariance function was proposed in [18],

where the focus was on correlated periodic signals that are not always relevant to

chemometrics.

Against this background, the present paper develops a direct formulation of the co-

variance function for multi-response GPR. To this end, the Bayesian regression frame-

work will be followed, since it is usually used for deriving GPR. Furthermore, this

scheme will be extended to the scenarios where different responses may be observed

at different covariate values. Then, optimisation algorithms to estimate the hyper-

parameters of this covariance function will be presented. The effectiveness of the pro-

posed multi-response GPR method will be illustrated through numerical examples and

response surface modelling of a catalytic reaction process.
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2. Overview of GPR

This section follows the framework of Bayesian regression to provide an overview

of GPR. This framework will facilitate the extension of GPR from single response to

multiple response variables in the next section.

Linear regression expresses the response variable y as a function of p-dimensional

covariates x = [x1, . . . , xp]
T parameterised by w = [w1, . . . , wp]

T :

yi =

p
∑

d=1

wd xid + ǫi = xTi w + ǫi, i = 1, . . . , n

where n is the number of observations (data points), xid is the d-th covariate of xi, and

ǫi is additive Gaussian noise with zero mean and unknown variance σ2
ǫ .

Under the Bayesian framework, a prior distribution needs to be specified for the

regression parameter w. An usual choice is a Gaussian distribution with zero mean

and diagonal covariance matrix: p(w) = G(0, σ2
wIp), independent of ǫi, where Ip is the

p× p identity matrix. The response, y = [y1, . . . , yn]
T , which is a linear function of w

and the Gaussian noise ǫi, is also Gaussian distributed with zero mean, and covariance

matrix C. This is a Gaussian process [13, 21], i.e., p(y) = G(0,C). The entry of C is

Cij = C(xi,xj) =< yiyj >

= < xTi wwTxj > + < ǫiǫj >

= xTi < wwT > xj+ < ǫiǫj >

= σ2
wx

T
i xj + δijσ

2
ǫ (1)

where <> is the expectation operator; δij = 1 if i = j and 0 otherwise.

This Bayesian approach gives rise to a new non-parametric view of the regression

problem. Instead of inferring parameter w, the regression model can be summarised

by a covariance function, C(xi,xj). Furthermore, the form of covariance function is

not restricted to that in equation (1), the only constraint being that it must generate

a non-negative definite covariance matrix for any set of data points [13]. The following

covariance function is widely used in the literature [16, 26, 27] and also adopted in this
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paper:

C(xi,xj;θ) = a0 + a1

p
∑

d=1

xidxjd + v0 exp

(

−

p
∑

d=1

ηd(xid − xjd)
2

)

+ δijσ
2
ǫ

where θ = (a0, a1, η1, . . . , ηp, v0, σ
2
ǫ ) is the vector of hyper-parameters. The exponential

term is similar to the form of radial basis function, recognising high correlation between

outputs with nearby inputs. Other forms of covariance functions are discussed in

[13, 21].

With the covariance function, the predictive distribution of the output variable y∗,

given its input x∗, is Gaussian with mean and variance

ŷ∗ = kT
∗
C−1y

σ2
∗

= C(x∗,x∗)− kT
∗
C−1k∗

where k∗ = [C(x∗,x1), . . . , C(x∗,xn)]
T . To obtain the hyper-parameters using maxi-

mum likelihood estimation, the log-likelihood of the training data is given by

L = −
1

2
log detC−

1

2
yTC−1y −

n

2
log 2π

The derivative of the log-likelihood with respect to each hyper-parameter (denoted by

a generic notation θ) is:

∂L

∂θ
= −

1

2
tr

(

C−1∂C

∂θ

)

+
1

2
yTC−1∂C

∂θ
C−1y

3. Multiple correlated responses

3.1. Model formulation

Let yi, a column vector, be the q-dimensional response with sample index i, and

xi be the corresponding p-dimensional covariate vector. The multi-response linear

regression model is
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yi = KiW + ǫi, i = 1, . . . , n

where Ki is the Kronecker product of the q×q identity matrix Iq and xTi : Ki = Iq⊗xTi ,

and W is the concatenation of the regression vectors for the q response variables:

W = [wT
1 , . . . ,w

T
q ]
T . The q-dimensional noise term ǫi is given by a zero mean Gaussian

distribution: ǫi ∼ G(0,S), and the correlation between ǫi and ǫj, i 6= j is ignored (i.e.

the usual assumption of independently and identically distributed noise). The prior for

the regression vectors, W, needs to be extended from zero-mean multivariate Gaussian

to a zero-mean matrix Gaussian distribution [3, 22]. To simplify the notation, we first

define the prior for each regression vector, wg, as follows:

wg ∼ G(0, σ2Ip), g = 1, . . . , q (2)

Furthermore, the covariance matrix between regression vectors, is specified as

cov(wg,wh) = Σgh, g, h = 1, . . . , q

which implies Σgg = σ2Ip. We also assume that W is independent of ǫi (i = 1, . . . , n).

The response vector, y = [yT1 , . . . ,y
T
n ]
T , a linear function of Gaussian random vector

wg and Gaussian noise ǫi, is itself a Gaussian with zero mean. For ease of derivation

the outputs are re-organised hereafter in the following way:

y = [y11, . . . , y1n, . . . , yq1, . . . , yqn]
T (3)

which is also Gaussian distributed with zero mean and covariance matrix denoted by

C. The entries of C can be calculated as follows:
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Cgh
ij = cov(ygi, yhj) =< ygiy

T
hj >

= < xTi wgw
T
hxj > + < ǫgiǫhj >

= xTi < wgw
T
h > xj+ < ǫgiǫhj >

= xTi Σ
ghxj + δijSgh (4)

where <> is the expectation operator, and Sgh is the entry of S at the g-th row and

h-th column.

Eq. (4) suggests that the covariance between the i-th sample on the g-th output

and the j-th sample on the h-th output may be formulated in two components: the

first due to covariance at the inputs, and the second due to that of residual. How-

ever, in comparison with the uni-output case, if this covariance function is directly

implemented, significantly more hyper-parameters need to be estimated: Σgh is a p×p

matrix for each pair (g, h), and S is a q × q matrix. In practice, a more parsimonious

model is desired.

In this study, we adopt a concept that when extending from uni- to multi-output

linear regression, the covariance function could be parameterised as a “nominal” uni-

output covariance as in eq. (2), multiplied by an additional term, bgh, reflecting the

covariance between outputs g and h: Σgh = bghσ
2Ip, and these bgh’s form a q × q

symmetric matrix B. The model is further simplified by setting the noise covariance

S to be diagonal, i.e. S = diag(S11, . . . , Sqq), since the between-output covariance

has already been captured in the first component. The simplified covariance function

becomes:

Cgh
ij = bghσ

2xTi xj + δijδghSgh

where

δgh =







1 if g = h

0 if g 6= h
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Furthermore, to mimic the move from a simple linear correlation to more complex

covariance function in uni-output case, the following covariance function is adopted by

combining bias, linear correlation and exponential terms:

Cgh
ij =

[

a0 + a1

p
∑

d=1

xidxjd + v0 exp

(

−

p
∑

d=1

ηd(xid − xjd)
2

)]

bgh + δijδghSgh

If the first part, except bgh’s, in the above equation is organised into a matrix, Q with

entries

Qij , Q(xi,xj) = a0 + a1

p
∑

d=1

xidxjd + v0 exp

(

−

p
∑

d=1

ηd(xid − xjd)
2

)

(5)

then the covariance matrix of y given in (3) becomes the following form:

C =

















b11Q+ S11In b12Q . . . b1qQ

b21Q b22Q+ S22In . . . b2qQ
...

...
. . .

...

bq1Q bq2Q . . . bqqQ+ SqqIn

















(6)

or C = B ⊗Q + S⊗ In, where ⊗ denotes the Kronecker product. It is known that if

S, B and Q are all positive definite, so is C.

Similar to the case of a single response, the prediction at a new data point x∗ is a

multivariate Gaussian with mean and covariance given by

ŷ∗ = KT
∗
C−1y

Σ∗ = B⊗Q(x∗,x∗) + S−KT
∗
C−1K∗

where K∗ = B ⊗Q∗ and Q∗ = [Q(x1,x∗), . . . , Q(xn,x∗)]
T consists of the covariances

between the test data point x∗ and the training set as calculated in eq. (5).

The prediction formulae above involve the calculation of the inverse of the co-

variance matrix C, and the computation is in order of O(n3q3). In many practical
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applications, the number of response variables is often small, and thus the computa-

tion may not pose a serious issue. In addition, if needed, fast approximate methods

are available for this calculation; see e.g. [20].

3.2. An alternative derivation of the covariance function

The covariance matrix (6) can alternatively be derived as follows. Let y = [y1, . . . , yq]

be a row vector of q-dimensional response, satisfying

y = f(x) + ǫ

where x = [x1, . . . , xp] is a p-dimensional covariate vector, f = [f1, . . . , fq] is a vector

valued random function, and ǫ = [ǫ1, . . . , ǫq] ∼ G(0,S) is independent random noise,

i.e. S is diagonal. Assume f ∼ Gq(0,B): q-variate Gaussian distribution with mean 0

and covariance matrix B.

Suppose we have n samples (x1,y1), . . . , (xn,yn), and assume that, for any output yg

(g = 1, . . . , q), the corresponding random function fg(·) satisfies a GP with covariance

function

cov(fg(xi), fg(xj)) = Q(xi,xj)

= a0 + a1

p
∑

d=1

xidxjd + v0 exp

(

−

p
∑

d=1

ηd(xid − xjd)
2

)

, Qij

Let Q = (Qij)n×n. Then the n×q matrix [fT (x1), . . . , f
T (xn)]

T has a matrix normal

distribution MN(0,Q,B), where Q is the covariance among rows and B is the one

among columns. Equivalently, vec[fT (x1), . . . , f
T (xn)]

T ∼ Gnq(0,B ⊗ Q): nq-variate

Gaussian distribution. Hence vec[yT1 , . . . ,y
T
n ]
T ∼ Gnq(0,B⊗Q+ S⊗ In), the same as

(6). Note that the above derivation implies that the matrix B in (6) must be positive

definite.

This formulation also explains the proposed multiple response model. In fact, it is

assumed that the noise free q-dimensional response variable f = [f1, . . . , fq] follows a
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q-variate Gaussian distribution Gq(0,B). If the random samples of f at x1, . . . ,xn,

namely f(x1), . . . , f(xn), were independent, the matrix [fT (x1), . . . , f
T (xn)]

T would

have a matrix normal distribution MN(0,Σ,B) where Σ is a diagonal matrix depend-

ing on x1, . . . ,xn. The proposed model effectively addresses the problem of correlated

samples f(x1), . . . , f(xn) in the similar way as the univariate Gaussian process regres-

sion, by replacing the diagonal matrix Σ by Q which is calculated from the covariance

function.

3.3. Parameter estimation

Estimation of hyper-parameters becomes to maximize the log likelihood whilst ob-

serving the constraint that C must be positive definite, or equivalently S, B and Q

are all positive definite. This can be done by the block coordinate descent, also termed

non-linear Gaussian-Seidel method [1]. That is, alternate between the two steps: (i)

estimate the usual GPR hyper-parameters (a0, a1, η1, . . . , ηp, v0) and the elements of S

(S11, . . . , Sqq) by fixing B, and (ii) estimate B by fixing the hyper-parameters and S,

where in both steps the objective function is the following log-likelihood:

L = −
1

2
log detC−

1

2
yTC−1y −

nq

2
log 2π

The estimation of the hyper-parameters in Q and S follows the same strategy as

in the case of a single response discussed at the end of the previous section. The only

difference is that related to the derivatives of the covariance matrix with respect to a

hyper-parameter (denoted by a generic notation θ) and Sgg (g = 1, . . . , q), which are

∂C

∂θ
=
∂ (S⊗ In +B⊗Q)

∂θ
=
∂ (B⊗Q)

∂θ
= B⊗

∂Q

∂θ
∂C

∂Sgg
=
∂ (S⊗ In +B⊗Q)

∂Sgg
=
∂ (S⊗ In)

∂Sgg
= Egg ⊗ In

where Egg is the q × q elementary matrix having unity in the (g, g)-th element and

zeros elsewhere. ∂Q/∂θ depends on the form of the covariance function and can be

derived accordingly [21]. In practice, since these hyper-parameters must be positive to
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ensure the positive definiteness of Q and S, the hyper-parameters are log-transformed

before estimation, a common strategy to convert the constrained optimisation problem

into an unconstrained one.

The estimation of the positive definite matrix B, again, is a constrained optimisa-

tion problem. In fact, this can be cast into a semidefinite programming (SDP) problem,

for which efficient solution methods are available especially for linear cases [25]. Un-

fortunately, the objective function (the log-likelihood) is a non-linear function of B,

and thus to be able to use SDP algorithms, the log-likelihood must be linearised itera-

tively during the solution process. Such a strategy is complex to implement, and may

converge slowly due to the approximate linearisation used.

We instead adopt a more straightforward approach to transforming the constrained

problem to an unconstrained one. A common method is to utilize the Cholesky de-

composition [19]. Let B = ΦΦT where Φ is a lower triangular matrix such that

Φ =

















φ11 0 · · · 0

φ21 φ22 · · · 0
...

...
. . .

...

φq1 φq2 · · · φqq

















To guarantee the uniqueness of Φ, we require its diagonal elements to be positive and

denote ψii = log(φii) for i = 1, . . . , q. Consequently the matrix B is reparameterized by

[ψ11, φ21, ψ22, . . . , ψqq]
T . Hence the derivatives of the covariance matrix C with respect

to these parameters are as follows: for i, j = 1, . . . , q and i > j

∂C

∂φij
=
∂ (B⊗Q)

∂φij
=
∂
(

ΦΦT
)

∂φij
⊗Q =

(

EijΦ
T +ΦEji

)

⊗Q

∂C

∂ψii
=
∂ (B⊗Q)

∂ψii
=
∂
(

ΦΦT
)

∂ψii
⊗Q =

(

JiiΦ
T +ΦJii

)

⊗Q

where Eij is the q×q elementary matrix having unity in the (i, j)-th element and zeros

elsewhere, and Jii is the same as Eii but with the unity being replaced by eψii .

10



4. Extension

The multi-response model discussed in the previous section assumes that all the

outputs are observed at the same covariate values. We now extend the model to the

case where different outputs may be observed at different covariate values.

Suppose that the gth output has ng observations yg1, . . . , ygng
at the corresponding

covariate values xg1, . . . ,xgng
. We can define the covariance between ygi and yhj as

Cgh
ij =

[

a0 + a1

p
∑

d=1

xgidxhjd + v0 exp

(

−

p
∑

d=1

ηd(xgid − xhjd)
2

)]

bgh + δijδghSgh

for g, h = 1, . . . , q, i = 1, . . . , ng and j = 1, . . . , nh.

Letting

Qghij , Q(xgi,xhj) = a0 + a1

p
∑

d=1

xgidxhjd + v0 exp

(

−

p
∑

d=1

ηd(xgid − xhjd)
2

)

andQgh = (Qghij)ng×nh
, then the covariance matrix of y = [y11, . . . , y1n1

, . . . , yq1, . . . , yqnq
]T

becomes the following form:

C =

















b11Q11 + S11In1
b12Q12 . . . b1qQ1q

b21Q21 b22Q22 + S22In2
. . . b2qQ2q

...
...

. . .
...

bq1Qq1 bq2Qq2 . . . bqqQqq + SqqInq

















where Qgh = QT
hg. Let Q be a q× q block matrix with the block elements Qgh and I a

q× q block identity matrix with the block elements Ing
, then C = B ◦Q+S ◦ I, where

◦ denotes the block Hadamard product. Apparently Q is a positive definite matrix,

and since B is also positive definite, so is B ◦ Q by the Schur Product Theorem [10].

Hence C is positive definite.

The parameter estimation can be done along the same line as discussed in the

previous section. The derivatives needed are:
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∂C

∂θ
= B ◦

∂Q

∂θ
∂C

∂Sgg
= Egg ◦ I

∂C

∂φij
=
(

EijΦ
T +ΦEji

)

◦Q

∂C

∂ψii
=
(

JiiΦ
T +ΦJii

)

◦Q

The prediction at new data points [x1∗, . . . ,xq∗] is a multivariate Gaussian with

mean and covariance given by

ŷ∗ = KT
∗
C−1y

Σ∗ = B ◦Q∗∗ + S−KT
∗
C−1K∗

where Q∗∗ is a q × q matrix representing the covariances between the test points and

themselves with elements Qgh
∗∗

= Q(xg∗,xh∗), and K∗ = B ◦Q∗ where the block matrix

Q∗ has block elements Qgh
∗

which consists of the covariances between the training data

points of the gth output and the test data point of the hth output.

5. Numerical examples

In this section we demonstrate the effectiveness of the proposed model using some

numerical examples, including simulated data and real data.

5.1. Simulated examples

We first consider a simulated data from bivariate analytical functions. The true

model used to generate data is given by

y1 = f1(x1, x2) + ǫ1, with f1(x1, x2) = 3 cos(x1) + 4 cos(2x2)

y2 = f2(x1, x2) + ǫ2, with f2(x1, x2) = 2 cos(x1 + 1.0) + 3 cos(2x2 + 1.0)

where ǫ1 ∼ G(0, 0.25) and ǫ2 ∼ G(0, 0.16). The covariates x1 and x2 both have 20

equally spaced values in [−5, 5] so that a sample of 20 observations for y1 and y2 are

generated, which gives the sample correlation between the two response variables 0.527.
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Table 1: The RMSE for data from bivariate analytical functions

Output 1 (y1) Output 2 (y2)

Multi-GP Ind-GP PLS Multi-GP Ind-GP PLS

With observed 0.384 0.438 3.984 0.627 0.708 2.603

With true 0.312 0.350 3.817 0.482 0.515 2.730

To test the performance of the model, leave-one-out cross validation is performed,

that is, each of the 20 data points is left as test data whilst the remaining data are used

for model training. The predicted values are then compared with the observed as well

as the true ones calculated from f1(x1, x2) and f2(x1, x2), and the root mean square

errors (RMSE) are presented in Table 1. For comparison, the conventional uni-output

Gaussian process regressions and the widely used partial least squares regression for

multi-inputs and multi-outputs (PLS) are also performed, where the former is con-

ducted for the two outputs independently, without considering their correlation. The

table shows that the proposed model (multi-GP) which takes the correlation between

the responses into account significantly improves the prediction accuracy compared

with the method of modelling each output independently (ind-GP). PLS is essentially

a linear model so it is not surprising that it fails to make sensible predictions for these

highly nonlinear functions.

If there is little or no correlation among the responses the multi-GP can not borrow

information from other outputs. In this case it is understandable that the multi-GP

may not improve the prediction accuracy or even perform worse than the ind-GP,

due to the fact that the former actually imposes more constraints on the covariance

functions than the latter. This feature is also demonstrated by the following example.

The same experimental scheme as above is conducted, with f1(x1, x2) and f2(x1, x2)

being defined as

f1(x1, x2) = 2 cos(x1 + 0.5) + 3 cos(2x2 + 0.5), f2(x1, x2) = 0.5x1 + x2
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Table 2: The RMSE for data from bivariate analytical functions with no correlation

Output 1 (y1) Output 2 (y2)

Multi-GP Ind-GP Multi-GP Ind-GP

With observed 1.119 1.016 0.448 0.334

With true 0.660 0.590 0.236 0.275

The sample correlation between the two response variables is -0.012. The results are

reported in Table 2 which shows that the multi-GP does not perform as well as the

ind-GP in terms of prediction accuracy, as expected.

The second simulated example is to test the model for the scenarios where different

responses may be observed at different covariate values. The data is generated by the

following true model:

y1 = f1(x) + ǫ1, with f1(x) = 3 cos(x)

y2 = f2(x) + ǫ2, with f2(x) = 2 cos(x+ 0.3)

where ǫ1 ∼ G(0, 0.25) and ǫ2 ∼ G(0, 0.25). The covariate x has 15 equally spaced

values in [−10, 10] so that a sample of 15 observations for y1 and y2 are obtained with

the sample correlation 0.921.

For model training, the data points for x in [−5,−1] are removed from the first

output y1 and those in [4, 8] removed from y2. The prediction is then performed at

all 50 covariate values equally spaced in [−10, 10]. The RMSEs between the predicted

values and the true ones obtained from f1(x) and f2(x) are calculated. The uni-output

GPR models are also applied to the same data for y1 and y2 independently. The results

are presented in Table 3 and Figure 1.

From the table and the figure it can be seen that, at the intervals with relatively

dense data points, multi-GP and ind-GP give comparable results; however, in the

regions where some data points are missing, multi-GP is able to learn the patterns of
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Table 3: The RMSE for outputs observed at different covariate values

Output 1 (y1) Output 2 (y2)

Multi-GP Ind-GP Multi-GP Ind-GP

0.376 1.101 0.447 0.833
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Figure 1: Predictions for outputs observed at different covariate values. Top panel: predic-

tions by multi-GP; bottom panel: predictions by ind-GP. The solid lines are the predictions,

the dotted lines are the true functions and the circles are the observations. The dashed lines

represent the 95% confidence intervals.
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the true functions from each other so can fill in the gap whilst ind-GP fails to make

good predictions since it does not get any information from the other output. These

results clearly illustrate the advantage of the proposed model which accommodates the

correlation between outputs. It is also notable that the prediction variances of the

multi-GP are much smaller than those of the ind-GP in the regions with missing data.

This is another advantage of the proposed model. The prediction uncertainty of GPR

can be used in constructing the prediction model by ensemble learning [12].

5.2. Modelling the response surface of a catalytic oxidation process

Oxidation of alcohols into the corresponding aldehydes or ketones, in particular

benzyl alcohol to benzaldehyde, is one of the most important functional group trans-

formations in organic synthesis. The selected catalyst, K-Mn/C, was prepared by

co-impregnating aqueous solutions of potassium and manganese nitrates onto commer-

cially available activated carbon. The catalytic oxidation process was conducted in a

bath-type lab-scale reactor. More experimental details can be found in [23]. Experi-

ments were conducted to study the impact of five process factors (reaction temperature,

partial pressure of oxygen, concentration of benzyl alcohol in terms of mmol diluted

within 10 ml of toluene, percentage of Mn, and K:Mn ratio) on the conversion of benzyl

alcohol, and the turn over frequency (TOF). The conversion and TOF are regarded

as the process response variable. It should be noted that the conversion and TOF are

highly correlated (correlation coefficient 0.65), suggesting that a multi-response GPR

model could be useful.

The original purpose of the experiments was to develop a quadratic regression

model to relate the conversion to the five process factors. Hence, the central composite

design, which is especially appropriate for quadratic regression, was adopted to give

32 experimental runs. In a later stage, an additional six experiments were conducted

to further confirm the effect of increasing K:Mn ratio. Therefore, the data set is not

the result of rigorously designed experiments, which is not uncommon in practical

experimentation. The data for the 38 experimental runs have been published in [23].
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Table 4: The RMSE for catalytic oxidation process data

Conversion TOF

Multi-GP Ind-GP Multi-GP Ind-GP

8.66 10.75 0.31 0.33
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Figure 2: Prediction by leave-one-out cross validation. ’o’: by multi-GP; ’+’: by ind-GP.

To test the effectiveness of the proposed model on this dataset, leave-one-out cross

validation is performed using the multiple response model (multi-GP) and the indepen-

dent GPR (ind-GP). The RMSEs between the predicted and the measured values are

given in Table 4, and the predictions by both methods are illustrated in Figure 2. It is

obvious that the multiple response model indeed improves the accuracy of prediction,

particularly for the conversion.

Furthermore, the dataset is also used to test the proposed model for the case where

different outputs may be observed at different covariate values using the following

scheme. For model training we randomly select N out of 38 data points for the two

responses independently, which means that at some covariate values only the conversion

or TOF may be measured. The trained model is then used to make predictions on the
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Table 5: The RMSE for catalytic oxidation process data

N
Conversion TOF

Multi-GP Ind-GP Multi-GP Ind-GP

10 14.93 16.06 0.42 0.43

15 11.76 12.99 0.33 0.34

20 9.80 12.21 0.31 0.35

30 6.62 8.07 0.18 0.26

remaining data points. The independent GPR model is also applied to the same data

for comparison and the RMSEs between the predictions and the measurements are

calculated. Table 5 presents the average RMSEs based on ten replications using the

above scheme for N = 10, 15, 20 and 30.

It is obvious that with the increase of the number of training points, the predictions

by both methods become more accurate. However, the multi-GP consistently outper-

forms the independent GP in all cases. It can also be observed that the improvement

by multi-GP appears to be more significant as the number of training points increases.

A possible explanation is that the proposed model can learn better on the correlations

among different outputs with more data points.

6. Concluding remarks

We proposed a direct formulation of the covariance function for multiple response

GPR, based on the idea that its covariance function was assumed to be the “nominal”

uni-output covariance multiplied by the covariances between different outputs. The

parameters were estimated by the block coordinate descent in which the estimation of

the between-output covariance matrix B was implemented using Cholesky decomposi-

tion. The superiority of the proposed multi-response GPR method over the indepen-

dent GPR was demonstrated through the simulated examples and the response surface

modelling of a catalytic reaction process. The model was also extended to the scenarios
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where different responses may be observed at different covariate values.

Unlike the linear filtering method [2] where the covariance structure among differ-

ent outputs is assumed to follow some specific forms, the proposed model is able to

learn these dependencies from data, represented by the matrix B. In this paper we

assumed that the covariance functions for GP within each output were the same. In

practice cases exist where it may be better to use different covariance functions for

different response variables. It is however difficult to define the covariances between

data points coming from different outputs in this setting, and this problem will be

further investigated.
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