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 28 

Abstract 29 

Carbon dioxide (CO2) and methane (CH4) are the two most important greenhouse gases emitted by 30 

mankind. Better knowledge of the surface sources and sinks of these Essential Climate Variables 31 

(ECVs) and related carbon uptake and release processes is needed for important climate change related 32 

applications such as improved climate modelling and prediction. Some satellites provide near-surface-33 

sensitive atmospheric CO2 and CH4 observations that can be used to obtain information on CO2 and 34 

CH4 surface fluxes. The goal of the GHG-CCI project of the European Space Agency’s (ESA) Climate 35 

Change Initiative (CCI) is to use satellite data to generate atmospheric CO2 and CH4 data products 36 

meeting demanding GCOS (Global Climate Observing System) greenhouse gas (GHG) ECV 37 

requirements. To achieve this, retrieval algorithms are regularly being improved followed by annual 38 

data reprocessing and analysis cycles to generate better products in terms of extended time series and 39 

continuously improved data quality. Here we present an overview about the latest GHG-CCI data set 40 

called Climate Research Data Package No. 3 (CRDP3) focusing on the GHG-CCI core data products, 41 

which are column-averaged dry-air mole fractions of CO2 and CH4, i.e., XCO2 and XCH4, as retrieved 42 

from SCIAMACHY/ENVISAT and TANSO/GOSAT satellite radiances covering the time period end 43 

of 2002 to end of 2014. We present global maps and time series including initial validation results 44 

obtained by comparisons with Total Carbon Column Observing Network (TCCON) ground-based 45 

observations. We show that the GCOS requirements for systematic error (< 1 ppm for XCO2, < 10 ppb 46 

for XCH4) and long-term stability (< 0.2 ppm/year for XCO2, < 2 ppb/year for XCH4) are met for 47 

nearly all products (an exception is SCIAMACHY methane especially since 2010). For XCO2 we 48 

present comparisons with global models using the output of two CO2 assimilation systems (MACC 49 

version 14r2 and CarbonTracker version CT2013B). We show that overall there is reasonable 50 

consistency and agreement between all data sets (within ~1-2 ppm) but we also found significant 51 

differences depending on region and time period. 52 

 53 
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1. Introduction 54 

Carbon dioxide (CO2) is the most important human-emitted greenhouse gas responsible for global 55 

warming (IPCC, 2013). Despite its importance, our knowledge of the CO2 sources and sinks has 56 

significant gaps and does not meet all needs for attribution, mitigation and the accurate prediction of 57 

future climate change (e.g., Stephens et al., 2007; Canadell et al., 2010; IPCC, 2013; Ciais et al., 58 

2014). Despite efforts to reduce CO2 emissions, atmospheric CO2 continues to increase with currently 59 

approximately 2 ppm/year (e.g., Fig. 1 (satellite-derived column-averaged CO2) and Le Quéré et al., 60 

2015, based on Dlugokencky and Tans, 2015, NOAA/ESRL (near) surface CO2 concentrations). The 61 

situation is similar for methane (CH4; e.g., Dlugokencky et al., 2009; IPCC, 2013; Kirschke et al., 62 

2013; Houweling et al., 2014; Alexe et al., 2015).  63 

The goal of the GHG-CCI project (Buchwitz et al., 2015), which is one of several projects of ESA’s 64 

Climate Change Initiative (CCI, Hollmann et al., 2013), is to generate global satellite-derived 65 

atmospheric CO2 and CH4 data sets with as high as possible new information content on regional CO2 66 

and CH4 sources and sinks, i.e., surface fluxes, to be extracted, for example, via inverse modeling 67 

(e.g., Reuter et al., 2014a; Alexe et al., 2015). GHG-CCI generates data sets of the Essential Climate 68 

Variable (ECV) Greenhouse Gases (GHG) as required by the GCOS (Global Climate Observing 69 

System) defined as follows (GCOS, 2011): “Product Number A.8.1: Retrievals of greenhouse gases, 70 

such as CO2 and CH4, of sufficient quality to estimate regional sources and sinks”. 71 
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Currently multi-year radiance measurements from two satellite instruments are used in GHG-CCI to 72 

retrieve information on atmospheric CO2 and CH4 with high near-surface-sensitivity: SCIAMACHY 73 

on ENVISAT (2002 - April 2012) (Burrows et al., 1995; Bovensmann et al., 1999) and TANSO-FTS 74 

on-board GOSAT (launched in 2009) (Kuze et al., 2009, 2014). Both instruments perform (or have 75 

performed) nadir observations in the near-infrared/short-wave-infrared (NIR/SWIR) spectral region 76 

covering the relevant absorption bands of CO2, CH4 and molecular oxygen (O2). The latter is used to 77 

obtain the “dry-air column” needed to compute GHG column-averaged dry-air mole fractions, i.e., 78 

XCO2 (in ppm) and XCH4 (in ppb) from the retrieved GHG vertical columns (e.g., Buchwitz et al., 79 

2005) and/or to obtain information on atmospheric scatterers, e.g., on aerosols and thin cirrus clouds. 80 

These two instruments are the two main sensors used within GHG-CCI but in the future other sensors 81 

with similar radiance observations may be added, e.g., NASA’s successfully launched OCO-2 mission 82 

for XCO2 (Crisp et al., 2004; Bösch et al., 2011; Zhang et al., 2016) and ESA’s Sentinel-5-Precursor 83 

mission for XCH4 (Veefkind et al., 2012; Butz et al., 2012). 84 

During recent years significant progress has been made towards achieving the demanding satellite 85 

XCO2 and XCH4 requirements. Prior to the GHG-CCI project initial XCO2 retrievals were available 86 

from SCIAMACHY (e.g., Buchwitz et al., 2005, 2007; Schneising et al., 2008, 2009) but only first 87 

preliminary GOSAT retrievals. Progress has been made in terms of improved data quality, time 88 

coverage and interpretation of satellite XCO2 data products (using GHG-CCI and other products 89 

generated in Japan (e.g., Yoshida et al., 2013, Oshchepkov et al., 2011, 2013) and in the USA (e.g., 90 

O’Dell et al., 2012; Crisp et al., 2012)) to enhance our knowledge on the various sources and sinks of 91 

these gases (e.g., Basu et al., 2013; Maksyutov et al., 2013; Saeki et al., 2013; Chevallier et al., 2014; 92 

Takagi et al., 2014; Reuter et al., 2014a, 2014b; Houweling et al., 2015; Alexe et al., 2015).  93 

 94 

For example, focusing on hemispheric data and on carbon-climate feedbacks, Schneising et al., 2014a, 95 

used SCIAMACHY XCO2 retrievals to study aspects related to the terrestrial carbon sink by looking 96 

at co-variations of XCO2 growth rates and seasonal cycle amplitudes with near-surface temperature. 97 

They found XCO2 growth rate changes of 1.25+/-0.32 ppm/year/K (approximately 2.7+/-0.7 98 
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GtC/year/K; indicating less carbon uptake in warmer years consistent with a positive carbon-climate 99 

feedback) for the Northern Hemisphere in good agreement with CarbonTracker. The CO2 seasonal 100 

cycle, which is driven primarily by terrestrial CO2 uptake and release processes, has also been studied 101 

in several other publications (e.g., Reuter et al., 2013;  Buchwitz et al., 2015; Lindqvist et al., 2015).   102 

Guerlet et al., 2013, analyzed GOSAT XCO2 retrievals focusing on the Northern Hemisphere. They 103 

identified reduced carbon uptake in the summer of 2010 and found that this is most likely due to the 104 

heat wave in Eurasia driving biospheric fluxes and fire emissions. Using a joint inversion of GOSAT 105 

and surface data, they estimated an integrated biospheric and fire emission anomaly in April–106 

September 2010 of 0.89±0.20 PgC over Eurasia. Basu et al., 2014, studied seasonal variations of CO2 107 

fluxes during 2009-2011 over Tropical Asia using GOSAT, CONTRAIL and IASI data. They found 108 

an enhanced source for 2010 and concluded that this is likely due to the biosphere response to above-109 

average temperatures in 2010 and unlikely due to biomass burning emissions. Parazoo et al., 2013, 110 

used GOSAT XCO2 and solar induced chlorophyll fluorescence (SIF) retrievals to better understand 111 

the carbon balance of southern Amazonia. Ross et al., 2013, used GOSAT data to obtain information 112 

on wildfire CH4:CO2 emission ratios. For flux inversions not only the retrieved greenhouse gas values 113 

are relevant but also their error statistics, in particular the reported uncertainties. Chevallier and 114 

O’Dell, 2013, analyzed this aspect in the context of CO2 flux inversions using GOSAT XCO2 115 

retrievals. Detmers et al., 2015, analyzed GOSAT XCO2 to detect and quantify anomalously large 116 

climate-related carbon uptake in Australia during the time period end of 2010 to early 2012. 117 

Furthermore, a number of publications focused on improving retrieval algorithms including data 118 

processing and comparisons with ground-based observations and global models (e.g. Heymann et al., 119 

2012a, 2012b) or on applying existing algorithms to other sensors (e.g., Heymann et al., 2015). 120 

Satellite XCO2 retrievals are also used, for example by the European Centre for Medium-Range 121 

Weather Forecasts (ECMWF), to characterize atmospheric CO2 at large and synoptic scales and for 122 

CO2 forecasting (Massart et al., 2016).   Last but not least and despite the fact that none of the existing 123 

satellite missions has been optimized to obtain information on anthropogenic CO2 emissions (in 124 

contrast to other proposed future missions, in particular CarbonSat (Bovensmann et al., 2010; Velazco 125 

et al., 2011; Buchwitz et al., 2013)) this important aspect has been addressed in several recent 126 
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publications using existing satellite XCO2 products (Kort et al., 2012; Schneising et al., 2013, Reuter 127 

et al., 2014b). 128 

 129 

Nevertheless, not all carbon-related problems which have been addressed can be answered with 130 

confidence due to potential issues with the satellite retrievals (in particular remaining biases) and/or 131 

transport modelling (e.g., Stephens et al., 2007) as needed to interpret the satellite products (e.g., 132 

Chevallier et al., 2010; Deng et al., 2014). An example is the recent effort to quantify European 133 

biospheric terrestrial CO2 fluxes. Basu et al., 2013, presented first CO2 surface flux inverse modeling 134 

results from GOSAT XCO2 retrievals for various regions including Europe. For Europe their results 135 

imply that Europe is a much stronger carbon sink than current knowledge suggests. Chevallier et al., 136 

2014a, used an ensemble of inversion methods and GOSAT XCO2 retrievals to also derive regional 137 

(sub-continental) CO2 surface fluxes. They also found a significantly larger European carbon sink. 138 

They conclude that the derived sink is unrealistically large and they argue that this may be due to 139 

modelling issues related to long-range transport modelling and/or biases of the satellite retrievals. In 140 

particular they argue that errors of the satellite data outside of Europe may adversely influence the 141 

European results. To further investigate this European carbon sink issue in detail, Reuter et al., 2014a, 142 

used an ensemble of SCIAMACHY and GOSAT XCO2 data products and an inversion method which 143 

is not, or at least significantly less, sensitive to the potential issues discussed in Chevallier et al., 144 

2014a. For example, Reuter et al., 2014a, only used satellite XCO2 retrievals over Europe to rule out 145 

that non-European satellite data adversely influence the results for the European carbon sink and they 146 

also only used short-term (days) transport modelling for satellite data interpretation to minimize 147 

potential long-range transport errors. Reuter et al., 2014a, also performed several sensitivity tests to 148 

investigate the robustness of their results and to establish a reliable error budget. Based on an 149 

extensive analysis they conclude: “We show that the satellite-derived European terrestrial carbon sink 150 

is indeed much larger (1.02 +/- 0.30 GtC/year in 2010) than previously expected”. The value they 151 

derived is larger compared to earlier inversion estimates using in-situ observations of 0.47 +/- 0.50 152 

(“LSCE-39-insitu inversion”) or 0.42 +/- 0.25 (“UoE-insitu”) GtC/year for 2010 (Chevallier et al., 153 

2014a), or 0.40 +/- 0.42 GtC/year for 2001-2004 (Peylin et al, 2013), which is reported in the recent 154 
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IPCC report (IPCC, 2013). The disagreement with bottom-up estimates is even larger and significant: 155 

Schulze et al., 2009, report 0.235 +/- 0.05 GtC/year between 2000 and 2005. These findings of Reuter 156 

et al., 2014a, stimulated additional research using satellite and non-satellite CO2 observations (e.g., 157 

Feng et al., 2016, and discussion in Houweling et al., 2015) but consensus has not yet been achieved, 158 

e.g., Feng et al., 2016, finally conclude: “…we cannot prove or disprove that European ecosystems are 159 

taking up a larger-than-expected amount of CO2”. Recently, some new research results have been 160 

obtained by assimilating new Siberian CO2 observations in CarbonTracker  (Kim et al., 2016). They 161 

report a European sink strength of 0.75±0.63 GtC/year for 2008-2009, which temporally overlaps with 162 

the range reported by Reuter et al., 2014a, and is significantly larger compared to their reference 163 

inversions without these new Siberian observations. On the other hand, based on simultaneous CO2 164 

and CH4 flux inversions using GOSAT-retrieved ratios of total column CH4 and CO2 for 2009 and 165 

2010, Pandey et al., 2016, obtain European terrestrial CO2 fluxes close to zero, in contrast to the 166 

results discussed above. Apparently, more research is needed to answer this important European 167 

carbon sink question with confidence. 168 

 169 

For satellite XCH4 retrievals and the interpretation of these data sets the situation is similar as for 170 

XCO2. SCIAMACHY data have already been extensively used to improve our knowledge on 171 

atmospheric methane and regional methane emissions prior to the start of the GHG-CCI project (e.g., 172 

Buchwitz et al., 2005; Frankenberg et al., 2005; Schneising et al., 2009; Bergamaschi et al., 2007, 173 

2009; Bloom et al., 2010). A more recent research focus has been to investigate the unexpected 174 

renewed atmospheric methane increase since 2007 using ground-based and/or satellite data (e.g., 175 

Rigby et al., 2008; Dlugokencky et al., 2009; Bergamaschi et al., 2009, 2013; Schneising et al., 2011; 176 

Frankenberg et al., 2011; Sussmann et al., 2012; Crevoisier et al., 2013; Houweling et al., 2014; Nisbet 177 

et al., 2014; Schaefer et al., 2016). Methane emission estimates have been obtained from GOSAT as 178 

discussed in a number of recent publications (e.g., Fraser et al., 2013, 2014, Monteil et al., 2013, 179 

Cressot et al., 2014, Alexe et al., 2015; Turner et al., 2015, 2016). In these studies often CH4 retrievals 180 

from several satellites have been used (as well as other data, in particular NOAA data), e.g., Monteil et 181 

al., 2013, and Alexe et al., 2015, used SCIAMACHY and GOSAT retrievals, Cressot el al., 2014, used 182 
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GOSAT, SCIAMACHY and IASI, and Wecht et al., 2014, and Worden et al., 2015, used GOSAT and 183 

TES satellite retrievals.  Several publications focused on relatively localized methane sources, e.g., in 184 

the United States: For example, Schneising et al., 2014, analyzed SCIAMACHY data over major US 185 

“fracking” regions and quantified anthropogenic methane emissions and leakage rates and also others 186 

used SCIAMACHY data over the US to identify and quantify localized methane emission sources 187 

(Kort et al., 2014; Wecht et al., 2014). The SCIAMACHY XCH4 retrievals have also been used to 188 

compare with and to improve chemistry-climate models (Shindell et al., 2014, Hayman et al., 2014). 189 

 190 

Despite this quite large number of publications it is clear that still much more has to be learned about 191 

the various (and changing) sources and sinks of CO2 and CH4. It is obvious that the more accurate and 192 

precise the observations are and the longer and denser the observational time series is, the larger their 193 

information content. Within the GHG-CCI project a continuous algorithm improvement, re-processing 194 

and data product analysis cycle is carried out every year with the goal to deliver each year an 195 

improved data set of satellite-derived atmospheric CO2 and CH4 information. The latest data set is 196 

called CRDP3. This data set is presented in the following (Sect. 2) including an initial quality 197 

assessment by comparison with ground-based observations (Sect. 3) and model comparisons (Sects. 4 198 

and 5) focusing on CO2. A summary and conclusions are given in Sect. 6. 199 

 200 

2. Overview data set CRDP3 201 

 202 

The GHG-CCI latest data set called Climate Research Data Package No. 3 (CRDP3) consists of 203 

several satellite-derived atmospheric CO2 and CH4 data products. These data products are classified as 204 

(i) GHG-CCI project core products, generated with so-called ECV Core Algorithms (ECAs), and (ii) 205 

additional products, generated with so-called Additional Constraints Algorithms (ACAs).  The ECA 206 

products are XCO2 and XCH4 (see Tabs. 1 and 2) retrieved from satellite nadir mode radiance spectra 207 

in the near-infrared / shortwave-infrared (NIR/SWIR) spectral region using appropriate retrieval 208 

algorithms. These retrieval algorithms are all based on modelling the observed radiance spectra using a 209 

radiative transfer model and corresponding parameters (e.g., vertical profiles of atmospheric CO2, 210 
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CH4, temperature, aerosols, etc.) coupled to an inversion method to iteratively optimize selected 211 

parameters until the modeled radiance matches the observed radiance spectrum. All retrieval 212 

algorithms are based on Optimal Estimation / Bayesian Inference theory (see Rodgers, 2000, for the 213 

general theory and Reuter et al., 2010, for a typical example) with the exception of the WFMD 214 

algorithms (see Tabs. 1 and 2), which are based on a least-squares fitting combined with a very fast 215 

look-up-table scheme (e.g., Buchwitz et al., 2000; Schneising et al., 2011). The algorithms are also 216 

using post-processing steps including bias correction and quality filtering and/or assigning a quality 217 

flag to each single retrieval (ground pixel) (see information on retrieval Algorithm Theoretical 218 

Baseline Documents (ATBDs) given below).  219 

 220 

Table 1: Overview GHG-CCI individual ECV Core Algorithms (ECAs) as used for XCO2 retrieval 221 

and the generation of the corresponding data product. See main text for a description of baseline and 222 

alternative products. 223 

GHG-CCI ECV Core Algorithms (ECAs) for XCO2 retrieval 

Algorithm ID 

(Version) 

Sensor 

Algorithm 

Institute 

Comment  

(Algorithm reference) 

CO2_SCI_BESD 

(v02.01.01) 

SCIAMACHY/ 

ENVISAT 

BESD  

IUP, Univ. Bremen, Germany 

SCIAMACHY XCO2 baseline product 

Coverage: global (land), 1.2003-3.2012 

(Reuter et al., 2011) 

CO2_SCI_WFMD 

(v3.9) 

-“- WFM-DOAS  

IUP, Univ. Bremen, Germany 

SCIAMACHY XCO2 alternative product 

Coverage: global (land), 10.2002-4.2012 

(Schneising et al., 2011) 

CO2_GOS_OCFP 

(v6.0) 

TANSO/GOSAT UoL-FP  

University of Leicester (UoL), 

UK 

GOSAT XCO2 baseline product 

Coverage: global, 4.2009-12.2014 

(Cogan et al., 2012) 

CO2_GOS_SRFP 

(v2.3.7) 

-“- RemoTeC 

SRON (Utrecht, Netherlands) & 

KIT (Karlsruhe, Germany) 

GOSAT XCO2 alternative product 

Coverage: global, 6.2009-12.2014 

(Butz et al., 2011) 

 224 
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Table 2: As Tab. 1 but for the GHG-CCI individual XCH4 retrieval algorithms and corresponding data 225 

products. 226 

GHG-CCI ECV Core Algorithms (ECAs) for XCH4 retrieval 

Algorithm ID 

(Version) 

Sensor 

Algorithm 

Institute 

Comment  

(Algorithm reference) 

CH4_SCI_WFMD 

(v3.9) 

SCIAMACHY/ 

ENVISAT 

WFM-DOAS 

IUP, Univ. Bremen, Germany 

SCIAMACHY XCH4 proxy product 

(baseline not yet decided) 

Coverage: global, 10.2002-12.2011 

(Schneising et al., 2011) 

CH4_SCI_IMAP 

(v7.1) 

-“- IMAP 

SRON (Utrecht, Netherlands) & 

JPL (Padadena, CA, USA) 

SCIAMACHY XCH4 proxy product 

(baseline not yet decided) 

Coverage: global (land), 1.2003-4.2012 

(Frankenberg et al., 2011) 

CH4_GOS_OCPR 

(v6.0) 

TANSO/GOSAT UoL-PR 

University of Leicester (UoL), 

UK 

GOSAT XCH4 proxy baseline product 

Coverage: global, 4.2009-12.2014 

(Parker et al., 2011) 

CH4_GOS_SRPR 

(v2.3.7) 

-“- RemoTeC 

SRON (Utrecht, Netherlands) & 

KIT (Karlsruhe, Germany) 

GOSAT XCH4 proxy alternative product 

Coverage: global, 6.2009-12.2014 

(Butz et al., 2010) 

CH4_GOS_SRFP 

(v2.3.7) 

-“- RemoTeC 

SRON (Utrecht, Netherlands) & 

KIT (Karlsruhe, Germany) 

GOSAT XCH4 full physics baseline 

product 

Coverage: global, 6.2009-12.2014 

(Butz et al., 2011) 

CH4_GOS_OCFP 

(v1.0) 

-“- UoL-PR 

University of Leicester (UoL), 

UK 

GOSAT XCH4 full physics alternative 

product 

Coverage: global, 4.2009-12.2014 

(Parker et al., 2011) 

 227 

 228 

 229 
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The exploited NIR/SWIR spectral regions contain relevant CO2, CH4 and (depending on 230 

algorithm/product) molecular oxygen (O2) absorption lines. O2 is used to get information on the light 231 

path and on the dry-air column needed to convert the GHG vertical columns into mole fractions 232 

(number density mixing ratio). For sufficiently cloud-free day-side observations these spectra are 233 

typically dominated by surface-reflected solar radiation and are therefore sensitive to near-surface 234 

greenhouse gas concentration variations.  235 

 236 

Currently, the corresponding GHG-CCI ECA products are derived from SCIAMACHY/ENVISAT 237 

and TANSO/GOSAT. In this publication we focus on the GHG-CCI CRDP3 ECA products. An 238 

overview on the additional GHG-CCI ACA products is given in Buchwitz et al., 2015, and details are 239 

given on the GHG-CCI website (http://www.esa-ghg-cci.org/), in particular in the corresponding ACA 240 

product tables as given on the GHG-CCI main data products website (http://www.esa-ghg-241 

cci.org/sites/default/files/documents/public/documents/GHG-CCI_DATA.html). In short, ACA 242 

products are not (or typically not) sensitive to near-surface GHG variations but to variations in upper 243 

atmospheric layers, i.e., layers above the planetary boundary layer. They therefore provide 244 

complementary additional information (compared to ECAs) on atmospheric CO2 and CH4.  ACA 245 

products are mid/upper tropospheric CO2 and CH4 mixing ratios from IASI (Crevoisier et al., 2009a, 246 

2009b, 2013), upper tropospheric / stratospheric vertical CH4 profiles from MIPAS (Laeng et al., 247 

2015), stratospheric CH4 and CO2 profiles from SCIAMACHY solar occultation observations (Noël et 248 

al., 2012, 2016) and stratospheric CO2 profiles from ACE-FTS (Foucher et al., 2009).  249 

 250 

An overview about the GHG-CCI ECAs and corresponding data products is given in Tab. 1 for XCO2 251 

and in Tab. 2 for XCH4. As can be seen, there are two algorithms for each data product. For example, 252 

there are two algorithms for XCO2 from SCIAMACHY and two algorithms for XCO2 from GOSAT, 253 

resulting in four XCO2 products generated independently with different algorithms. We encourage 254 

users of our data products to take advantage of this ensemble of products which can even be extended 255 

using additional (i.e., non-GHG-CCI) products generated elsewhere, most notably in Japan (NIES 256 

products (Yoshida et al., 2013; Oshchepkov et al., 2011, 2013) and in the USA (NASA ACOS product 257 

http://www.esa-ghg-cci.org/
http://www.esa-ghg-cci.org/sites/default/files/documents/public/documents/GHG-CCI_DATA.html
http://www.esa-ghg-cci.org/sites/default/files/documents/public/documents/GHG-CCI_DATA.html
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(O’Dell et al., 2012; Crisp et al., 2012)). The main reason for this recommendation is that even small 258 

(and typically difficult to characterize) systematic errors in the XCO2 products can lead to quite large 259 

errors when using XCO2 to get information on CO2 surface fluxes (emission or uptake). This is 260 

because the CO2 background concentration is quite high and even large sources and sinks typically 261 

results in only small XCO2 variations (see, e.g., Reuter et al., 2014a). Using an ensemble of products 262 

generated with independent algorithms enables one to determine the robustness of the source/sink 263 

findings with respect to algorithmic choices which have to be made when implementing a retrieval 264 

algorithm and also permits one to assign more realistic error bars to quantitative source/sink results 265 

(see, for example, Reuter et al., 2014a, using an ensemble of XCO2 data products to obtain information 266 

on the strength of the European carbon sink).  267 

 268 

However, we acknowledge that this is a major effort which cannot be undertaken by all users, e.g., due 269 

to time, financial or other constraints.  For these users we aim at giving recommendations on which 270 

product to use if they can or want to use only one (or a few) products. We do this by identifying so-271 

called baseline (or recommended) products (see also Buchwitz et al., 2015, and Dils et al., 2014, for 272 

our initial “Round Robin” attempt to identify “best” algorithms and corresponding data products). As 273 

can be seen from Tabs. 1 and 2, we have identified baseline algorithms/products for all products 274 

except for SCIAMACHY XCH4 (as both products still suffer from degraded quality as discussed 275 

below). Note that a baseline product is not necessarily significantly better than the corresponding 276 

alternative product because, as one may expect, different algorithms have different strengths and 277 

weaknesses. Often we found that data products differ (e.g., at the different individual validation sites) 278 

but it is not clear which one is better (e.g., if the overall agreement with the validation network is on 279 

average equivalently good). Therefore, for products where this is the case, the baseline product is for 280 

some products simply the product which has been agreed upon between the different data providing 281 

institutions. Note that the definition of “better” also depends on the application. For example, for 282 

SCIAMACHY XCO2, the BESD product has been declared as baseline product and the WFMD 283 

product as alternative product because BESD has typically lower systematic errors / biases, and better 284 

precision, i.e., less random errors (as confirmed by the results shown in Sect. 3.1) but much less data 285 
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(approx. 50% as also shown in Sect. 3.1) compared to the WFMD product. For some applications with 286 

relevant requirements on spatio-temporal coverage, the WFMD product may therefore be the better 287 

suited or even the only choice provided the biases are small enough for the target application. Within 288 

the GHG-CCI project quality assessment is an ongoing effort with one of the goals to confirm or 289 

change the classification of algorithms/products as “baseline” or “alternative”, depending on future 290 

algorithm improvements and corresponding future data quality.  291 

 292 

Note that two additional XCO2 and XCH4 products are available from the GHG-CCI website not listed 293 

in Tabs. 1 and 2. These are the Ensemble Median Algorithm (EMMA) XCO2 (Reuter et al., 2013) and 294 

XCH4 products. These products are also Level 2 products (i.e., non-gridded individual ground pixel 295 

swath products) as the other products listed in Tabs. 1 and 2 but they have been generated by merging 296 

individual products from SCIAMACHY and GOSAT. They are not further discussed here (for details 297 

see Reuter et al., 2013, and Buchwitz et al., 2016).  298 

 299 

As can be seen from Tab. 2, the number of XCH4 algorithms/products is even larger than for XCO2. 300 

The reason is that there are two types of XCH4 algorithms for the GOSAT products, the so-called 301 

(light path) “proxy” (PR) algorithms and the “full-physics” (FP) algorithms (see Schepers et al., 2012, 302 

Buchwitz et al., 2015, Parker et al., 2015, and references given therein for details).  In short, XCH4 PR 303 

algorithms convert retrieved CH4 columns into XCH4 by using dry-air columns obtained from 304 

simultaneously retrieved CO2 column in combination with modelled CO2 column to correct for CO2 305 

column variations (the PR algorithm require that atmospheric CH4 columns typically vary more than 306 

CO2 columns (in relative, i.e., percentage, terms)). The advantage of the PR method is that systematic 307 

column retrieval errors (e.g., light path errors due to unaccounted scattering by aerosols and clouds but 308 

also some instrument errors) cancel to some extent when the ratio of the retrieved CH4 and CO2 309 

columns is computed. The disadvantage is that this method needs sufficiently accurate CO2 model 310 

simulations to correct for CO2 variations. The FP method, which does not have this disadvantage, aims 311 

at considering aerosol and cirrus effects explicitly by considering (as good as possible) the “full 312 

physics” of the atmospheric radiative transfer. This means that FP methods aim at solving a much 313 
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more challenging radiative transfer and inversion problem and, therefore, they do not have to rely on 314 

accurate CO2 modelling. This shows that both methods have different strengths and weaknesses. As a 315 

consequence the resulting data products have different characteristics (typically PR products contain 316 

much more data points compared to FP products, see Sect. 3.2).  Because these two type of methane 317 

algorithms/products are significantly different they are classified separately as baseline or alternative 318 

as shown in Tab. 2.  319 

 320 

Despite the fact that all algorithms are based on similar principles (namely on optimizing radiative 321 

transfer model and other parameters until a “good” match between the measured and modelled 322 

radiances has been obtained), they differ in many details. It is out of the scope of this manuscript to 323 

explain each algorithm in detail. Instead we refer to the documentation as given on the GHG-CCI 324 

website, in particular to the Algorithm Theoretical Baseline Documents (ATBDs) (see links given in 325 

the product tables of the GHG-CCI main data products website (http://www.esa-ghg-326 

cci.org/sites/default/files/documents/public/documents/GHG-CCI_DATA.html)). 327 

 328 

Figure 1 shows time series of northern hemispheric XCO2 as obtained from all four GHG-CCI XCO2 329 

retrieval algorithms (see Tab. 1). As can be seen, all XCO2 products clearly show an approximately 2 330 

ppm/year CO2 increase (due to anthropogenic CO2 emissions) and the atmospheric CO2 seasonal cycle 331 

(primarily due to regular uptake and release of CO2 by the terrestrial biosphere). The SCIAMACHY 332 

products cover (essentially) the entire ENVISAT time period from end of 2002 (WFMD product) or 333 

beginning of 2003 (BESD product) to April 2012. The GOSAT CRDP3 products cover the time period 334 

mid 2009 to end of 2014. As can be seen, the agreement between the different time series is within 335 

about 1-2 ppm. Note that perfect agreement is not to be expected, e.g., due to differences in spatio-336 

temporal sampling and vertical sensitivity (see the following sections for quantitative assessments). To 337 

obtain quantitative estimates of the characteristics of the various data products in terms of random and 338 

systematic errors and long-term stability one has to compare the individual products with appropriate 339 

high-quality reference data (see Sect. 3) and one also has to compare spatial pattern (Sect. 4). In Sect. 340 

3 we present comparisons of the satellite products with ground-based observations at selected 341 

http://www.esa-ghg-cci.org/sites/default/files/documents/public/documents/GHG-CCI_DATA.html
http://www.esa-ghg-cci.org/sites/default/files/documents/public/documents/GHG-CCI_DATA.html
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locations and in Sect. 4 we present comparison with global models. Note that we also aim at model 342 

independent quantitative comparisons of the global satellite data via the Ensemble Median Algorithm 343 

EMMA (Reuter et al., 2013). For the latest EMMA assessment results (not shown here) see Buchwitz 344 

et al., 2016.    345 

 346 

Figure 2 shows time series of northern hemispheric XCH4. As can be seen, the agreement among the 347 

various products is less good (in relative terms) compared to XCO2 in particular for the two 348 

SCIAMACHY XCH4 products which also deviate significantly from the GOSAT XCH4 products in 349 

particular for 2010 and later years. This is potentially due to SCIAMACHY detector issues whose 350 

impact on the data quality is still large but hopefully can be (further) mitigated in future versions of the 351 

SCIAMACHY products. The seasonality of the GOSAT XCH4 OCFP product, which is a new product 352 

from Univ. Leicester, deviates somewhat from the other products. Also this aspect needs further 353 

investigation.  354 

  355 
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 356 

 357 

Figure 1: Timeseries of northern hemispheric XCO2 of the four GHG-CCI CRDP3 XCO2 data 358 

products (CO2_SCI_WFMD (light red), CO2_SCI_BESD (red), CO2_GOS_SRFP (blue) and 359 

CO2_GOS_OCFP (green)) obtained by averaging all satellite retrievals north of the equator up to 360 

60
o
N for each month.  361 

 362 

 363 

 364 

Figure 2: Timeseries of northern hemispheric XCH4 of the six GHG-CCI CRDP3 XCH4 data products 365 

(see inset) obtained by averaging all satellite retrievals north of the equator up to 60
o
N for each month.  366 

Note that the SCIAMACHY products after approx. mid 2010 (see dotted lines) suffer from currently 367 

still unresolved issues probably related to detector degradation.  368 
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 369 

In the following section a comparison of these XCO2 and XCH4 products with ground-based reference 370 

observations is presented which has been carried out to obtain initial quantitative information on the 371 

data quality. Note that a more detailed comparison with ground-based data is presented in Dils et al., 372 

2016. 373 

 374 

3. Comparisons with ground-based observations  375 

 376 

The ground-based Total Carbon Column Observing Network (TCCON) has been designed for 377 

validation of satellite XCO2 and/or XCH4 retrievals (Wunch et al., 2011a, 2011b) and TCCON data 378 

have been used extensively also in the past for comparison of GHG-CCI data products (e.g., Dils et al., 379 

2014, Buchwitz et al., 2015).  TCCON is a network of ground-based Fourier Transform Spectrometers 380 

recording direct solar spectra in the near-infrared spectral region. From these spectra, accurate and 381 

precise column-averaged abundance of CO2, CH4 and other atmospheric data products are retrieved. 382 

The TCCON XCO2 and XCH4 data products version GGG2014 as used for this study (Wunch et al., 383 

2015) have been downloaded from the TCCON data archive (http://tccon.ornl.gov).  384 

 385 

Within GHG-CCI we use several somewhat different methods for satellite – TCCON comparison (see 386 

Buchwitz et al., 2016) including methods developed and applied independently by each data provider 387 

to his/her product. Two methods are applied to all CRDP3 XCO2 and XCH4 products, the method 388 

developed by the GHG-CCI validation team (Dils et al. 2016) and a somewhat simplified approach 389 

developed and used primarily for Quality Control / Quality Assurance (QC/QA) purposes. Overall it 390 

has been found that all validation methods result in similar conclusions concerning the overall data 391 

quality of the CRDP3 ECA products, which demonstrates the robustness of the findings (Buchwitz et 392 

al., 2016). In the following we present the QC/QA approach and its results. 393 

 394 

For QC/QA of the CRDP3 ECA products we have used version GGG2014 (Wunch et al., 2015) XCO2 395 

and XCH4 TCCON data products from six TCCON sites, two in the USA, two in Europe and two in 396 

http://tccon.ornl.gov/
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Australia (see Tab. 3). For each ECA product and each of the selected TCCON sites we have 397 

performed detailed comparisons of individual (but also averaged) satellite soundings (ground pixels) 398 

using a co-location criterion of 2 hours temporally and 4
o
x4

o
 latitude/longitude spatially. To minimize 399 

the impact of different a priori information used for the retrievals, common CO2 and CH4 profiles 400 

have been used for comparison using TCCON a priori profiles as common profiles for the 401 

comparisons (see also Dils et al., 2014, using the same approach).  402 

 403 

Table 3: TCCON sites and corresponding data coverage as used for comparison with the satellite 404 

XCO2 and XCH4 data products. The “Time coverage” corresponds to the time coverage of the data 405 

products at the time of data access (6-Oct-2015, except Bremen and Bialystok: 20-Nov-2015). 406 

TCCON validation sites 

Location 

(TCCON data product 

reference) 

Site 

ID 

Latitude 

[deg] 

Longitude 

[deg] 

Altitude 

[km] 

Time coverage  

MM/YYYY-MM/YYYY 

 ParkFalls, USA 

(Wennberg et al., 2014a) 

PAR 45.945 -90.273 0.442 06/2004 - 12/2014 

 Lamont, USA 

(Wennberg et al., 2014b) 

LAM 36.604 -97.486 0.320 07/2008 - 12/2014 

 Bremen, Germany 

(Notholt et al., 2014) 

BRE 53.104 8.850 0.027 01/2007 - 10/2014 

 Bialystock, Poland 

(Deutscher et al., 2014) 

BIA 53.231 23.025 0.183 03/2009 - 10/2014 

 Darwin, Australia 

(Griffith et al., 2014a) 

DAR -12.425 130.891 0.030 08/2005 - 09/2014 

 Wollongong, Australia 

(Griffith et al., 2014b) 

WOL -34.406 150.879 0.030 06/2008 - 09/2014 

 407 
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When interpreting satellite-TCCON differences one also has to consider the uncertainty of the 408 

TCCON data products. TCCON uncertainties are reported in the TCCON data product files for each 409 

individual observation and these uncertainties have been used, e.g., to avoid using TCCON data with 410 

large reported errors. However, what is also needed, in particular to compute systematic satellite-411 

TCCON differences across several sites (see, e.g., summary values for regional and seasonal biases in 412 

Tabs. 4 and 5) is an estimate of the TCCON site-to-site bias and/or an estimate of the TCCON 413 

uncertainty after averaging many TCCON retrievals. Site-to-site biases for TCCON products are 414 

reported in Wunch et al., 2010. As shown in Wunch et al., 2010, the uncertainty of the TCCON data 415 

products is typically 0.4 ppm for XCO2 (1-sigma) and 4 ppb (1-sigma) for XCH4 (see also the 416 

discussion of this and corresponding implications for interpreting satellite - TCCON comparisons as 417 

reported in Dils et al., 2014, and Buchwitz et al., 2015). Due to these uncertainties / potential errors of 418 

the TCCON data (but also for other reasons, e.g., non-perfect spatio-temporal co-location) the 419 

estimated systematic and random errors of the satellite retrievals as reported here have to be 420 

interpreted as upper limit estimates (because we assume here that the TCCON site-to-site bias is zero), 421 

i.e., the satellite data product errors are likely smaller than reported here, at least at the TCCON sites. 422 

On the other hand the TCCON network is quite sparse and does not cover all geophysical conditions. 423 

For example, for the XCO2 products it has been identified that differences between satellite products 424 

located far away from TCCON sites may differ by somewhat larger amounts than the TCCON 425 

validation suggests (e.g., Reuter et al., 2013). Because of these potential overestimation (neglection of 426 

TCCON site-to-site bias) / underestimation (TCCON does not capture all situation) issues we interpret 427 

the differences to TCCON reported here as a reasonable estimate of the real error (which can be 428 

compared with the user requirements) without taking the uncertainty of the TCCON retrievals 429 

explicitly into account, i.e., we assume that underestimation and overestimation effects cancels to a 430 

large extent (at least on average). 431 

 432 

As shown in the following two sub-sections, we compare the achieved performance with the required 433 

performance as specified by GCOS (GCOS, 2011) and with the typically more demanding and more 434 

detailed requirements as specified in the GHG-CCI User Requirements Document (URD, Chevallier et 435 



 
20 

 

al., 2014b). Note that GCOS is not explicitly specifying requirements for XCO2 and XCH4 but for 436 

„Tropospheric CO2 column“ and „Tropospheric CH4 column“ in mole fraction (mixing ratio) units 437 

(e.g., ppm for CO2). In this manuscript we interpret the GCOS requirements as listed in GCOS, 2011, 438 

as requirements for XCO2 and XCH4.  439 

 440 

Table 4: Comparison results for product CO2_SCI_BESD with TCCON XCO2 at six TCCON sites. In 441 

the top part of the table results are listed per TCCON site. Reported in column “Bias” are the regional 442 

and seasonal biases (see main text for details), the “Scatter”, which is the standard deviation of 443 

satellite-TCCON difference (based on the individual satellite soundings, i.e., ground pixel) and 444 

“RepUncert” (reported uncertainty), which is the mean value of the reported uncertainty as given in 445 

the satellite product files for each single sounding. “UncRat” is the uncertainty ratio, which is the ratio 446 

of RepUnc and Scatter. Values close to unity indicate that the reported uncertainty is (on average) 447 

reliable. “Trend” characterises the long-term stability as obtained by fitting a straight line to the 448 

satellite minus TCCON differences covering the entire time series. The listed trend error is the 3-449 

sigma uncertainty of the slope of the fitted line. Nobs are the number of individual satellite soundings 450 

compared to TCCON. In the bottom part of the table summary values are listed for each parameter 451 

(the sum or the mean and/or the standard deviation). See main text for details. 452 

Site ID Bias [ppm] Scatter 

[ppm] 

RepUnc 

[ppm] 

(UncRat [-]) 

Trend 

(Stability) 

[ppm/year] 

Nobs [-] 

Regional Seasonal 

PAR -0.2 0.8 2.0 2.1 (1.0) 0.14 +/- 0.04 2931 

LAM -0.3 0.7 1.7 1.9 (1.1) -0.01  +/- 0.05 12003 

BRE -0.3 0.8 1.8 2.5 (1.4) -0.13 +/- 0.13 1036 

BIA -0.2 1.0 2.0 1.9 (1.0) 0.03  +/- 0.17 1124 

DAR -0.5 0.9 1.8 1.7 (0.9) -0.02 +/- 0.04 7323 

WOL 0.5 0.6 2.2 2.1 (0.9) -0.07  +/- 0.11 2389 

Summary:  

Sum      26806 

Mean -0.2 0.8 1.9 2.0 (1.1) -0.01 +/- 0.09  

StdDev 0.4      

 453 

  454 
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 455 

Table 5: As Tab. 4 but for product CH4_SCI_WFMD. 456 

Site ID Bias [ppb] Scatter 

[ppb] 

RepUnc [ppb] 

(UncRat [-]) 

Trend 

(Stability) 

[ppb/year] 

Nobs [-] 

Regional Seasonal 

PAR 5.0 19.6 78.2 67.3 (0.9) 0.77 +/- 0.84 11079 

LAM 4.5 10.5 75.1 84.1 (1.1) 0.23 +/- 2.00 18725 

BRE 2.9 18.4 91.8 85.8 (0.9) -1.86 +/- 4.80 1512 

BIA 6.2 18.9 88.8 84.2 (0.9) 6.88 +/- 7.62 2230 

DAR -18.1 17.2 67.9 82.7 (1.2) -1.87 +/- 1.38 10580 

WOL -16.2 16.4 88.0 82.0 (0.9) 7.73 +/- 5.34 2832 

Summary:  

Sum      46958 

Mean -2.6 16.8 81.6 81.0 (1.0) 1.98 +/- 3.66  

StdDev 11.3      

 457 

 458 

3.1 XCO2 comparisons with TCCON 459 

 460 

Figure 3 shows as an example a comparison of the CO2_SCI_BESD product with TCCON XCO2 461 

retrievals at Lamont, Oklahoma, USA.  As can be seen, several figures of merit are listed in Fig. 3. 462 

They have been defined and computed for quantitative characterization of systematic and random 463 

errors of the satellite products and to determine if there are linear trends in the satellite-TCCON 464 

differences, i.e., to assess the long-term stability of the satellite products. We also aim at validating the 465 

reported uncertainty, which is given in the GHG-CCI data products for each single retrieval (i.e., for 466 

each individual ground pixel). This has been done by computing the ratio of the mean value of the 467 

reported uncertainty to the standard deviation of the difference to TCCON. Figures such as Fig. 3 have 468 

been generated for all ECA XCO2 products and all selected TCCON sites (not shown). The most 469 

important figures of merit for product CO2_SCI_BESD at all six TCCON sites are presented in Tab. 470 
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4. Table 4 also lists summary results (obtained by computing the sum, the mean and/or the standard 471 

deviation of the results obtained at the individual TCCON sites). The summary results for all four 472 

XCO2 products are listed in Tab. 6.  473 

 474 

 475 

 476 

Figure 3: Comparison of product CO2_SCI_BESD with TCCON XCO2 at TCCON site Lamont, 477 

Oklahoma, USA.  Top: Satellite XCO2 in light red for the individual soundings, i.e., single 478 

observations (“slg. obs.”) and red for daily averages (co-location criterion: +/- 4 degrees, +/- 2 hours). 479 

TCCON XCO2 is shown in black. Listed are several figures of merit: “Bias” (mean +/- standard 480 

deviation of the difference of the individual satellite retrievals and TCCON), “Seasonal bias” (standard 481 

deviation of differences for 3-month time periods), “Nobs” (number of individual satellite retrievals) 482 

and in grey the mean value of the reported uncertainty of the individual XCO2 retrievals (“rep. 483 

uncert.”) and the “ratio” of the reported uncertainty and the standard deviation of the difference to 484 

TCCON.  Bottom: XCO2 difference at daily (black) and monthly (pink) resolution. The listed key 485 

figures of merit are also shown in Tab. 4 along with the corresponding values obtained at other 486 

TCCON sites. 487 

 488 

 489 

  490 
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Table 6: Overall TCCON comparison results for the GHG-CCI XCO2 products. The results for 491 

product CO2_SCI_BESD have been obtained from Tab. 4 (the corresponding tables for the other three 492 

products are not shown here). “Systematic error” lists the regional and seasonal biases and, in 493 

brackets, a combined values (biastot (see Eq. (1)). “Uncertainty” is the mean value of the reported 494 

uncertainty and uncertainty ratio “UncRat” (in brackets) is defined as for Tab. 4. Also listed is the 495 

“Trend” (with 3-sigma uncertainty), “Offset” (the mean difference relative to all TCCON sites) and 496 

the number of satellite soundings (“Nobs”) compared to TCCON. At the bottom the corresponding 497 

requirements are listed based on GCOS, 2011, and on the GHG-CCI User Requirements Document 498 

(URD) (specified as Goal (G), Breakthrough (B) and Threshold (T)) (Chevallier et al., 2014b). Note 499 

that the GCOS requirements are target (maximum) requirements, whereas the URD threshold 500 

requirements are minimum requirements. The URD requirement for the systematic error is therefore 501 

much more demanding than the GCOS requirement but the stability requirements are identical. Note 502 

that the uncertainty of the TCCON reference data used to obtain the estimates listed here is about 0.4 503 

ppm (1-sigma). 504 

 Product Systematic 

error [ppm] 

Regional, 

seasonal 

(combined) 

Uncertainty 

(Random 

error) [ppm] 

(UncRat) 

Trend 

(Stability) 

[ppm/year] 

Offset 

[ppm] 

Nobs [-] 

CO2_SCI_BESD  0.4, 0.8 (0.9) 1.9 (1.1) -0.01 +/- 0.09 -0.2 26806 

CO2_SCI_WFMD 0.6, 1.1 (1.3) 3.0 (1.1) 0.01 +/- 0.10 0.6 50087 

CO2_GOS_OCFP 0.3, 0.5 (0.6) 1.7 (1.4) -0.11 +/- 0.14 0.1 6139 

CO2_GOS_SRFP 0.6, 0.5 (0.8) 1.9 (1.0) -0.08 +/- 0.11 0.1 6795 

Required  

G / B / T 

< 1 

< 0.2 / 0.3 / 0.5 

- 

< 1 / 3 / 8 

< 0.2 

< 0.2 / 0.3 / 0.5 

GCOS (2011) 

GHG-CCI URD 

(Chevallier et al., 

2014b) 

 505 
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 506 

As can be seen from Tab. 6, column “Systematic error”, the estimated regional bias of product 507 

CO2_SCI_BESD is 0.4 ppm and the estimated seasonal bias is 0.8 ppm. The regional bias has been 508 

estimated as standard deviation of the biases obtained at the individual TCCON sites (“station-to-509 

station bias”) (see Tab. 4 for CO2_SCI_BESD). The seasonal bias is the mean value (over all TCCON 510 

sites) of the standard deviation of 3-monthly biases as obtained at the individual TCCON sites (see 511 

Dils et al., 2014, for a similar estimation of biases). The method of computing standard deviations 512 

neglects a possible overall offset relative to TCCON (listed separately in Tab. 6) but this is in line with 513 

the GHG-CCI User Requirements Document (URD, Chevallier et al., 2014b) which explains that 514 

spatio-temporal variations of biases are critical but overall (constant) offsets can be dealt with when 515 

using the satellite data products for inverse modelling (in other words “relative accuracy” is more 516 

important than “absolute accuracy”; note that in this manuscript the terms “accuracy”, “systematic 517 

error” and “bias” have the same meaning).  Furthermore, a combined systematic error, biastot, is listed 518 

in column “Systematic error” in brackets, which has been computed from the regional and seasonal 519 

biases as follows: 520 

  521 

    𝑏𝑖𝑎𝑠𝑡𝑜𝑡  =  √𝑏𝑖𝑎𝑠𝑟𝑒𝑔
2 +  𝑏𝑖𝑎𝑠𝑠𝑒𝑎𝑠

2      Eq. (1) 522 

 523 

As can be seen from Tab. 6, the biases of the other products are quite similar. All values are below 1 524 

ppm except for product CO2_SCI_WFMD, where the total bias is 1.25 ppm. Tab. 6 also lists the 525 

required performance. As can be seen, all products (with the exception of CO2_SCI_WFMD, which 526 

has the advantage of providing the largest number of data points) meet the GCOS systematic error 527 

requirement (of better than 1 ppm) but not the much more demanding requirement as listed in the 528 

GHG-CCI URD (better than 0.5 ppm). However, as already mentioned above, one also has to consider 529 

the uncertainty of the TCCON retrievals (see also Buchwitz et al., 2015, for a discussion of this 530 

aspect). The systematic and random errors of single TCCON data are typically 0.4 ppm for XCO2 (1-531 

sigma) and 4 ppb (1-sigma) for XCH4 (see Notholt et al., 2012, based on Wunch et al., 2010). 532 
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Assuming an overall TCCON bias uncertainty of 0.4 ppm for XCO2  (see also Kulawik et al., 2016) 533 

and adding this (in a root-sum-square manner (e.g., Eq. (1)) to the 0.5 ppm URD requirement yields 534 

0.64 ppm, i.e., a number somewhat larger than the overall bias for product CO2_GOS_OCFP (0.58 535 

ppm). It is therefore possible that product CO2_GOS_OCFP even meets the demanding GHG-CCI 536 

URD threshold systematic error requirement of better than 0.5 ppm. 537 

 538 

Table 6 also lists mean values of the reported uncertainty (essentially the random error component of 539 

the single ground pixel satellite retrievals) and the “uncertainty ratio“ (“UncRat”, in brackets), i.e., the 540 

ratio of reported uncertainty and standard deviation of the difference to TCCON. For the 541 

CO2_SCI_BESD product the reported uncertainty is 1.9 ppm (on average) and the uncertainty ratio is 542 

1.1 providing confidence that the reported uncertainty is realistic (at least on average). This is also true 543 

for the other products with the exception of CO2_GOS_OCFP which appears to overestimate the 544 

uncertainty by about 40% on average, i.e., the reported uncertainty is quite conservative. As can also 545 

be seen, all products clearly meet the GHG-CCI URD breakthrough requirement of better than 3 ppm 546 

or are very close to meeting it (for product CO2_SCI_WFMD the estimated precision is 3.0 ppm). 547 

 548 

Table 6 also lists the linear trend and its uncertainty, which has been determined by fitting a straight 549 

line to the individual satellite minus TCCON differences (after removal of a possible seasonal cycle 550 

obtained by fitting a linear combination of harmonics (sine and cosine functions) to the data). The 551 

trend uncertainty as given here is the 3-sigma uncertainty of the estimated trend. Assuming that only 552 

trends which are larger than their uncertainty are significant, one can see that none of the trends is 553 

significant. This indicates very good long-term stability (or, more precisely, the absence of a linear 554 

drift) of all satellite XCO2 products (note that even the goal requirement of better than 0.2 ppm/year is 555 

met for all products).  556 

  557 
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 558 

3.2 XCH4 comparisons with TCCON 559 

 560 

Similar comparisons as presented in the previous sub-section have also been performed for the XCH4 561 

ECA products. Detailed example results for product CH4_SCI_WFMD are shown in Fig. 4 and Tab. 562 

5. The most relevant figures of merit, defined as for XCO2 (see previous section), are summarized 563 

along with the results for the other products in Tab. 7. 564 

 565 

 566 

 567 

Figure 4: As Fig. 3 but for product CH4_SCI_WFMD. 568 

 569 

As can be seen from Tab. 7, the (relative) biases are around 20 ppb for the SCIAMACHY products, 570 

which is worse than the required performance of better than 10 ppb. A much better performance in the 571 

range 6-7 ppb has been achieved for the GOSAT products (which, however, contain significantly less 572 

observations). The GOSAT products meet the GCOS and GHG-CCI URD systematic error 573 

(“accuracy”)  requirements. 574 

 575 

As can also be seen from Tab. 7, the GOSAT products also meet the GHG-CCI breakthrough 576 

requirement for random errors (better than 17 ppb) in contrast to the SCIAMACHY products which do 577 
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not meet the threshold requirement. However one has to point out that the first years of 578 

SCIAMACHY, where the data quality is much higher, is under-represented here as no TCCON 579 

observations are available during the first nearly two years of the ENVISAT mission (see Tab. 3). 580 

 581 

Table 7: As Tab. 6 but for the GHG-CCI XCH4 products. Note that the uncertainty of the TCCON 582 

reference data used to obtain the estimates listed here is about 4 ppb (1-sigma). 583 

Product Systematic 

error [ppb] 

Regional, 

seasonal 

(combined) 

Uncertainty 

(Random 

error) [ppb] 

(UncRat) 

Trend 

(Stability) 

[ppb/year] 

Offset 

[ppb] 

Nobs [-] 

CH4_SCI_WFMD 11.3, 16.8 (20.3) 81.6 (1.0) 2.0 +/- 4.3 -2.6 46958 

CH4_SCI_IMAP 14.8, 14.4 (20.7) 48.3 (1.3) 4.5 +/- 2.8 -13.2 64841 

CH4_GOS_OCPR 4.6, 3.4 (5.7) 11.9 (1.0) 0.0 +/- 1.1 6.5 14639 

CH4_GOS_SRPR 3.4, 5.1 (6.1) 12.8 (0.9) -0.9 +/- 1.0 -2.6 13502 

CH4_GOS_SRFP 4.7, 5.1 (6.9) 12.6 (1.0) -1.0 +/- 1.3 -1.4 6819 

CH4_GOS_OCFP 4.1, 5.7 (7.0) 13.4 (0.7) -0.4 +/- 1.2 0.7 5913 

Required  

G / B / T 

< 10 

< 1 / 5 / 10 

- 

< 9 / 17 / 34 

< 2 

< 1 / 5 / 10 

GCOS (2011) 

GHG-CCI URD 

(Chevallier et al., 

2014b) 

 584 

 585 

Table 7 also shows that the GOSAT products are very stable meeting the GCOS and (typically) even 586 

the GHG-CCI URD goal requirement. The SCIAMACHY products do not meet the GCOS stability 587 

requirement but apparently meet the GHG-CCI breakthrough requirement (of less than 5 ppb/year), at 588 

least concerning linear long-term drifts. However we also looked at shorter-term drifts of biases and 589 
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identified issues in particular for the year 2010 and later years due to remaining issues from detector 590 

degradation (see Fig. 2). 591 

 592 

4. XCO2 comparisons with global models 593 

 594 

In the previous section we have presented validation results at selected TCCON sites. We have also 595 

performed detailed validation at a much larger number of TCCON sites as shown in Dils et al., 2016. 596 

Nevertheless, the number of ground-based validation sites is limited and large parts of the Earth are 597 

not covered (e.g., Africa, South America and large parts of Asia). Therefore, we present in this section 598 

detailed comparisons with global data sets (for recent comparisons with global models addressing 599 

different aspects see also Lindqvist et al., 2015, Parker et al., 2015, Kulawik et al., 2016). Here we use 600 

the output of the two global CO2 assimilation systems (“models”) MACC (Chevallier et al., 2015), 601 

version 14r2, and CarbonTracker (Peters et al., 2007), version CT2013B. Note that comparisons with 602 

global models as well as CO2 flux inversion results using CRDP3 XCO2 (and XCH4) are also 603 

presented and discussed in Chevallier et al., 2016. 604 

 605 

The European MACC (Monitoring of Atmospheric Composition Change) / CAMS (Copernicus 606 

Atmospheric Monitoring System) project global atmospheric CO2 reanalysis data product, version 607 

v14r2, has been obtained from the MACC/CAMS website (http://macc.copernicus-608 

atmosphere.eu/catalogue/ -> http://apps.ecmwf.int/datasets/data/macc-ghg-inversions/, access: 23-Feb-609 

2016). The MACC Bayesian inversion method (e.g., Chevallier et al., 2015, and references given 610 

therein) is formulated in a variational way in order to estimate CO2 surface fluxes at relatively high 611 

resolution over the globe. Fluxes and mole fractions are linked in the system by the global atmospheric 612 

transport model of the Laboratoire de Météorologie Dynamique (LMDZ) with 39 layers in the vertical 613 

and with the same horizontal resolution than the inverted fluxes. LMDZ is nudged to ECMWF-614 

analysed winds for flux inversion. The MACC inversion product also contains the 4-D CO2 field that 615 

is associated to the inverted surface fluxes through the LMDZ transport model. These 4-D fields have 616 

been used for this study. Satellite XCO2 observations have not been assimilated in MACCv14r2. 617 

http://macc.copernicus-atmosphere.eu/catalogue/
http://macc.copernicus-atmosphere.eu/catalogue/
http://apps.ecmwf.int/datasets/data/macc-ghg-inversions/
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 618 

The CarbonTracker atmospheric CO2 data product, version CT2013B, has been obtained from the 619 

NOAA/ESRL CarbonTracker website (http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/, access: 3-620 

Dec-2015) on which a detailed description of this version and how it has been generated is given. In 621 

short, CarbonTracker, developed by the National Oceanic and Atmospheric Administration (NOAA) 622 

Earth System Research Laboratory (ESRL), is an atmospheric CO2 inverse modeling system that 623 

estimates optimized weekly surface CO2 flux using the Ensemble Kalman Filter (EnKF) technique. 624 

Since the initial CarbonTracker release (Peters et al., 2007), a series of improvements have been made 625 

with subsequent releases. These include increasing the sites from which CO2 data are assimilated, 626 

increasing the resolution of atmospheric transport, improving the simulation of atmospheric 627 

convection in the underlying transport model (TM5), and the use of multiple first-guess flux models to 628 

estimate dependence on priors. These improvements are documented at http://carbontracker.noaa.gov. 629 

CT2013B is a revision to the previous release (CT2013) and has the same time span, 2000-2012. For 630 

CT2013B the atmospheric transport model has been significantly improved. CT2013B assimilates CO2 631 

observations which are part of ESRL's new ObsPack data delivery system 632 

(http://www.esrl.noaa.gov/gmd/ccgg/obspack/, Masarie et al., 2014). Satellite XCO2 observations have 633 

not been assimilated in CT2013B. 634 

 635 

In the following we show comparisons of three GHG-CCI XCO2 products with these two models in 636 

order to find out if it is possible to identify which of the model data sets compares best with the 637 

satellite data. The comparison has been done for the years 2010 and 2011 as these are the two years 638 

where the SCIAMACHY and GOSAT time series overlap.  639 

 640 

Figure 5a shows comparisons of the GHG-CCI satellite-derived XCO2 data products BESD, SRFP and 641 

OCFP with the MACC and CarbonTracker (CT) model data sets for the time period June-August 642 

(JJA) 2010 at a resolution of 2
o
x2

o
. The model data have been sampled according to the time and 643 

location of the (individual) satellite retrievals and the satellite averaging kernels have been applied to 644 

the model data to consider the altitude sensitivity of the satellite retrievals when computing XCO2 645 

http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/
http://carbontracker.noaa.gov/
http://www.esrl.noaa.gov/gmd/ccgg/obspack/
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from the model CO2 profiles (see Buchwitz et al., 2014). This has been done for each single satellite 646 

sounding (ground pixel) and afterwards the model data and the satellite data have been averaged 647 

(gridded 2
o
x2

o
) to obtain the maps shown in Fig. 5a.  648 

 649 

The first row of Fig. 5a shows global maps of the three satellite data products. As can be seen, their 650 

spatial coverage differs. For example, the SCIAMACHY BESD data set is restricted to observations 651 

over land whereas the two GOSAT products also contain observations over oceans (corresponding to 652 

GOSAT sun-glint mode observations). As can also be seen, the spatial XCO2 pattern over land show 653 

similarities but also differences. For example, all three products show elevated XCO2 (red color) over 654 

similar parts of the western USA and Mexico, Amazonia and India and low XCO2 over parts of 655 

eastern Russia but different patterns over Africa, in particular northern Africa. These differences could 656 

be a result of the different sampling (different spatio-temporal coverage) of the satellite data products 657 

within the JJA time period (due to differences of the SCIAMACHY and GOSAT overpass time and 658 

the different quality filtering procedures of the different retrieval algorithms).  659 

 660 

To investigate the effect of spatio-temporal sampling one can compare the satellite retrievals with the 661 

model data sets. The middle row of Fig. 5a shows the MACC model sampled as the three satellite data 662 

products (e.g., the left panel in the middle row entitled MACC@CO2_SCI_BESD is the MACC model 663 

sampled as the BESD product). MACC sampled as the three satellite products (middle row) also 664 

shows elevated XCO2 (red color) over similar parts of the western USA and Mexico, Amazonia and 665 

India in good to reasonable agreement with the satellite retrievals. Overall, all three MACC maps 666 

show similar XCO2 pattern indicating that the pattern does not depend significantly on the sampling of 667 

the satellite data products. Over northern Africa MACC and OCFP show quite similar pattern whereas 668 

SRFP XCO2 is significantly higher. There are nearly no BESD data over northern Africa as most of 669 

the BESD retrievals have been removed by the very strict BESD quality filter.  670 

 671 

The bottom row of Fig. 5a shows CT sampled as the three satellite data products. Overall, there is 672 

good agreement between CT and MACC but there are also differences. For example, CT shows 673 
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significantly lower XCO2 over large parts of eastern Russia compared to MACC. The satellite 674 

products show XCO2 values which are in between the values of MACC and CT but are significantly 675 

closer to MACC (see also Fig. 5b discussed below). This may indicate that over eastern Russia the CT 676 

XCO2 is somewhat too low during summer (JJA season; note that we get similar comparison results 677 

also for JJA 2011 not shown here).  678 

 679 

Figure 5b shows the differences between the models and the satellite data (first two rows) and the 680 

difference between the two models (bottom row). The bottom row shows that the largest difference 681 

between the two models is over large parts of eastern Russia with differences up to about +4 ppm 682 

(MACC higher than CT). For other regions the agreement is mostly in the range +/-2 ppm (green 683 

color). As can also be seen, the satellite data are in better agreement with MACC over eastern Russia. 684 

 685 

To also consider the uncertainty of the satellite retrievals we have generated Fig. 5c. Our estimated 686 

uncertainties are shown in the bottom row of Fig. 5c. These uncertainties (unctot) have been computed 687 

as follows: 688 

    𝑢𝑛𝑐𝑡𝑜𝑡(𝑁) =  √𝑏𝑖𝑎𝑠𝑡𝑜𝑡
2  +

𝑟𝑛𝑑2

𝑁
     Eq. (2) 689 

Here N are the number of satellite retrievals per (2
o
x2

o
) grid cell, biastot is the systematic error 690 

component of the total uncertainty (see Eq. (1) and Tab. 6) and rnd is the random error component of 691 

the total uncertainty for single observations, which is assumed here to improve with √N when N 692 

observations are averaged (see also Kulawik et al., 2016, and Sect. 5 for an assessment of how 693 

SCIAMACHY and GOSAT XCO2 uncertainties depend on the number of observations added).  rnd  694 

has been computed by averaging the reported uncertainties of the N XCO2 retrievals located in each 695 

grid cell. Here the reported uncertainties of the CO2_GOS_OCFP product have been divided by 1.4 to 696 

compensate for the approximately 40% overestimation of the reported errors (see previous discussion 697 

of the results presented in Tab. 6).  As can be seen from the bottom row of Fig. 5c, the uncertainty of 698 

the three satellite data products is typically around 1.2 ppm (standard deviation 0.5 ppm). 699 

 700 
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The first two rows displayed in Fig. 5c show the same model minus satellite differences as also shown 701 

in Fig. 5b but restricted to those (2
o
x2

o
) grid cells where the (absolute value of the) difference is larger 702 

than the uncertainty shown in the bottom row, i.e., the first two rows only show cells with likely 703 

“significant differences”. As can be seen, OCFP shows hardly any significant differences at least for 704 

extended regions (of connected cells). An exception is the already discussed part of eastern Russia, 705 

where differences are significant for CT (for all three satellite products) but not for MACC. Over parts 706 

of Amazonia MACC XCO2 is higher than BESD but this difference is much smaller for CT. Over 707 

parts of central Africa both models are higher than BESD. SRFP shows extended regions of 708 

differences over parts of northern Africa, Saudi Arabia and Iran (SRFP higher than the models as 709 

already mentioned when discussing Fig. 5a).  710 

 711 

 712 

Figure 5a: Top: Satellite XCO2 gridded 2
o
x2

o
 for June-August 2010 for the three products BESD 713 

(left), SRFP (middle) and OCFP (right). Middle: MACC XCO2 sampled as the three satellite products. 714 

Bottom: CarbonTracker sampled as the satellite products.  715 

 716 
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 717 

Figure 5b: As Fig. 5a but for the difference MACC-satellite (top), CarbonTracker-satellite (middle) 718 

and MACC-CarbonTracker (bottom) sampled according to the three satellite products BESD (left), 719 

SRFP (middle) and OCFP (right). 720 

 721 

Figure 5c: As Fig. 5b but only for “significant” satellite-model differences (top and middle row) 722 

obtained by considering the uncertainty of the satellite retrievals (bottom). See main text for details. 723 

 724 
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Figures 6a – 6c show the same maps as Figs. 5a – 5c but for the time period September – November 725 

2011. Here the models show differences in particular over parts of Amazonia, southern Africa and 726 

India (Figs. 6a) of about 2-3 ppm (Figs. 6b, bottom). The “significant differences” between the models 727 

and the satellite retrievals are shown in Figs. 6c (top row for MACC; middle row for CT). Over 728 

Amazonia and parts of southern Africa MACC is higher than BESD over large regions, whereas CT 729 

shows less differences to BESD over Amazonia and hardly any differences over southern Africa. For 730 

southern Africa the differences between the models and BESD are similar as for OCFP. Over Africa 731 

both models are lower compared to SRFP. Over India both models, MACC and CT, are lower than 732 

SRFP and OCFP. 733 

 734 

 735 

Figure 6a: As Fig. 5a but for September-November 2011. 736 

  737 
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 738 

 739 

Figure 6b: As Fig. 5b but for September-November 2011. 740 

 741 

 742 

Figure 6c: As Fig. 5c but for September-November 2011. 743 

 744 

 745 
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To further investigate the agreements / disagreements between the XCO2 data sets we also generated 746 

time series. Figures 7 – 11 show time series of the satellite and model data sets for some of the 747 

discussed regions but also for other regions. Figure 7 shows time series for the region southern Africa 748 

(SAF) based on monthly averages. The top left panel shows BESD XCO2 (in red), MACC (black) and 749 

CT (grey) sampled as BESD. The panel on the right next to that panel shows the model – BESD 750 

differences as solid lines (in black for MACC and grey for CT) but also the estimated uncertainty (1-751 

sigma) of the satellite data (red vertical bars, one for each month). As can be seen, both models are 752 

higher by about 0.6 ppm compared to BESD (top row), lower by about 0.7 ppm compared to SRFP 753 

(middle), whereas the average difference is close to zero for OCFP. The standard deviation of the 754 

monthly differences is 0.5 ppm for BESD for both models, for SRFP 0.3 ppm relative to MACC and 755 

0.5 ppm relative to CT, and for OCFP 0.5 ppm relative to MACC and 0.6 ppm relative to CT. Note 756 

that typically the agreement between the models and the satellite retrievals is best where the number of 757 

satellite observations is highest (see Nobs bars in light red). Overall, OCFP shows the best agreement 758 

with the two models with most of the differences within 1 ppm.  759 

 760 

Figs. 8 - 11 also show time series as Fig. 7 but for the regions northern Africa (NAF, Fig. 8). North 761 

America (NAM, Fig. 9), Europe (EUR, Fig. 10) and China (CHI, Fig. 11). For region NAF (Fig. 8), 762 

BESD and OCFP agree with the models within typically 1 ppm whereas SRFP has an apparent high 763 

bias of around 1.4 ppm. For region NAM (Fig. 9) the situation is similar for BESD and OCFP but the 764 

agreement is better for SRFP. For Europe (Fig. 10) the two models agree with each other but show 765 

typically a high bias compared to the satellite retrievals. For China (Fig. 11) the models typically agree 766 

with SRFP and OCFP within 1 ppm whereas the comparison with BESD shows somewhat larger 767 

differences for some months. 768 

 769 

  770 
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 771 

 772 

Figure 7: Timeseries of satellite and model XCO2 for region Southern Africa (SAF; see map top 773 

right). Top left: Monthly XCO2 BESD (red), MACC XCO2 sampled as BESD (black) and 774 

CarbonTracker XCO2 sampled as BESD (grey). Top middle: models – satellite for BESD: MACC-775 

BESD (black) and CarbonTracker-BESD (grey). The red vertical bars indicate the estimated 776 

uncertainty of the satellite retrievals. In light red the number of satellite observations per month is 777 

shown (in arbitrary units). Middle: as top row but for SRFP (blue), Bottom: as top and middle row but 778 

for OCFP (green). Listed on top right in each panel on the right hand side is mean +/- standard 779 

deviation of the difference between the models and the satellite XCO2. 780 

 781 

Overall it can be concluded that the models agree with the satellite retrievals within typically 1-2 ppm 782 

but depending on region and time period differences can also be somewhat larger. As shown in 783 

Kulawik et al., 2016, MACC and CT fit TCCON typically quite well but TCCON stations are usually 784 

in place where there are surface air sample measurements to constrain the models (see also Parker et 785 

al., 2015). Differences may therefore be larger elsewhere. Nevertheless, we found that the two model 786 

data sets are very similar, in particular when averaged over large region (see regional timeseries). 787 
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However, we also identified significant differences between them.  For example, CT shows 788 

significantly lower XCO2 compared to MACC (approximately 4 ppm) over large parts of eastern 789 

Russia during summer 2010 (JJA season) (also during JJA 2011, but this has not been shown here).  790 

Over parts of Amazonia and southern Africa during autumn 2011 (SON season) MACC is about 2 791 

ppm higher than CT and over India MACC is about 2-3 ppm lower (also for SON 2010, not shown 792 

here). We also identified significant differences between the satellite data products, e.g., a high or a 793 

low bias of SRFP compared to the other two satellite products BESD and OCFP depending on region 794 

and time period. 795 

 796 

 797 

Figure 8: As Fig. 7 but for region Northern Africa (NAF). 798 

 799 

  800 
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 801 

 802 

Figure 9: As Fig. 7 but for region North America (NAM). 803 

 804 

 805 

Figure 10: As Fig. 7 but for region Europe (EUR). 806 

 807 
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 808 

 809 

Figure 11: As Fig. 7 but for region China (CHI). 810 

 811 

5. XCO2 error correlations 812 

 813 

The GHG-CCI ECA products are Level 2 products, i.e., product information such as XCO2 and its 814 

uncertainty is reported for each individual satellite ground pixel. For applications such as inverse 815 

modelling also information on spatio-temporal error correlations would be highly beneficial (see 816 

Chevallier et al., 2014b). However, it is not trivial because the needed co-located ground truth 817 

observations are only available at TCCON sites, which makes it difficult to obtain reliable global 818 

statistics representative for all temporal and spatial distances. Additionally, error correlations may 819 

systematically differ depending on surface reflectivity, atmospheric composition (e.g., aerosols and 820 

cirrus), viewing geometry and solar illumination conditions.  This would violate the assumption of 821 

stationarity made by our approach. 822 

 823 
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Here we report on an attempt to obtain spatio-temporal error correlations in a form useful for inverse 824 

modelling and related applications such as CCDAS (Carbon Cycle Data Assimilation Systems (e.g., 825 

Kaminski et al., 2013)) (for alternative attempts see Chevallier et al., 2013, and Kulawik et al., 2016). 826 

The goal is to obtain a covariance matrix, where each diagonal element corresponds to the variance of 827 

the retrieved XCO2 of a corresponding ground pixel, which is the square of the reported XCO2 828 

uncertainty, and each non-diagonal element corresponds to the co-variance between two retrievals, i.e., 829 

different ground pixels.  Our method to estimate co-variances is based on semivariogram analysis 830 

(Montero et al., 2015) of the satellite minus TCCON XCO2 differences. As shown in Reuter et al., 831 

2016, where the analysis method is described in detail, we have used two different parameterizations 832 

resulting in a “full” and an “approximate” error covariance matrix. The full error covariance matrix 833 

(not shown here; see Reuter et al., 2016, for details) is dense and does not necessarily vanish even for 834 

long distances. Therefore, it may be computationally too expensive for many users. A simpler 835 

parametrization of the error covariance, whose use can be computationally less demanding, is given by 836 

the following formula (“exponential product model”): 837 

 838 

𝐶𝑖𝑗 =  
𝜎𝑖𝜎𝑗

𝑉𝑚𝑎𝑥
 {

𝑘 𝑒−(𝛥𝑠 𝑙𝑠 ⁄ + 𝛥𝑡 𝑙𝑡⁄ ), 𝛥𝑠 > 0 𝑜𝑟 𝛥𝑙 > 0
𝑉𝑚𝑎𝑥, 𝛥𝑠 = 0 𝑎𝑛𝑑 𝛥𝑙 = 0

   Eq. (3) 839 

 840 

Here, σi and σj correspond to the reported uncertainties for ground pixels i and j and Δs and Δt are their 841 

corresponding spatial (in km) and temporal (in days) differences, respectively. These uncertainties σ 842 

are related to the uncertainties reported in the BESDv02.01.01 product files, �̃�, by σ =  �̃� ∗ 0.2741 +843 

1.3294 ppm. Vmax , k, ls and lt are parameters obtained via model semivariogram least squares fitting.  844 

Parameter Vmax (in semivariogram analyses often called “sill”, see, e.g., the textbook of Montero et al., 845 

2015) corresponds to the error variance due to all error components. Parameter k is the variance due to 846 

correlated errors.  The difference Vmax - k (in semivariogram analyses often called “nugget”, see, e.g., 847 

the textbook of Montero et al., 2015) corresponds to the fully uncorrelated part of the error, e.g., due to 848 

instrumental noise. Parameter ls is the spatial correlation length and lt is the temporal correlation 849 

length.  As shown in Reuter et al., 2016, the following values have been obtained for the 850 
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CO2_SCI_BESD product: Vmax = 3.80 +/- 0.05 ppm
2
; k = 1.16 +/- 0.27 ppm

2
; ls = 1476 +/- 633 km and 851 

lt = 58 +/- 20 days (see Fig. 12). Equation 3 and its corresponding parameters has been derived based 852 

on relatively coarse assumptions (see Reuter et al., 2016, for details) and future analysis may result in 853 

a better approximation but for now we recommend that users who would like to or have to take error 854 

correlations into account use the results presented here.  855 

 856 

 857 

Figure 12: Modelled semivariogram (left; with the four fit parameters listed top right) and 858 

corresponding correlogram (right) for product CO2_SCI_BESD. The correlogram, ρ, has been 859 

obtained from the semivariogram, γ, via ρ = 1 – γ/Vmax. The covariance matrix, C (see Eq. (3)), and the 860 

correlogram, ρ, are related by ρ = C/Vmax. 861 

 862 

6. XCH4 global maps and time series 863 

 864 

Finally we present some comparisons of global maps of XCH4 ECA products (Figs. 13a – 13d). Note 865 

that many detailed figures for each month and each product (including number of observations per 866 

grid cell, standard deviation, etc.) and latitude-resolved time series for the CRDP3 products are shown 867 

on the GHG-CCI website (see XCH4 (and XCO2) CRDP3 “browse images” on http://www.esa-ghg-868 

http://www.esa-ghg-cci.org/
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cci.org/) and detailed assessment results are presented in several technical documents (e.g., Buchwitz 869 

et al., 2016). 870 

 871 

Figure 13a shows a global composite map of product CH4_SCI_WFMD for the years 2003-2004, i.e., 872 

for the first two years of the GHG-CCI ECA time series at 2
o
x2

o
 resolution. A major feature is the 873 

north-south methane gradient, with higher concentrations over the northern hemisphere, where most of 874 

the methane sources are located. Clearly visible by higher regional XCH4 values are major methane 875 

source regions such as China (wetland and rice paddy emissions). However, we have to point out that 876 

it is not trivial (if not impossible) to draw clear conclusions with respect to regional emissions from 877 

maps such as those shown in Fig 13a due to temporal sampling issues (depending on month, the 878 

satellite data may be quite sparse) combined with atmospheric transport and the long lifetime of CH4 879 

in the atmosphere. For example, large values over water (Fig. 13a) are typically not due to local 880 

sources but due to outflow from major source regions (e.g., Asia) located on land. 881 

 882 

Figure 13b shows the corresponding map for product CH4_SCI_IMAP. As can be seen, this product is 883 

limited to observations over land. The spatial XCH4 pattern is similar compared to WFMD (Fig. 13a) 884 

but not identical. This is due to differences in spatio-temporal sampling of the satellite data, different 885 

random errors (see Tab. 7), differences in altitude sensitivity but also due to (different) biases in the 886 

satellite data products. 887 

 888 

Figures 13c and 13d show global maps for the two GOSAT products CH4_GOS_SRFP (Fig. 13c) and 889 

CH4_SCI_OCPR (Fig. 13d) for 2013-2014, i.e., for the two last years of the CRDP3 ECA data set. 890 

Both products show similar (but not identical) coverage and pattern, for similar reasons as explained 891 

above for the two SCIAMACHY products. Note that detailed comparison and assessment results are 892 

shown in Buchwitz et al., 2016, and other technical documents available on the GHG-CCI website 893 

(http://www.esa-ghg-cci.org/) and we recommend that users interested in these data products take the 894 

information given in these documents into account when using our data products for any given 895 

application. 896 

http://www.esa-ghg-cci.org/
http://www.esa-ghg-cci.org/
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 897 

 898 

 899 

Figure 13: Global maps of satellite-derived XCH4. (a) Global map of product CH4_SCI_WFMD 900 

obtained by gridding all individual retrievals during 2003-2004 using 2
o
x2

o
 grid cells. (b) As (a) but 901 

for product CH4_SCI_IMAP. (c) As (a) but for CH4_GOS_SRFP during 2013-2014. (d) As (c) but for 902 

CH4_GOS_OCPR. Note the change of the color scale (+ 60 ppb) for the 2013-2014 maps, i.e., for (c) 903 

and (d). 904 

 905 

7. Summary and conclusions 906 

CO2 and CH4 are the two most important greenhouse gases emitted by mankind and responsible for a 907 

large fraction of the observed global warming. Despite their importance our knowledge on their 908 

various variable surface sources and sinks has significant gaps. Satellite observations of atmospheric 909 

CO2 and CH4 are increasingly being used to help closing relevant knowledge gaps. We have presented 910 

a short overview based on peer-reviewed publications to demonstrate the progress which has been 911 

made in recent years concerning the use of satellite retrievals of near-surface-sensitive column-912 

averaged dry air mole fractions of CO2 and CH4, i.e., XCO2 and XCH4. Nevertheless, much more still 913 
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needs to be learned about the sources and sinks of these greenhouse gases but this requires additional 914 

efforts in terms of further improving the quality of the satellite retrievals, to extend their time series 915 

(using existing and future sensors) and to further improve transport modelling and inversion methods 916 

as well as more and better satellite and non-satellite observations (e.g., Ciais et al., 2014). 917 

 918 

Here we have presented a new XCO2 and XCH4 satellite-derived data set called “Climate Research 919 

Data Package” No. 3 (CRDP3) which has been generated within the ESA CCI project GHG-CCI. The 920 

data products are available for all interested users from the website of this project (http://www.esa-921 

ghg-cci.org/).   922 

 923 

The presented XCO2 and XCH4 data sets cover the time period end of 2002 – 2014 and have been 924 

derived from the nadir near-infrared / shortwave-infrared (NIR/SWIR) radiance observations of the 925 

two satellite instruments SCIAMACHY/ENVISAT (2002 - 2012) and TANSO/GOSAT (launched 926 

2009). We have presented time series and global maps including comparisons with TCCON (Wunch 927 

et al., 2010, 2011) ground-based observations (version GGG2014) and global CO2 assimilation system 928 

(“models”) data sets (European MACC/CAMS model (v14r2) (Chevallier et al., 2015) and NOAA’s 929 

CarbonTracker (version CT2013B) (Peters et al., 2007)). 930 

 931 

Based on validation using TCCON data at six sites we have shown that with one exception the satellite 932 

XCO2 products have (relative) systematic errors of less than 1 ppm, i.e., they meet the Global Climate 933 

Observing System (GCOS) accuracy requirement. All XCO2 products are very stable showing no 934 

significant long-term linear trend and they meet the GCOS stability requirement of better than 0.2 935 

ppm/year. 936 

 937 

The GOSAT XCH4 retrievals also meet the GCOS accuracy requirement of better than 10 ppb and are 938 

even close to meeting the GHG-CCI breakthrough requirement of better than 5 ppb. These products 939 

are also very stable showing no significant long-term linear trend and they meet the GCOS stability 940 

requirement of better than 2 ppb/year. For the SCIAMACHY XCH4 products the situation is more 941 

http://www.esa-ghg-cci.org/
http://www.esa-ghg-cci.org/
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complex due to detector degradation. In particular for 2010 and later years this results in significant 942 

biases (not meeting the GCOS accuracy requirement of better than 10 ppb) and large scatter.   943 

 944 

The SCIAMACHY BESD XCO2 and the two GOSAT XCO2 products (SRON/KIT’s SRFP 945 

(“RemoTeC”) product and University of Leicester’s OCFP product) have been compared with output 946 

from the MACC model and NOAA’s CarbonTracker (CT). Detailed comparison results are presented 947 

in terms of global maps and time series for selected regions. Overall it can be concluded that the CO2 948 

models agree with the satellite retrievals within typically 1-2 ppm but depending on region and time 949 

period differences can also be somewhat larger. The two model data sets are very similar, in particular 950 

when averaged over large regions, but we also identified significant differences between them.  For 951 

example, CT shows significantly lower XCO2 compared to MACC (approximately 4 ppm) over large 952 

parts of eastern Russia during summer (JJA season) with MACC being in better agreement with the 953 

satellite data compared to CT. Over parts of Amazonia and southern Africa during autumn (SON 954 

season) MACC is about 2 ppm higher than CT and over India MACC is about 2-3 ppm lower. For 955 

India the satellite data are in better agreement with CT compared to MACC but for Amazonia and 956 

southern Africa the situation is less clear. We also identified significant differences between the 957 

satellite data products, e.g., a high or a low bias of SRFP compared to other satellite products 958 

depending on region and time period. Because the link between atmospheric concentrations and 959 

surface fluxes is typically complex our analysis does not necessarily permit to draw clear conclusions 960 

on which satellite data set gives the most reliable surface fluxes when used in an inverse modelling 961 

framework. This underlines the importance of using multiple satellite products and inversion methods 962 

in order to draw robust conclusions on GHG sources and sinks as aimed at in several recent 963 

publications (e.g., Chevallier et al., 2013, 2016; Reuter et al., 2014a; Houweling et al., 2015; Feng et 964 

al., 2016). 965 

 966 

Furthermore, we have presented an attempt to provide users with information on spatio-temporal error 967 

correlations using a parameterization of an error covariance matrix obtained via semivariogram 968 

analysis of satellite minus TCCON XCO2 differences. We have also presented global XCH4 maps to 969 
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illustrate how the various new XCH4 products “look like”. Finally, we would like to point out that 970 

additional information in terms of various technical documents and separate figures is available on the 971 

website of the GHG-CCI project (http://www.esa-ghg-cci.org/) (please note in particular the link to 972 

“CRDP (Data)”).  973 
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