Half-sandwich organoruthenium and organorhodium complexes of biologically relevant ligands.

2015-11-19T08:48:53Z (GMT) by Glen. Capper
This thesis describes some chemistry of [(mes)RuC12]2, [(Cp)RuCl(CO)2] and [(Cp*)RhCl2]2 complexes and in particular, the reactions with biologically relevant ligands. Chapter one introduces the general chemistry of arene-ruthenium and pentamethylcyclopentadienyl-rhodium from early work described by Winkhaus and Singer in the preparation of half-sandwich arene-rathenium complex [(C6H6)RuCl2(PPh3)] and the contributions on the reactions of [(Cp*)RhCl2]2 reported by Maitlis and co-workers. The second half of the introduction discusses the introduction and uses of inorganic complexes as anti-tumour agents. Chapter two describes the reactions of amino acids with potentially coordinating side chains with [(mes)RuCl2]2 and the characterisation of the amino acidate complexes formed. The crystal structure of the complex [(mes)RuCl(phgly)] has been determined and a high temperature 1H n.m.r. spectrum has been obtained. Chapter three describes the preparation and characterisation of a number of pyranato and pyridinato complexes of arene-ruthenium and Cp*-rhodium. A low temperature 1H n.m.r. spectrum was obtained for the complex [(Cp*)RhCl(etmalt)] and conductivity experiments were obtained which indicate that the complexes exist in water as a mixture of water or chloride co-ordinated species. Chapter four describes the reactions of a number of half-sandwich complexes of ruthenium and rhodium with nucleobases to determine the binding site(s) involved in co-ordination. A set of competition reactions were undertaken to determine any preference of the complex [(mes)RuCl(phgly)] for the various nucleobases. We have found that for this ruthenium complex, guanosine forms the most stable complexes with thymidine and uridine forming the least stable.

Categories

Keyword(s)

License

All Rights Reserved