

Accepted Manuscript

Hierarchical Energy Monitoring for Task Mapping in Many-core
Systems

Guilherme Castilhos , Marcelo Mandelli , Luciano Ost ,
Fernando Gehm Moraes

PII: S1383-7621(16)00017-5
DOI: 10.1016/j.sysarc.2016.01.005
Reference: SYSARC 1334

To appear in: Journal of Systems Architecture

Received date: 23 July 2015
Revised date: 21 December 2015

Please cite this article as: Guilherme Castilhos , Marcelo Mandelli , Luciano Ost ,
Fernando Gehm Moraes , Hierarchical Energy Monitoring for Task Mapping in Many-core Sys-
tems, Journal of Systems Architecture (2016), doi: 10.1016/j.sysarc.2016.01.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.sysarc.2016.01.005
http://dx.doi.org/10.1016/j.sysarc.2016.01.005

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIPT

Highlights

• Executed at runtime. The proposed approach can better manage time-varying workloads and
system changes.
• Hierarchical mapping approach. The proposed approach is implemented in a many-core
managed in a hierarchical way. Such hierarchical system management improves system
scalability by dividing the system into regions, each one with a manager responsible for actions
inside it. Further, it reduces mapping decision computational effort, not compromising the
system performance.
• Induces to a better system reliability. The proposed approach aims to improve energy
balancing, which are directly related to a better system reliability.
• Hierarchical energy monitoring. The proposed approach does not employ physical sensors in
the mapping decision, which increases area and energy costs. The energy data is obtained at
runtime using a hierarchical monitoring approach.
• Clock-cycle model for validation. The proposed mapping approach is validated in a large
many-core system (up to 256 processing elements), modeled in SystemC.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIPT

Hierarchical Energy Monitoring for Task Mapping in
Many-core Systems

Guilherme Castilhos1, Marcelo Mandelli1, Luciano Ost2, Fernando Gehm Moraes1
1PUCRS University, Computer Science Department, Porto Alegre, Brazil – 90619-900

2University of Leicester, Department of Engineering, Leicester, UK
{guilherme.castilhos,marcelo.mandelli}@acad.pucrs.br, luciano.ost@leicester.ac.uk, fernando.moraes@pucrs.br

Abstract – This work addresses a research subject with a rich literature: task mapping in NoC-based
systems. Task mapping is the process of selecting a processing element to execute a given task. The number
of cores in many-core systems increases the complexity of the task mapping. The main concerns in task
mapping in large systems include (i) scalability; (ii) dynamic workload; and (iii) reliability. It is necessary to
distribute the mapping decision across the system to ensure scalability. The workload of emerging many-
core systems may be dynamic, i.e., new applications may start at any moment, leading to different mapping
scenarios. Therefore, it is necessary to execute the mapping process at runtime to support a dynamic
workload assignment. The workload assignment plays an important role in the many-core system reliability.
Load imbalance may generate hotspots zones and consequently thermal implications, which may generate
hotspots zones and consequently thermal implications. More recently, task mapping techniques aiming at
improving system reliability have been proposed in the literature. However, such approaches rely on
centralized mapping decisions, which are not scalable. To address these challenges, the main goal of this
work is to propose a hierarchical runtime mapping heuristic, which provides scalability and a fair workload
distribution. Distributing the workload inside the system increases the system reliability in long-term, due to
the reduction of hotspot regions. The proposed mapping heuristic considers the application workload as a
function of the consumed energy in the processors and NoC routers. The proposal adopts a hierarchical
energy monitoring scheme, able to estimate at runtime the consumption at each processing element. The
mapping uses the energy estimated by the monitoring scheme to guide the mapping decision. Results
compare the proposal against a mapping heuristic whose main cost function minimizes the communication
energy. Results obtained in large systems, up to 256 cores, show improvements in the workload distribution
(average value 59.2%) and a reduction in the maximum energy values spent by the processors (average
value 32.2%). Such results demonstrate the effectiveness of the proposal.

Keywords –Energy-aware task mapping; monitoring; load balance; energy consumption; many-core systems.

1. INTRODUCTION
Many-core systems have been employed to provide the high demands of performance while

maintaining energy efficiency during the execution of concurrent embedded applications (e.g. video
compressing, wireless communication standards, gaming). Such systems increase performance by using
multiple homogeneous or heterogeneous processors. Many-core systems also integrate memories, dedicated
hardware cores, and a communication infrastructure to interconnect the system components, as NoCs
(Networks-on-Chip) and buses. Despite the higher design complexity of NoCs, such communication
infrastructure offers better scalability, performance and power capabilities when compared to buses [1].

Applications designed to execute in many-core systems may be partitioned into different tasks to
execute in different cores, enabling its parallel execution [2]. A task is a set of instructions and data,
containing information and constraints for its correct execution in a given core. Additionally, tasks exchange
data with other tasks during the execution of the application. The definition in which system core each task
will execute is a major issue in the design of many-core systems. In the literature, this issue is defined as task
mapping [2].

Task mapping decision should be executed at runtime to deal with time-varying workloads caused by
the most of the embedded system applications [3]. Such variations cannot be accurately predicted during
design time, such as the scenarios when the system interacts with complex deployment environments or user-

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIPT

driven requests [4]. Runtime approaches (also referred as online or dynamic mapping approaches) require
simple and fast mapping solutions since high time-consuming, and high computational algorithms may
compromise the system performance. Further, runtime mapping can better lead with other system changes
during runtime, such as cores availability and defective cores [2].

The increasing number of cores also requires scalable and hierarchical mapping solutions. Novel
systems, with dozens of cores, are already present in the market [5][6] and ITRS roadmap [7] projects
systems integrating thousands of cores by the end of the decade. In such systems, a centralized mapping
decision compromises the system performance since a single core handles all mapping requests [8]. Also,
centralized mapping contributes to increasing NoC congestion around the mapper leading to hotspot zones,
which may result in system failures.

Reliability is an important concern related to task mapping, tightly connected to the workload
distribution [9][10][11]. Load imbalance decisions can generate hotspots zones (i.e. peaks of power
dissipation) and thermal variations, which affects directly system reliability [9][10][12]. This issue is worse
in many-core systems, increasing power densities and, consequently, system temperature. Further, mapping
communicating tasks far from each other result in more data transfer through the system, increasing
communication latency and energy consumption. Unusable cores induce mapping of applications onto other
system cores, increasing their workload and, consequently, reducing their lifetime.

To develop a hierarchical runtime mapping heuristic aiming a fair workload distribution it is necessary
to have available accurate information (e.g. power, energy, temperature) to map the tasks. Reliability,
temperature, and lifetime are tightly connected to the consumed energy into the system [13]. Thus, a
monitoring scheme should provide energy data to the mapping heuristic. Therefore, the energy monitoring
scheme is key for the effectiveness of the mapping heuristic.

The main goal of the current work is to propose a new mapping heuristic tackling the following
features: runtime execution (dynamic), scalability, and workload distribution. The mapping decisions are
guided at runtime by a hierarchical energy monitoring scheme, not requiring application profiling or thermal
sensors.

This paper is organized as follows. Section 2 reviews the state-of-art in dynamic mapping heuristics,
comparing qualitatively our proposal to the related works. Section 3 details the application model. Section 4
presents the energy model. This model is integrated into the operating system of the processing elements,
enabling the energy monitoring at runtime. The hierarchical energy scheme is detailed in Section 5. Section 6
details the mapping heuristic. Section 7 presents results, and Section 8 concludes this paper.

2. STATE-OF-ART
Task mapping literature is wide, requiring a taxonomy considering different mapping criteria. Authors

in [14][15] classifies the mapping process according to four criteria:
(i) Target architecture. Task mapping can be executed in homogeneous (identical processing elements)

or heterogeneous (e.g. DSPs, dedicated IPs, accelerators) systems.
(ii) Number of tasks per PE: single or multi-task. Single-task assumes only one task assignment per PE

while multi-task allows mapping more than one task per PE according to some criteria (e.g.
communication, execution time, task deadlines). A multi-task approach can better explore system
resources, enabling the execution of an increasing number of applications in parallel.

(iii) The moment in which it is executed: design-time or runtime. Design-time approaches are not suitable
to dynamic and unpredictable workloads imposed by the execution of different applications. Runtime
task mapping enables different applications to be inserted into the system at runtime, enabling
dynamic workloads.

(iv) Mapping management: centralized or hierarchical. Centralized mapping uses a single core
responsible for the overall management, which is suited for small systems due to scalability issues.
In a hierarchical approach, the mapping management is distributed in different cores, increasing
system scalability and reliability.

This paper focuses on general-purpose many-core systems, able to execute several applications that
are unknown in advance. This paper also assumes that underlying applications can be inserted into the

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIPT

system in a non-deterministic way, according to user requirements. The literature contains several runtime-
mapping approaches. Table 1 summarizes the reviewed works according to the mapping taxonomy.

Table 1 - State-of-the-art in dynamic mapping heuristics.
Author /

Year
Multi/

Mono-task Architecture model Management Optimization Goal

Smit et al. [16]
(2005) Mono-task Heterogeneous Centralized Energy Consumption and

QoS requirements
Ngouanga et al. [17]

(2006) Mono-task Homogeneous Centralized Communication volume,
computation load

Coskun et al. [18]
(2009) Mono-task Homogeneous Centralized System Reliability

Chou et al. [4]
(2010) Mono-task Homogeneous Centralized

Energy Consumption,
Internal and external
network contention

Hölzenspies et al. [19]
(2008) Mono-task Heterogeneous Centralized Energy consumption and

QoS requirements

Al Faruque et al. [8]
(2008) Mono-task Heterogeneous Hierarchical

Execution time,
mapping time and
monitoring traffic

Wildermann et al. [20]
(2009) Mono-task Homogeneous Centralized Communication latency,

energy consumption
Schranzhofer et al. [21]

(2009) Mono-task Homogeneous Centralized Energy consumption

Lu et al. [22]
(2010) Mono-task Homogeneous Centralized Communication latency and

energy consumption
Carvalho et al. [23]

(2010) Mono-task Heterogeneous Centralized Network contention,
communication volume

Singh et al. [2][3][24]
(2010) Multi-task Heterogeneous Centralized

Network contention,
communication volume and

energy consumption
Kobe et al. [25]

(2011) Mono-task Homogeneous Hierarchical Execution time,
 Communication traffic

Cui et al. [26] Mono-task Homogeneous Hierarchical Communication traffic
energy consumption

Hartman et al. [27]
(2012) Mono-task Homogeneous and

Heterogeneous Centralized System reliability

Chantem et al. [9]
(2013) Mono-task Homogeneous Centralized System reliability

Bolchini et al. [28]
(2013) Mono-task Homogeneous Centralized Energy consumption and

system lifetime
Das et al. [29]

(2014) Mono-task Homogeneous Centralized Application deadlines and
system lifetime

Mandelli et al. [30]
(2015) Multi-task Homogeneous Hierarchical Communication energy

reduction
Proposed

work Multi-task Homogeneous Hierarchical Workload distribution and
communication volume

Only few works related to multi-task mapping were found in the literature, proposed by Singh et al.
[2][3][24] and Mandelli et al. [30]. Multi-task techniques include clustering, which groups tasks to be
executed in the same PE. A non-optimized clustering approach may lead to hotspots, reducing system
lifetime and accelerating system wear out. Heterogeneous systems may have better performance for specific
applications, and homogeneous systems are general-purpose platforms. As industrial examples [5][6], the
present work focuses the research in homogeneous architectures. Another important feature is the
hierarchical system management approach, as proposed in [25][26][30]. Such approach is scalable and can
reduce the mapping algorithm computational effort, increasing system performance.

The literature presents different runtime task mapping approaches to improve system reliability. All
reviewed works use a centralized system management approach [9][18][27][28][29]. Among them, some
works [28][29] produce mapping decisions at design time, which are stored in a database and used at runtime.
This approach may reduce system performance due to its incapability of dealing with unpredictable system
variations. Task mapping approaches proposed in [9][27], employ physical sensors to capture thermal or
wear-state condition of cores at runtime. Included sensors provide accurate information to the mapping

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIPT

decision at the cost of the additional system area and energy consumption. Huang et al. [31] use an abstract
system to validate the proposed approach, which can produce inaccurate performance results.

The literature presents hierarchical approaches to improve system reliability. However, such
approaches use other techniques rather than task mapping [32][33][34]. Ge et al. [32] propose a task
migration approach for thermal balancing. This approach uses thermal sensors, which aggregate hardware
costs. Wu et al. [33] present a dynamic frequency scaling for thermal management, which may impose
additional hardware costs. Liu et al. [34] also present a thermal management task migration approach, which
does not consider performance costs.

 Mandelli et al. [30] propose the LEC-DN (Lower Energy Consumption based on Dependencies-
Neighborhood) heuristic, a hierarchical mapping approach whose main function is to reduce the
communication energy. To minimize communication energy, the LEC-DN heuristic aims to reduce the
distance in hops between communicating tasks. When a given task ti is required to be mapped, this heuristic
first analyzes the set of communicating tasks with ti already mapped. Then, the heuristic approximates ti to
the tasks it has a higher communication volume.

This paper proposes a task mapping approach that differs from literature since it includes all the
following characteristics:
x Executed at runtime. The proposed approach can better manage time-varying workloads and system

changes.
x Hierarchical mapping approach. The proposed approach is implemented in a many-core managed in a

hierarchical way. Such hierarchical system management improves system scalability by dividing the
system into regions, each one with a manager responsible for actions inside it. Further, it reduces
mapping decision computational effort, not compromising the system performance.

x Induces a better system reliability. The proposed approach aims to improve energy balancing, which is
directly related to a better system reliability [9][10].

x Hierarchical energy monitoring. The proposed approach does not employ physical sensors in the
mapping decision. The energy data is obtained at runtime using a hierarchical monitoring approach.

x Clock-cycle model for validation. The proposed mapping approach is validated in a large many-core
system (up to 256 processing elements), modeled in clock-cycle RTL SystemC.

3. APPLICATION MODEL
An application is modeled as a graph GApp = (T, E), where each vertex ti ∈ T represents an

application task and each directed weighted edge eij ∈ E represents a communication dependence between
tasks ti and tj. The weight of an edge eij is denoted by commij, representing the total data communication
volume transferred between application tasks ti and tj. Figure 1 presents an example of an application
modeled as a task graph. Applications may be periodic or aperiodic. If the application is periodic (e.g. video
decoding), the task graph represents one iteration of the application.

An application has initial tasks (e.g. t1 and t2) and non-initial tasks. Initial tasks are those that initialize
the execution of the application when mapped in the system. Such tasks do not have dependencies on other
tasks to start to execute. A task ti ∈ T contains a set Ci called communication task list. This set is defined as
Ci = {(tj, commij); (tk, commik); … (tn, commin)}, where each element is a tuple containing a task tj that
communicates with ti and the value commij, corresponding to the total volume transferred between ti and tj in
both directions (i.e. ti to tj and tj to ti).

230

t3

t4

t5

120

230

300

180160

t1

t2

t6

Figure 1 - Application modeled as a task graph GApp = (T, E). Initial tasks: t1, t2. Non-initial tasks: t3, t4, t5, t6

Each application has an application description file containing information used to guide mapping

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIPT

decision. Such file contains: (i) the application size, which corresponds to the total number of tasks of the
application; (ii) list of initial tasks; (iii) the set Ci for each task ti, of the application.

 All communication between tasks occurs through message passing. Inter-task communication uses
send and receive MPI-like primitives.

4. ENERGY MODEL
The energy consumption in a many-core system is mainly due to three components: memory,

processors, and NoC (routers and links). The number of memory accesses is identical for the same workload.
Therefore, to fairly compare different mapping solutions using the same workload, we consider the energy
consumption of both processor and NoC as main metrics.

As described in the literature [35], the energy consumption (EC) of a processor pei is defined by its
static and dynamic consumption. The processor EC related to the execution of a given task is a function of
the number of executed instructions. In our model, the energy cost of each instruction is determined from a
gate-level implementation of the processor, as proposed by Rosa et al. [36].

Each processor pei contains an instruction analyzer module, which counts the number of executed
instructions for different classes at runtime. The set of classes is defined as C = {c0, c2,… ,c8}, with 9 different
classes (e.g. arithmetic, logic, branch) [36]. Results show that the error of adopted instruction analyzer
module varies from 0.06% to 8.05% when compared to a gate-level implementation [36]. The instruction
analyzer module corresponds to nine instruction counters, included in the control part of the processor. If the
hardware of the processor cannot be modified, a sniffer may be added in the address and instruction buses.
The instruction counters are specific purpose registers containing the number of executed instructions per
class. The instructions per class registers are continuously updated. The area overhead due to this module in
the processor corresponds to 6.4%, and in the whole PE it is inferior to 2%.

The processor energy consumption for a given monitoring period is obtained according to Equation 1.

Eprocessor = 6 (energy(ci) * total_instructions(ci)) (1)

where: energy(ci), energy to execute a given instruction belonging to the class ci, value obtained by
simulating the synthesized processor; total_instructions(ci), number of executed instructions belonging to the
class ci in the monitoring period.

The NoC EC is proportional to the number of transmitted flits at each router port [37]. A gate level
description of the NoC is used to determine the energy consumption of the main router components: buffers,
internal crossbar and control logic. Equation 2 gives the energy consumption for a given monitoring period.

Erouter = nb_flits * Ebuffer + Ecrossbar + Econtrol_logic (2)

where: nb_flits correspond to the number of flits transferred by the router during the monitoring period;
Ebuffer, Ecrossbar, and Econtrol_logic to the energy consumption of the main router components during the
monitoring period.

Most of the time, the NoC consumes only static power, since the injection rate induced by the
processors is typically inferior to 5% (similar injection rate was observed in [38]). Experimental results
observed in [37] show that most of the consumed energy comes from processors (roughly 90%). Even if the
injection rate is small, it is important to reduce the hop count to reduce the shared resources in the NoC.
Increasing the number of shared resources in the NoC may lead to congestion and performance degradation
due to increased latency.

Each PE monitors the processor and router energy according to a parameterizable monitoring period.
The monitoring scheme uses these values to guide the mapping heuristic.

5. HIERARCHICAL MONITORING METHOD
The many-core system adopted in this work is a general purpose homogeneous MPSoC in which

processing elements (PEs) are interconnected through a NoC. The system uses distributed memory
architecture, based on scratchpad memories rather than cache memory. The system adopts scratchpad as

 8

i=0

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIPT

local storage memories due to its power efficiency and management facilities when compared to cache
memories. Further, scratchpad memory is more predictable in terms of access time, and it does not require
any coherence protocol, as required by cache-based architectures [39]. The adopted architecture does not
contain shared memories.

The MPSoC architecture can be defined as a directed graph GMPSoC = (PE, L). Each vertex pei ∈ PE
is a processing element. An edge lij ∈ L is a NoC link interconnecting pei to pej. Each PE contains a processor,
a local memory, a DMA module, a network interface and a router (Figure 2). An external memory, named
application repository, contains the object code of the application tasks to execute in the system.

The local memory of each PE, which default size is 32 KB, stores the Pkernel (simple operating
system), the code and data for the tasks assigned to the PE. The local memory is organized into equally sized
pages to simplify the memory management. The number of pages in SPs is defined as SP_PAGES. While the
first page stores the Pkernel (9.5 KB), the remaining SP_PAGES are used to store the application tasks. If a
given task does not fit on one page, the task should be partitioned into smaller tasks. The memory size is a
design parameter, being possible to fit this parameter according to the workload to execute in the system.

To enable the hierarchical system management, the system is divided into virtual regions, named
clusters (Figure 2) [40]. For this purpose, processing elements may assume one of three roles:

x Slave Processing Element (SPs). SPs execute application tasks. Each SP runs the Pkernel, which
supports communication between PEs, multitask execution and software interrupts (traps). Each SP
can execute MAX_SP_TASKS tasks simultaneously, which corresponds to SP_PAGES -1.

x Local Manager Processing element (LMP). Responsible for cluster control, executing functions
such as task mapping, task-migration, and re-clustering (process to requests SPs to neighbor clusters).

x Global Manager Processing Element (GMP). A single PE responsible for the overall system
management, such as defining application-to-cluster mapping, controlling external devices accesses
(e.g. application repository). Further, the GMP manages one of the system clusters (for example, the
bottom left cluster of Figure 2), executing all functions of an LMP.

Figure 2 - Example of a 9x9 MPSoC instance, with hierarchical management.

The definition of the clusters‟ size occurs at design time. When the system starts, the GMP handles the
clusters‟ initialization, notifying the LMPs the region they will manage. Then, when an LMP knows the
region it will control, it informs all SPs in this region that it will be their manager. This cluster and SPs
initialization mechanism provide better system adaptability. For example, runtime re-clustering process
enables the modification of the cluster size. The re-clustering process occurs when there are no available SPs
inside a cluster to map an application task. The LMP checks the availability of cluster resources when a task

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIPT

is requested to be mapped. If there is no SP available inside the cluster to receive the requested task, an SP is
borrowed from neighbor clusters [40]. When the task finishes its execution, the borrowed SP is released to
the original cluster.

The proposed hierarchical monitoring approach comprises intra- and inter-cluster monitoring, as
illustrated in Figure 3.

SP
Mng.

SP
Mng.

SP
Mng....

Local Manager
PE 1

SP
Mng.

SP
Mng.

SP
Mng.

...

Local Manager
PE 2

SP
Mng.

SP
Mng.

SP
Mng....

Local Manager
PE 2

...

Global Manager
PE

INTRA-CLUSTER
MONITORING

INTER-CLUSTER
MONITORING

Figure 3 – Hierarchical monitoring method.

Figure 4 illustrates the hierarchical monitoring protocol. SPs periodically send monitoring packets to
their LMP with the consumed energy of the PE (processor and router), and the LMP updates its energy table.
LMPs update the GMP when a task is requested to be mapped, when an application finishes its execution or
periodically.

Figure 4 - Hierarchical monitoring protocol.

5.1 Intra-cluster Monitoring
Intra-cluster monitoring is the process by which each LMP receives information related to the amount

of energy each SP has consumed during the monitoring period, according to equations 1 and 2. The Pkernel
periodically computes the energy spent at each SP, transmitting the obtained value to the LMP. Note that the
LMPs know the workload (consumed energy) of each SP, which enables the LMPs to execute heuristics to
distribute the workload evenly over the time.

This process induces a small amount of traffic in the NoC, being local to each cluster. Also, as the
number of SPs in each cluster is small (typically 16), the computational load to treat the monitoring packets
in each LMP is small. On the one side, the number of monitoring packets increases with small monitoring
periods, overloading the LMP. On the other side, large monitoring periods delay the computation of the
consumed energy by the SPs, leading to wrong mapping decisions. Section 7.1 discusses this trade-off
evaluating different monitoring periods.

5.2 Inter-cluster Monitoring
Inter-cluster monitoring is the process by which the GMP receives the information related to the

amount of energy consumed within each cluster. Whenever an LMP to the GMP communication occurs, the

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIPT

cluster energy is inserted in the packet. Such approach avoids overloading the GMP with monitoring
messages. Two messages in which the monitoring information is inserted are:
x NewTask – the LMP requests an allocation of a new task;
x AppTerminated – the LMP reports to the end of a given application. The LMP sends this message when

all tasks of a given application finished their execution.
Tasks executing for long periods would not update the GMP, leading to a cluster energy

underestimation. Therefore, each LMP notifies the GMP periodically with the consumed energy at each
cluster. This inter-cluster monitoring period is larger than the intra-cluster monitoring. Note that the GMP
only knows the total energy spent at each cluster, not having a detailed view of the energy distribution.

6. HIERARCHICAL TASK MAPPING
The mapping of the set of tasks T = {t1, t2, ..., tn} of GApp onto the set SP = {sp1, sp2, ..., spk} of

GMPSoC is defined by the mapping function: T → SP, where �ti ∈ T, � spj ∈ SP. The hierarchical task
mapping is divided into three main steps. (1) cluster selection, define a cluster to map a required application;
(2) initial task mapping, select SPs to map the application initial tasks inside the cluster; (3) non-initial tasks
mapping, select SPs to map the non-initial tasks.

The GMP receives from the external world requisitions to execute new applications in the system („1 –
New application‟, Figure 5). The GMP verifies if the system has available resources to map the application.
If there are no available resources, the application is scheduled to be mapped later. Otherwise, the GMP
selects a cluster to map the required application („2 – Cluster Selection‟, Figure 5). The heuristic to select a
cluster is presented in section 6.1.1. Once a given cluster is selected, the GMP obtains the application
description (section 5) from the application repository, transmitting it to the selected cluster LMP („3 – App.
Desc.‟, Figure 5). The LMP of the selected cluster receives and stores the application description. Then, such
LMP verifies the application description to obtain the initial tasks of the application. Next, the LMP map the
initial tasks inside the cluster („4 – Initial Tasks Mapping‟, Figure 5). The mapping of initial tasks starts the
application execution. Section 6.1.2 presents the heuristic to map the initial tasks. After selecting an SP to
receive an initial task, the LMP sends a message to the GMP with the service task allocation request („5 –
NewTask‟, Figure 5). Such message requests the allocation of the initial task object code in the selected SP.
This happens since the GMP is the only PE with access to the application repository. Then, the GMP obtains
the task object code from the application repository and transmits it to the selected SP („6 – Task Allocation‟,
Figure 5). The SP will schedule the new task at the end of the “task allocation” packet reception. Also, the
LMP keeps a data structure, named task table, with the address of all mapped tasks in the cluster.

GMP LMP 1

3 – App. Desc.

5 – New Task

6 - Task Allocation

LMP 2

2 -Cluster Selection

4 - Initial Tasks Mapping

SPs

1 - New Application

2 -Cluster Selection

2 -Cluster Selection

3 – App. Desc.

4 - Initial Tasks Mapping

5 – New Task

6 - Task Allocation

6 - Task Allocation

4 - Initial Tasks Mapping

1 - New Application

1 - New Application

Figure 5 – Cluster selection and initial task mapping protocol.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIPT

Consider in Figure 5 the third application insertion. This situation illustrates a scenario where the
selected cluster is the one managed by the GMP itself. In this case, the GMP also executes the initial task
mapping algorithm.

As explained before, the mapping of non-initial tasks occurs whenever a given task ti needs to
communicate with a non-mapped task tj. Suppose the example of Figure 6, where task t1, mapped on SP1,
needs to communicate with a non-mapped task t2. In this case, task t1 requests the mapping of t2 to its cluster
LMP by sending a Task Request packet message („1 – Task Request‟, Figure 6). The LMP receives the task
request and executes a mapping heuristic to select an SP to map task t2 („2 – Task Mapping Heuristic, Figure
6). The mapping algorithm, described in section 6.1.3, selects SP2 to map task t2. Next, the LMP request the
mapping of task t2 on SP2 to the GMP by sending a “Task Allocation Request” service packet („3 –
NewTask‟ Figure 6). The LMP also uses a “Task Location” service packet to inform to SP1 the location of t2,
and to SP2 the location of task t1 („4 – Task Location‟, Figure 6). These locations are stored in the SPs task
tables. Finally, the GMP obtains task t2 object code from the application repository and transmits it to SP2 („5
– Task Allocation‟, Figure 6).

LMP SP 2

 1 - Task Request

 5 - Task Allocation

 4 - Task Location

SP 1

2 - Task Mapping
Heuristic

T
A
S
K

t1

3 - NewTask

 4 - Task Location

T
A
S
K

t2

GMP

Figure 6 – Non-initial task mapping protocol.

6.1 “HEAT” MAPPING HEURISTIC
This section describes the proposed HEAT (Hierarchical Energy-Aware Task) mapping heuristic. This

heuristic makes a trade-off between workload distribution (processor and router energy) and communication
volume reduction. The heuristic uses the following definitions:
x Definition 1: application size (app.size) corresponds to the number of tasks of the application to be

mapped.
x Definition 2: MAX_SP_TASKS is the number of tasks a given SP may execute simultaneously

(SP_PAGES - 1).
x Definition 3: available_resources corresponds to the number of resources (a resource is a page in the

memory) that do not have a task mapped on it. This information may refer to the whole system,
available_resources(system), or to a given cluster ck, available_resources(ck).

x Definition 4: available(spi) returns true if spi is available to receive a new task, otherwise false. An SP is
available when the number of tasks mapped on it is smaller than MAX_SP_TASKS.

x Definition 5: empty SP is an SP with no tasks mapped on it. Therefore, an empty SP can receive
MAX_SP_TASKS tasks.

x Definition 6: TE is the total consumed energy by a given SP, corresponding to the energy (Ei) consumed
by all already executed tasks and the tasks that are currently being executed on this processor. The router
energy consumption is also accounted in the TE value. Monitoring packets transmits the TE value of
each SP to the corresponding LMP.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIPT

6.1.1 Cluster Selection
This heuristic computes the consumed energy of each cluster ck, cl_energy(ck), using data sent by the

monitoring packets. Then, the cluster with the smallest cl_energy(ck) is selected. This procedure avoids
mapping an application in a high overloaded cluster, which improves the workload distribution. Algorithm 1
presents the pseudo-code of the cluster selection heuristic.

The heuristic in Algorithm 1 first verifies if the system has available resources to map the application
(line 3). If there are no sufficient resources in the system, the application is scheduled to be mapped later.
The first loop (lines 4-9) analyzes all clusters that have available resources to map the application, selecting
the one with the smallest accumulated energy. If there are no clusters with available resources to map the
application, a cluster with the smallest accumulated energy is selected, regardless the number of available
resources (lines 11-16). Note that the application is mapped in the MPSoC iff the system has available
resources for the application.
Input: application size app.size
Output: selected_cluster
1. selected_cluster Å -1
2. selected_cluster_energy Å +∞
3. IF available_resources(system) >= APP.size THEN
4. FOR EACH cluster ck in the system
5, IF available_resources(ck) >= APP.size AND cl_energy (ck)< selected_cluster_energy THEN
6. selected_cluster Å ck
7. selected_cluster_energy Å cl_energy (ck)
8. END IF
9. END FOR
10. IF selected_cluster = -1 THEN
11. FOR EACH cluster ck in the system
12. IF cl_energy (ck)< selected_cluster_energy THEN
13. selected_cluster Å ck
14. selected_cluster_energy Å cl_energy (ck)
15. END IF
16 END FOR
17 END IF
18. END IF
19. return selected_cluster

Algorithm 1 - Cluster selection heuristic, executed in the GMP.

This heuristic aims to distribute the energy homogeneously when a new application arrives in the
system. In the long-term, this procedure avoids hotspots, and processors stressed over the time.

6.1.2 Initial Tasks Mapping
The initial tasks mapping heuristic searches a region with smallest consumed energy in the cluster.

The search space is limited by the parameter n_hops, obtained from sqrt(|PEcluster|/2), where |PEcluster| is the
number of PEs in the cluster. The reasoning of this procedure is to map communicating tasks near to each
other, in a set of PEs with the smallest accumulated energy.

This heuristic divides the initial task process into two phases. The first phase selects an SP with the
smallest region_energy to receive an initial task. A second phase is executed when the application has more
than one initial task. In such phase, it is created a set with all SPs up to n hops from the selected SP, selecting
the SP of this set with the smallest TE (definition 6).

The function region_energy(spi, n_hops) returns the average TE from the set containing spi and all SPs
up to n_hops hops from spi. Figure 7 shows a hypothetical example using a 7x7 cluster, where spi is the
central SP spcentral (in green); and n_hops is 3 hops. In Figure 7, the numbers inside each rectangle represent
the TE of each SP. The value of region_energy(spcentral, 3) corresponds to 64, since: (i) inside a region 3 hops
far from spcentral there are 25 SPs; (ii) the sum of the TEs of the SPs in this area is equal to 4100; (iii) the
average TE in this area is equal to 4100/25=64.

Suppose a hypothetical example of an application with two initial tasks: ti and tj. The first initial task ti
is mapped in spcentral of Figure 7. For the mapping of the tj is defined a region 3 hops from spcentral, as

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIPT

delimited by the numbered SPs in Figure 7. Then, the SP with the smallest TE in this region is selected to
map tj. In the example, such SP has TE equal to 66.

 123
 66 178 280
 114 200 80 109 77

120 210 120 200 110 350 327
 124 156 85 413 95
 149 123 189
 102
Figure 7 - Hypothetical example of region_energy.

The pseudo-code of the first phase of the initial tasks mapping heuristic is detailed in Algorithm 2. The
main loop (lines 3-8) selects an SP (selected_sp) with the lowest region_energy. This procedure ensures that
application‟s tasks that will be mapped later will be assigned closer to the selected SP and in SPs with a
lower accumulated energy.

Input: n_hops
Output: selected_sp
1. selected_sp Å -1
2. selected_region_energy Å +∞
3. FOR EACH SP spi in the cluster
4. IF available(spi) AND region_energy(spi, n_hops)< selected_region_energy THEN
5. selected_sp Å spi
6. selected_region_energy Å region_energy(spi, n_hops)
7. END IF
8. END FOR EACH
9. return selected_sp

Algorithm 2 - First phase of the initial tasks mapping, executed in the LMPs.

If the application has only one initial task, the SP chosen by the heuristic of Algorithm 2 is selected to
execute the task. Otherwise, the heuristic presented in Algorithm 3 is executed for each non-mapped initial
task. In line 4 it is created a set neighbors_list with all SPs up to n_hops from selected_sp computed in the
previous phase. The loop between lines 6-11 selects an available SP from the neighbors_list with the
smallest TE. If there is no available SP inside the list, the search space increases 1 hop (lines 12-15), until
visiting all SPs of the cluster (line 5).

Input: SPaddress, n_hops // SPaddress is the selected_sp address obtained in the 1st phase
Output: selected_sp
1. selected_sp Å -1
2. selected_sp_energy Å +∞
3. // Get all neighbors of selected_sp within a distance n_hops
4. neighbors_list Å neighbors(SPaddress, n_hops)
5. WHILE all SPs in the cluster not evaluated AND selected_sp=-1 DO
6. FOR EACH SP spi IN neighbors_list
7. IF available(spi) = true AND TE(spi) < selected_sp_energy THEN
8. selected_sp Å spi
9. selected_sp_energy Å TE (spi)
10. END IF
11. END FOR
12. IF selected_sp = -1 THEN
13. n_hops Å n_hops +1
14. neighbors_list Å neighbors(SPaddress, n_hops)
15. END IF
16. END WHILE
17. return selected_sp

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIPT

Algorithm 3 - Second phase of the initial tasks mapping, executed in the LMPs.

6.1.3 Non-initial task mapping
Suppose a non-initial task ti is required to be mapped. The HEAT heuristic evaluates the set C(ti), and

creates a bounding box containing all ti communicating tasks mapped within the cluster. Then, such
bounding box is increased in one hop offering a large search space. The cluster boundaries limit the search
space. Figure 8 illustrates the mapping search space in the cluster. This heuristic selects the SP inside the
bounding box with the lowest TE. This heuristic makes a trade-off between workload balancing and
communication volume reduction. The heuristic selects the SP inside the bounding box with the lowest TE.

 tj
 tj tk

(a) (b)
Figure 8 – Non-initial task mapping search space. (a) search space when one communicating tasks is already

mapped (ti). (b) search space when more than one communicating task is already mapped (ti and tk).

Algorithm 4 describes the algorithm used to select an SP to receive a non-initial task ti. The heuristic
creates a list with all tasks communicating with ti already mapped onto the SPs of the cluster (line 3). In the
sequel, it is defined a bounding box rectangle (line 4), with all mapped communicating tasks. This bounding
box is increased by one hop (line 5), offering a larger search space to map ti. A list with candidate SPs is
created (line 7). The available SP in the list with the smallest TE is selected (lines 8-13). If no SP can be
selected, the bounding box is increased by one hop (lines 14-16). This process continues up to find an SP or
to visit all SPs of the cluster.

Input: ti , set C(ti)
Output: selected_sp
1. selected_sp Å -1
2. selected_sp_energy Å +∞
3. MC(ti)Å mapped_tasks(C(ti)) // all tasks communicating with ti already mapped
4. bounding_box Å area(MC(ti))
5. increase(bounding_box, 1)
6. WHILE all SPs in the cluster were not evaluated AND selected_sp=-1 DO
7. neighbors_list Å search_SPs(bounding_box)
8. FOR EACH SP spi IN neighbors_list
9. IF available(spi) = true AND TE(spi)< selected_sp_energy THEN
10. selected_sp Å spi
11. selected_sp_energy Å TE(spi)
12. END IF
13. END FOR
14. IF selected_sp = -1 THEN
15. increase(bounding_box, 1)
16. END IF
17. END WHILE
18. return selected_sp

Algorithm 4 - Mapping of non-initial tasks, executed in the LMPs.

Algorithms 3 and 4 may return -1, meaning that the cluster has no available SP to receive the task. In
this situation, the Pkernel borrows an SP from a neighbor cluster (process named reclustering), mapping the
task in the borrowed SP.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIPT

7. RESULTS
The experiments were executed in the reference MPSoC, using a clock cycle accurate model described

in SystemC. Each SP can execute up to 2 simultaneous tasks, scheduled by the Pkernel. The main cost
function of the proposed mapping heuristic, HEAT, is the energy distribution, as previously discussed.

The reference mapping heuristic is the LEC-DN [30]. The LEC-DN heuristic considers the
dependencies between all communicating tasks, using as the main cost function the minimization of the
communication energy in the NoC. To minimize the communication energy, this heuristic uses the
communication volume between tasks since the number of transmitted flits defines the communication
energy. This heuristic is selected as the reference since its cost function is the one adopted in most NoC-
based systems: minimize the communication energy.

Chantem et al. [9] use as part of their heuristic the largest task first (LTF) algorithm to slow down the
wear process on the cores as much as possible. LTF is an energy-aware heuristic that attempts to balance
spatially the system load in a non-increasing order of energy consumption and assign them to the core with
the least total energy consumption. Once a task is assigned to a core, the core total energy consumption is
updated. This heuristic does not divide the system into clusters, and the whole application is mapped at the
moment it is required. LTF is also compared against the proposed heuristic, but not used as the reference
because it is centralized and not consider in its cost function the communication energy.

Five benchmarks, described in C language, are used: (i) DTW - Digital Time Warping (DTW), with
10 tasks; (ii) MPEG decoder, with 5 tasks; (iii) DJK - Dijkstra, with 6 tasks; (iv) SYN1, synthetic application,
with 12 tasks, which emulates the communication behavior of an MPEG4 full decoder; (v) SYN2, synthetic
application, with 12 tasks, that emulates the communication behavior of VOP (Video Object Plane) decoder
application.

Experiments are conducted using the scenarios presented in Table 2. Scenarios 1 to 5 correspond to a
many-core system with 64 PEs, executing a large number of tasks – from 250 to 1,000. Scenarios 1 and 2
contain a mix of applications while scenarios 3 to 5 have identical applications. Scenarios with identical
applications are expected to generate mapping solutions with a balanced workload distribution. Scenarios 6
and 7 contain 256 PEs. The goal of these scenarios is to present the effectiveness of the proposed approach
for large systems. The last column of Table 2 corresponds to the average number of tasks per SP. Scenarios
with larger values in this column correspond to heavier workloads, favoring the proposed heuristic to
produce a better workload distribution along the time.

Table 2 – Characteristics of the evaluated scenarios.

Scenario MPSoC
Size

Cluster
Size Applications Total number

of tasks
Number of

tasks per SP

1

8x8
(60 SPs) 4x4

20 x MPEG, 20 x DJK, 20 x SYN1,
20 x SYN2, 20 x DTW 780 13

2 10 x MPEG, 10 x DJK, 10 x SYN1,
10 x SYN2, 10 x DTW 390 6.5

3 50 x MPEG 250 4.17
4 100 x DTW 1000 16.67
5 100 x MPEG 500 8.33

6 16x16
(240 SPs) 4x4

20 x MPEG, 20 x DJK, 20 x SYN1,
20 x SYN2, 20 x DTW 780 3.25

7 40 x MPEG, 40 x DJK, 40 x SYN1,
40 x SYN2, 40 x DTW 1560 6.5

7.1 Monitoring Period Evaluation
Table 3 evaluates the consumed energy at each cluster, varying the monitoring period. With a small

intra-cluster monitoring period, the number of monitoring packets increases, overloading the LMP. In such a
case, several monitoring packets are delayed, and the LMP takes decisions with current and past data (i.e.
some SPs were not updated since the monitoring packets were not treated), leading to wrong mapping
decisions. On the other side, with large monitoring periods, SPs may receive new tasks since the energy

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIPT

consumption was not yet updated. With an intermediate monitoring period, all monitoring packets are
received and treated, without incurring in the long updating problem induced by long monitoring periods.
Observe the DIFF row, which corresponds to the difference between the maximum and minimum
consumption between clusters. The monitoring periods 1ms/3ms lead to the better load distribution among
the clusters.

Table 3 – Evaluation of the monitoring period, for scenario 1. TE: total energy consumed in the cluster (PJ).
STDEV: standard deviation related to the consumed energy by the SPs in the cluster (PJ). DIFF: difference

between the maximum and minimum consumption between clusters.

LEC-DN

HEAT - Monitoring period varying the intra/inter periods

0.25ms / 3ms 0.5ms / 3ms 1ms / 3ms 2ms / 3ms 4ms / 8ms

TE STDEV TE STDEV TE STDEV TE STDEV TE STDEV TE STDEV

CL 0 2,086 130 4,247 46 3,818 51 2,607 30 2,609 56 2,567 34

CL 1 2,245 114 2,512 28 2,215 31 2,479 22 2,196 31 2,412 22

CL 2 2,508 99 2,408 37 2,434 33 2,433 36 2,541 40 2,788 31

CL 3 2,470 127 1,676 26 2,083 15 2,476 33 2,390 27 2,592 42

DIFF 422 2,571 1,735 174 413 376

Table 4 evaluates different performance parameters for different monitoring periods. Scenario 1 was
selected because it has a set of different applications, and an important workload to execute (780 tasks). The
results in this Table shows:
x Workload distribution (lines 1 to 3). The energy standard deviation between SPs drops from 119 PJ to 31

PJ, while the maximum energy consumption drops from 432 to 234 PJ. Also, using LEC-DN several
processors do not execute user tasks (min SP consumption line) while in the proposed heuristic all SPs
execute user tasks.

x Execution time (line 4). Small reduction. Next section discusses this result, evaluating all scenarios.
x Energy consumption (line 5). Increases, because more SPs execute user task. Next section discusses this

result, evaluating all scenarios.
x NoC traffic (line 6). Increases, because the proposed heuristic reduces the CPU sharing to improve the

workload distribution. Next section discusses this result, evaluating all scenarios.

Table 4 – Evaluation of the monitoring period, for scenario 1, considering the total system energy, standard
deviation between SPs and clusters, maximum and minimum energy consumption by SPs, and the execution

time.

 LEC-DN
HEAT - Monitoring period varying the intra/inter periods

0.25ms / 3ms 0.5ms / 3ms 1ms / 3ms 2ms / 3ms 4ms / 8ms

STDEV all SPs (PJ) 119 72 58 31 41 34

Max SP consumption (PJ) 432 390 372 234 269 249

Min SP consumption (PJ) 0.33 66 98 111 88 68
 Execution time (ms) 243 260 234 234 240 233
Total System Energy (PJ) 9,310 10,842 10,549 9,996 9,736 10,358

N# of flits (106) 10.443 18.815 16.655 15.666 15.539 14.887

The current work adopts 1 and 3 ms as the intra- and inter-cluster monitoring periods respectively.
These values are adopted because they present the best tradeoff between workload distribution and energy
consumption.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIPT

7.2 Workload distribution
 Figure 9 presents the workload distribution for scenario 1 (similar results are observed for the other
scenarios), where each rectangle contains the total energy consumed by each SP (processor and router). The
manager PEs are not included in the result because they do not execute user applications. As illustrated in
Figure 9(a), the LEC-DN produces an unbalanced workload distribution with several “hot” processors,
spending more than 300 PJ. The “hot” processors are placed in the center of the clusters, in such a way to
reduce the distance between communicating tasks, and hence minimize the communication energy. On the
other side, the HEAT mapping (Figure 9(b)) produces a uniform energy distribution.

(a) LEC-DN mapping
31 184 206 133 14 242 150 29

138 376 347 255 261 399 391 146
32 205 168 167 17 327 171 114

LMP 39 132 98 LMP 79 75 56
0 6 203 144 8 235 91 19

125 432 298 73 140 350 343 142
0 260 313 61 18 314 213 133

GMP 112 59 0 LMP 35 133 71

 (b) HEAT mapping
122 196 212 163 135 162 141 165
228 147 177 153 212 216 128 131
116 111 143 203 155 130 234 159
LMP 185 113 164 LMP 140 176 192
197 148 198 142 134 153 153 181
193 190 138 123 130 165 177 153
225 171 150 224 159 206 194 158

GMP 185 163 160 LMP 156 157 203

Figure 9 – Workload distribution for scenario 1. Each rectangle is an SP, with the consumed energy in PJ.

 Figure 10 presents the workload distribution histograms for scenarios 1 and 7, considering the
number of SPs per energy interval. From the first histogram, Figure 10(a), it is possible to observe the non
uniform load distribution produced by the heuristic that minimizes only the communication energy – LEC-
DN. For scenario 1, 23 SPs consume less than 100 PJ, 15 SPs consume more than 240 PJ, and 22 SPs
consume in the interval 100-240 PJ. The proposed HEAT heuristic has all 60 SPs consuming between 100
and 240 PJ, showing its ability to distribute the workload along the time. A similar distribution is observed
for scenario 7.

 0

 3

 6

 9

 12

 15

 18

0-
20

20
-4

0

40
-6

0

60
-8

0

80
-1

00

10
0-

12
0

12
0-

14
0

14
0-

16
0

16
0-

18
0

18
0-

20
0

20
0-

22
0

22
0-

24
0

24
0-

26
0

26
0-

28
0

28
0-

30
0

30
0-

32
0

32
0-

34
0

34
0-

36
0

36
0-

38
0

38
0-

40
0

40
0-

42
0

42
0-

44
0

N
um

be
r o

f S
Ps

Energy consumption (J)

LEC-DN

HEAT

 0

 4

 8

 12

 16

 20

 24

 28

 32

 36

0-
10

10
-2

0

20
-3

0

30
-4

0

40
-5

0

50
-6

0

60
-7

0

70
-8

0

80
-9

0

90
-1

00

10
0-

11
0

11
0-

12
0

12
0-

13
0

13
0-

14
0

14
0-

15
0

15
0-

16
0

16
0-

17
0

17
0-

18
0

18
0-

19
0

19
0-

20
0

20
0-

21
0

21
0-

22
0

22
0-

23
0

23
0-

24
0

N
um

be
r o

f S
Ps

Energy consumption (J)

LEC-DN

HEAT

 (a) Scenario 1 – 60 SPs (b) Scenario 7 – 240 SPs

Figure 10 – Histogram related to the energy distribution for scenarios 1 and 7 (x-axis: energy interval, y-axis:
number of SPs for each interval).

Table 5 evaluates all scenarios, with summarized results. Figure 11 plots results normalized to LEC-

DN. The results in this Table shows:
x Average consumed energy per SP. Considering that the workload applied for both mapping heuristics is

the same for each scenario, a small variation is expected. Excepting scenario 4 (it executes a computation

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIPT

intensive application – DTW), the proposed HEAT heuristic increases the average number of executed
instructions by 8.7%. This is explained by the fact more processors are assigned to execute tasks, leading
to additional Pkernel instructions execution. When a given processor is not executing any task, it enters
in a hold state, dissipating only static power.

x Total system energy: this column considers the energy consumed by the processors and the routers. As
the number of executed instructions increased, the proposed HEAT heuristic increased the consumed
energy in average by 4.4% (worst-case: 12.3%, scenario 7). Note that the total energy consumption does
not increase in the same proportion to the SPs because the static energy is accounted.

x Workload distribution (column STDDEV). This is the main cost function of the HEAT mapping. All
scenarios presented expressive improvement in the workload distribution. As mentioned in the
experimental setup, scenarios with identical applications (3-5) present the smaller standard deviation
values. A smaller reduction is observed in scenario 6 because the load applied to it is lighter (smaller
number of tasks per PE as shown in the last column of Table 2).

x Maximum energy. This result is a parameter related to the system reliability. The average reduction of
the maximum consumption per SP is 32.2% (best-case: -57.2%, scenario 5).

x Execution time. Even if the goal is not to reduce the execution time, the average reduction in the
execution time is 4.5%. This result is explained by the fact that more processors execute tasks, reducing
the processor sharing induced by the LEC-DC heuristic.

x Traffic in the NoC (column N# of flits). This column measures the number of flits (106) transferred
through the NoC. As expected, LEC-DN, reduces the traffic in the NoC because the communication
energy is the main goal of this heuristic. The proposed HEAT heuristic increased the number of
transferred flints in average by 37.2% (worst case: 50.5%, scenario 2).

Table 5 – Evaluation of the 5 scenarios, considering the monitoring periods equal to 1ms/3ms.

Scenario
Avg. consumed

energy per SP (PJ)
Total System
Energy (PJ)

STDEV Energy -
all SPs (PJ)

MAX Energy -
all SPs (PJ)

Execution time
(ms) N# of flits (106)

LEC-DN HEAT LEC-DN HEAT LEC-DN HEAT LEC-DN HEAT LEC-DN HEAT LEC-DN HEAT

1 155 167 11,922 12,412 119 31 432 234 243 234 10.443 15.666

2 77 83 6,036 6,444 63 29 217 158 130 133 5.330 8.023

3 37 39 3,007 2,975 43 17 152 78 68 59 2.159 2.870

4 66 64 4,523 4,414 34 10 101 84 65 64 4.473 5.135

5 73 81 5,921 6,064 79 21 304 130 134 115 4.259 5.797

6 36 41 11,816 12,81 36 25 141 126 69 66 12.979 17.708

7 73 86 23,711 26,622 64 31 238 192 134 139 26.366 36.843

HEAT/LEC-DN: +8.7% +4.4% -59.2% -32.2% -4.4% +37.2

 The column “all SPs STDDEV” of Table 5 reflects the cost function of the proposed heuristic:
workload distribution. The energy is evenly distributed in the systems, with an important reduction in the
number of hotspots, as shown in Figure 9(b) and column “all SPs MAX”. The column “N# of flits” reflects
the traditional cost function of mapping heuristic: reduction of the NoC traffic. Even if the communication
energy is reduced, processors are overload, compromising in the long term the system reliability.
 Finally, Figure 11 compares the proposed HEAT and LTF heuristics (both heuristics use as cost
function the energy consumption as main metric), normalized to the LEC-DN mapping. The behavior of the
proposed HEAT heuristic was previously discussed, using as reference Table 5. The LTF heuristic presents a
similar trend: higher energy consumption (up to 38%), better workload distribution (all SPs STDDEV),
similar execution time (excepting scenario 4), and a larger number of flits transmitted in the NoC.
 The LTF heuristic presents worse results than the HEAT heuristic for two main reasons. The first
one is related to its centralized approach: one single PE to make mapping decisions (this explains why
scenarios 6 and 7 for LTF are not presented in Figure 11). The second issue is the fact the only energy is

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIPT

considered to take mapping decisions. The number of hops between communicating tasks increases, leading
to an excessive increase in the number of flits transferred through the NoC (almost 3 times). Note that LTF
in scenario 4 increased the maximum SP utilization and the execution time (51%). This scenario has a
computation intensive benchmark, resulting in tasks from different applications sharing the same PE,
increasing the execution time.

 0

 0.5

 1

 1.5

 2

 2.5

 3

HEAT LTF HEAT LTF HEAT LTF HEAT LTF HEAT LTF HEAT LTF

Va
lu

es
 n

or
m

al
iz

ed
 to

 th
e

LE
C

-D
N

 h
eu

ris
tic

Average Energy
all SPs

Total System
Energy

STDEV Energy
all SPs

MAX Energy
all SPs

Execution
time

N# of
flits

sc1
sc2

sc3
sc4

sc5
sc6

sc7

Figure 11 – Comparison of the proposed HEAT (scenario 1 to 7) and LTF (scenario 1 to 5) heuristics, normalized

to the LEC-DN heuristic.

8. CONCLUSION AND FUTURE WORKS
The features included in the HEAT mapping include scalability, runtime execution, workload

distribution. The hierarchical management of the mapping approach, which comprises three steps, ensures
scalability. The workload distribution is ensured by the energy monitoring approach, which guides the
mapper to select the processors less used.

The proposed HEAT mapping achieved a better workload distribution, with minimal impact to energy
consumption, and reduction in maximum processor energy. The NoC usage increases, being an expected
result because the application tasks use more processors to execute the same job. An important feature of the
proposal is its distributed nature, using several manager processors to map the tasks. Comparing our
approach to a centralized approach, with a similar cost function, we observed that a centralized approach
increases the total consumed energy and spread the tasks, increasing the NoC traffic. Consequently, this
works enforces important features to consider in mapping heuristics: hierarchy, monitoring and multi-
objective cost function (in our proposal accumulated energy and distance among communicating tasks).

Future works include to: (1) integrate of a lifetime model to evaluate MTTF; (2) include a temperature
model to guide the mapping; (3) extend the mapping heuristic to cope with power constraints (i.e. limit the
usage of processors according to a power budget assigned to the system); (4) couple the approach to a DVFS
approach acting over PEs when a given power constraint is violated.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIPT

9. ACKNOWLEDGMENTS
The Author Fernando Moraes is supported by CNPq - projects 472126/2013-0 and 302625/2012-7, and
FAPERGS - project 2242-2551/14-8.

10. REFERENCES
[1] Benini, L.; De Micheli, G. “Networks on chips: a new SoC paradigm”. IEEE Computer, vol. 35(1),

January, 2002, pp. 70-78.
[2] Singh, A.; et al. “Mapping on multi/many-core systems: survey of current and emerging trends”. In:

DAC, 2013, 10p.
[3] Singh, A. K.; et al. "Communication-aware heuristics for runtime task mapping on NoC-based MPSoC

platforms". Journal of Systems Architecture: the EUROMICRO Journal, vol. 56-7, Jul 2010, pp. 242-
255.

[4] Chou, C-L.; Marculescu, R. “Runtime task allocation considering user behavior in embedded
multiprocessor   networks-on-chip". IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 29(1), 2010, pp. 78–91.

[5] Intel. “The Intel® Xeon Phi™ Coprocessor”, 2012.
[6] Tilera Corporation. “Tile-GX Processor Family”, 2010.

[7] International Tecnology Roadmap for Semiconductors. Accessed in: http://www.itrs.net/reports.html.
February 2013.

[8] Faruque, M. A.; et al. “ADAM: Runtime Agent-based Distributed Application Mapping for on-chip
Communication”. In: DAC, 2008, pp. 760-765.

[9] Chantem, T.; et al. "Enhancing multicore reliability through wear compensation in online assignment
and scheduling". In: DATE, 2013, pp. 1373 -1378

[10] Wang, Z; et al. “System-level reliability exploration framework for heterogeneous MPSoC”. In:
GLSVLSI, 2014, pp 9-14.

[11] Henkel, J.; et al. “Reliable on-chip systems in the nano-era: Lessons learnt and future trends”. In:
DAC, 2013, pp. 1-10.

[12] Meyer, B; et al. “Cost-effective lifetime and yield optimization for NoC-based MPSoCs”. In: ACM
Transactions on Design Automation Electronic Systems, vol. 19(2), 2014

[13] Kramer, D.; Karl, W., "A Scalable Monitoring Infrastructure for Self-Organizing Many-Core
Architectures". In: DSD, 2012, pp. 42-49.

[14] Mandelli, M. G.; Ost, L. C.; Amory, A. M.; Moraes, F. G. “Multi-Task Dynamic Mapping onto NoC-
based MPSoCs”. In: SBCCI, 2011, pp. 191-196.

[15] Ost, L. C.; Mandelli, M. G.; Almeida, G. M.; Moller, L. S.; Indrusiak, L. S.; Sassatelli, G.; Benoit, P.;
Glesner, M.; Robert, M.; Moraes, F. G. “Power-aware dynamic mapping heuristics for NoC-based
MPSoCs using a unified model-based approach”. ACM Transactions on Embedded Computing
Systems, vol. 12(3), 2013, pp. 1 - 22.

[16] Smit, L.T.; Hurink, J.L.; Smit, G.J.M. “Runtime mapping of applications to a heterogeneous SoC”. In:
SoC, 2005, pp.78-81.

[17] Ngouanga, A.; Sassatelli, G.; Torres, L.; Gil, T.; Soares, A.; Susin, A. “A contextual re-sources use: a
proof of concept through the APACHES platform”. In: DDECS, 2006, pp.42-47.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIPT

[18] Coskun, A.K.; et al. “Dynamic thermal management in 3D multicore architectures”. In: DATE, 2009,
pp.1410-1415.

[19] Hölzenspies, P. K. F.; Hurink, J. L.; Kuper, J.; Smit, G. J. M. “Runtime Spatial Mapping of Streaming
Applications to a Heterogeneous Multi-Processor System-on-Chip (MPSOC)”. In: DATE, 2008, pp.
212-217.

[20] Wildermann, S.; Ziermann, T.; Teich, J. "Run time Mapping of Adaptive Applications onto
Homogeneous NoC-based Reconfigurable Architectures". In: FPT, 2009, pp. 514 - 517.

[21] Schranzhofer, A.; Chen, J.-J.; Thiele, L. "Dynamic Power-Aware Mapping of Applications onto
Heterogeneous MPSoC Platforms". IEEE Transactions on Industrial Informatics, vol. 6(4), 2010, pp.
692-707.

[22] Lu, S.; Lu, C.; Hsiung , P. “Congestion- and energy-aware runtime mapping for tile-based network-
on-chip architecture”. In: Frontier Computing. Theory, Technologies and Applications, 2010, pp. 300
– 305.

[23] Carvalho, E.; Calazans, N.; Moraes, F. “Dynamic Task Mapping for MPSoCs”. IEEE Design and Test
of Computers, vol. 27-5, Set-Oct 2010, pp. 26-35.

[24] Singh, A.K. et al. “Efficient heuristics for minimizing communication overhead in NoC-based
heterogeneous MPSoC platforms”. In: RSP, 2009, pp. 55-60.

[25] Kobbe, S.; Bauer, L.; Lohmann, D.; Schroder-Preikschat, W.; Henkel, J. “DistRM: Distributed
Resource Management for On-Chip Many-Core Systems”. In: CODES+ISSS, 2011, pp. 119-128.

[26] Cui, Y; Zhang, W; Yu, H. “Decentralized Agent Based Re-Clustering for Task Mapping of Tera-Scale
Network-on-Chip System”. In: ISCAS, 2012, pp. 2437-2440.

[27] Hartman, A., et al. “Lifetime improvement through runtime wear-based task mapping”. In:
CODES+ISSS, 2012, pp. 13-22.

[28] Bolchini, C.; Carminati, M.; Miele, A.; Das, A.; Kumar, A.; Veeravalli, B. “Runtime mapping for
reliable many-cores based on energy/performance trade-offs”. In: DFT, 2013, pp. 58–64.

[29] Das, A; et al. “Temperature aware energy-reliability trade-offs for mapping of throughput-constrained
applications on multimedia MPSoCs”. In: DATE, 2014, pp. 1-6

[30] Mandelli, M.; Ost, L.; Sassatelli, G.; Moraes, F. "Trading-off system load and communication in
mapping heuristics for improving NoC-based MPSoCs reliability". In: ISQED, 2015, pp.392-396.

[31] Huang, L.; et al. “Lifetime reliability-aware task allocation and scheduling for MPSoC platforms”. In:
DATE, 2009, pp. 51-56

[32] Ge, Y.; et al. "Distributed task migration for thermal management in many-core systems" In: DAC,
2010, pp.579-584.

[33] Wu, Y-K; et al. "Distributed thermal management for embedded heterogeneous MPSoCs with
dedicated hardware accelerators" In: ICCD, 2011, pp.183-189.

[34] Liu, Z.; et al. "Task Migrations for Distributed Thermal Management Considering Transient Effects"
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, v.23(2), 2015, pp.397-401.

[35] Jejurikar, R., Pereira, C. and Gupta, R. “Leakage aware dynamic voltage scaling for real-time
embedded systems”. In: DAC, 2004, pp. 275-280.

[36] Rosa, F., Ost, L., Raupp, T., Moraes, F. and Reis, R. “Fast energy evaluation of embedded
applications for many-core systems”. In: PATMOS, 2014, pp. 1-6.

[37] Martins, A.; Silva, D.; Castilhos, G.; Monteiro, T.; Moraes, F. "A method for NoC-based MPSoC
energy consumption estimation". In: ICECS, 2014, pp. 427-430.

[38] Kao. Y.; Yang. M.; Artan. S.; Chao. H. CNoC: High-Radix Clos Network-on-Chip. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, v.30(12), 2011, pp. 1897 – 1910.

[39] Villavieja, C; Etsion, Y.; Ramirez, A.; Navarro, N. “FELI: HW/SW Support for On-Chip Distributed
Shared Memory in Multicores”. In: Euro-Par, 2011, pp. 282–294.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIPT

[40] Castilhos, G.; Mandelli, M.; Madalozzo, G., Moraes, F. "Distributed Resource Management in NoC-
Based MPSoCs with Dynamic Cluster Sizes". In: ISVLSI, 2013, pp. 153-158.

Author’s Photos

Guilherme Castilhos

Marcelo Grandi Mandelli

Luciano Ost

Fernando Gehm Moraes

Author’s Biography

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIPT

Guilherme Castilhos
Guilherme Castilhos received the M.Sc. degree
(2012) in Computer Science from the Pontifical
Catholic University of Rio Grande do Sul (PUCRS).
He is currently a PhD student at the same University,
and an associate professor at UNISC (Universidade
de Santa Cruz do Sul). His main research interests
include Multiprocessor Systems on Chip (MPSoC),
power management techniques, and networks on
chip networks (NoCs).

Marcelo Grandi Mandelli
Marcelo Grandi Mandelli received the M.Sc. degree
(2011) and Ph.D. degree (2015) in Computer
Science from the Pontifical Catholic University of Rio
Grande do Sul (PUCRS). He is currently an
associate professor at UNISC (Universidade de
Santa Cruz do Sul). From 2013 to 2014, he made a
PHD internship at LIRMM laboratory (Montpellier,
France). His main research interests include
Multiprocessor Systems on Chip (MPSoC),
electronic system level design (ESL), and networks
on chip networks (NoCs).

Luciano Ost
Luciano Ost is currently assistant professor at the
University of Leicester. Dr. Ost received his PhD
degree in computer science from PUCRS, Brazil in
2010. During his PhD, Dr. Ost worked as invited
researcher at the Microelectronic Systems Institute
of the Technische Universitaet Darmstadt. After the
completion of his doctorate degree, he worked as a
research assistant and then as assistant professor at
the University of Montpellier in France, until joining
the University of Leicester. His main research
interests include adaptive and reliable multi/many-
core embedded systems.

Fernando Gehm Moraes  

 que, Robotique et
Microélectronique de Montpellier (LIRMM), France.
He is currently at PUCRS, where he has been an
Associate Professor from 1996 to 2002, and Full
Professor since 2002. From 1998 to 2000 he joined
the LIRMM as an Invited Professor for 3 months
each year. He has authored and co-authored 25
peer refereed journal articles in the field of VLSI
design, comprising the development of networks on
chip and telecommunication circuits. One of these

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIPT

 “H : w
Overhead Packet- w N w k C ”
cited by more than 500 other papers. He has also
authored and co-authored more than 200 conference
papers on these topics. He has advised 24 MSc and
6 PhD works. His primary research interests include
Microelectronics, FPGAs, reconfigurable
architectures, NoCs (networks on chip) and MPSoCs
(multiprocessor system on a chip). SBC, SBMICRO
and IEEE Senior Member.

 

