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Abstract 

In this paper, a new advance in the application of Artificial Neural Networks (ANNs) to the automated 
diagnosis of misfires in Internal Combustion engines(IC engines) is detailed. The automated diagnostic 
system comprises three stages: fault detection, fault localization and fault severity identification. Particularly, 
in the severity identification stage, separate Multi-Layer Perceptron networks (MLPs) with saturating linear 
transfer functions were designed for individual speed conditions, so they could achieve finer classification. 
In order to obtain sufficient data for the network training, numerical simulation was used to simulate 
different ranges of misfires in the engine. The simulation models need to be updated and evaluated using 
experimental data, so a series of experiments were first carried out on the engine test rig to capture the 
vibration signals for both normal condition and with a range of misfires. Two methods were used for the 
misfire diagnosis: one is based on the torsional vibration signals of the crankshaft and the other on the 
angular acceleration signals (rotational motion) of the engine block. Following the signal processing of the 
experimental and simulation signals, the best features were selected as the inputs to ANN networks. The 
ANN systems were trained using only the simulated data and tested using real experimental cases, indicating 
that the simulation model can be used for a wider range of faults for which it can still be considered valid. 
The final results have shown that the diagnostic system based on simulation can efficiently diagnose misfire, 
including location and severity. 

Keywords: misfire diagnosis, Internal Combustion engines, Artificial Neural Networks, simulation, 
torsional vibration 

1. Introduction 

Misfire is a very common combustion fault for IC engines and many works have been put forward to study 
vibration-signal-based misfire diagnosis. The vibration based misfire diagnosis can be further divided into 
two types: one is based on the translational acceleration signals measured on the engine block, while the 
other is based on the torsional vibration signal of the crankshaft. The acceleration signals contain more 
information about high frequency components while the torsional vibration can give more precise 
information about low frequency components. Some research [1-7] has looked at using translational 
acceleration signal measurement for the misfire diagnosis. This approach involves recording vibrations at a 
position either on the engine block or on the cylinder head and requires the design of an appropriate inverse 
filter, usually in the form of a parametric model. In contrast, more research [8-19] has been done on misfire 
diagnosis based on the crankshaft angular vibration signal. For small engines with nearly rigid crankshafts, it 
can be considered that there is a linear relationship between the chamber pressure and torsional vibration, 
and using torsional vibration for the misfire diagnosis should be reliable under this condition. But for the 
bigger engines with long and flexible crankshafts, the combustion in different cylinders has a different effect 
on torsional vibration response; therefore Desbazeille et al. [19] have studied the torsional mode effects in a 
twenty-cylinder engine and developed an analytical model with flexible crankshaft for the misfire diagnosis. 
Moreover, some researchers [20-22] tried to detect the misfires via the angular acceleration of the engine 
block. Based on the block angular acceleration, the engine output torque can be calculated and the cylinder 
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pressure can be obtained as well. The variation in block angular acceleration can reflect whether there is a 
combustion fault occurring.  

However, when these vibration-based techniques are applied to the engines in a real situation, the misfires 
cannot automatically be diagnosed from the analysed vibration signals. Artificial Neural Networks (ANNs) 
have been chosen as the basis for the next generation of diagnostic effort by the US Navy [23]. A number of 
researchers have also recommended the use of ANNs as a way of automating the diagnosis of machine faults, 
and in particular faults in rolling element bearings [24-31]. So ANNs should be a potential solution to the 
problem of automated diagnostics of different faults in IC engines. A critical issue with ANN applications in 
machine condition monitoring is the network training, and it not feasible or economical to experience a 
sufficient number of different actual faults, or generate them in seeded tests, to obtain sufficient experimental 
results for the network training. Simulation is proving to be a viable way of generating data to train neural 
networks to diagnose and make prognosis of faults in machines. In reference [32], the main examples given 
were for simulation of faults in gears and bearings in rotating machines. There was also a small section on 
faults in IC engines. Desbazeille et al. [19] also simulated the misfires in a large 20-cylinder diesel engine 
with flexible crankshaft as mentioned above. 

In this paper, the measured torsional vibration of the crankshaft and the roll angular acceleration of the 
engine block are used for the diagnostics of misfires. An ANN based system was developed to automatically 
diagnose misfires in IC engines and includes three phases: 

1. Identification of a fault condition, including fault type. 
2. If a fault, which cylinder? 
3. Given fault type and cylinder, what is the severity? 

Multi-Layer Perceptron networks (MLPs) were used to detect whether there is a misifre (MLP1) and to 
identify the severity of misfire (MLP2). A Probabilistic Neural Network (PNN) was used to identify which 
cylinder has misfires. This paper embodies new developments and extensions of our former conference 
papers [33-35]. In our former works [33-35], we tried to use only one MLP (MLP2), with nonlinear log 
sigmoid transfer function, to identify the severity of the misfires at all speeds/loads, but homed in on the 
particular severities tested, so the nonlinear (stepped) output does not logically agree with the real situation 
of identification of continuous variations in the misfire severity, and the classification results are coarse. In 
this paper, separate MLPs with saturating linear transfer functions were introduced for the severity 
identification at each speed condition, and therefore the linear output can more accurately indicate the reality 
of a continuously varying (rather than stepped) condition, and the classification results can be much finer. In 
order to provide sufficient data for the training of the networks, simulation models were built to simulate 
different ranges of misfires.  During the process of building the simulation models, based on a particular 
engine, some mechanical and physical parameters, for example the inertial properties of the engine parts and 
parameters of engine mounts, were first measured and calculated. The thermal and mechanical principles of 
IC engines were studied and incorporated into the models. The simulation models were also validated and 
updated by a series of experiments. Advanced digital signal processing techniques were applied to the 
experimental and simulated vibration signals.  The input vectors to the ANNs were extracted/selected 
features from the processed signals. Finally, the ANN systems were trained using only the simulated data 
and tested using real experimental cases. Because the simulation models are based on the thermodynamic 
and mechanical principles of IC engines, the proposed diagnostic system can firstly be expected to be 
extended to a wider range of faults (in terms of location and severity) than those used to validate the model, 
and can in principle be adapted for any engine (once again with a relatively small number of validation tests).  
 

2. Vibration measurement and signal processing 

The premise of using simulation data to train the networks is that the simulation systems have to be updated 
and evaluated using at least a small number of experiments. Meanwhile, some mechanical and physical 
parameters are the required inputs for the simulation models, such as the inertia properties of the engine and 
its components and the parameters of the engine supports. Therefore the vibration based measurements, and 
signal processing techniques used are introduced first in this section. 



2.1 Experimental set-up and data acquisition  
A series of vibration signals in normal condition and with misfires and mechanical faults were recorded on a 
Toyota 3S-FE 4-cylinder gasoline engine at UNSW. The firing sequence of the engine is 1-3-4-2. The engine 
was connected to a hydraulic dynamometer which provided an external load. By controlling the 
dynamometer, three constant speed conditions were selected: 1500rpm, 2000rpm and 3000rpm. For each 
speed, there were three different load conditions: 50Nm, 80Nm, 110Nm. The injection and firing of the 
engine was managed by a special Engine Control Unit (ECU), of type Motec M800. Removing the ignition 
lead from the spark plug is the most direct way to simulate 100% misfire. By controlling the fuel injection 
quantity in the ECU control program, 50% misfire was also simulated experimentally on the engine.  

The sampling frequency of the recording system was 25600 samples/s. The instruments for the vibration 
signal measurement include five accelerometers and two proximity transducers. The accelerometers were 
used to record the vibration on the surface of the engine block and their layout is shown in Figure 1(a). The 
proximity transducers were used to pick up a once-per-rev tacho signal and a ring gear encoder signal (tooth 
passage). For the once-per-rev pickup, a small piece of steel was glued onto the flywheel with its position 
corresponding to the top-dead-centre (TDC) of cylinder 1 (see Figure 1(b)). Because there are 120 teeth on 
the ring gear, that proximity probe records 120 pulses each revolution. Additionally, a pressure sensor, which 
is integrated with a spark plug, was used to measure the cylinder chamber pressure in one cylinder at a time. 
Some raw signals at 1500rpm/110Nm are shown in Figure 2. The X-axis is the time sample numbers, and the 
ring gear signal is zoomed in Figure 2. From the raw signal, it can be seen that the cylinder pressure in each 
cycle varies somewhat, so it is necessary to synchronously average the pressure signal to update the 
combustion chamber pressure of the simulation models in the simulation section of this paper. For each cycle, 
there are two tacho signals corresponding to the TDCs in the firing stroke and expansion stroke. But only the 
tacho signal in the firing stroke is useful for the fault diagnostics (especially for identifying the localization 
of faults). In the signal processing, the pressure signals in the cylinder 1 are close to the tacho signals in the 
firing strokes, so they were used to remove the tacho signals in the expansion strokes from the measured 
tacho signals. From the measured raw ring gear encoder signal, it can also be seen that there is small change 
of the absolute clearance between the tops of the teeth and the proximity probe, giving both a low frequency 
drift and an amplitude modulation. However, the amplitude fluctuation in the raw signal has no effect on the 
phase demodulation, since it is primarily the zero crossings which indicate the phase modulation (after 
removal of the low frequency drift). Note that the low frequency drift is automatically removed by the 
bandpass filtering used for the phase demodulation. 

      

(a) accelerometers                                        (b) once-per-rev proximity transducer 
Figure 1. Instrumentation layout. 
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Figure 2. An example of raw measured signals 
 

2.2 Torsional vibration for misfires 
There are several approaches to recording torsional vibration signals. Janssens [36] compared the accuracy 
and performance of five measurement techniques, including a high-speed incremental encoder, dual beam 
laser interferometer, zebra tape, zebra disc and direct pulse measurements with magnetic probe. The most 
fundamental transducer for measuring torsional vibration is the incremental optical encoder. This device 
provides an electrical pulse train, where the time interval between successive pulses is inversely proportional 
to the average speed of the encoder shaft over each time interval. In recent years, the two-beam laser 
vibrometer has been used for the torsional vibration measurement, but the price is very high. On the other 
hand, the ring gear encoder signal is an economical and reliable method for torsional vibration measurement. 
Moreover, ring gear encoders measure the relative torsional vibration of the shaft to the block, which is most 
relevant here, whereas laser vibrometers measure the absolute torsional vibration, including rocking of the 
engine block.  

For machine condition monitoring, torsional vibration signals can be considered as a phase modulated signal. 
It has been shown that phase demodulation can be a useful technique for diagnostics of rotating machines. 
McFadden [37] confirmed the importance of phase modulation in the early detection of fatigue cracks in 
gears. In order to diagnose the gear transmission error, Sweeney & Randall [38] examined the role of phase 
demodulation in the extraction of torsional vibration signals from encoder signals, where the transmission 
error is the differential scaled torsional vibration of the two gears. Sassi et al. [39] used the phase 
demodulated instantaneous angular speed to monitor the condition of electric motors. A phase modulated 
signal contains information in the variation of its phase. An example of a phase modulated signal, in its 
simplest form, is the phase of a single cosine function modulated by another cosine wave, such as: 

( )0 0 1 1( ) cos cos( )x t A t tω φ β ω φ= + + +                                             (2-8) 
 

Evidently, phase demodulation involves analysing a signal to characterise how the oscillating phase 
component 1 1cos( )tβ ω φ+ of the modulated signal varies with time (around the linear change 0tω given by 
the carrier frequency component).  



 

Figure 3. Phase and frequency demodulation of torsional vibration from encoder signal 
 

The torsional vibration signal for the misfire diagnosis was obtained by phase demodulation of the ring gear 
encoder signal. Firstly, an FFT is performed on the encoder signal to get its complex spectrum. The 
amplitude of the complex spectrum can be displayed in dB as shown in Figure 3 (b), so that the frequency 
band which is to be demodulated can be determined and the width of band should contain all significant 
sidebands. Normally the first harmonic is selected. Because only the positive frequencies are selected, the 
demodulated frequency band is the spectrum of an analytic signal. The phase information will then be the 
angle defined by the real and imaginary components of the complex analytic signal. Next a new shifted 
spectrum of reduced size (4096 lines in this case) is set up and first filled with zeros, and then with the low 
positive frequencies taken from the encoder spectrum starting at the carrier frequency and with the 
significant (complex) samples to the right of it. The corresponding negative frequencies (located just below 
the sampling frequency at the right hand end of the buffer) are taken from the original spectrum to the left of 
the carrier frequency. This means that the carrier frequency has been set to zero, leaving only the modulation 
signal. The amplitude of the new shifted spectrum is shown in the Figure 3 (c). The new shifted spectrum is 
not the spectrum of an analytic signal any more, because it now has a negative frequency part. But the phase 
information still exists in the new complex shifted spectrum. The unwrapped phase angle demodulated from 
the shifted spectrum represents the torsional vibration signal of the crankshaft when divided by the number 
of teeth (120) to get it in terms of the angular displacement of the shaft (Figure 3 (d)). Finally the angular 
displacement of the shaft was differentiated to get the angular velocity (Figure 3 (f)). To avoid amplifying 
high frequency noise, the differentiation was done by a jω operation in the frequency domain, with band 
limitation from 8Hz to 195Hz (Figure 3 (e)). In this way a bandpass filtered differentiated signal was formed 
in one operation.  

Likewise, after performing an FFT on the tacho signal, a shifted spectrum of the same reduced size (4096 
lines) was set up and its positive frequencies taken from the first 2048 lines of the tacho spectrum. Then 
performing an IFFT on the shifted spectrum and keeping the real part, finally we get new tacho signals, 
which have same sampling ratio as the calculated angular velocity.  Therefore the torsional vibration in terms 
of degrees of crank angle is related to the tacho signal (360 degrees between two new tacho pulses), instead 
of the original sampling frequency of the recording system.    

The demodulated synchronously averaged torsional vibrations under normal condition at 1500rpm but 
different loads are shown in Figure 4. The synchronous averaging is based on the TDC in the firing stroke of 
cylinder 1. Regarding the number of averages, if the signals were averaged over a certain period for two 
firing cycles, and there is no big difference between the two cycles of the averaged results, it means the 
number of averages is sufficient. For the convenience of the following processing, the two cycles were then 
averaged to give the final average over one firing cycle. It can be found that the torque contributions from 
each cylinder are more uniform at higher load conditions. 



 

 

 

Figure 4. Torsional vibration under normal condition at 1500rpm but different loads 

When misfire (100% misfire) occurs in cylinder 1, it is found that the overall waveforms of torsional 
vibration are very similar at any speed and load condition and overall waveforms can clearly indicate the 
existence of misfire (as shown in Figure 5). Based on the tacho signal, it is easy to identify which cylinder 
has a misfire. 
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Figure 5. Torsional vibration for the 100% misfire in cylinder 1 at 50Nm but different speeds 

 

Figure 6. Torsional vibration with 50% misfire in the cylinder 1  
 

It can be seen that the overall waveform of the torsional vibration signal with 50% misfire is very similar to 
those with 100% misfire and an example is shown in Figure 6. 
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Figure 7. Torsional vibration with 100% misfires in different cylinders 
 

As mentioned before, a misfire was also created in cylinders 2 and 3 (examples shown in Figure 7). Again, 
the overall waveforms with misfires in other cylinders are very similar to those with misfire in cylinder 1 (at 
any speed and load condition), only with phase shifts. 

2.3 Pseudo angular acceleration of the engine block 
The pseudo angular acceleration (roll rotation) of the engine block was estimated from the difference of a 
pair of acceleration signals. The signals from accelerometers 5 and 7 (Figure 1) were subtracted to remove 
the translational components. The subtraction results were divided by the distance between the two 
measurement points to calculate the pseudo angular acceleration of the block. It is called pseudo angular 
acceleration because the measurement points are not in line with the centre of gravity (CG) of the engine 
(which could not be determined exactly). Their line is not parallel to the principal axis of the engine either, 
so the calculated angular acceleration is mixed with other rotational motions. 
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Figure 8. Pseudo angular acceleration under normal condition at 1500rpm but different loads  
 

The firing frequency is quite low compared to the engine block structural resonances and is 100Hz for the 
highest speed in the experiments (3000rpm). Therefore, after the results of subtraction of pairs of 
accelerations were passed by a low-pass filter, the high frequency structural resonances were removed and 
the curve of pseudo angular acceleration became very clear. The pseudo angular accelerations in normal 
conditions at 1500rpm but different loads are shown in Figure 8. It is quite understandable that the 
fluctuation of pseudo angular accelerations increases at higher loads, because the excitation frequency is the 
same at the same engine speed, but higher output loads give rise to bigger excitation torques on the engine 
block.  

Similar to the torsional vibration, when the engine operated at the same load but different speed (as shown in 
Figure 9), the torque balance from each cylinder deteriorated at higher speed.  

 

 

 

Figure 9. Pseudo angular acceleration under normal condition at 80Nm but different speeds  
 

When 100% misfire occurs in cylinder 1, the overall waveforms of pseudo angular acceleration at the same 
speed (possibly with different load) are very similar, but the overall waveforms of pseudo angular 
acceleration at different speeds have visible changes (as shown in Figure 10). That is because the combustion 
force frequencies change at different engine speed. The frequency change of the force means that the 
response is associated with different sections of the Frequency Response Function (FRF) of the engine block 
rigid body modes (determined by the inertia properties of the engine and stiffness of the suspension system). 
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Figure 10. Pseudo angular acceleration with 100% misfire in cylinder 1 at 50Nm but different speeds  

 

Figure 11. Pseudo angular acceleration with 50% misfire in cylinder 1  
 

However, it can be seen that the overall waveform of the pseudo angular acceleration with 50% misfire is 
very similar to those with 100% misfire (at the same engine speed) and an example is shown in Figure 11. 

When the misfire occurs in different cylinders at the same speed (the load can be different), the overall 
waveforms of the pseudo angular accelerations are very similar to those with misfires in cylinder 1, only 
with phase shifts (as shown in Figure 12). 
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Figure 12. Pseudo angular acceleration with 100% misfire in different cylinders 
 

Judging from the waveforms of the two approaches in normal and misfire condition, it can be concluded that 
the torsional vibration signal is easier and more straightforward to interpret than the block angular 
acceleration signal for misfire detection. That is because the block angular acceleration is subject to more 
influences, such as the interaction of varying frequency forcing functions with a fixed transfer function, and 
more additive noise. It should be remembered that the torsional vibration would have a fixed transfer 
function for a flexible crankshaft and the torsional modes will then affect the torsional vibration at different 
speeds, but because the experimental engine is a small four-cylinder engine, the flexible modes of the 
crankshaft are outside the range where they have a significant effect on the torsional vibration. In the misfire 
simulation model in the following section, the crankshaft was built as flexible and it was verified that the 
first flexible mode was much higher than the highest firing frequency in the experiments. If the torsional 
modes of the crankshaft were within the excitation range, as in the work of Desbazeille et al. [19], the 
torsional vibration approach would suffer from the same problems as the block angular acceleration with 
variation in speed. However, the block angular acceleration approach only relies on very low frequency 
information from a pair of acceleration signals, so it is feasible and reliable to use budget accelerometers to 
diagnose the misfire by this means (even though sophisticated and highly sensitive accelerometers were 
applied in the experiments). 

2.4 Feature extraction and selection 
The most important thing for the engine diagnosis is to find parameters to interpret the waveform 
fluctuations. With such parameters, the diagnosis system can automatically monitor the operation of any 
engine by pattern recognition technology.  Therefore it is necessary to further analyse the waveform for 
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normal and misfire conditions in the frequency domain. Inspired by the pattern recognition research of 
Desbazeille et al. [19], polar diagrams were employed to interpret the harmonics of the waveform patterns 
from the processed vibration waveforms. The Fourier coefficients were studied and presented in polar 
diagrams. The amplitudes and phases of the first five harmonics were investigated for both the torsional 
vibration approach and the block angular acceleration approach. The polar diagrams with normal and misfire 
for two different speed/load conditions are shown in Figure 13. Because the Fourier transform interprets one 
cycle (two rotations) as 360º, the phase change of the 1st harmonic can be directly recognized in a 360 
degree polar plot. The 4th harmonic represents the firing frequency. In the normal condition, the torque 
contribution from each cylinder is nearly uniform, so the amplitude of the 4th harmonic is most dominant. 
However in the misfire condition, it was found that the amplitude of the 1st harmonic (cycle frequency) 
became dominant. It was also found that the phases of the 1st harmonic for misfire conditions are nearly 
fixed. 

     

      

Figure 13. Polar diagram of torsional vibrations with normal and misfire conditions 
 

The polar diagram for the torsional vibration waveform with misfire in different cylinders at 1500rpm/50Nm 
is shown in Figure 14. As mentioned before, because the Fourier transform interprets one cycle (two 
rotations) as 360°, it can be seen that the phase of the misfire in cylinder 1 is 90º ahead of the phase of the 
misfire in cylinder 3 instead of 180º (firing sequence is 1-3-4-2). Likewise, for the misfire in cylinder 2, there 
is a 270º phase lag behind the misfire in cylinder 1. So for a four-cylinder engine, there is 90 degree 
difference for the misfires in individual cylinders (60 degree difference for a six-cylinder engine). 

A conclusion for the misfire diagnosis is that the amplitude ratio of the 1st harmonic to the 4th harmonic of 
the torsional vibration can be a good feature for the detection of misfire and the phase of the 1st harmonic 
can be used for identifying the location of the misfire. It is worth pointing out that because the 4th harmonic 
indicates the firing frequency, the phases of the 4th harmonic cannot be used to identify the localization of 
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the misfires (for the misfire in individual cylinders, when the 90 degree difference of the 1st harmonic is 
multiplied by 4, it is 360 degrees and phase differences will disappear). 

 

         

         

Figure 14. Polar diagram of torsional vibrations with misfire in different cylinders 
 

Likewise, the polar diagrams of the block angular acceleration for normal and misfire conditions are shown 
in Figure 15. Compared to the polar diagram for torsional vibration, the amplitude of the 1st harmonic in the 
misfire condition is not dominant, but the amplitude increase of the 1st harmonic from normal condition is 
quite obvious. The amplitude ratio of the 1st to the 4th harmonics is still a good potential feature for the 
misfire detection. 
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Figure 15. Polar diagram of block angular accelerations with normal and misfire conditions 
 

From Figure 15, it can be seen that at the different speeds/loads, the phase of the 1st harmonic for misfire 
condition is not fixed. As mentioned before, that is because the combustion forcing frequencies change at 
different engine speed. On the other hand, the frequencies of the rigid body modes of the engine block 
remain fixed. Therefore, using the phase change of the 1st harmonic to determine which cylinder has a 
misfire is not straightforward as for torsional vibration (with effectively rigid crankshaft). But if the polar 
diagram at the same speed is considered, it can be found that the phase of the 1st harmonic with misfire is 
nearly fixed. As shown in Figure 16, there is a 90 degree difference for misfire happening in different 
cylinders as expected (likewise, there would be 60 degree difference for a six-cylinder engine). Therefore, 
the phase of the 1st harmonic can also be used for the misfire localization in the diagnosis process, but the 
engine speed should be taken into account. 
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Figure 16. Polar diagram of block angular accelerations with misfire in different cylinders 
 

It can be seen that the polar diagram can give more concise information than the waveform for the pattern 
recognition. After the amplitude and phase of the first five harmonics were studied, it was found that the 
amplitude ratio of the 1st harmonic to the 4th harmonic can be used for the misfire detection and the phase of 
the 1st harmonic can be used for the misfire localization. The polar diagrams of both the torsional vibration 
approach and the block angular acceleration approach can indicate clear changes between normal and misfire 
conditions. 

2.5 Inertial properties and rigid body mode tests 
From the mechanical viewpoint, to generate and evaluate these models, the parameters of the engine 
components should be measured or calculated first. It is not difficult to get some parameters from direct 
measurements, such as the cylinder bore and the length of connecting rod. But the inertia properties of the 
components and the characteristics of the engine supports involve more complicated measurement and 
calculation. For the components with simple geometry, the inertia properties can be calculated using 3D 
CAD software. But for the complicated components, it is difficult to obtain accurate models in this way, so 
the calculated inertial properties are not accurate either. In recent years, some new vibration based methods 
have been developed to identify the rigid body properties of complex objects. These methods can be 
generally classified into two groups: the mass line method and the modal property method. Both of the 
methods start with artificially excited vibration data and their inputs are normally FRFs. The inertia 
properties of a measured object can be derived from the flat mass line or the rigid body modes. 

 In order to get accurate results, the two methods have different requirements on the suspension. The mass 
line method needs “soft” suspension to get clear mass lines but the modal property method needs a little 
stiffer suspension (compared to the suspension for the mass line method) to get separated individual rigid 
body modes. The mass line method has been widely studied [40-44] and successfully integrated into some 
commercial software, such as the “Rigid Body Calculator” in LMS Test.Lab. Based on the selected section 
of a mass line, the inertia properties can be solved from an over-determined set of equations by the least-
squares method. The modal property method derives inertia properties from the analysed rigid body modes 
and mode shapes. Moreover, the modal property method is based on the rigid body modes so it is the only 
method that can solve for the corresponding stiffness and damping matrices from the measured vibration data. 
The details of this method can be found in [45-47]. As discussed in the preceding section, the rotations of the 
engine block (pseudo angular acceleration) were used for misfire diagnosis in this paper. In order to simulate 
the rotational motion of the engine block under normal and misfire conditions, the parameters of the engine 
suspension were extracted by the modal property method.  

For the mass line experiment on the inertia properties of the whole engine, the whole engine was suspended 
by bungee cords and the point of origin for the measurements was taken as the output end of the crankshaft. 
The coordinate axes of the measurements are shown in Figure 17.  
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Figure 17. Inertial property measurement of the whole engine in the free-free condition 
 

As mentioned before, the modal property method is the only method that can extract the parameters of the 
engine supports. As shown in Figure 18, externally excited vibration data (using an electrodynamic shaker, 
indicated in the red circle in the figure) was measured on the engine which was set on the engine mounts. 
There are 7 excitation DOFs and 21 measurement DOFs (including 7 driving point measurements).  

 

Figure 18. Vibration measurements of whole engine on the mounts 

The details of the calculation of the parameters of the engine supports can be obtained from our former work 
[48]. It is worth pointing out that the calculation of stiffness and damping coefficients is quite challenging, 
especially for the damping. The engine mounts were considered as linear in the calculation, but this is not 
true in reality. The boundary conditions of the engine on the test rig are quite complicated, including the 
universal joint of the output shaft, inlet and outlet manifold connections and coolant hose connections. But 
overall the calculated stiffness and damping coefficients were found to be reasonable and rational. Moreover, 
the most important thing for the simulation of roll motion of the engine is to get good accuracy for the rolling 
rotation mode. As part of the simulation in the following section, the inertia properties and the parameters of 
the engine mounts were also further adjusted to get a better match between the simulation data and the 
experimental data. 

3. Simulation of Misfires 

3.1 Mechanical principles 
The fundamental equation of the torque balance for an operating engine with rigid crankshaft is derived from 
the Lagrange formulation [8]: 
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All inertia related items are on the left side of Equation (1) and all the physically applied torques are on the 
right side.  I(θ) is the polar moment of inertia about the crankshaft axis, and θ is the crank angle. On the right 
hand side of the equation, Tg is the torque contributed by combustion, Tfric is the friction and pumping torque 
of the engine, Tload is the external load imposed on the engine. In Equation (2), R is the crank radius, Fg is 
the combustion force and φ  is the connecting rod angle. The torsional velocity θ  is one output of the 
simulation model. In order to simulate the misfire phenomena under various speed/load conditions, the most 
critical variable, cylinder pressure, should be first calculated.  

The simulation of crankshaft torsional vibration is based on Equation (1), but the simulation of angular 
acceleration of the engine block is based on the moments/torques on the engine block about the crankshaft 
axes. The moments on the engine block by a single cylinder can be calculated from [49]:  
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Fg is the force from combustion, and ω is the rotating speed of the crankshaft. If misfires cause a change in 
the combustion pressure, according to Equations (1) and (3), the fluctuations of the torsional velocity and the 
pseudo angular acceleration of engine block can be observed in the simulations. 

3.2 Cylinder pressure simulation 
The compression pressure can be derived from the polytropic formula and the combustion pressure can be 
calculated by classic Wiebe’s functions [50]. The details of pressure calculation can be obtained from our 
previous work [33-35, 51]. By multiplying the fuel injection quantity by a given percentage, the cylinder 
pressure under different misfire conditions can be simulated. The cylinder simulation model was also 
updated by the averaged measured pressure from the experiments. Normal, 50% misfire and 100% misfire 
conditions were simulated for different speed/load ranges. The pressure curves for normal, 50% misfire and 
100% misfire in one cylinder at 1500rpm/80Nm are shown in Figure 19.  

 

 

Figure 19. Pressure curves for normal and misfire conditions. 
 



3.3 Torsional vibration simulation 
The torsional vibration was initially simulated in the LMS AMESim package. The main components for the 
torsional vibration simulation are crankshaft/piston components and rotary spring and damper components. 
The crankshaft/piston components were connected by the rotary spring and damper components. The 
torsional damping coefficients of IC engines were estimated by the empirical determinations from Den 
Hartog [52] and Ker Wilson [53]. The torsional stiffness of the crankshaft was calculated in ANSYS. Ideally, 
the torsional stiffness should be calculated using the selected section shown in Figure 20. The 
forces/moments from two adjacent cylinders act on two half-sections of crank journals, then the angular 
displacement with respect to the journal bearings can be calculated, finally the torsional stiffness can be 
obtained. But in reality the central planes of the main journals can only rotate around the shaft axis (the X 
axis shown in Figure 20), with no translational movements in the Y and Z directions. It would be difficult to 
constrain the central plane of the crank journal in the model. However, most rotational deformations should 
come from the main journals instead of the crank web parts. As an alternative approach, two half-sections of 
main journals, two crank webs and one whole crank journal were selected and modelled in ANSYS, rather 
than one whole main journal, two crank webs and two half-section crank journals (as shown in Figure 21). 
The two central planes of the main journals were fixed in the modelling (based on considerations of 
symmetry). 

 

Figure 20. Ideally truncated section for torsional stiffness calculation 
 

 
Figure 21. Torsional stiffness calculation model in ANSYS 

 
A pressure force p was applied to the projection of the half cylindrical surface of the crank journal, and the 
torsional stiffness can be calculated by: 

2

4t
cd

pARK
x

=                                                                              (4) 



where A is the projected area of the cylindrical surface (length × diameter), R is the radius of the crankshaft 
(between main and crank journal centres) and xcd is the deformation at the centre point of the crank journal. 

The Toyota 3S-FE engine is small four-cylinder engine and it can be imagined that the crankshaft is quite 
rigid, but the effects of torsional modes on the torsional vibration still need to be checked. In the simulation 
model of AMESim, it was found that the lowest torsional mode is at 809.4Hz which is much higher than the 
highest firing frequency in the experiments (100Hz) so it gives the conclusion that the effects of torsional 
modes on the torsional vibration are very small. On the other hand, because the individual cylinders are 
connected by the rotary spring and damper units, the simulation model could easily be extended to the 
torsional simulation of larger engines, such as the 20-cylinder engine studied by Desbazeille et al. [19].  

As mentioned in the preceding section, the torsional vibration was measured using the ring gear encoder. As 
opposed to a two beam laser vibrometer, which measures the absolute torsional vibration, the ring gear 
encoder measures the relative torsional vibration. However, the simulation model for the torsional vibration 
simulated the absolute torsional vibration rather than the relative torsional vibration. Therefore it is necessary 
to check the difference between the relative torsional vibration and the absolute torsional vibration. The 
relative torsional vibration should equal the absolute torsional vibration minus the rotation of the engine 
block. The rotational velocities of the engine block are simulated in the following section. It will be found 
that the angular velocities of the engine block are from 0.5-1 rpm, which is small in comparison with the 
torsional vibration velocity, normally around 10-20 rpm. Therefore, the conclusion is obtained that the 
simulated torsional vibration is roughly equal to the experimental torsional vibration. 

The experimental torsional vibration signals and the simulated results for normal conditions are shown in 
Figure 22 for comparison. For the experimental torsional vibration at 3000rpm (shown in the Figure 22), 
even though the signal was synchronously averaged, the angular velocity wave for each cylinder is not 
uniform. That’s mainly because the fuel injection and combustion is not balanced for the four cylinders at 
higher speed under the control of the ECU.  
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Figure 22. Experimental and simulated torsional vibration under normal conditions 

 
After the simulation models were updated for normal conditions, the misfire conditions were simulated and 
the results were compared as well. Examples for the misfires happening in cylinder 1 at 1500rpm/80Nm and 
3000rpm/50Nm are shown in Figure 23. It can be found that the simulated waveforms for the misfires 
showed a relatively good correspondence with those from the experiments. 

 

 

 

 

Figure 23. Experimental and simulated torsional vibration for the misfires in the cylinder 1 
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The 50% misfire at 1500rpm was also simulated and an example of the comparison of experimental and 
simulated waveforms is shown in Figure 24. It also gave a good match between the two waveforms. 

 

 
Figure 24. Experimental and simulated torsional vibration for the 50% misfires in the cylinder 1 

 
As found in the preceding section, because the crankshaft is quite rigid and the effects of the torsional modes 
on the torsional vibration are very small, the simulated waveforms with misfires in the other cylinders are 
very similar to those for the misfire in cylinder 1, only with phase shifts.  

The polar diagrams from simulated torsional vibration were also studied and two examples at 
1500rpm/80Nm and 3000rpm/50Nm are shown in Figure 25. As discussed in the preceding section, the most 
useful information for the misfire diagnosis from the torsional vibration is the ratio of the amplitudes of the 
1st and 4th harmonics and the phase of the 1st harmonic.  From the Figure 25, it can be seen that this most 
useful information was simulated well. Overall, the simulated torsional vibration gave good matches with the 
experimental results, including both the waveforms and the polar diagrams. The simulation results can thus 
be used as the inputs to ANNs to train the automated misfire diagnosis system and the details are discussed 
in following section.  
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Figure 25. Polar diagrams of the experimental and simulated torsional vibration for the misfires in cylinder 1 

 

3.4.Simulation of engine block angular acceleration 
The simulation model of the engine block angular acceleration was also built in the LMS AMESim software 
package. The main components for the simulation of the angular acceleration of the engine block are 
crankshaft/piston model, 3D engine model and engine mount model. In the simulation model, the simulated 
angular acceleration of the engine block is about the CG of the engine and it is a genuine angular 
acceleration. In order to compare with the experimental pseudo angular accelerations of the block, the 
accelerations at the measurement points were first calculated, then the corresponding simulated pseudo 
angular accelerations were calculated. 

During the simulation, the inertia properties and the parameters of the engine mounts were further adjusted 
manually to improve the match between the simulation data and the experimental data. The adjustments were 
based on the experimental results under normal conditions. Two examples of experimental results and the 
equivalent simulated results under normal conditions are shown in Figure 26. 
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Figure 26. Experimental and simulated pseudo angular accelerations of engine block under normal 
conditions 

Based on the updated model under normal conditions, the signals for the misfire conditions were simulated 
and these results were also compared with those from the experiments. Example results for the misfires 
happening in cylinder 1 at 1500rpm/50Nm and 3000rpm/50Nm are shown in Figure 27. It can be found that 
the simulated waveforms show good agreement with those from the experiments. Very similar to the case of 
simulated torsional vibration, when the misfire happens in other cylinders, the waveforms of pseudo angular 
accelerations of the engine block are nearly the same as those for the misfire in cylinder 1 at a certain speed, 
only with phase shifts. 
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Figure 27. Experimental and simulated pseudo angular accelerations of the engine block for the misfires in 
cylinder 1 

Likewise, the 50% misfires in cylinder 1 at 1500rpm were simulated and an example at 1500rpm/50Nm is 
shown in Figure 28. It can be seen that overall the waveforms from simulation match well with those from 
experiment, at least for the low order components.  

 

 

Figure 28. Experimental and simulated pseudo angular accelerations of the engine block for the 50% misfires 
in cylinder 1 

The polar diagrams for the simulated pseudo angular accelerations of the block were investigated as well. 
Two examples at 1500rpm/50Nm and 3000rpm/50Nm are shown in Figure 29. Again, as mentioned in 
preceding section, the most useful information for the misfire diagnosis from the pseudo angular 
accelerations of the block is the amplitude ratio of the 1st harmonic to the 4th harmonic and the phase of the 
1st harmonic. From Figure 29, it can be found that even though the remaining harmonic information is not 
accurate, the simulated amplitude ratio of the 1st harmonic to the 4th harmonic matches with the 
experimental results. Additionally, because the combustion force frequencies change at different engine 
speeds, but the FRFs of the rigid body motions of the engine block remain fixed, the phase of the 1st 
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harmonic is only fixed at a certain speed. It can be seen that at different speeds, the phase changes of the 1st 
harmonic were correctly simulated. 

     

                 

Figure 29. Polar diagram of the experimental and simulated pseudo angular accelerations of engine block for 
the misfires in the cylinder 1 

Compared to the errors from the simulation of torsional vibration, the errors of the simulated pseudo angular 
accelerations of engine block are bigger. That is because it is not easy to obtain accurate inertia properties for 
the engine and the properties of the engine mounts. The experimental pseudo angular accelerations of the 
block were measured under operational conditions, but the inertia properties of the engine and properties of 
the engine mounts were measured in static conditions. The noise contamination is also difficult to simulate in 
the models. Because both simulation models are 1D, the computing time is not very long. For 3 seconds of 
engine running simulated period (75 revaluations for 1500rpm), the computing time for torsional vibration 
model is about 5 minutes, and for pseudo angular accelerations of engine block is about 10 minutes, 
including the calculation from the simulated genuine angular accelerations to the simulated pseudo angular 
accelerations. 

4. Automated diagnosis of misfires 

It is worth pointing out that the engine outputs (load and speed) are precisely controlled by the dynamometer, 
but the combustion in the experiments was still affected by some uncontrollable ambient environment factors, 
such as temperature. The experimental period ranged over 6 months in year 2010 (July to December), and 
the ambient temperature had over 20 degrees variation, therefore it was found that there are some variations 
in the processed experimental signals (up to 5% variation in the same normal condition but different 
experiment times), for both torsional vibration and engine block angular acceleration. However, the ANN 
trained by a large amount of training data can overcome the variation of the input vector and accurately 
classify different combustion faults. On the other hand, the simulated signal for a certain speed/load 
condition is deterministic, so a variation in the simulated signals should be introduced to create 
representative cases for the ANN training. The standard deviation of the variations was set by analysing the 
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normal conditions from experiments and was applied to all the simulated signals, including normal 
conditions and faulty conditions.  

A three-stage system was designed for the automated misfire diagnostics (as shown in Figure 30). Misfire 
can be detected in the first stage. In the second stage, the cylinder which has a misfire can be identified. In 
the third stage, based on the detection results, the severity of the misfires can be identified. The most 
important thing for the fault diagnostics is to find the features to represent different misfires. As studied in 
the preceding section, for both torsional vibration and pseudo angular accelerations, it was found that the 
amplitude ratios of the 1st harmonic to the 4th harmonic (for a four cylinder, four stroke engine) can be used 
to detect the misfires and identify the severity. Moreover, the phase of the 1st harmonic can be used to 
classify which cylinder has the misfire. Therefore, the amplitude ratios of the 1st harmonic to the 4th 
harmonic were the input vectors to the detection stage and severity identification stage and the phases of the 
1st harmonic were the input vectors to the localization stage. 

Amplitude   Phase Amplitude

MLP1 MLP2PNN1

Detection Localization Severity

MLP-Multi-layer Perceptrons (output 0-1)
PNN-Probabilistic Neural Networks (output 1 or 2 or 3…)

 

Figure 30. Structure of the three-stage ANN system 

Feed-forward MLP neural networks were used to detect whether there are misfires and to identify the 
severity of misfire. Two MLPs were designed: one for the fault detection (MLP1) and the other for the 
severity identification (MLP2). The MLPs consist of three layers: input, hidden and output. The numbers of 
hidden neurons of the MLPs were determined using a trial and error procedure. There are two transfer 
functions corresponding to each layer and the output of the MLPs is from 0 to 1.  In our former works [33-
35], we used a nonlinear log sigmoid transfer function in the hidden layers for both MLP1 and MLP2. 
Definitely, for the detection stage (MLP1), the log sigmoid function was the best function to use, and it 
enabled all cases to converge to two boundary conditions 0 and 1, 0 for normal condition and 1 for misfire. 
In the severity stage (MLP2), however, the log sigmoid function also attempts to nonlinearly classify all 
cases at specified levels of misfire, but this does not agree with the real situation (the severity level of 
misfires should be any value linearly distributed from 0 to 1). Even though we were able to use a lot of 
training data to train the MLP2 to get a correct classification of the three levels of misfire (as shown in the 
former papers), the results were not the best and the classification is coarse. Therefore, in the new design of 
MLP2, saturating linear transfer functions satlin(x) were introduced into both layers. The diagram of an 
MLP2 is shown in Figure 31. This satlin(x) function is linear in the interval (-1,+1) and saturates outside this 
interval to -1 or +1. It returns the value of x truncated into the range 0 to 1. Iw and b are respectively the 
weight and bias factors distributed to the individual elements of the input feature vectors. During the training 
stage, the MLPs were led to a specific target output by adjusting the values of the connections (weights and 
bias) among the elements of the input vectors. The number 30 means the number of neurons in the hidden 
layer. The output of MLP2 can be any value linearly distributed from 0 to 1, for instance, 0.2 represents 20% 
misfire, 0.5 for 50% misfire and 1 for 100% misfire. Meanwhile, in the former works, we tried to use one 
MLP to identify the severity levels for all speed and load conditions, but actually the variation of the input 
vectors for different speeds and loads is large, and gave another reason for the coarse classification of the 
severity level. In order to get finer classification, after analysing the experimental and simulation data, it was 
found that the variation of amplitude ratios is more sensitive to the speeds than the loads, so three separate 
MLPs were designed for three different speed conditions (1500rpm, 2000rpm and 3000rpm) in the new 
MLP2. Note that the idea of “one MLP2 for one speed” is also feasible in the real industrial situation, 
because it is always easy to measure and know the speed of the engine during the condition monitoring 
process.   



The MLPs were trained for up to 500 epochs to an error goal of 0.001. The training status is displayed for 
every 5 epochs. The learning rate is set as 0.001 and the momentum constant was set as 1. 
net.trainParam.show = 5; 
net.trainParam.lr = 0.001; 
net.trainParam.mc = 1; 
net.trainParam.epochs = 500; 
net.trainParam.goal = 0.001; 
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+
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30 1  

Figure 31. The diagram of the MLP2 with saturating linear transfer functions   

Due to its advantage for classification problems, a PNN was used to identify which cylinder has misfires. 
The PNN is based on the weighted-neighbour method and was proposed by Specht [54]. The distance is 
computed from the point being evaluated to each of the other points, and a radial basis function is applied to 
the distance to compute the weight for each point. The training of the PNN is a simple implementation of a 
Parzen nonparametric probability density function estimator and Bayesian decision rule. For each new training sample x 
belonging to ci class, the training process adds a new neuron in the i th pool of the pattern layer, with the weight vector 
which is x; this non-iterative training procedure is very fast. The structure of a typical PNN is shown in Figure 32. 
The outputs of the PNN for the misfire diagnostics are the integer numbers 1, 2, 3 and 4, which directly 
indicate the cylinder number.  
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Figure 32. The diagram of the PNN networks. 

Only the simulated data was used to train the networks and the experimental cases were used to test the 
performance of the networks. The simulated signal for a certain speed/load condition is deterministic, but in 
reality the measurement signals have small deviations in different test scenarios, so as mentioned above a 
variation in the simulated signals should be instituted to create representative cases for the ANN training. 
The standard deviation of the variations was set by analysing the normal conditions from experiments and 
was applied to the simulated signals. Normal conditions at each speed and load were simulated and twenty 
variations were created for each simulated normal condition. Both 50% and 100% misfires were also 
simulated in different cylinders for each speed and load condition and all the simulated signals were 
instituted with variations (five variations for each simulation).  
 
Table 1: Distribution of data with networks from simulation and experiment 



 

540 cases from the simulation were used to train the system, including 180 normal conditions and 360 
misfire conditions. 36 cases from the experiments were used to test the system, including 15 normal 
conditions and 21 misfire conditions. The distribution of the different conditions is shown in Table 1.  In the 
MLP1, the 540 amplitude ratios were input into the network. After the detection stage, the training and test 
cases for the PNN were reduced to the group of all cases with misfires (misfires in different cylinders). 
Likewise, the training and test cases for the MLP2 were reduced too, so the severity identification became 
more specific. It is noteworthy that the purpose of the paper is to simulate sufficient data for the training, so 
the number of training cases is not a big problem to get optimum performance of the ANNs and the 
minimum number of training cases required to achieve 100% ANN results was not investigated in this paper. 
 
A fitness criterion was introduced to evaluate the performance of the MLP1: 

1
( ( ) ( ) /

N

i
Error ANN i VAL i N

=

= −∑
                                                    (5) 

  
where ANN is the output of the MLP1 and VAL is the corresponding target number. N is the total number of 
the test group (33). A higher fitness criterion means poorer MLP performance. Because the log sigmoid 
transfer function is very good at the problem of classification of two groups, and our former works [33-35] 
also demonstrated that the speeds and loads are not necessary inputs for the classification of MLP1, only one 
MLP1 was designed to detect the misfire at all speed and load conditions and the input of MLP1 is a 1D 
vector (amplitude ratio of the 1st harmonic to the 4th harmonic). Due to the simple dimension of the input 
vector and the clear difference between the input features of normal conditions and those of misfire 
conditions, the computing time for the MLP1 is short, from 0.6-1 seconds. The results of MLP1 are shown in 
Table 2. It can be seen that results are good, with 100% correct and very small error values. Meanwhile, it 
can be seen that because the pseudo angular acceleration is subject to more complicated influences and is 
more difficult to simulate, its fitness criteria are worse than those for the torsional vibration method.  

It is worth pointing out that as mentioned in the preceding section, for the torsional vibration the phases of 
the 1st harmonic with misfire in a certain cylinder are nearly fixed for any speed/load condition, so the inputs 
to the PNN for torsional vibration have only one element (the phases of the 1st harmonic), but for the pseudo 
angular acceleration methods, the phases of the 1st harmonic with misfire are only fixed at a certain speed, 
so the inputs to the PNN for the pseudo angular acceleration method definitely have to include the phases of 
the 1st harmonic and the speed. The computing time for the PNN of the torsional vibration method is 0.3-0.5 
seconds, and for the PNN of pseudo angular acceleration method, a little longer, from 0.5-0.8 seconds. As 
mentioned before, the outputs of the PNN are the integer numbers 1, 2, 3 and 4, which directly indicate the 
cylinder number. The final results have also shown that the PNN successfully localized which cylinder has 
misfire: eleven cases in cylinder 1, seven cases in cylinder 2 and three cases in cylinder 3. 

Table 2: Comparison for the results of the MLP1  

 

 

normal 100% misfire 50% misfire normal 100% misfire 50% misfire
180 in total, 180 in total, 19 in total, 2 in total,

45 in cylinder 1 45 in cylinder 1 9 in cylinder 1 2 in cylinder 1
45 in cylinder 2 45 in cylinder 2 7 in cylinder 2
45 in cylinder 3 45 in cylinder 3 3 in cylinder 3
45 in cylinder 4 45 in cylinder 4

for training (simulation) for test (experiment)

180  in total 15  in total

100% correct
error=0.4941

100% correct
error=0.5819

Detection(MLP1)

Torsional vibration of 
crankshaft

Angular acceleration of 
engine block 



Table 3: Comparison for the results of two MLP2 designs 

 

 

Three MLPs with saturating linear transfer functions were designed for the severity identification of each 
speed condition. Likewise, the amplitude ratio of the 1st harmonic to the 4th harmonic is the only input to the 
three MLPs. As mentioned before, the old MLP2 (only one MLP) with log sigmoid transfer function was 
used to identify the severity level at all speed and load conditions. Therefore, in order to compare the results 
and show the improvement of the newly designed MLP2, the number of the total training cases (360) and the 
number of the total test cases (21) are same for both old and new MLP designs and the results of the three 
MLPs are combined together and shown in Table 3. It can be seen that, even though both the old MLP2 and 
new MLP2 can identify the levels of the misfire faults, the new MLP2 has a much finer classification, 
especially for the two experimental cases with 50% misfire. If there were an experimental case with 60% 
misfire, the old MLP2 would mix it with the 50% misfire case, but the new MLP2 could efficiently classify 
the problem. The computing times for both old and new MLP2 are very similar, from 0.5-1 second.   
 

5. Conclusion 

ANN-based automated systems were developed for the diagnosis of misfire. In order to obtain sufficient 
results for the network training, simulation models, which can simulate different locations and ranges of 
misfires, were developed in this paper. The simulation models need to be evaluated and updated using the 
experimental data, so experimental vibration signals with combustion faults were studied first. It was found 
that the torsional vibration of the crankshaft and the pseudo angular acceleration of the engine block can both 
be used to diagnose engine misfires. Meanwhile, as inputs to the simulation models, the inertial properties of 
the engine components and the parameters of the engine mounts were also measured and/or calculated. The 
simulation models are based on the thermodynamic and mechanical principles of IC engines and therefore 
the proposed diagnostic system can in principle be adapted for any engine. The automated system was 
trained purely by simulation data and tested using the experimental data, showing that it is possible to 
generate a simulation model which gives confidence in its application to a somewhat wider range of fault 
locations and severities, provided these remain within the overall envelope of the physical conditions for 
which the model has been validated. The diagnosis consists of three stages: MLP1 for the detection stage, 
PNN for the localization stage and MLP2 for the severity identification stage. For both the torsional vibration 
method and the pseudo angular acceleration method, the amplitude ratios of the 1st harmonic to the 4th 
harmonic were used for the misfire detection and severity identification, and the phase of the 1st harmonic 
was used for the misfire localization. In particular, for the severity identification stage, separate MLPs with 
saturating linear transfer functions were designed for the three speed conditions, so the outputs of the MLP2 
can be any value linearly distributed from 0 to 1. Finally, it was demonstrated that the networks trained on 
simulated data can efficiently detect misfire in real tests and identify the location. More importantly, 
compared to results from the old MLP2, the new MLP2 can obtain a much finer classification of the severity 
of the misfires. 
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