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Abstract 

Big-end bearing knock faults in IC engines can be considered as a real industrial case of a slider-crank 
mechanism including a joint with clearance and lubrication. In this paper, an Artificial Neural Network (ANN) 
based system was used to solve the problem of intelligent big-end bearing knock fault diagnosis in Internal 
Combustion (IC) engine. But when the ANN is used in machine condition monitoring, it is either unlikely or 
uneconomical to experience all different real faults to generate sufficient training data. Therefore, model based 
method should be a viable way to generate adequate data to train the networks for the intelligent big-end 
bearing fault diagnosis in IC engines. In order to evaluate and update the simulation model, experiments with 
normal bearing clearance and with different oversize bearing clearances were first carried out on the engine 
test rig. It was found that the relevant diagnostic information lies in the squared envelope of the vibration 
signals. Therefore, we only need build a proper simulation model to simulate the correct envelope signals 
rather than the raw vibration signals. As the important inputs of the simulation model, the inertia properties of 
the simulated engine components were also measured and studied. Next, we built an ANN-based bearing knock 
diagnosis system which consists of three phases: fault detection phase, fault localization phase and fault 
severity identification phase. Particularly, a saturating linear function is selected as the transfer function of the 
fault severity identification stage, so the networks can linearly classify the fault levels and the output is more 
in agreement with the reality in industry. Following the feature extraction and selection from the processed 
squared envelope signals, the networks were purely trained by the simulated data with normal bearing 
clearance and with different oversize bearing clearances. Finally the networks was tested by the real 
experimental data and it was demonstrated that the networks can successfully detect different bearing knock 
faults in real tests, and also classify the faults’ location and severity levels. 

Keywords: Intelligent diagnosis, internal combustion engine, journal bearing with oversize clearance, 
vibration simulation, Artificial Neural Network 
 

 
1. Introduction 

IC engines have severe operating conditions, involving high temperatures and high pressures, with large 
variations in internal forces within each cycle, and as such the wear mechanisms are complex. The journal 
bearings of IC engines are particularly vulnerable to these conditions, as opposed to those in rotating machines 
such as turbogenerators, because of the extreme variations in load. Therefore bearing damage, especially the 
big-end bearing damage, due to friction and wear accounts for and leads to a significant portion of Internal 
Combustion (IC) engine failure [1]. However, only few works have addressed the issue of big end bearing 
knock fault diagnosis based on vibration measurement. Moreover, traditional vibration based diagnostic 
techniques normally require engineers to analyse the vibration signal by means of their experience. Recently, 
Artificial Neural Networks (ANNs) based automated system has been successfully developed and applied to 
the diagnosis of rotating machinery. Therefore, following the proper signal processing method and feature 
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extraction/selection method, ANN should also be a potential solution to realize the intelligent diagnosis of the 
big end bearing faults in IC engines. The successful application of ANN is strongly depended on the adequate 
data for the networks’ training. Both data-driving approach and model-based approach are the solutions to this 
issue. The former approach requires very long-term data record from one IC engine or a large number of 
identical engines, so it is a very expensive approach. Alternatively if a relevant simulation model is built up, 
different bearing knock faults can be easily simulated in the model, so sufficient training data can be generated 
as well. Beforehand only a small number of experiments need to be carried out on the engine test rig so as to 
evaluate the simulation model.  

Big-end bearing knock faults in IC engines is a typical issue of a slider-crank mechanism with an oversize 
clearance joint and lubrication. Many researchers have addressed the dynamic modelling of the dry or 
lubricated evolute joints (journal bearing) with clearance in the slider-crank mechanism [2-6]. Even though all 
of the works are focussed on the modelling of the small end bearing with clearance, the analysis methods can 
also be extended to the modelling of the big end bearing with clearance in IC engines. Particularly, Daniel and 
Cavalca [6] analytically developed the kinematic model and hydrodynamic model for the evolute joint between 
piston and connecting rod with clearance and lubrication, and they used a numerical technique to iteratively 
compute the kinematic/kinetic equations and the lubrication equations, and finally solved the multi-Degree-
Of–Freedom (DOF) problem raised by the non-negligible clearance.  
 
This paper can be considered as the extension and a real application of modelling methods developed by Refs. 
[5, 6] and also our former work [7]. The critical issue for the model based intelligent condition monitoring is 
the model should create the signals with decent accurate diagnostic information, so normally a small number 
of experiments should be carried out on the engine test rig first. In this paper, after the advanced signal 
processing techniques were applied to process the experimental vibration signals, we found that the most useful 
diagnostic information lies in the squared envelopes of vibration signals. Therefore, even though many more 
sophisticated analytical modelling methods or finite element modelling methods have been developed for the 
journal bearing design in recent years, for the intelligent big-end bearing fault diagnosis, we only need to apply 
a proper modelling approach to generate accurate envelope signals rather than raw accelerations (or impact 
forces).  The simulation model for the bearing knock diagnosis consists of the kinematic/kinetic part and the 
hydrodynamic part. The lubrication forces (bearing knock force) which is the interconnection between two 
models was numerically solved step by step. Based on the measured transfer functions between the bearing 
houses to the measurement point on the engine block, vibration signals were further calculated from the 
simulated bearing knock forces. As the important inputs of the simulation model, the parameters of the relevant 
engine components, such as the inertial properties, were also measured and calculated by some measurement 
techniques. Based on the experimental data, the amplitude and phase features of the Fourier coefficients of the 
squared envelopes were extracted. Particularly, the Genetic Algorithm (GA) was used select the best amplitude 
features as the inputs of the networks. Next, we used purely simulated data to train the three-phase network 
system, which consists of two MLP (Multi Layer Perceptron) networks for fault detection (MLP1) and fault 
severity identification (MLP2), and one PNN (Probabilistic Neural Network) for the fault localization. The 
selected amplitude features were used as the inputs of the MLP1 and MLP2, and the selected phase features 
were used as the inputs of the PNN. Finally the real experimental data were inputted into the intelligent 
diagnosis system to test its performance and it was demonstrated that the intelligent system got good results.  
 
2. Principle of bearing knock  

2.1 Kinematic/kinetic principle  

If all the joints of piston-connection rod-crank system are perfect joints, the dynamics of the system is a classic 
signal-DOF issue. But if an oversize clearance is introduced into the big end bearing joint, the dynamic 
properties become more complicated and there are two pendulum motions in this mechanism system, one the 
the rocking motion of the connecting rod about the piston pin and the other is relative to the almost constant 
rotational speed of the crank pin. So the piston-connection rod-crank system become a multi-DOF system (as 
shown in Figure 1), and it can be separated into two subsystems, piston and connecting rod subsystem and 
crank subsystem. It is not difficult to build separate kinematic/kinetic equations for the two subsystems, but in 
order to solve this multi-DOF issue, the hydrodynamic lubrication equations which can introduce extra 
“constraints” into the system should be added into the system. Note that we only considered the oversize 



clearance in the big end bearing joint in this paper, so we assumed both the piston pin (small end bearing) joint 
and crank main journal (joint) are perfect joints. 
 

 

Figure 1. Force diagram of the big-end bearing joint with an oversize clearance 
 
As shown in Figure 1, the whole system has three external forces/moments, Fd is the combustion force, Tf 
represents both friction torque and pumping torque of the engine, Tl represents the engine external load. We 
always consider the combustion pressure is evenly distributed on the top of the piston in this paper, so the 
combustion force Fd can be just integrated from the pressure about the piston top area. We will use subscript 
c and subscript j to represent the parameters associated with connecting rod (big end bearing) and crank journal 
in the following sections. For the connecting rod with a total length of cc, we can measured the location of its 
centre of gravity (CG) and the detail of inertial property measurement of the connecting rod will be presented 
in Section 3.3. The distances from the centre of the small end to the centre of gravity (CG) of the connecting 
rod are c1. The crank throw radius is R (half stroke length). So for the piston and connecting rod subsystem, 
there are two DOFs, one is the translation motion of the piston in Z direction (zp, pz  and pz  denotes the its 
displacement, velocity and acceleration respectively), and the other is the angular rotation of the connecting 
rod (α, α  and α  denotes the its angular displacement, velocity and acceleration respectively).  It is not 
difficult to set up the kinematic equations of piston and connecting rod subsystem by Lagrangian mechanics 
[7], 
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where Fyc and Fzc are the lubrication forces acted on big end bearing in Y and Z directions respectively, mp 
and mc are the masses of the piston and the connecting rod respectively, and Ic  is the moment of inertia of the 
connecting rod about its CG (the measurement of Ic will be introduced in Section 3.3). 

The third DOF is presented in the crank subsystem, and it is the angular rotation of the crank (likewise we use 
θ, θ  and θ  to denote the angular displacement, velocity and acceleration of the crank respectively). It is quite 
straightforward to build the kinematic equation of the crank subsystem based on the moment balance principle,   

cos sinj yj zj l fI F R F R T Tθ θ θ= + − −                                                    (2) 

where Ij is the polar moment of inertia of the crankshaft and flywheel (the detail of the measurement of Ij will 
be introduced in Section 3.3 as well), Fyj and Fzj are the lubrication forces acted on the crank journal in Y and 



Z directions respectively. Note that the forces Fyc and Fyj are an action-reaction force pair, and same for the 
force pair Fzc and Fzj. It can be found that we need introduce lubrication equations to calculate the lubrication 
forces and eventually solve this multi-DOF issue.  

2.2 Lubrication principle  
The geometric representation of the big end bearing with clearance and lubrication is shown in Figure 2. There 
are two reference frames involved into the modelling, one is the fixed global XY frame, and the other is the 
intermediary MN frame, which is based on the position of maximum clearance (the direction of N axis is same 
as the direction from the bearing centre to the journal centre). β is the coordinate angle starting from the positive 
Y direction to the positive N direction. Note that different from normal bearing-housing fixed journal bearing, 
the load on journal/bearing in the big end journal bearing is a variable rotating load, therefore β cannot be 
simply considered as the general attitude angle, and it should be the combination of load rotation angle and 
attitude angle. The difference in radius (Rc-Rj) is the radial clearance c, Rc and Rj are the radii of the big end 
bearing and the crank journal respectively. e denotes the eccentricity at a certain instant, and it can be calculated 
by the locations of the bearing centre and the journal centre in the YZ frame at that moment.  
 
 

 

Figure 2. Geometric representation of the big end bearing with an oversize clearance and lubrication 
 

The classic Reynolds equation can model the pressure distribution in the journal bearing. But it is very difficult 
to get the close form analytic solution of Reynolds equation, so two common assumptions were always 
introduced to simplify the solving of Reynolds equation, one is the journal bearing with an infinite length and 
the other is the journal bearing with an infinite short length, and the corresponding solution are called as 
Sommerfeld solution [8] and Ocvirk solution [9]. The ratio of bearing length to diameter for the majority of 
the big-end bearings in IC engines is about 0.5, so the Reynolds equation of the big end bearing can be 
simplified as the infinite short journal bearing.  Based on the derivation in Ref [10, 11], we can write the 
pressure distribution solution for the big-end bearing as 
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                                         (3) 

where φ is the circumferential angle starting from the negative axis of N, μ is the viscosity, ε is the eccentricity 
ratio, equals to e/c, Lc is the length of the big-end bearing, x is the location on the axial direction of the bearing, 
and the zero point of X axis is at the centre of the bearing length (so the range of x is from -0.5Lc to 0.5Lc), ω
is the relative angular velocity of journal and equals to 0.5( )θ β−  .  
 
Consequently, the lubrication force can be integrated from the pressure distribution in Eq. (3) about the angle 
φ, 
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where φ i is the start angle of the integration and φo is the end angle of the integration. Finally we can get the 
lubrication force components in Y and Z direction. The detail of force integration and the transformation from 
MN frame to YZ frame can be found in the Refs. [6, 7] and [11]. 
 
3. Experiments and signal processing 

3.1 Experiments on engine test rig 

The experiments were carried out on a four-cylinder four-stroke Toyota 3SFE petrol (gasoline) engine. The 
engine was connected to a hydraulic dynamometer which works as an external load. The engine was controlled 
to experience different operating conditions, at 3000rpm and at three output torques: 50Nm, 80Nm, 110Nm. 
The firing sequence is 1-3-4-2. Before all machining works, the engine was disassembled, the clearances of 
the big end bearing were measured by the engineers in an engine reconditioning workshop and this clearance 
was regarded as the normal clearance. Next, the journal of the crankshaft of cylinder 2 was ground twice to 
generate oversize clearance for two different stage experiments: two-time normal clearance (1st stage bearing 
knock fault) and four-time normal clearance (2nd stage bearing knock fault). The engineer in the workshop 
also advised on the two stages of oversize clearance for bearing knock faults to make sure the engine could 
operate safely, so the two stages of oversize clearance were selected as 0.2 and 0.4 mm for two-time normal 
clearance and four-time normal clearance, respectively. 

One Bently Nevada 3300 proximity probe was used to pick up the once-per-rev tacho signal, which 
corresponds to the Top Dead Centre (TDC) of cylinder 1. A Kistler 6117B spark plug integrated pressure 
sensor was used to measure the cylinder pressure, and this result was used to update the cylinder pressure 
simulation model. For each cycle, there are two tacho signals corresponding to the TDCs in the firing stroke 
and expansion stroke. But only the tacho signal in the firing stroke is useful for the fault diagnostics (especially 
for identifying the localizations of faults). In the signal processing, the pressure signals in the cylinder 1 are 
close to the tacho signals in the firing strokes, so they were used to remove the tacho signals in the expansion 
strokes from the measured tacho signals. An Brüel & Kjær 4384 accelerometer, named as acc5 and shown in 
Figure 3 (extra accelerometers were also attached on the engine block for the diagnosis of misfires and piston 
slap faults, and the index number of each accelerometer just corresponds to its input channel number on the 
acquisition front-end) was attached adjacent to the big end bearing in the cylinder 2 and its measured vibration 
signal was used for the diagnosis of bearing knock faults. The sampling frequency of the recording system was 
set at 25600 samples/sec.  

     

Figure 3.  Accelerometer layout on the engine block 
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3.2 Signal processing  

An example of raw vibration signal with bearing knock fault is shown in Figure 4. The former work [12] has 
found that owing to their characteristics of second order cyclostationarity, the diagnostic information in the 
signals for bearing knock fault should reside in the repetition frequency and pattern of the bursts. The envelope 
signals should be deterministic (actually first order cyclostationary) and therefore can be synchronously 
averaged. The envelope signal was also squared to represent it in power units (proportional to variance).  

 
Figure 4.  Raw vibration signal with 1st stage bearing knock fault at 3000rpm/110Nm 

 
In order to find how the impulsiveness of the measured faults signals varies with frequency and remove some 
interfering noise, before performing envelope analysis, the “fast kurtogram” developed by Antoni [13] was 
used to provide some guidance for the selection of the optimum demodulation band for the bearing knock fault 
diagnosis. Compared to its application on rolling element bearing diagnosis, the situation for a big end bearing 
is more complicated. Firstly, the transfer function for the bearing knock is more complicated. The impact signal 
transmits from the crank journal to the main bearing, then to the external measurement point. Secondly, the oil 
lubrication of the big end bearing is subjected to a rotating dynamical load. Thirdly, because the measurement 
point is actually close to the main bearing between cylinders 1 and 2, the measurement signal is prone to the 
influence from the bearing knocks and combustion noises from the adjacent cylinder 1. However, it was found 
that the kurtogram was also useful in this case to find the frequency bands with highest impulsiveness. The 
range for bearing knock faults is wide (as shown in Figure 5), but mostly lie below 6400Hz. The cut-off 
frequency at 3200Hz is good for the bearing knock fault cases in the 1st stage, but when the cases in the  2nd 
stage were also considered (the kurtogram results for this stage are more scattered), it was found that the cut-
off frequency set at 4400Hz is better for all cases in both stages. Therefore, allowing for the comparison of the 
whole range of bearing knock faults a common frequency band was found (400-4400Hz).   
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Figure 5. The “kurtogram” map for bearing knock faults 
 

As mentioed above, the raw bearing knock fault signals contain some low frequency combustion noise and 
other random mechanical noise, but after the band pass filtering, it was found that the noise was essentially 
removed. It is worth mentioning that another combustion fault is engine knock, which also excites high 
frequency resonances. However, earlier research [14] has demonstrated that engine knock excites high 
frequency resonances with a typical range of 4-10 kHz. Therefore, the selected band pass filters should separate 
the engine combustion knocks from bearing knock fault. It should also be noted that other work [15] has 
studied piston slap, where a similar frequency range was used to generate envelope signals, but these were 
measured at different measurement points (eg, 6, 7, 8 in Figure 3) and measurement location is also a good 
separator of the different mechanical faults, as shown by results later in the paper, where some cases with 
piston slap faults were included in the “not bearing knock” category. 

It is also worth pointing out that, for all the figures in the following section of this paper, the zero degree point 
in the crank angle corresponds to the TDC of the cylinder 1 in the firing stroke. The squared envelope signals 
at different load and same speed are shown in Figure 6, where it can be seen that the peak values of the squared 
envelope for bearing knock fault have no proportional relationship with the increase of load. That is because 
the bearing knock impact force is mainly attributed to the inertia force of the piston and connecting rod 
components, rather than the combustion force. Note that near TDC these forces act in opposite directions.  
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Figure 6. Squared envelopes for bearing knock faults at same speed but different load 

 

An comparison example of the squared envelopes at the same speed/load condition but different fault stages 
is shown in Figure 7 and it can be found there is a substantial increase for the magnitude peak value (about 10 
times from stage 1 to stage 2). The situation also happened for other speed/load conditions. The substantial 
increase implies the possibility for the fault severity identification from the squared envelope signals.  

 

 

Figure 7. Envelope signals with different fault severity levels at 3000rpm/80Nm 
 

3.3 Experiments on the kinematic components in the simulation model 

Based on the analysis in Section 2, if we want to simulate the big-end bearing knock fault in IC engine (also 
for the comparison between the experiment and simulation), the parameters of the relevant engine components 
should be measured first. The parameters were measured from a disassembled engine which is identical to the 
test engine. Some parameters can be directly obtained from measurements, such as the length of the connecting 
rod and crank throw radius, but some parameters need further calculation from the measurements, such as 
inertia property and polar moment of inertia.  
 
The vibration based mass line method is a suitable method to measure the inertia properties of connecting-rod. 
More detail of mass line method can be found in Refs. [16, 17]. The connecting rod was excited by a Brüel & 
Kjær 8202 impact hammer. An Endevco 66A12 triaxial piezoelectric accelerometer was used to measure the 
accelerations. In order to get accurate final results by the mass line method, during the measurement, a couple 
of factors were specially considered: 
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• Suspensions were soft enough to get clear mass lines and the rigid modes and first bending mode could 
be consistently separated.  

• Different from normal modal analysis experiments, the mass line method needs to measure the whole 
FRF matrix not just one column or one row of FRFs. 

• The reference (excitation) points and response (measurement) points were the points with largest rigid 
body motion. 

• Because the component was small, the size of the accelerometers was taken into account. 
• In order to excite the points precisely, a very stiff rod (drift) was used. The top of the rod was hit by 

the hammer and end of the rod was located accurately on the structure and aligned. Therefore, the 
excitation location and direction could always be fixed. 

• Different excitation DOFs, at least one in each of the X, Y, and Z directions, were selected. 
 

The inertia property measurement of the connecting rod is shown in Figure 8. The Rigid Body Calculator in 
LMS Test.Lab was used to calculate the inertia properties from the measured FRFs.  

 
 

 
Figure 8. The inertia property measurement of the connecting rod 

 

 
Figure 9. Polar moment of inertia measurement of the crankshaft 

 
Figure 9 shows the measurement of polar moment of inertia of the crankshaft (with flywheel). In the 
measurement, the two ends of the crankshaft were suspended in two lathe centres. A string with a small mass 
at the end (mass m) was wound on the centre main journal of the crankshaft. After the mass was released from 
a certain height (h), the crankshaft was caused to rotate by the plumb movement of the mass. Since the length 
of the wound string was made 1.5h, owing to the inertial effect, the crankshaft continued to rotate extra turns 
after the mass reached the floor. Finally the crankshaft stopped by virtue of the friction forces (moments) at 
the supports.  
 



There are two assumptions for the experiment and the calculation of crankshaft polar moment of inertia: The 
energy dissipation per revolution was taken as constant and the CG of the crankshaft was coincident with its 
axis of rotation. During the measurement, the time interval of the whole plumb movement process was 
recorded as t. v denotes the velocity of the mass at the time t. Same as the definition in Section 2, Ij represents 
the polar moment of inertia of the crankshaft. ω is the angular velocity of the crankshaft at the time t. E is the 
energy per turn consumed by friction. rmb is the radius of the middle journal of the crankshaft. While the mass 
was falling (interval t), the crankshaft rotated N turns.  After the mass stopped, the crankshaft continued 
rotating an extra n turns.  
 
In the interval t, the energy change of the mass is 21 2mgh mv−  and is equal to the maximum kinetic energy 
of the crankshaft and the energy consumed by the friction.  

2 21 1
2 2 jmgh mv I NEω− = +                                                           (6) 

After the mass hit the floor, the kinetic energy of the crankshaft was transformed into frictional energy in the 
extra n turns. 

            21
2 jI nEω =                                                                      (7) 

Substituting the Equation (7) into Equation (6) and eliminating variable E, one can get: 
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The mass falling can be considered as a constant acceleration motion starting from zero, so substituting 
2v h t=  into Equation (9), the polar moment of inertia of the crankshaft can be calculated by 
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3. Simulation and result comparison 
3.1. Simulation model 
Based on the principle shown in Section 2, we built the kinematic/kinetic model and lubrication model for the 
big-end bearing with oversize clearance and lubrication, and two models can be related by a closed loop. The 
inputs to the kinematic/kinetic model are the two hydrodynamic forces in Y and Z directions (Fy and Fz, which 
are the outputs of lubrication model) and the outputs are the displacement parameters zp, θ, α and the 
corresponding velocities. The inputs to the lubrication equations are the eccentricity ratio ε, the coordinate 
angle β and their derivatives, which can be calculated from the locations of the bearing centre and the journal 
centre in the kinematic/kinetic model. Now it is necessary to explain why we only applied the existing 
modelling methods (based on Refs [5-7]) to simulate the bearing knock faults in this paper. As studied in 
Section 3.2, the bearing knock fault diagnostic information lies in the squared enveloped signals (the interest 
lies in the total impact energy) rather than raw vibration signal. Many hydrodynamic (include friction 
mechanism or asperity lubrication), elastohydrodynamic, and thermohydrodynamic modelling methods have 
been recently developed for the mechanism design of journal bearings/revolute joints, so as to increase their 
performance, lifetime and so on, but for the bearing knock fault diagnosis, these modelling approaches may 
generate more accurate raw impact forces/vibration signals, but the processed squared envelope signals should 
have very small difference from those created by the model in this paper. This is because after the band pass 
filter and envelope processing, the nearby instantaneous samplings of the raw acceleration will be “mixed” 
and “wrapped up” together (this can be found from the comparison of raw signals in Figure 4 and the enveloped 
signals shown in Figures 6 and 7), and more importantly, the total energy under the envelope contour should 
be almost fixed for all methods.        
 
Another important input of the simulation model, the combustion chamber pressure curves, corresponding to 
output loads of the engine at 50Nm, 80Nm and 110Nm, were simulated first and saved as look-up tables in the 



model. For the compression and expansion process, the pressure can be solved by the classic polytropic 
equation. The pressure in the combustion process can be calculated by Wiebe’s functions [18, 19]. The burn 
rate w(θ) and heat release Q(θ) as functions of crank angle are written as: 
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( ) ( ) comb fuelQ w r m LHVθ θ=                                                            (12)              

where mv is Wiebe’s combustion characteristic exponent, θd is the combustion duration in degrees about the 
crank angle, rcomb is the combustion efficiency, mfuel is the fuel injection quantity which can be found from the 
look-up table of the engine fuel injection map, LHV is the lower heating value of the fuel, normally 43.9MJ/kg 
for petrol. 

According to the thermodynamic relations among the pressure, chamber volume and heat release in the 
combustion process, the combustion pressure Pcomb can be calculated step-by-step with finite angle increase: 

1 ( 1) ( ) ( )( ) ( ) ( )
( ) 1comb comb

V VP Q P
V
γ γ θ γ θ θθ θ θ θ
θ γ

 − + − + ∆
+ ∆ = + − 

                                (13) 

The models were built in Simulink. As mentioned before, the loop of kinematic/kinetic model and lubrication 
model were iteratively solved step by step. The numerical integration in the kinematic/kinetic model was 
carried out by the ode45 Dortmund-prince approach. Variable time step mode was applied in the simulation, 
and the range of the time step is from 1e-10 to 2e-7 seconds. All the output signals have the same sampling 
ratio at 200 kHz. The initial parameters for the kinematic/kinetic model are shown in Table 1. Based on the 
initial conditions, the locations of the bearing centre and the journal centre in XY global frame were calculated 
first. Next the lubrication forces were calculated in the lubrication model and returned the next step input 
values to the kinematic/kinetic model, and then the simulation loop continued.  

Table 1: Initial parameters of the kinematic/kinetic model 

 

By changing the external load (as shown in Eq. (2)) and adjusting the clearance, the impact forces with different 
degrees of bearing knock at different operating conditions were simulated. As the analysis in Section 2.2, two 
forces in X and Y directions were obtained from the simulation, next their spectra were respectively multiplied 
by the corresponding measured Frequency Response Functions (FRFs) to get the impulse responses in the 
frequency domain. Afterwards, the simulated time series accelerations were obtained by inverse Fourier 
transform. During the FRF measurements, in accordance with Maxwell's theory of reciprocity, an hammer 
excitation force was applied to the measurement point on the engine block surface (acc 5 in Figure 3) and the 
acceleration was picked up on the crank journal in X and Y direction separately. After the FRFs from the big-
end bearings in different cylinders to the location of acc5 measurement point were measured, the vibration 
signals due to the faults happening in different cylinders can be simulated as well. 

3.2 Comparison of experiment and simulation 
Since the target of the simulations here is to produce the decent accurate envelope signals rather than the raw 
acceleration vibration signals, the envelope signals of the simulated vibration were further calculated. Similar 
to the experiment results, it was found that amplitude in normal bearing clearance condition is quite small 
compared to that with 1st stage faults, so detecting the faults from normal clearance conditions should not be 
difficult based on the simulated data. The simulated squared envelopes with two stages of bearing knock faults 

Paramters Value Unit
Initial displacement of the piston 0.177997 m
Initial velocity of the piston 0 m/s
Initial angular displacement of the connecting rod pi rad
Initial angular velocity of the connecting rod -100.3/-66.9/-49.7 rad/s
Initial angular displacement of the crank 0 rad
Initial angular velocity velocity of the crank 315/210/156 rad/s



are shown in Figures 10 and 11. It can be seen that even through the peak value of the simulated amplitude 
with the 2nd stage bearing knock fault is smaller than that of the experiment, but the change ratios of the peak 
values (about 10 times each stage) from the 1st stage to the 2nd stage are adequate for the fault detection and 
the severity identification.  

 

 

Figure 10. Experimental and simulated squared envelope signals with the 1st stage fault at 3000rpm/50Nm 
 

 

 
Figure 11. Experimental and simulated squared envelope signals with the 2nd stage fault at 3000rpm/50Nm 
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As demonstrated by our former works in Refs. [20, 21], the amplitudes of the Fourier coefficients of the 
squared envelope signals were potential features to detect the bearing knock faults and also identify the severity 
level of the faults, and the phases of the Fourier coefficients were potential features to localize the faults in 
which cylinder. Therefore, separate neural networks were developed for the three phases of the diagnosis 
problem. The first phase is the bearing knock fault detection phase and the inputs of the networks are the 
selected amplitude features. The second phase is bearing knock fault localization phase and the inputs of the 
network are the selected phase features. Based on the detection and location results, the third phase network 
uses the selected amplitude features as inputs to identify the severity of the bearing knock faults. The success 
of the application of ANNs to the diagnostic problems also depends on which vectors are selected as the inputs 
to the networks. Due to the complication of vibration signal characteristics, the selection of best features from 
the processed signals is not straightforward for the bearing knock fault diagnosis; therefore an advanced 
selection technique needs to be used for the feature selection, especially for the selection of amplitude features. 

5.1 Amplitude feature selection 
There are two common advanced feature selection categories, one is filter-based methods and the other is 
wrapper methods. Filter based methods generally employ some quality criterion to score individual feature 
and provide a ranking (for example, the p-value of a t-test comparing two populations of interest with regard 
to the expression levels of the gene in the populations), and then based on this ranking order, subset of genes 
can be selected, normally manually setting a threshold. Wrapper methods use the inductive algorithm to 
evaluate the value of a given subset as a group, rather than individually [22]. Filter based methods requires 
less computing cost than wrapper methods, but the wrapper methods can qualify the important interactions 
among the features and can avoid the selection of redundant (highly-correlated) features. GA based feature 
selection is one of the typical wrapper methods. There should be some relevance among the candidate 
amplitude features for the bearing knock fault diagnosis. If highly-correlated amplitude features are selected 
together, the selected subset gives a poor representation of the entire feature set. Therefore, it is necessary to 
use GA based wrapper method [23] to find the best amplitude feature of mutually maximal dissimilarity, so as 
to increase the accuracy of the intelligent diagnosis system for the bearing knock faults. 

In the GA approach, the solutions are encoded as a chromosome, where the individual candidate feature is 
coded as an individual binary digit (1/0). After a series of iterative computations on the chromosomes, the 
optimal solution is obtained. Two main operators can be used in the computation process: one is crossover and 
the other is mutation. Crossover is the basic operator for generating new chromosomes and it is a recombination 
process. In the process, new offspring are created, which share some common parts of both parents’ genetic 
material. In addition, mutation is a background operator and acts as a safety net to recover good genetic material 
that may be lost through the action of selection and crossover [24]. The detail of GA can be found in [22, 24]. 

 
There are many new developments in the past twenty years, and a Mutual Information based GA approach [23] 
was used here to select the optimal features for the fault diagnosis. The fitness function of the GA algorithm 
is based on Max-Relevance and Min-Redundancy [24]. The maximum relevance condition is maximal H(Y/xi):   

1( / ) ( , )
i

i i
x N

H Y x I Y x
N ∈

= ∑                                                               (14) 

                                                                       
In the cases of bearing knock faults, the Y is the detection target and the xi are the amplitude features. The 
minimum redundancy condition is minimal H(xi/xj):      
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where N is the selected or desired feature subset, |N| is the number of features in the subset, I is the mutual 
information of two variables m and n:  
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where p(m, n) is the joint probabilistic distribution of m and n. p(m) and p(n) are marginal probabilities 
respectively.  



 
The feature selection for the diagnostics of faults is a combinatorial optimization problem with the constraint 
that the feature index cannot repeat, and the introduction of a mutation operator will make the implementing 
of this constraint very difficult, so only the crossover operator was used. Based on the evaluation results of the 
fitness function (Max-Relevance and Min-Redundancy), the algorithm organizes the individual feature by its 
fitness values. During the crossover, each individual has a probability of reproduction that is given by its fitness 
value and more adapted individuals have more probability of participation. In order to take the individual 
fitness values into account, a random variable xn (on which the selection criterion of crossover is based) was 
given by:  
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−
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where a is a positive and arbitrary constant and x ϵ [0, 1] is a random variable with uniform distribution. The 
detail of the probability of reproduction of the algorithm can be obtained in [26]. Meanwhile if elite operators 
were applied, the best result of the current generation would be saved in the next generation and the training 
curve becomes monotonically descending, without oscillations. The amplitudes of the first forty harmonics of 
the processed envelope signals were considered as the candidate features for the fault detection and severity 
identification. In total, we had 37 real experimental cases, including 10 cases with different bearing knock 
faults and 27 cases with normal bearing clearance. The GA code is based on the program developed by the 
first author of Ref. [23, 26], the inputs of the program are the desired number N (in Eqs.(14, 15)) of selected 
features (we set it as 10), a matrix X, in which each column is a feature vector example (so a 37×40 matrix for 
the bearing knock fault diagnosis), and its respective target data y, which is a row vector (37 row in bearing 
knock fault diagnosis). The output vector represents of the indexes of the selected features that composes the 
optimum feature set. The elite value was set as 1. The maximal generation was set to 100. Finally, the best ten 
amplitude features were selected by the GA as the inputs of the MLPs of the intelligent diagnosis system, and 
they are: 2, 29, 14, 34, 16, 17, 9, 20, 8 and 18.   
 

5.2 Phase feature selection 
Based on the processed experimental data, when the bearing knock faults happen in a certain cylinder in 
different speed/load conditions, if the phases of the nth harmonic of the most cases are clustered, it implies 
that the phase of this harmonic is a potential feature for localizing the faults. Specifically, if the phases of the 
1st harmonic of all cases are clustered, or near fixed, it means that there will be 90 degree difference for the 
faults in individual cylinders (60 degree difference for a six cylinder engine); therefore the fault localization 
can be directly and solely identified by the phases of the 1st harmonic. Moreover, if a fault occurs in the cylinder 
1 or cylinder 3, the phase difference of the 1st harmonic is 90 degrees, and the phase difference of the 2nd 
harmonic is 180 degrees (90×2), so using the clustered phases of the 2nd harmonic can differentiate the faults 
in cylinder 1 from those in cylinder 3. On the other hand, if a fault occurs in cylinder 1 or cylinder 4, the phase 
difference of the 1st harmonic is 180 degrees, and the phase difference of the 2nd harmonic is 360 degrees 
(180×2), so using the clustered phases of the 2nd harmonic cannot differentiate the faults in cylinder 1 from 
those in cylinder 4. Ideally, the phase difference of the 2nd harmonic can only identify the location of the fault 
in 50% of cases. Note that the 4th harmonic represents the firing frequency, so the phases of the 4th harmonic 
and the (4*n)th harmonics are useless to identify which cylinder has bearing knock faults. The phases of the 
first twenty harmonics of all experimental bearing knock fault cases are shown in Figure 12. It was found that 
the phases of higher harmonics are more scattered. So the conclusion is that the best phase features should be 
selected from the first ten harmonics rather than higher harmonics. It was also found that the phases of the 1st 
harmonic are near fixed, and the phases of the 2nd and 5th harmonics can also be added into the selected phase 
feature vector to make the fault severity identification more robust. 
 



 

Figure 12. Phase distribution of the first twenty harmonics of bearing knock faults  
 

 

5.3 ANN-based system 
In each simulation, we simulated each bearing knock fault in each cylinder, at each load (50Nm, 80Nm, 110Nm 
at 3000rpm). The signals (with normal or oversize clearance) from the simulation model are deterministic, but 
the measurement signals in reality always have some deviations; in particular the transfer function from the 
bearing knock impact point to the measurement point may vary a little with operating condition (as shown in 
Figure 3, the measurement point is not very close to the big end bearing of cylinder 2, and the vibration is 
prone to contamination from other combustion and mechanical noises). Therefore, variations in the simulated 
signals were instituted to create representative cases for the ANN training. The standard deviation of the 
variations was set by analysing the normal conditions from experiment and was applied to the simulated 
enveloped signals. Two MLP networks were applied for the fault detection (MLP1) and fault severity 
identification (MLP2). A PNN was used to classify the locations of the faults. Because the outputs of the PNN 
can be any integer number, such as 1, 2, 3 and 4, so they can directly correspond to the number of the cylinder 
in which a fault happened. Both MLP and PNN are the typical feed-forward neural networks. In the feed-
forward network, the artificial neurons are arranged in a layered configuration containing an input layer, 
usually one “hidden” layer, and an output layer. Neurons in the input layer introduce normalized or filtered 
values of each input into the network. Neurons in the hidden and output layers are connected to all of the 
neurons in the preceding layer. That activation signal then is passed through a transfer function to generate an 
output signal which is sent to processing neurons in the next layer. The configuration of the intelligent 
diagnosis system is shown in Figure 13. 
 

Amplitude   Phase Amplitude

MLP1 MLP2PNN1

Detection Localization Severity

MLP-Multi-layer Perceptrons (output 0-1)
PNN-Probabilistic Neural Networks (output 1 or 2 or 3…)

 
Figure 13. Structure of the three-stage ANN system 
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The configurations of two MLPs are similar, both have three layers: input, hidden and output. But the transfer 
functions of two MLPs are different. A log sigmoid function was used as the transfer function of MLP1, 
because it can efficiently classify all cases into two groups (converging to two boundary conditions); 0 for 
normal condition and 1 for bearing knock fault. In contrast to our former works [12], the saturating linear 
function, rather than nonlinear log sigmoid function, was introduced into MLP2 as its transfer function. The 
diagram of MLP2 is shown in Figure 14. The number of neurons in hidden layer was determined using a trial 
and error procedure (that shown in Figure 14 has 30 hidden neurons). Iw and b are respectively the weight and 
bias factors distributed to the individual elements of the input feature vectors. During the training stage, MLPs 
were led to a specific target output by adjusting the values of the weights and bias among the elements of the 
input vectors. This saturating linear function is linear in the interval (-1,+1) and saturates outside this interval 
to -1 or +1, returning the value of x spread over the range 0 to 1. Thus the output of MLP2 can be any value 
linearly distributed from 0 to 1, for instance, 0.5 represents two-times normal clearance, 1 for four-time normal 
clearance and 0.75 for three-time normal clearance. Therefore, the output results for severity identification are 
more logically in agreement with the real situation. If the clearance could be larger than the largest value tested 
(in this case 4 times) the range of linear distribution could be extended to the largest allowable value.   
 

Iw1

b1
+

Iw2

b2
+

Input Hidden Layer Output Layer

30 1  

Figure 14. The diagram of the MLP2 
 
MLP1 was trained purely by using the 120 simulated cases, and the case distribution is, 72 training cases with 
different bearing knock faults (12 cases for each severity level at each load condition, 18 cases for each cylinder) 
and 48 training cases with normal bearing clearance (16 cases for each load condition). MLP1 was tested by 
37 real experimental cases, which includes 10 cases (case number from 1 to 10) with different bearing knock 
faults (including all three load conditions) and 27 cases (case number from 11 to 37) with normal bearing 
clearance. It is worth noting that the cases 32 to 37 are with oversize piston-cylinder wall clearance faults 
(piston slap faults). The MLP1 output results are shown in Figure 15. Particularly, the output of case 37 is 
0.3034, but if the detection threshold is defined as 0.5, the MLP1 successfully classified the bearing knock 
fault cases from the noise contamination from other mechanical faults. Therefore we can get a conclusion that 
MLP1 100% accurately detected the bearing knock faults. 

 

Figure 15. Output of MLP1 for fault detection 
 

Because the fault cases have been selected by MLP1, the number of the training cases for the PNN were 
reduced to 72. 10 real experimental cases (all are in cylinder 2) were inputted the PNN for the test purpose. 
The test results show that all the output values from PNN are 2 (the cylinder number), therefore we can 
conclude that the PNN 100% correctly identified the location of the bearing knock faults. As mentioned before, 
in the MLP2, the output value of 0.5 means the 1st stage oversize bearing clearance faults and the output value 
1 means the 2nd stage oversize bearing clearance faults. The final outputs of MLP2 is shown in Figure 16. 
Specially, we introduced an error value here to evaluate the performance of MLP2,  
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where ANN denotes the output values from the MLP2 and VAL denotes the corresponding target values, I is 
the number of test cases. A lower fitness criterion means better MLP performance. Meanwhile, the values of 
fitness criterion also provides a guide for the trial and error process about the number of hidden neurons. It can 
be seen that the MLP2 also obtained good results for the fault severity identification. Moreover, due to the new 
saturating linear transfer function design, the MLP2 in this paper (error value 0.193) has better performance to 
identify the severity level in comparison with the MLP2) with log sigmoid transfer function (the error value 
(0.244) in reference [13].  

 
Figure 16. Output of MLP2 for fault severity identification 

 
6. Conclusion 
This paper built a model based intelligent diagnosis system for the bearing knock faults in IC engine, and the 
ANNs were used to implement the automated diagnosis. Based on the analysis on the experiment data from 
the engine test rig, it was found that the squared envelope signals, rather than the raw vibration signals, have 
useful information for the big-end bearing fault diagnosis. Therefore, based on existing modelling research, a 
proper modelling approach on the journal bearing with clearance and lubrication was selected to simulate 
different big end bearing knock faults and generate accurate squared envelope signals, and the abundant 
simulation data solved the issue of adequate data requirement of the ANNs’ training. Meanwhile, as the 
important inputs of the simulation model, the inertia properties of the relevant engine components were also 
measured and calculated by some measurement techniques. The optimal amplitude features were extracted and 
selected (by the advanced algorithms) as the inputs of the detection stage and severity identification stage, and 
selected phase features were used to localize which cylinder had a fault. The results have demonstrated that 
the developed system could efficiently diagnose different bearing knock faults, and in particular could 
accurately identify the severity levels of the faults. Moreover, because the simulation models are based on the 
thermodynamic, dynamic and hydrodynamic principles of IC engines, the proposed intelligent diagnostic 
system can in principle be applied to any IC engine. 
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