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Abstract—With a large number of video surveillance
systems installed for the requirement from industrial se-
curity, the task of object tracking, which aims to locate
objects of interest in videos, is very important. Although
numerous tracking algorithms for RGB videos have been
developed in the decade, the tracking performance and
robustness of these systems may be degraded dramatically
when the information from RGB video is unreliable (e.g.
poor illumination conditions or very low resolution). To
address this issue, this paper presents a new tracking
system which aims to combine the information from RGB
and infrared modalities for object tracking. The proposed
tracking systems is based on our proposed machine learn-
ing model. Particularly, the learning model can alleviate the
modality discrepancy issue under the proposed modality
consistency constraint from both representation patterns
and discriminability, and generate discriminative feature
templates for collaborative representations and discrimina-
tion in heterogeneous modalities. Experiments on a variety
of challenging RGB-infrared videos demonstrate the effec-
tiveness of the proposed algorithm.

Index Terms—Multimodal sensor fusion, tracking sys-
tem, video surveillance system.

I. INTRODUCTION

DEVELOPING an intelligent video analysis system is very
important for many industrial applications, such as bur-

glar alarms, entrance systems, transportation management, etc.
A key task of an intelligent video analysis system is to perform
motion perception of the objects of interest. To this end, devel-
oping a robust object tracking system for object localization
and moving status inference is very important. Visual tracking
still remains a challenging task due to many unpredictable
variations and poor environmental conditions such as severe
occlusion, large illumination changes, dim lighting, low image

This work was supported in part by Hong Kong Research Grants
Council RGC/HKBU12254316 and Hong Kong Baptist University Tier 1
Start-up Grant. The work of H. Zhou was supported by UK EPSRC un-
der Grant EP/N011074/1, Royal Society-Newton Advanced Fellowship
under Grant NA160342, and European Union’s Horizon 2020 research
and innovation program under the Marie-Sklodowska-Curie grant agree-
ment No. 720325. The work of B. Zhong was supported by the National
Natural Science Foundation of China under Grant 61572205.

X. Lan, M. Ye, R. Shao and P. C. Yuen are with the Department of
Computer Science, Hong Kong Baptist University, Hong Kong SAR, PR
China (e-mail: xiangyuanlan@life.hkbu.edu.hk; {mangye, ruishao,
pcyuen}@comp.hkbu.edu.hk).

B. Zhong is with School of Computer Science and
Technology, Huaqiao University, Xiamen 362100, China (e-
mail:bnzhong@hqu.edu.cn)

H. Zhou is with the Department of Informatics, University of Leicester,
Leicester LE1 7RH, U.K. (e-mail: hz143@leicester.ac.uk)

(a) (b) (c) (d)

Fig. 1. Illustration of some video frames from RGB and infrared
modalities. Top: RGB Bottom: infrared

resolution, etc. Efforts have been made in this field, and the
decade has witnessed numerous tracking algorithms proposed
to handle a variety of research issues [1]–[29]. However, most
of these tracking algorithms are developed for object tracking
in RGB videos, and they extract some visual features from
RGB video frames for appearance modeling of the tracked
object. When the information from RGB videos in not reliable
(e.g. under poor lighting conditions), these trackers may fail to
track the objects stably. This would limit them to be employed
in practical industrial systems (e.g. a video surveillance system
can be used for security monitoring in the night time).

With the increasingly economical and affordable cost of
multispectral sensors, equipping industrial systems with dual-
camera systems, which contain both thermal infrared and
visible, has become more and more popular. In addition, the
rapid development of multispectral imaging techniques make
it more effective to capture images or videos in RGB and
infrared modalities for many industrial applications. Different
from visible spectrum cameras, an infrared camera forms
images by capturing the infrared radiation of a subject instead
of using visible light. Therefore, they are more effective in
imaging under poor lighting conditions. However, when the
temperature of the background and the tracked objects are
similar (i.e. infrared radiations are similar), infrared images
may be of low quality and the RGB information may be more
effective. Therefore, to develop a robust tracking system for
practical industrial applications and perform effective object
tracking in challenging practical scenarios, combining infor-
mation from the RGB and infrared modalities for appearance
modeling of the tracked object is necessary.

Therefore, to effectively perform object tracking in RGB-
infrared modalities, a key problem is how to appropriately
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extract and combine reliable information from the RGB and in-
frared modalities. To solve this problem, there are two research
issues which should be addressed. First, the tracked object
usually encounters different appearance variations within each
modality such as large illumination changes and occlusion as
illustrated in Figures 1(a) and (d). These variations usually
contaminates the tracking samples, and constructing (updat-
ing) the tracking model using such contaminated samples
may degrade the tracking performance. Therefore, effectively
extracting informative features of both RGB and infrared
modalities from these potentially contaminated samples to
deal with the sample contamination issue, and exploiting
their complementary to handle appearance changes, is very
important for robust RGB-infrared tracking. Second, due to
the heterogeneity in multi-modality data, the visual properties
of RGB and infrared images are intrinsically different (e.g.
texture and color as shown in Figure 1). Such difference
may result in a gap between the statistical properties of the
features of these two modalities. Bridging the gap between
the heterogeneous modalities to address cross-modality dis-
crepancy issue, which means mining the consistency or corre-
lation between these modalities, is also essential for effective
modality fusion. While exploiting the modality consistency or
correlation is important, it has been shown that incorporating
modality specific characteristics can further improve the fusion
performance because of modality complementarity [30]–[33].

Several algorithms have been developed to perform RGB-
infrared tracking and show effectiveness in some scenarios.
However, most of them do not explicitly consider handling
either or both aforementioned issues, which may limit their
modality fusion performance. One type of approaches ex-
ploits some fusion techniques such as score-level fusion
(sum rule) [34], feature concatenation [35], tracking deci-
sion fusion [36] to combine information from RGB-infrared
modalities. These methods (e.g. the feature concatenation
method [35]) usually treat the RGB-infrared modalities as
homogeneous feature channels, and ignore their heterogeneous
characteristics. In addition, some of them regard these modal-
ities independently (e.g. combining the independent tracking
results in two separate modalities in [36]), which may not
well exploit the correlation or consistency between different
modalities for fusion. In general, such type of methods can
not well address the cross-modality discrepancy issue. Another
type of methods consider appearance modeling of RGB and
infrared modalities as different learning tasks and perform
tracking in the framework of multi-task learning such as multi-
task joint sparse representation [37], [38]. Through multi-task
learning, such kind of methods can exploit the correlation of
different learning tasks for RGB-infrared tracking to some
extent. However, these methods usually exploit some strong
constraints on fusion such as the joint sparsity constraint which
enforces all the representation patterns to be the same and the
modality-specific properties are not exploited in appearance
modeling.

To address the aforementioned issues, we develop a new
feature learning model for RGB-infrared object tracking. The
feature learning model aims to extract informative feature
templates of multiple modalities from potentially contaminated

tracking samples for appearance modeling. To address the
cross-modality discrepancy issue, the learned feature tem-
plates of the heterogeneous modalities are constrained to
achieve modality consistency in the following two aspects:
1) representation consistency, which means the representation
should have necessary consistency to preserve the sharable
modality invariant properties for enhancing the representation
ability [30]; and 2) discriminability consistency, which implies
that consistent discrimination decision should be reached by
the discriminators of multiple modalities [39] and this will
help to strengthen the discrimination power of the tracking
model. In addition, through a new soft regularization scheme
on modality consistency modeling, different from other ex-
isting methods such as [37], [38] which employ some strict
constraints to model the consistency only, the proposed model
can further exploit the specific properties in discriminability
and representation ability for appearance modeling. Moreover,
an optimization algorithm based on implicit differentiation
on fixed-point equations is derived, which ensures that the
representation ability and discriminability of the modality
fusion model can be jointly optimized.

In summary, the contributions of this work are listed as
follows:
• A RGB-infrared tracking system is developed for indus-

trial applications.
• A learning model is proposed to extract informative

feature templates and exploit the modality consistency
in discriminability and representation ability for modality
fusion based appearance modeling.

• An effective optimization algorithm is derived to learn
the feature template learning model.

The rest of this paper is organized as follows. In Section
II, we first review related works on RGB-Infrared object
tracking and sparse representation-based visual tracking. In
Section III, we present our proposed tracking models as well
as the corresponding learning algorithm. We describe the
implementation details in Section IV. Experimental analysis
and conclusion are given in Sections V and VI, respectively.

II. RELATED WORK

In this section, we first review related works in RGB-
infrared tracking. Then some sparse representation-based
trackers which are related to the methodologies exploited
in our proposed tracking system are also introduced. For a
more comprehensive summary of tracking methods, interested
readers can refer to [40]–[43].

A. RGB-Infrared Tracking

Various algorithms have been designed for RGB-infrared
object tracking. Bunyak et al. developed a level set based
RGB-infrared moving object segmentation and tracking frame-
work [44]. An algorithm for fusing the tracking results of
multiple spatiogram trackers on RGB and infrared modalities
was proposed in [36]. In [34], confidence maps from RGB and
infrared modalities were aggregated for pedestrian tracking by
using sum rule based on a probabilistic background model. To
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enhance the tracking robustness, several sparse representation-
based trackers are developed in which some fusion models
such as feature concatenation [35], group sparsity [37], low
rank regularization [45] were exploited for modality combi-
nation. However, these methods may fail to effectively and
jointly utilize the modality consistency and specificity.

B. Sparse Representation-Based Tracking
Sparse representation has been widely applied in many

computer vision tasks [46], such as image classification [47],
object recognition [48]. Inspired by the success in sparse
representation, Mei and Ling [49] proposed the `1 tracker
which exploits sparse representation via `1 minimization for
appearance modeling in tracking. The method in [49] shows
some effectiveness in dealing with appearance variations, such
as occlusion. Along this line, various tracking algorithms
based on sparse representation have been proposed [40]. To
more effectively handle the appearance variations especially
the local deformation and partial occlusion, local sparse ap-
pearance model is developed such as the local patch dynamical
graph learning [50], the structural sparse model [51]. Since
optimizing the sparse representation/coding models is usually
of high computational complexity, there are some developed
algorithms which also consider to enhance the computational
efficiency by reducing the feature dimension [52], constructing
circular shift matrices [53]. To capture the intrinsic characteris-
tics of the tracked object, several sparse representation-based
feature learning methods are developed based on dictionary
learning [54]–[56], subspace learning [20], [57], etc.. Since
exploiting one single feature extracted from the RGB modality
(e.g. gray intensity) may not be able to deal with complicat-
ed appearance changes, multiple sparse representation-based
tracking algorithms which fuse multiple features from one
single or multiple modalities have been developed such as the
multiple sparse representation model [6], [58], [59], the collab-
orative representation model [38], collaborative discriminative
learning [60]. Zhang et al. [61] developed the output constraint
transfer model for kernelized multiple channel correlation
filters. As mentioned, these methods focus on exploiting the
consistency or correlation among multiple features (modal-
ities), and the modality-specific characteristics are not well
utilized, which may limit their fusion performance.

III. PROPOSED METHOD

This section describes the novel aspects of the proposed
tracking system: 1) modality-consistency sparse representa-
tion framework, which is a general framework for learning
feature templates for sparse representation in RGB-infrared
modalities under the modality consistency constraint; and
2) discriminability-consistency constrained feature template
learning, which further imposes the constraint of the dis-
criminability consistency for feature template learning. Then
optimization algorithms for deriving the tracking model is
presented.

a) Modality-Consistency Sparse Representation Frame-
work: During the tracking process, the samples of the tracked
target are collected by the tracker itself for learning or updating

the tracking model. Let Y m
1 = [ym1 , . . . , y

m
n ] ∈ Rdm×N1 ,

m = 1, . . . ,M denote the target samples of the M -th modality
obtained by the tracker for model training, and N1 is the
number of the target samples in the training set, and M is
the number of the modality in the training samples (M = 2
in our rgb-infrared tracking system). Since the tracked target
would encounter some appearance variations during the track-
ing process, feature learning should be performed to capture
the intrinsic properties of the tracked target for appearance
modeling. Because of the limited training samples, large-
scale off-line trained deep models may not be appropriate.
Inspired by the success of sparse representation in computer
vision [46], one objective of the proposed learning model is
to exploit the correlation of different modalities and learn
multi-modal feature templates for sparse representation of the
tracked object. Let

Y m
1 = Dm

1 X
m
1 + Em

1 ,m = 1, . . . ,M (1)

where Dm
1 = [Dm

1(·,1), . . . , D
m
1(·,c)] ∈ Rdm×c are the

learned feature templates in the m-th modality, Xm =
[Xm

1 , . . . , X
m
c ] ∈ Rc×N1 are the corresponding reconstruc-

tion coefficient vectors for the tracking samples, and Em ∈
Rdm×N1 are the error matrix that may be caused by the
variations of the tracked object. Because the reconstruction
coefficients of different modalities can be regarded as the rep-
resentation patterns of different modalities and they are closely
related to the feature templates, to exploit the correlation
or consistency of different modalities and perform effective
fusion of different modalities during the learning process,
the modality-consistency constraint should be incorporated
into the feature template and sparse representation frame-
work, which implies that the consistency constraint should
be imposed on the reconstruction coefficient vectors Xm to
guide the multi-modal feature template learning. Then the
modality-consistency sparse representation framework can be
formulated as

min
{Xm

1 ,Dm
1 ,Em

1 }

1

2

M∑
m=1

‖Em1 ‖2F + λ1

M∑
m=1

‖Xm
1 ‖1 + λ2R({Xm

1 })

(2)
s.t. Y m1 = DmXm

1 + Em1 ,m = 1, . . . ,M

‖Dm
1(·,c)‖2 ≤ 1,m = 1, . . . ,M, c = 1, . . . , C

where the first term
∑M

m=1 ‖ · ‖2F aims to minimize the total
reconstruction error using the learned feature templates of the
multiple modalities, the second term

∑M
m=1 ‖·‖1 is the sparsity

regularization which can be utilized to select the informative
templates in different modalities for the reconstruction of the
tracked object, the third terms R({Wm}) is the regularizer
which is incorporated to characterize the consistency of dif-
ferent modalities, Dm

1(·,c) denote the c-th column (template) of
Dm

1 and the inequality provides the unit `2 norm constraint .
To bridge the gap between the heterogeneous modalities

for effective modality fusion and characterize the consistency
over the representations of different modalities, the regularizer
in (2) should be able to mine the similarity among different
modalities. A straightforward approach to enforce the sim-
ilarity between different modalities is simply to make all
the representation pattern the same. However,this approach
ignores the specificities which exist in different heterogeneous
modalities, which means the complementary advantages of
different modality representations cannot be well exploited.
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Instead of using such kind of strict constraints, the regularizer
in (2) can be defined as

R({Xm
1 }) =

M∑
m=1

N1∑
n=1

‖xmn − x0n‖22 (3)

where x0n is the consensus representation of different modal-
ities for the n-th sample, which captures the consistency in
the representations of different modalities. By minimizing the
regularization term, the representation Wm will be constrained
to be close to W 0, which makes the representations of
different modalities Wm,m = 1, . . . ,M similar to each other.
The constraint on the representations of different modalities
also guide the learning of the representation-consistency multi-
modal feature templates.

b) Discriminability-Consistency Constrained Feature
Template Learning: Although the modality-consistency
feature template learning framework is able to learn feature
templates which capture the consistency between different
modalities, it cannot guarantee the strong discriminability
of the learned templates for foreground and background
separation, which means the appearance model with
learned multi-modal feature templates may suffer the
loss of robustness under the cluttered background.
Therefore, discriminability regularization should be
considered in the feature template learning model. Let
Xm = [Xm

1 , X
m
2 ] = [xm1 , . . . , x

m
N ] ∈ Rdm×N be the training

samples which consists of the m−th modality of the tracked
target samples Xm

1 ∈ Rdm×N1 and the background samples
Xm

2 ∈ Rdm×N2 where N = N1 + N2, L = [L1, . . . , LN ] be
the zero-one label matrix where Ln = [1, 0]T (Ln = [1, 0]T )
means the n−th samples is the foreground (background),
Dm. To ensure the consistency in the discriminability level,
inspired by the label-consistent dictionary learning [62], we
incorporate the discriminability-consistency constraint into
the sparsity-based multi-modal feature template learning
framework:

min
{Wm,Dm}

M∑
m=1

`(Dm,Wm;Xm, L,Q) +
λ3

2

M∑
m=1

‖Wm‖2F (4)

where `(Dm,Wm;Xm, L,Q) =

α1

2

M∑
m=1

‖WmXm − L‖2F +
α2

2

M∑
m=1

‖Xm −Q‖2F , (5)

‖WmXm−L‖2F measures the prediction loss using the linear
classifier of modality M on the training samples, ‖Xm−Q‖2F
measure the discrimination of the sparse representation, Q =
[Q1, . . . , QN ] ∈ RC×N is the zero-one matrix, Qn,k = 1
means the sample xmn ,m = 1, . . . ,M belongs to the same
class with the k-th feature template, and Qn,k = 0 means the
sample xmn ,m = 1, . . . ,M belongs to the different class with
the k-th feature template. We can see the objective function
in (4) imposes the discriminability-consistency regularization
from two perspectives. First, the first term introduces the
constraint that the discrimination results (i.e. output of clas-
sifiers) of different modalities should be consistent. Second,
the second term enforces that the target sample can be only
well represented by the feature templates of the target class,

which means the indexes of the non-zero elements of the
sparse representation of the target samples and the background
samples are different and the ones of different modalities of the
same samples should be consistent. This constraint ensures that
the feature patterns of the target samples and the background
samples can be easily saperated and the feature patterns of
different modalities of the same sample should be similar,
which implicitly enhance the discriminability of the tracking
model and impose the discriminability consistency regularizer.

c) Putting them all together: Based on the aforemen-
tioned analysis, the tracking model can be formulated into the
following modality-consistent feature template framework:

min
{Wm,Dm}

M∑
m=1

α1

2
‖WmXm − L‖2F +

α2

2
‖Xm −Q‖2F +

λ3

2
‖Wm‖2F

(6)

s.t. {Xm, X0, Em} = arg min
{Xm,X0,Em}

F(Xm, X0, Em)

Y m = DmXm + Em

‖Dm
(·,c)‖2 ≤ 1

m = 1, . . . ,M, c = 1, . . . , C

where

F(Xm, X0, Em) =

1
2

M∑
m=1

‖Em‖2F + λ1

M∑
m=1

‖Xm‖1

+λ2

M∑
m=1

N∑
n=1

‖xmn − x0n‖22
(7)

The learning framework performs the sparse representation
and feature template learning under the constraint of modality
consistency. The optimization algorithm for solving (6) will
be presented in Section III(d).

d) Optimization: To reduce the number of the optimal
variables for more efficient optimization, we transform the
problem into

min
{Wm,Dm}

M∑
m=1

α1

2
‖WmXm − L‖2F +

α2

2
‖Xm −Q‖2F +

λ3

2
‖Wm‖2F

(8)

s.t. {Xm} = arg min
{Xm}

1
2

M∑
m=1

‖Y m −DmXm‖2F + λ1

M∑
m=1

‖Xm‖1

+λ2
2

M∑
m=1

‖Xm − 1
M

M∑
k=1

Xk‖22

‖Dm
(·,c)‖2 ≤ 1,m = 1, . . . ,M, c = 1, . . . , C

where the solution X0 = 1
M

M∑
k=1

Xk can be obtained by taking

the derivative of (6) with respect to X0 and setting it to be
zero. Since all the tracking samples cannot be obtained at the
same time, we adopt stochastic gradient decent to optimize
(8). Let ym ∈ Rdm

,m = 1, . . . ,M denote a sample of multi-
modalities for gradient computation, xm ∈ RC ,m = 1, . . . ,M
be the sparse coefficients, l is the label vector of the sample,
and q is the target sparse coefficients. The main difficulty in
the gradient computation is how to obtain the gradients of
xm with respect to D because D is not explicitly defined
in the discriminability regularization (4) but it is related to
xm in the sparse representation model in (8). To address
this issue, implicit differentiation with the chain rule is ex-
ploited to derive the gradient indirectly. For the simplicity
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of derivation and presentation, we define new variables Y ′,
D′, X ′, W ′, and L′, where Y ′ = [(y1)T , . . . , (yM )T ]T ,
X ′ = [(x1)T , . . . , (xM )T ]T , L′ = [lT , . . . , lT ]T ∈ R2·M ,
Q′ = [qT , . . . , qT ]T and

D′ =

 D1 0 0

0
. . . 0

0 0 DM

 ,W ′ =

 W 1 0 0

0
. . . 0

0 0 WM

 .
Then by taking the gradient of the objective function of the
sparse representation step shown in (8) and setting it to be
zero, the following equation can be obtained.

(D′)T
(
D′X ′ − Y ′

)
+AX ′ = −sign(X ′) (9)

where

A =


M−1
M IC − 1

M IC . . . − 1
M IC

− 1
M IC

. . .
...

...
. . .

...
− 1

M IC . . . . . . M−1
M IC

 ∈ R(C·M)×(C·M)

and IC ∈ RC×C is an identity matrix. By applying the strategy
of implicit differentiation on (16), the differential of X ′ with
respect to Dm

(i,j) can be derived as ∂X′

∂Dm
(i,j)

=

[
(D′)T (D′) +A

]−1 [
(Em(i,j))

T (Y ′ −D′X ′)− (D′)TEm(i,j)X
′
]

(10)

where Em
(i,j) ∈ R

M∑
k=1

dk+C·M
is a matrix with zero elements

except the element in the (
∑m−1

k=1 d
k+i)-th row and the [(m−

1)C+j]-th column is 1. Then the derivative of `(·) with respect
to Dm

(i,j) can be computed by using the chain rule

∂l

∂Dm
(i,j)

=
∂l

∂X ′
∂X ′

∂Dm
(i,j)

(11)

where ∂l
∂X′ =

(
α1[(X ′)T (W ′)T (W ′)− (L′)TW ′]

+α2[(X ′)T − (Q′)T ]

)
. The

derivative of l with respect to Wm is

∂l

∂Wm
= α1((x

m)(xm)T (Wm)T − (xm)lT ) + λ3W
m (12)

Based on these derivatives based on one training sample,
stochastic gradient can be exploited to update the optimal
variables iteratively. We adopt the learning rate updating
scheme in [63] which sets it to be min(τ, τT/(10t)) where
t means the gradient decent is performed in the t-th iteration
and T is the total number of iterations. As noted in [63],
the convergence of the stochastic gradient decent algorithm to
the stationary point can be achieved under some assumptions,
and the learning rate should be well tuned to achieve a better
performance. Under our setting, the learning rate will keep
fixed in the first T

10 iterations, and then descrease in the 1
t

annealing strategy, which avoids the case where the learning
rate descrease too quickly. In each iteration, we permute the
training samples and compute the gradient based on each
sample to update the parameters iteratively which are shown
as follows:
{xm}-sparse learning subproblem: With fixed {Dm}, given
the randomly drawn training sample of multiple modalities
ym,m = 1, . . . ,M , their sparse presentations of multiple

modalities can be obtained by solving the following sparse
learning problem:

min
{xm}

1
2

M∑
m=1

‖ym −Dmxm‖2F + λ1

M∑
m=1

‖xm‖1

+λ2
2

M∑
m=1

‖xm − 1
M

M∑
k=1

xk‖22
(13)

The objective function consists of smooth components
(quadratic terms) and non-smooth one (`1 norm regulariza-
tion). The Accelerated Proximal Gradient Method [64] can be
adopted to solve the problem.
{Dm,Wm}-subproblem: Before performing gradient de-
ceent, the learning rate τ can be updated by τ t =
min(τ t−1, τ t−1T/(10t)). Then with fixed {xm}, {Dm} and
{xm} can be updated as follows:

Dm = Dm − τ t( ∂l

∂Dm
)T (14)

Dm
c =

Dm
c

‖Dm
c ‖2

, for c = 1, . . . , C

Wm =Wm − τ t( ∂l

∂Wm
)T

where ∂l
∂Dm = ( ∂l

∂Dm
(i,j)

)dm×C .

IV. IMPLEMENTATION DETAILS

This section mainly introduces the key implementation
details of the proposed multi-modal tracker.

A. Initialization
In the initial frame, we randomly sample N0 target and

background samples of RGB-infrared modalities and then ex-
tract the feature descriptors of each sample, which are denoted
as Y m. For each modality, we adopt K-SVD [65] to initialize
the feature templates for target samples and background sam-
ples, which are denoted as Dm

F and Dm
B respectively. With

the intialed feature temlpates Dm
0 = [Dm

F , D
m
B ], the sparse

coefficiets Xm can be estimated. Then the classifiers for each
modality can be estimated as Wm = arg minW ‖WXm −
L‖2F +λ3‖W‖2F . The tracker randomly samples 200 examples
which is close to the ground truth in the first frame as positive
samples, and 200 examples which do not overlap with the
ground truth bounding box as negative samples. For using the
K-SVD algorithm in initializing feature templates, following
the setting in [54], the number of templates in the target
dictionary and the background dictionary are both set to 200.
In each iteration, the L1-regularized least square problem is
solved to obtain the sparse codes in which the parameter
associated with the L1-regularization is set to 0.5. There are
totally 5 iterations used in the K-SVD algorithm.

B. Particle Filtering for Target Position Decision
The tracking algorithm is implemented in the particle fil-

tering framework. Within this framework, we estiminate the
tracking results at Frame t by maximizing a posteriori:

h̃t = argmax
hi
t

p(hit|Zt) (15)

where Zt = {zj |j = 1, . . . , t} denote the set of observation
variables up to Frame t, zj is the observation variable at Frame
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j, and hit is the state variable of the i-th particle at Frame t.
The objective is that we want to approximate the true posterior
by a set of particles with different states hit, and the posterior
probability p(hit|Zt) is recursively computed as

p(ht|ZT ) ∝ p(zt|ht)
∫
p(ht|ht−1)p(ht−1|Zt−1)dht−1 (16)

where p(ht|ht−1) and p(zt|ht) denote the motion model
and the observation model. The motion state is defined as
ht = [b1, b2, b3, b4, b5, b6] which encodes the horizontal and
vertical translation, scale, rotation angle, skew and aspect ratio
respectively, and the motion model is define as p(ht|ht−1) =
N(ht−1,Γ) where Γ is a 6-by-6 diagonal matrix. With the
learned feature templates, given a target candidate sample,
the sparse coefficients can be obtained by solving (2). Then
based on the learned feature templates and the classifiers, the
observation likelihood function can be defined as

p(ot|st) ∝ exp

(
−

M∑
m=1

(‖zmtr −Dmxm‖22 + ρ‖[1, 0]T −Wmxm‖22)

)
(17)

where zmtr is the weighted average feature of the samples
of the m-th modality in the sample pool, xm is the sparse
coefficient of the sample of the m-th modality, h is the
label vector which represents the target label. Since a good
target candidate should be well represented by the learned
feature templates and have high confidence to be the positive
class [1, 0]T , we use the joint decision measurement based on
the reconstruction error using the feature templates and the
classification accuracy of multiple modalities to decide the
target position. Such joint decision measurement exploits the
representation ability and the discriminability of the learned
feature templates.

To obtain the weighted average feature of the samples of the
m-th modality, the proposed tracker maintains a sample pool
which contains a fixed number P of the features of tracked
samples in RGB-infrared modalities, which are denoted as
{zkp}, k = 1, . . . ,M, p = 1, . . . , P . When the features of
the most recent tracking results in multiple modalities are
added into the sample pool, the samples captured from the
older frames will be removed. This strategy will maintain the
adaptivity of the tracking model. In the sample pool, each
sample is associated with a weight ωp, p = 1, . . . , P which is
set to be the value of the observation likelihood in (17). Before
computing the weighted average feature zmtr , the sample weight
is normalized as ω′p =

ωp∑P
p=1 ωp

.

V. EXPERIMENTS

This section first describes the experimental setting, and
then provides the analysis of the experimental results.

A. Experimental Setting
Fifteen RGB-infrared video pairs which are captured by

visible and thermal sensors are adopted for experimental evalu-
ation. These videos cover some challenging scenarios, such as
occlusion, poor lighting condition, and large scale variations.
To perform more effective modality fusion, these videos are
well aligned and registered, which means the track target
in the RGB and infrared modalities almost share the same

location in each frame.Ten methods are used for comparison,
which includes STRUCK [66], STC [67], CT [68], MIL [69],
RPT [70], MEEM [71], KCF [72], CN [73], `1 [35], and
JSR [37] method. Among these method, expect the `1 and
the JSR methods which are proposed for RGB-infrared object
tracking, all the other methods are originally designed for
RGB single modality tracking. Following the setting in [38],
we exploit the multi-modality version of these methods by
concatenating the features of the RGB and infrared modalities
as the input of these trackers. Some results of these methods
can be obtained from [38]. The parameters λ1, λ2, λ3, α1, and
α2 are set to 0.5, 10−6, 10−6, 0.4, 0.6, and the learning rate
is initialized as 0.2. In each frame, given the image patches
of the tracking results or the training samples, we extract the
HOG features from both RGB and infrared modalities [74] as
representation.

B. Experimental Results

Two metrics are adopted to quantitatively measure the
tracking accuracy. They are overlapping rate and success rate.
The overlapping rate is defined as area(S1

⋂
S2)

area(S1
⋃

S2)
where S1 and

S2 are the bounding box of the tracker and the groundtruth.
The tracking in each frame is considered to be performed
successfully if the overlapping rate is greater than 0.5. Then
the success rate is defined as the percentage of video frames
in which a tracking success is achieved. Tables I and II
show the overlapping rate and the success rate of all the
compared trackers in the fifteen videos. We can see that
the proposed tracker ranks in top two on fourteen videos in
terms of success rate and overlapping rate. Compared with
other trackers, our proposed tracker is more robust under
some challenging scenarios such as occlusion (e.g. OccCar-1),
thermal crossover (e.g. Cycling), scale changes (e.g. BusScale)
which are illustrated in Fig.2. Specially, compared with other
multi-modal trackers such as the JSR method and the l1 tracker
which also exploit the consistency in the multi-modal repre-
sentation, our proposed method further exploit the consistency
in discriminability level, which facilitate the discrimination be-
tween the tracked object and the background. Similar to these
dictionary learning-based tracking algorithms [75]–[77] which
shows learning features under sparsity constraint can be more
effective to deal with appearance variations such as occlusion,
the proposed algorithm can learn some feature templates under
the sparsity constraint which are not contaminated by some
external variations such as partial occlusion. When the tracker
encounters the variation of thermal crossover, the fusion of
RGB and infrared information make the tracker less sensitive
to such kind of variation because only the infrared modality
is affected by thermal crossover but the RGB information are
still reliable. On the contrary, when there is large illumination
changes or it is in low illumination conditions which make the
RGB modality not reliable, fusing the infrared modality will
enhance the robustness of the proposed tracker to different
variations, and thus will perform much better than the one
only use RGB information.

Fig. 3 show the frame-by-frame quantitative comparison
in terms of overlapping rate. We can see that the proposed
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Fig. 2. Qualitative results on some frames of video in RGB and infrared modality with some challenging factors, such as occlusion (e.g. OccCar-
1),Thermal crossover (e.g. Cycling), scale changes (e.g. BusScale), low illumination (e.g. CarNig, FastMotorNig). For each sub-figure, images of
RGB modality are shown in the top row while images of infrared modality are shown in the bottom row.

(a) Cycling (b) FastMotor (c) Minibus (d) RainyCar1

(e) CarNig (f) BusScale (g) Minibus1 (h) MinibusNig

STUCK STC CT MIL RPT MEEM KCF CN L1 JSR Proposed method

Fig. 3. Quantitative comparison of 11 trackers on 8 challenging videos in terms of overlapping rate. The horizontal axis is the frame index and the
vertical axis indicates the overlapping rate.
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TABLE I
OVERLAPPING RATE. THE BEST THREE RESULTS ARE SHOWN IN RED, BLUE AND GREEN.

STRUCK STC CT MIL RPT MEEM KCF CN L1 JSR Proposed Method

BlackCar 0.24 0.31 0.21 0.22 0.33 0.23 0.21 0.24 0.64 0.23 0.52
BlueCar 0.37 0.27 0.34 0.4 0.65 0.47 0.4 0.4 0.63 0.4 0.63
BusScale 0.47 0.45 0.46 0.49 0.57 0.52 0.51 0.51 0.72 0.54 0.73

Exposure2 0.32 0.37 0.31 0.32 0.48 0.3 0.32 0.32 0.82 0.35 0.58
MinibusNig 0.54 0.55 0.54 0.55 0.68 0.55 0.57 0.59 0.74 0.33 0.73

FastMotorNig 0.51 0.54 0.41 0.55 0.43 0.57 0.35 0.37 0.08 0.48 0.6
Motorbike 0.31 0.31 0.31 0.31 0.31 0.3 0.31 0.31 0.5 0.3 0.53

CarNig 0.25 0.21 0.2 0.18 0.36 0.19 0.16 0.25 0.35 0.2 0.5
Cycling 0.62 0.47 0.51 0.64 0.55 0.03 0.61 0.63 0.36 0.49 0.65

FastMotor 0.43 0.24 0.43 0.42 0.36 0.37 0.4 0.41 0.02 0.41 0.45
Minibus 0.43 0.46 0.42 0.34 0.43 0.39 0.41 0.41 0.37 0.42 0.76

OccCar-1 0.45 0.46 0.43 0.33 0.68 0.41 0.45 0.45 0.82 0.07 0.69
RainyCar1 0.58 0.5 0.55 0.07 0.69 0.49 0.55 0.55 0.07 0.05 0.69
GoTogether 0.79 0.63 0.09 0.75 0.77 0.71 0.66 0.71 0.65 0.49 0.74
Minibus1 0.53 0.05 0.52 0.55 0.06 0.38 0.56 0.05 0.69 0.53 0.68

Average 0.46 0.39 0.38 0.41 0.49 0.39 0.43 0.41 0.5 0.35 0.63

TABLE II
SUCCESS RATE. THE BEST THREE RESULTS ARE SHOWN IN RED, BLUE AND GREEN.

STRUCK STC CT MIL RPT MEEM KCF CN L1 JSR Proposed Method

BlackCar 0.12 0.16 0.1 0.12 0.29 0.12 0.12 0.12 0.83 0.15 0.57
BlueCar 0.33 0.33 0.28 0.38 0.94 0.46 0.38 0.38 0.68 0.44 0.82
BusScale 0.48 0.4 0.46 0.44 0.61 0.53 0.5 0.51 0.82 0.56 0.93

Exposure2 0.2 0.26 0.2 0.2 0.45 0.16 0.2 0.2 1 0.19 0.66
MinibusNig 0.51 0.49 0.55 0.51 0.92 0.51 0.54 0.55 1 0.36 1

FastMotorNig 0.37 0.72 0.52 0.55 0.54 0.55 0.48 0.51 0.09 0.45 0.75
Motorbike 0.14 0.16 0.14 0.13 0.13 0.12 0.14 0.14 0.48 0.12 0.5

CarNig 0.13 0.19 0.13 0.13 0.21 0.13 0.13 0.13 0.43 0.17 0.67
Cycling 0.71 0.43 0.53 0.71 0.68 0.02 0.71 0.71 0.33 0.48 0.86

FastMotor 0.32 0.19 0.33 0.33 0.3 0.2 0.27 0.3 0.02 0.27 0.35
Minibus 0.27 0.42 0.27 0.24 0.25 0.21 0.27 0.27 0.32 0.24 1

OccCar-1 0.32 0.44 0.27 0.24 0.89 0.21 0.32 0.32 1 0.08 0.94
RainyCar1 0.58 0.35 0.55 0.08 0.98 0.45 0.57 0.57 0.07 0.05 1
GoTogether 1 0.87 0.01 1 1 0.98 0.93 1 0.81 0.61 0.99
Minibus1 0.59 0.04 0.54 0.58 0.05 0.32 0.54 0.04 0.69 0.49 0.92

Average 0.4 0.36 0.33 0.38 0.55 0.33 0.41 0.38 0.57 0.31 0.8

trackers run stably in most of the videos which shows the
stability of the proposed tracker.

Running time: Because the tracking model is optimized
iteratively, the proposed tracker cannot run in real time and its
FPS is 0.7.

Potential failure cases: Once the testing videos in low
frame rate and dramatic scale changes happen, the proposed
tracker may not work well since particles with limited scale
variance may not be able to cover such kind of scale changes.
As shown in the videos BlackCar and Exposure2 which
contain large scale changes, the proposed tracker does not
perform well. In addition, since the proposed tracker is not
explicitly designed to handle occlusion, it may not work well
when full occlusion happens.

VI. CONCLUSION

In this paper, we proposed a robust RGB-Infrared tracking
system for industrial applications. A modality-consistency
Feature template learning algorithm is proposed to learn
multi-modal feature template for appearance modeling. The
learning algorithm achieve the modality consistency in the
learned feature template in two levels: representation and
discriminability. The experimental results on fifteen videos
show its effectiveness. Since the proposed tracking algorithm
cannot perform in real time, one of our future work will
develop more efficient learning algorithms to improve the
computational complexity. In addition, how to dynamically
weight the importance of different modalities for modality
fusion is another issue which will be further studied.
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