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Abstract 23 

 24 

A theoretical implementation of Markov chain models of vegetation dynamics is 25 

presented. An overview of 22 applications of Markov chain models is presented, using 26 

data from four sources examining different grassland communities with varying 27 

sampling techniques, data types and vegetation parameters. For microdata, individual 28 

transitions have been observed, and several statistical tests of model assumptions are 29 
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performed. The goodness of fit of the model predictions is assessed both for micro- and 30 

macrodata using the mean square error, Spearman's rank correlation coefficient and 31 

Wilcoxon's signed-rank test. It is concluded that the performance of the model varies 32 

between data sets, microdata generate a lower mean square error than aggregated 33 

macrodata, and time steps of one year are preferable to three months. The rank order of 34 

dominant species is found to be the most reliable prediction achievable with the models 35 

proposed.  36 
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1 Introduction 44 

 45 

Predicting vegetation dynamics is no easy task, and some authors even doubt its 46 

feasibility (Collins and Adams, 1983). A wide range of models have been developed for 47 

application to vegetation data. These include deterministic and stochastic models for 48 

time-series and spatio-temporal data. Markov chains are stochastic processes, and can be 49 

parameterised by empirically estimating transition probabilities between discrete states 50 

in the observed system. Their usefulness in forest communities in New England and 51 

Wisconsin has been demonstrated as early as 1976 by Horn. In forests, transitions 52 
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between saplings and mature trees are usually examined. Based on Horn's approach 53 

other forest models were developed (Miles et al., 1985; Acevedo, 1981; Acevedo et al., 54 

1995). Post-fire succession in Quercus forests in France was modelled with Markov 55 

chains by (Rego et al., 1993). Good predictions were also achieved by Runkle (1981). 56 

Other authors, however, report a low validity of predictions in hardwood forests derived 57 

from Markov chains (Barden, 1980; Binkley, 1980) and relate it to violations of the 58 

underlying assumptions. The rapid development of new remote sensing techniques in 59 

combination with improved GIS technology will potentially offer a wide range of 60 

applications of Markov chains (see Hall et al., 1988). 61 

 62 

Grassland is characterised by a variety of interacting factors, like inter- and intraspecific 63 

competition, herbivory, weather and soil properties. Because of the large amount of 64 

potentially important factors and their interactions influencing grassland dynamics, it is 65 

very difficult to construct deterministic models. Approaches to the simulation of 66 

grassland dynamics include the rule-based spatially-explicit model of two species by 67 

Winkler and Klotz (1997), the use of artificial neural networks (Tan and Smeins, 1996), 68 

and the gap model by Coffin and Lauenroth (1990). Despite the complexity of the 69 

subject, stochastic models may empirically describe and predict changes in species 70 

composition and abundance, saving costs and labour by avoiding measurements of a 71 

large number of factors. Few authors have tried to apply Markov chains to grassland 72 

(Cooke, 1981; Usher, 1987) and heathland (Hobbs and Legg, 1983; Lippe et al., 1985). 73 

 74 
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The aim of this paper is to assess the applicability of Markov chain models to predict 75 

vegetation changes using several different data sets, both from the scientific literature 76 

and own observations. It is anticipated that the results and the insights in model 77 

behaviour will also be useful for large-scale landscape ecosystem models by using 78 

Markov chains as submodels. 79 

 80 

 81 

2 Markov chains 82 

 83 

The Russian mathematician Andrei Andreyevich Markov (1856-1922) developed the 84 

theory of Markov chains in his paper 'Extension of the Limit Theorems of Probability 85 

Theory to a Sum of Variables Connected in a Chain' (Markov, 1907). A Markov chain is 86 

defined as a stochastic process fulfilling the Markov property (Eq.3) with a discrete state 87 

space and a discrete or continuous parameter space. In this paper, the parameter space 88 

represents time, and is considered to be discrete. Accordingly, a Markov chain 89 

represents a system of elements making transitions from one state to another over time. 90 

The order of the chain gives the number of time steps in the past influencing the 91 

probability distribution of the present state, and can be greater than one. 92 

 93 

The conditional probabilities 
    
P( X t j Xs i) pij(s,t )  are called transition 94 

probabilities of order   r t s  from state i to state j for all indices     0 s t , with 95 

    1 i, j k .  96 

They are denoted as the transition matrix P. For k states P has the form 97 
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 98 

P

p11 p12 ... p1k

p21 p22 ... p2k

... ... ... ...

pk1 pk2 ... pkk

 (1) 99 

 100 

At time 0 the initial distribution of states is 
    
P( X0 i) pi(0) i 1,..., k  101 

The state probabilities pi(t) at time t are estimated from the relative frequencies of the k 102 

states, resulting in the vector 103 

 104 

    
p(t) ( p1(t ), p2 (t ),..., pk (t ))  (2) 105 

 106 

Denoting the  -th observed state with i , a stochastic chain fulfilling Eq. 3 is a first-107 

order Markov chain: 108 

 109 

    

P( X t 1 i 1 Xt i , X t 1 i 1,..., X0 i0) P( Xt 1 i 1 X t i )

2, i0,i1,..., i 1 1...k
 (3) 110 

 111 

Predictions of future state probabilities can be calculated by solving the matrix equation: 112 

 113 

p(t) p(t 1) P (4) 114 

 115 

With increasing time steps, a Markov chain may approach a constant state probability 116 

vector, which is called limiting distribution. 117 
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 118 

    
p( ) lim

t
p(t) lim

t
p(0) P

t
 (5) 119 

 120 

A state i is called an 'absorbing state' if the state cannot be left again once it is entered, 121 

i.e. pii=1. A Markov chain is time-homogeneous, if the transition probabilities are 122 

constant over time (Binkley, 1980; Usher, 1981). 123 

 124 

For several special cases where assumptions are violated, modifications of Markov chain 125 

models have to be made. Transition probabilities are modelled as linearly dependent on 126 

ecological factors by some authors (Usher, 1987; Baker, 1989). If the time intervals 127 

between observations are not equal, specific estimation techniques are available 128 

(Frydman, 1992; 1995a; 1995b).  129 

 130 

 131 

3 Material and methods 132 

 133 

3.1 Model implementation 134 

 135 

Vegetation consists of several plant populations interacting with each other and site-136 

specific ecological factors (Odum, 1991). Changing ecological factors do not only 137 

influence the performance of plant species but may in return be modified by the species 138 

themselves, e.g. through nitrogen accumulation by Rhizobium bacteria. Each plant 139 

species occupies a certain physical space, both above and below the ground. Imagining 140 
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an abstract multidimensional space, bounded by available resources plant species again 141 

occupy a certain space, the ecological niche (Pratt, 1995). Each dimension of this 142 

resource space represents an ecological factor like N, P, K, pH, irradiation, land-use etc. 143 

Limitations in resource availability delineate a subspace which includes the actually 144 

consumable resources. Within this subspace one plant species has a better ability to 145 

occupy a certain segment than other species, which in due course have to evade into 146 

remaining segments or become locally extinguished. They may later colonise the site 147 

again either by immigration or from the seed bank in the soil. 148 

 149 

Here, for modelling vegetation dynamics with Markov chains plant species are regarded 150 

as states of the chain. A transition from one state to another is equivalent to the 151 

replacement of one species in a segment of the subspace of available resources by 152 

another species. A species replacement occurs stochastically with a given probability. 153 

The analysis of the transition probabilities alone may give insights into the abilities of 154 

species to replace each other. However, predictions of future species proportions are 155 

based on the following assumptions, if not stated otherwise: 156 

 time-homogeneity 157 

 spatial independence 158 

 absence of colonisation by new species 159 

 first-order Markov dependence 160 

 161 

Statistical analyses were carried out using SPSS 6.1.3 and 7.5.2, and EXCEL 97. Graphs 162 

were produced with CA-Cricket Graph III. If not stated otherwise  is assumed to be 5% 163 
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in hypothesis testing. Parameter estimation and calculation of predictions were 164 

performed using the windows program Markov Chain Simulator 1.0 (MCS) which was 165 

written in DELPHI 2.0 by the author. It encompasses a translated FORTRAN algorithm 166 

published by Lee et al. (1970). MCS was verified using sample data from Lee et al. 167 

(1970). The program is capable of reading macro- and microdata from ASCII files, 168 

interactively testing some model assumptions and predicting and saving reports to an 169 

output file in ASCII format. An SPSS 6.1.3 syntax file is automatically created, which 170 

calculates Spearman's R, Wilcoxon's signed-rank test and the mean square error (mse) 171 

and gives a histogram of the deviations of predictions from observations. MCS is 172 

freeware and can be ordered from the author. 173 

 174 

3.2 Vegetation data 175 

 176 

To ensure the use of a wide variety of vegetation data from different sites, climatic and 177 

soil conditions, three published data sets were taken from the literature and one from an 178 

own experiment. To ensure sufficiently precise parameter estimation only a subset of 179 

plant species is modelled. The criterion for species to be included is in having at least 180 

5% percentage phytomass, percentage cover or proportion of specimen at one or more 181 

observation times. For percentage phytomass and proportion of specimen, which add to 182 

100%, the other species are added up to a state 'others', while for percentage cover the 183 

other species are excluded from analysis and percentage cover values are normalised.  184 

 185 
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Linden 186 

 187 

Five kilometres south of Giessen, Germany, is the experimental station Linden-188 

Leihgestern owned by the Justus-Liebig-University. The average yearly temperature is 189 

9.1°C and the sum of precipitation per year 587 mm. The site has a southern exposition 190 

and is relatively dry. 6 m x 8 m plots were sown in April 1982 with 15 g/m
2
 seeds. Seed 191 

mixture A is a readily available mixture of grasses/herbs/legumes in proportions of 192 

70/20/10, containing seven annual herbs, while seed mixture C is a specially prepared 193 

mixture of drought resistant species in proportions of 90/6.7/3.3 (Lüft, unpublished). 194 

Plot LINDEN1 had 0 cuts per year, plot LINDEN2 had 1 cut, plot LINDEN3 had 2 cuts 195 

and plot LINDEN4 had 4 cuts. Percentage phytomass was estimated each June. Seed 196 

mixture B is not examined by Lüft (unpublished), but is known to behave similar to A. 197 

 198 

Heiliges Meer 199 

 200 

Runge (1985) studies the vegetation dynamics of sites that were allocated to the fen 201 

nature reserve 'Heiliges Meer' near Hopsten in Northwest Germany in 1963 and 1976. 202 

He uses permanent quadrats to observe changes in percentage cover. Runge points out 203 

that the smallest quadrats are only sized 1 m
2
, but are nevertheless representative for the 204 

surrounding vegetation. 205 

 206 

Quadrat HEILIG1 is initially a wet ryegrass/white clover community (Lolio-207 

Cynosuretum lotetosum uliginosi ) on peat. There are alder woods in 20 m 208 
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distance. Runge (1985) describes a time series of 21 years with time steps of 3 years for 209 

HEILIG1. Since 1963 no more cattle grazing is taking place on the site. In 1964 and 210 

1966 the site was covered with dead plant material which was penetrated only by a few 211 

species like sorrel, Rumex acetosa. Over the years the vegetation makes the transition to 212 

forest, dominated by alder (Alnus glutinosa), reaching a height of 1.50 m in 1967, 8 m in 213 

1979 and 10 m in 1984. The increasing shade causes extinction of typical grassland 214 

species while the shade-tolerant tufted hair grass, Deschampsia cespitosa, reaches high 215 

percentage cover. Later a dense lawn of Yorkshire fog (Holcus lanatus) establishes 216 

itself. Runge (1985) shows with another example that 17 years after cultivation has been 217 

given up shrubs or trees are not necessarily present in this type of plant community. 218 

 219 

Quadrat HEILIG2 is classified by Runge (1985) as a dry ryegrass/white clover 220 

community (Lolio-cynosuretum typicum), which developed on a brownfield given 221 

up in 1963 and consequently used for horse and sheep grazing. The soil is bleached sand 222 

and poor in nutrients. The quadrat is sized 1 m
2
 and located in a fenced area which was 223 

excluded from grazing between 1974 and 1980. Runge (1985) observes a transition to 224 

the association Agrostietum tenuis . 225 

 226 

The third quadrat HEILIG3 is sized 4 m
2
 and located on bleached sand rich in organic 227 

material. This ryegrass/white clover community was subject to cattle grazing till 1965, 228 

followed by horse and sheep grazing from 1965 till 1976, and excluded from grazing 229 

from 1976 onwards. Since 1965 no fertilizer has been applied. Runge (1985) observes 230 

diminishing proportions of character species of the grassland communities Molinio-231 
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Arrhenatheretea  and increasing populations of Festuca rubra (creeping fescue), 232 

Dactylis glomerata (cock's-foot) and H. lanatus. Runge reports on a thick layer of dead 233 

plant material in 1982, causing decreasing percentage cover of H. lanatus and F. rubra. 234 

 235 

Zagreb 236 

 237 

Ilijanic et al. (1985) report on vegetation dynamics in three plots sized 9 m
2
 with 238 

different soil moisture conditions in the Botanical Garden of Zagreb between 1964 and 239 

1974. The mean daily temperature is 11.6°C and the sum of precipitation 925 mm per 240 

year. The plots are initially free of vegetation, and succession is directed towards 241 

grassland by two cuts per year. 30 cm wide strips separate the plots from each other. 242 

There are hedges in the south and in the west, and the so-called 'systematic field' in the 243 

north and east, which consists of many small plots where a great variety of species are 244 

grown. Plot ZAGREB1 was irrigated with 576 mm/a from March to November, 245 

ZAGREB2 with 276 mm/a and ZAGREB3 received no additional water. Numbers of 246 

specimen of plant species were counted, the blades of grasses, the number of rooted 247 

parts of creeping plants, and the rosettes of plants without stems above-ground (Iljanic et 248 

al., 1985). 249 

 250 

Giessen 251 

 252 

Own data were sampled on a meadow in Giessen, Germany, by the point-quadrat 253 

method (Goodall, 1952). The meadow is sized 616 m
2
 and regularly mown about ten 254 
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times a year apart from an area in its centre. The point-quadrat frame holds three pins 255 

one metre above the vegetation. Sampling is performed by lowering each pin through a 256 

guide channel to the ground and then counting the number of contacts of the pin to each 257 

plant species. The frame was moved along ten parallel transects, and samples were taken 258 

at 12 frame positions on each transect. Methodological issues are described in Balzter et 259 

al. (1995). 260 

 261 

From the point-quadrat data, percentage phytomass is estimated by linear regression of 262 

the parameter percentage of sward (PS) on species-specific dry phytomass proportions 263 

(PM) obtained by cutting six 30 cm x 30 cm  plots. Regression lines are fitted for herbs 264 

and grasses separately, and three outliers are removed for herbs. The slopes of the lines 265 

are used as calibration factors. For herbs the resulting equation is PM = 1.44 * PS with a 266 

coefficient of determination r
2
=0.72 and for grasses PM = 0.77 * PS with r

2
=0.98. These 267 

factors correct the bias caused by pin diameter, which causes overestimation of grasses 268 

and underestimation of herbs due to the shapes of the leaves (Goodall, 1952). 269 

 270 

In the analysis the three Poa species P. pratensis (smooth meadow-grass), P. trivialis 271 

(rough meadow-grass) and P. annua (annual meadow-grass) are aggregated to Poa spp., 272 

because of uncertainties in species determination in the field by the three observers when 273 

the area was freshly mown. The mown and unmown area of the meadow showed 274 

different vegetation types and are treated separately. Both seasonal and yearly 275 

predictions are calculated from macro- and microdata. An overview of the eight different 276 

model applications to the Giessen data  and their abbreviations is given in Table 1. 277 
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 278 

3.3 Macrodata 279 

 280 

Macrodata are relative frequencies of states pi(t). Individual transition paths of a single 281 

object are not recorded (Lee et al., 1970). In this study, normalised percentage cover, 282 

proportion of specimen and percentage phytomass are used as state probabilities. Plant 283 

species are defined as the states of the Markov chain, a definition which is related to the 284 

concept of succession proposed by Pickett (1982). Estimation of the transition 285 

probabilities is carried out with the maximum likelihood estimator     p*
, which is equal to 286 

the minimum 
2
 and the least squares estimator: 287 

 288 

    p (X 
1
X )

1
X 

1
y  (6) 289 

 290 

Given observations at T times and k possible states,     p*
 is a (k(k-1)) column vector,     X*  291 

is a (T(k-1), k(k-1)) block diagonal matrix with k-1 identical submatrices on the main 292 

diagonal,   
1
 is the inverse of the covariance matrix with T(k-1) rows and T(k-1) 293 

columns, and     y*
 is a (T(k-1)) column vector (Lee et al., 1970). 294 

 295 

This estimator is subject to the constraints that 0 pij 1. In practice, to hold the 296 

constraints an iterative quadratic programming procedure (Lee et al., 1970) is used to 297 

find the absolute or a local maximum of the likelihood function. If it does not provide a 298 

single solution, a linear programming procedure and the minimum absolute deviations 299 

estimator is used instead (Lee et al., 1970).  300 



 14 

 301 

Predictions are obtained by repeatedly multiplying the vectors of state probabilities with 302 

the estimated transition matrix. The goodness of fit of the Markov chain is then assessed 303 

by comparing predictions with observations on the frequencies of states at times 2,...,T 304 

using Spearman's rank correlation coefficient, Wilcoxon's signed-rank test and the mean 305 

square error. 306 

 307 

3.4 Microdata 308 

 309 

Microdata were only available for the Giessen test site. For microdata, transition paths of 310 

single objects, in this case point-quadrats, over time are known. The mown area has 306, 311 

the unmown area 54 objects. Each point-quadrat is characterised by a vector of the 312 

numbers of contacts of each species to the pin. The state space is defined by clustering 313 

the point-quadrats according to their species composition (SPSS 7.5.2, Quick Cluster); 314 

three clusters form the state space of the mown and two of the unmown area. The 315 

resulting transitions take place between plant communities, and correspond to the 316 

concept of succession proposed by Knapp (1971). Predictions are calculated for cluster 317 

frequencies, and the species-specific percentage phytomass is estimated by weighting 318 

the predicted cluster frequencies with the mean phytomass per cluster. The maximum 319 

likelihood estimator for microdata is obtained from the counted transition frequencies nij 320 

from cluster i to j: 321 

 322 
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pij

nij

nij

j

0  (7) 323 

 324 

For microdata the likelihood ratio test from Anderson and Goodman (1957; cit. in Usher, 325 

1987; see also Guttorp, 1995) for independence and identical distribution is applied. The 326 

null hypothesis states independence, i.e. multinomial distribution of state probabilities, 327 

and is accepted if the test statistic in Eq. 8 does not exceed the corresponding 
2
 value 328 

with (k-1)
2
 degrees of freedom. Strictly speaking, the rejection of the null hypothesis is a 329 

prerequisite for assuming a Markov chain. 330 

 331 

    
iid

2
2 nij ln

pij

p jj 1

k

i 1

k

, df=(k-1)
2
 (8) 332 

 333 

with  334 

    

p j

n ij

i 1

k

n ij

j 1

k

i 1

k
 335 

 336 

Time-homogeneity of the Markov chain is tested using another likelihood ratio test by 337 

Anderson and Goodman (1957; cited in Usher, 1987). The test statistic in Eq. 9 is 338 

obtained from the time-dependent transition probabilities pij(t), and the time-independent 339 

transition probabilities pij. If it exceeds the corresponding 
2
 value, the null hypothesis 340 

of time-homogeneity is rejected and tests for the order of the chain have to be 341 

performed. 342 
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 343 

    
stat

2
2

t 1

T

nij(t) ln
pij(t )

pijj 1

k

i 1

k

, df=k(k-1)(T-1) (9) 344 

 345 

Testing the order of the chain is possible for microdata using hierarchical 
2
 tests 346 

(Guttorp, 1995). Given T observed times, one can iteratively test for all r<T-1 whether 347 

the Markov chain is of r-th order. If the test statistic shown in Eq. 10 exceeds the 348 

corresponding 
2
 value, the null hypothesis of the chain being of r-th order is rejected. 349 

Note that this procedure is problematic because the probability of falsely rejecting the 350 

true order of the chain cannot be controlled (Guttorp, 1995). 351 

 352 

    
order

2
n a1,..., aT n a1, ...,aT 1 p a1,..., aT 1; aT

2

n a1,..., aT 1 p a1, ...,aT 1;aTa1,...,aT

, df=(k-1)k
r
(k

T-r-1
-1) (10) 353 

 354 

where 

    

p a1, ...,aT 1;aT

n aT r ,..., aT 1, aT

n aT r ,..., aT 1

 is the estimator of the probability to change 355 

to state aT after sequence aT-r,...,aT-1; 356 

ai is the i-th state from {1,...,k} and 357 

n(a1,...,aT-1) is the number of observations of sequence a1,...,aT-1. 358 

 359 

According to the results of these likelihood ratio tests an appropriate Markov chain 360 

model is selected. However, acceptance of the null hypothesis in the test for 361 

independence and identical distribution is not regarded as sufficient evidence against a 362 



 17 

Markov chain, because it tests only T and T-1. It rather indicates that the interpretation 363 

has to be undertaken with greater care.  364 

 365 

The results of testing the assumptions for the microdata of the Giessen test site are given 366 

in Table 1. Time-inhomogeneity and higher (r-th) order of the Markov chains are taken 367 

into account by periodically applying different mean normalised transition matrices with 368 

period np=r. These transition matrices are obtained by averaging and normalisation from 369 

the T-1 time-dependent transition matrices.  370 

 371 

The goodness of fit of the Markov chain is assessed in the same way as for macrodata. 372 

 373 

 374 

4 Results 375 

 376 

The results presented in detail concentrate on a few examples that were selected to 377 

illustrate the methodology. The same analyses were carried out for all described data 378 

sets, and a comparison of the goodness of fit shows the variation of suitability of 379 

Markov chain models across different examples of vegetation dynamics. Full details of 380 

the applications of Markov models to all data sets are given in Balzter (1998). 381 

 382 

4.1 Predictions of vegetation dynamics 383 

 384 
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LINDEN2 385 

 386 

Plot LINDEN2 is mown once a year and was sown with seed mixture A. Figure 1 shows 387 

the observed changes in vegetation composition and the corresponding predictions from 388 

the Markov chain. Predictions are based on the percentage phytomass observations from 389 

1982. The goodness of fit of the model can be assessed by comparing observations with 390 

predictions from 1983 till 1986. Predicted changes in percentage phytomass are smaller 391 

than observed, for instance the higher percentage phytomass of birdsfoot-trefoil, Lotus 392 

spp., in 1984 and 1986 is smoothed by the model (Figure 1). The predictions from 1987 393 

till 1991 show the expected development of the plant community beyond the observed 394 

time frame. The predicted trend is that the community  will be dominated by Achillea 395 

millefolium (milfoil), Sanguisorba minor (salad burnet), Lotus spp. and Festuca 396 

rubra/ovina. Beyond 1986 the Markov chain is approaching its limiting distribution and 397 

the vegetation is predicted to be in equilibrium. 398 

 399 

HEILIG3 400 

 401 

HEILIG3 is used to illustrate Runge's (1985) data set. The decrease of H. lanatus and F. 402 

rubra in 1982 reported by Runge (1985) is shown in Figure 2. Mainly A. millefolium and 403 

R. acetosa were able to penetrate this layer (Runge, 1985). Until 1984 no forest 404 

established itself in the quadrat. Figure 2 shows that in 1980 the relative percentage 405 

cover of F. rubra increases strongly. The observed dynamics in HEILIG3 do not show 406 

any tendency towards a stable equilibrium. Accordingly, the Markov chain performs 407 
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poorly, and its predictions deviate considerably from the observations. The smoothing 408 

effect of the Markov chain (Figure 2) is likely to inhibit a good model fit to the highly 409 

changing vegetation data. The observed increase in F. rubra in 1980, for example, is 410 

also visible in the predictions, although it is predicted smaller than observed. The 411 

dominance of A. millefolium in 1982 is not detected by the Markov chain. Unexpected 412 

phenomena like the thick layer of dead plant material in 1982 which cause high rates of 413 

change supposedly limit the usefulness of Markov chain models to vegetation dynamics. 414 

Even if the Markov chain seems to be close to equilibrium of Agrostis capillaris 415 

(common bent-grass) and F. rubra in 1989, the true limiting distribution approaches a 416 

two-species mixture of creeping thistle, Cirsium arvense (64%) and lesser stitchwort, 417 

Stellaria graminea (36%) after more than 300 time steps. Predictions on this time scale 418 

are of course not interpretable given a data set over nine years. 419 

 420 

The mown area in Giessen 421 

 422 

The models with time steps of three months (MOMAC4 and MOMIC4) show poor 423 

model fits and are not presented in detail. The models for the mown area in Giessen 424 

using yearly time steps are shown together with the observed changes in percentage 425 

phytomass in Figure 3. The observed changes include a decrease in Lolium perenne 426 

(perennial rye-grass) and Trifolium repens (white clover), whereas the species 427 

Ranunculus repens (creeping buttercup) and Glechoma hederacea (ground ivy) increase. 428 

The dominant species Poa spp. reaches high percentage phytomass in 1996 but 429 

decreases again thereafter. The macrodata model MOMACY predicts a further increase 430 
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in G. hederacea and R. repens, and a continuous decline in Poa spp. (Figure 3). The 431 

limiting distribution of MOMACY consists of 16% Poa grasses, 48% G. hederacea, 432 

26% R. repens, 5% T. repens and some species with low percentage phytomass. Despite 433 

the fact that the predictions of MOMACY differ from MOMAC4, the rank order of the 434 

four dominant species is identical in the first predicted year 1998. The predictions of 435 

MOMICY are shown in Figure 3 (bottom). The plant community shows no predicted 436 

trend, but is subject to periodic changes caused by the periodic use of three different 437 

transition matrices. This periodicity could either be a real cyclic phenomenon of the 438 

plant community or an artefact caused solely by a single event. 439 

 440 

The four different models predict different vegetation dynamics. Stability (MOMAC4) is 441 

contrasted by a slow increase in G. hederacea (MOMACY). Seasonal changes are 442 

exhibited by MOMIC4, which does not show a trend over the years. MOMACY is 443 

considered to be the most reliable model. 444 

 445 

The unmown area in Giessen 446 

 447 

Vegetation dynamics in the unmown area intermediately exhibits a rise of Poa spp. 448 

which is followed by a subsequent decline (Figure 4 top). Medicago x varia, a hybrid of 449 

sickle medick (Medicago falcata) and alfalfa (Medicago sativa), makes up most of the 450 

phytomass in 1993 but then rapidly loses weight in the plant community. The ruderal 451 

species C. arvense and Urtica dioica (stinging nettle) increase their percentage 452 

phytomass. In 1996 G. hederacea invades the unmown area, and reaches a high 453 
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proportion of the phytomass in 1997. Note that there is also a slow increase in the 454 

proportion of the species category 'others' (Figure 4 top). The models using time steps of 455 

three months are not discussed in detail, as their model fit is very poor. The macrodata 456 

model UNMACY (Figure 4 centre) shows the smoothing effect of the Markov chain 457 

compared to the observations. For instance, the observed sudden increase in G. 458 

hederacea in 1997 is comparatively very small in the predictions, but lasts longer into 459 

the future. In the model, G. hederacea eventually drives out all other species after 460 

several hundred time steps and reaches 100% phytomass in the limiting distribution. 461 

This is caused by the unitary transition probability from G. hederacea to itself. G. 462 

hederacea is an absorbing state of the Markov chain. The predictions of the microdata 463 

model UNMICY are presented in Figure 4 (bottom). They immediately reach a limiting 464 

distribution with dominance of Poa spp. and M. x varia. 465 

 466 

4.2 Goodness of fit 467 

 468 

The goodness of fit of the different Markov models for all used vegetation data sets is 469 

used to assess their applicability for predicting vegetation dynamics of grassland 470 

communities. The scatterplots of predicted versus observed values give a first 471 

impression of the variability of goodness of fit (Figure 5). LINDEN2 shows a relatively 472 

good model fit compared to HEILIG3. For the mown area of the Giessen test site 473 

MOMACY and MOMICY show better model fits than MOMAC4 and MOMIC4, while 474 

UNMACY is the only satisfying model for the unmown area (Figure 5). MOMAC4 and 475 

UNMAC4 show inhomogeneity of the scatterplots. From the pairs of predictions and 476 
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corresponding observations some statistics of the goodness of fit can be calculated. 477 

Table 2 presents the mean square error (mse), Spearman's rank correlation coefficient 478 

and the significance probability  of Wilcoxon's signed-rank test. While the mse measures 479 

the squared differences between predictions and observations, Spearman's R ranks the 480 

values first and compares the rank orders. If R is close to one then the rank orders of 481 

predicted and observed values correspond closely, and the model may at least be used to 482 

predict a rank order of dominant plant species. Uncertainty of predicted values is 483 

quantified by the mse. For instance, the 95% confidence interval calculated from twice 484 

the root mean square error for a percentage phytomass of 30% would be approximately 485 

CI95=[10%; 50%], assuming mse=0.01. Table 2 shows that a ranking of values (R) gives 486 

better results than metric predictions (mse). A graphical overview of the goodness of fit 487 

of all models is given in Figure 6. LINDEN5, HEILIG3 and UNMAC4 exhibit 488 

particularly poor model fits, while the predictions of LINDEN3, HEILIG2 and 489 

MOMICY correspond well to the observations. The mse of HEILIG3 is almost tenfold 490 

compared to HEILIG2.  491 

 492 

The Wilcoxon test results in agreement of predictions with observations for all Markov 493 

models except ZAGREB3, UNMAC4 and UNMIC4 (Table 2). R and mse of all models 494 

are in comparable ranges. However, seasonal changes cause poor model fits, when time 495 

steps of three months are used. The unmown area in Giessen shows generally poorer 496 

model fits than the mown area, which is probably caused by the comparatively high rates 497 

of change in the unmown plant community.  498 

 499 
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For the Giessen test site a comparison of the goodness of fit of Markov models using 500 

time steps of one year instead of three months and by using microdata instead of 501 

macrodata was carried out. Except when comparing UNMICY to UNMACY, models 502 

with microdata produce a smaller mse than models with macrodata (Table 3). A further 503 

reduction of mse is generally achieved by using time steps of one year rather than three 504 

months. Just UNMICY has a slightly greater mse than the corresponding model 505 

UNMIC4, but as UNMIC4's predictions differ significantly from the observations 506 

(Wilcoxon P<0.05), UNMICY is still preferable. 507 

 508 

 509 

5 Discussion 510 

 511 

Markov chain models have the advantage of aggregating very complex information in 512 

the transition matrix, so that even ecosystems can be examined for which the underlying 513 

processes are not fully understood. The applicability of Markov chain models to 514 

vegetation dynamics of grassland communities is, however, limited by often occurring 515 

unexpected disturbances or other events that change ecological factors drastically. 516 

Events like an unusually cold winter could have the effect that the assumption of time-517 

homogeneous transition probabilities is violated. Such unexpected large shifts in species 518 

composition were found in this study as well, confirming Binkley's (1980) findings. 519 

Possible improvements could be the explicit modelling of changing weather using a 520 

Hidden Markov model (Zucchini and Guttorp, 1991). This approach models transitions 521 

between weather states as a Markov chain and uses transition matrices conditional on the 522 
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particular weather state to predict the stochastic process of interest. If disturbing events 523 

during data sampling are known, another option would be to estimate separate transition 524 

matrices for time periods in which the assumption of time-homogeneity seems to be 525 

better justified. If spatial autocorrelation is present in the data, a spatial model is more 526 

appropriate. A generalisation of a Markov chain to a spatio-temporal Markov chain 527 

(STMC), which is a type of cellular automaton model, is presented by Balzter et al. 528 

(1998). One major drawback of this model is the rapidly increasing number of 529 

parameters that need to be estimated, and this requires a very large spatial data set. 530 

 531 

The mse found in the models examined in this paper is considered to be too high to 532 

allow metric predictions of species composition in grassland. The metric variables are 533 

valuable as input to the chain, but interpreting the predictions must be undertaken with 534 

care. It is recommended to look at ranks of dominant species rather than predicting 535 

species proportions in the community. The correlation of the ranks is measured by 536 

Spearman's R. It is important to check whether the predicted ranks deviate significantly 537 

from the observed ranks with Wilcoxon's signed-rank test, too. Although R is 538 

satisfactory, Wilcoxon's P may still discover a poor model fit, if the majority of ranked 539 

predictions is all higher or all lower than the observations (Figure 6). R is more robust 540 

than Pearson's r, as the assumption of bivariate normal distribution is rarely true for 541 

grassland communities, because usually only a few species have high proportions but 542 

many have low proportions of the vegetation. This phenomenon was called 'law of 543 

constants' in vegetation science by Raunkiaer (1934; cit. in Collins and Glenn, 1991). 544 
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Cooke (1981) concludes that the validity of Markov chain predictions in grassland is 545 

species-specific. 546 

 547 

The predictions of the Markov chains are smoothed in comparison to the observations. 548 

High rates of change in the plant community are particularly hard to model with Markov 549 

chains because of this smoothing effect, and they cause a greater mse. Such high rates of 550 

change are commonly observed in grassland communities (Dodd et al., 1995). Seasonal 551 

variation causes the model to perform particularly poorly, when transitions are 552 

influenced by the annual weather cycle (MOMAC4, MOMIC4, UNMAC4, UNMIC4).  553 

 554 

Different data sets produce a different goodness of fit of the Markov chains. For 555 

instance, the Linden plots with seed mixture A (LINDEN1 to LINDEN4) generally has a 556 

lower mse and a greater R than seed mixture C (LINDEN5 to LINDEN8, Figure 557 

6).There is no clear relationship between the goodness of fit and 558 

 the modelled parameter (percentage phytomass, relative percentage cover, percentage 559 

of specimen) 560 

 the sampling site (Linden, Heiliges Meer, Zagreb, Giessen) 561 

 the number of states in the model (two to 18, Table 2) 562 

 the number of observed time steps (five to 15, Table 2). 563 

 564 

The use of microdata instead of macrodata is likely to reduce the mse. Microdata are not 565 

often available, though, and most vegetation records contain some kind of macrodata. 566 
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Microdata also have the advantage that some statistical tests can be performed before 567 

running the model, although these need careful interpretation of what is actually tested. 568 

 569 

Regardless of the data type used, the first step is to define the state space of the chain. In 570 

case of microdata obtained by the point-quadrat method, the multivariate observations 571 

need to be classified before defining the state space. This approach models transitions 572 

between vegetation types rather than between species. On the contrary, macrodata 573 

models may be defined using single species as states. A decision has to be made, which 574 

species to include in the model, because the number of parameters to be estimated 575 

increases exponentially with the number of states. On the one hand, the more parameters 576 

are necessary, the less precise the estimation becomes. On the other hand, omission of 577 

important species may cause poor predictions. Some authors use only two states in their 578 

vegetation Markov model (Usher, 1987), but others use more than ten (Miles et al., 579 

1985; Hobbs and Legg, 1983) or even 400 in a model of amino acid substitution (Gonnet 580 

et al., 1994). To increase the precision of parameter estimation, the data set should 581 

extend over a time period as long as possible. 582 

 583 

In conclusion, Markov chains are a framework for estimated replacement rates (or 584 

transition probabilities) between plant populations. They can contribute to the numerical 585 

analysis and understanding of species replacements in a pathway of succession. The 586 

mechanistic richness which is often observed in a succession (Pickett et al., 1987) is 587 

summarised in the transition matrix. The existence of a limiting distribution of a Markov 588 

chain implies  a successional pathway with directional change and termination. 589 
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Fluctuations in the plant community are smoothed by the Markov chain predictions, and 590 

the remaining successional trend can be regarded as the expected dominance order of the 591 

plant species. It has been shown that Markov chain models are sensitive to changes in 592 

the frequency and regularity of disturbances, like cutting and grazing. Information about 593 

land use practices are therefore essential for interpretation of the model predictions. 594 

Despite the complex nature of grassland dynamics, it is possible to get good predictions 595 

under certain circumstances with an appropriate model. The predictions achievable with 596 

Markov chains are ranks of dominant species rather than metric variables. 597 

There is still more potential for development of simple but sophisticated models of 598 

grassland dynamics. But the information from Markov chain models surely is valuable 599 

for conservation, landscape planning and ecology. 600 

 601 
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Tables 

 

 711 

Table 1: Model applications to the meadow data from Giessen, with assumptions and results of 712 
the statistical tests. Each application is abbreviated as indicated in capitals (e.g. MOMAC4 713 
means mown, macrodata, 4 time steps per year). Note that for UNMICY the time-homogeneous, 714 
mean transition matrix is used despite the test results given in the table, because one of the row 715 
sums of the periodic matrices equals 0. 716 
mown (MO) 

unmown (UN) 

area 

macrodata 

(MAC) 

 

microdata 

(MIC) 

 

4 time steps per year 

03/1994-09/1997 

(4) 

MOMAC4 

UNMAC4 

assumption of first-order,  

time-homogeneous Markov chains 

MOMIC4 

independence of transitions,  

fourth-order,  

time-inhomogeneity 

UNMIC4 

independence of transitions,  

second-order, 

time-inhomogeneity 

 

 

yearly time steps 

06/1993-06/1997 

(Y) 

 

MOMACY 

UNMACY 

assumption of first-order,  

time-homogeneous Markov chains 

MOMICY 

independence of transitions,  

third-order, 

time-inhomogeneity  

UNMICY 

independence of transitions,  

third-order,  

time-inhomogeneity 

 

 717 

 718 
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Table 2: Goodness of fit of the Markov models for all datasets. mse=mean square error, 

R=Spearman's rank correlation coefficient, n=number of pairs for calculation of R, 

P=significance probability of the Wilcoxon signed-rank test (marked with '*' if less than 0.05), 

pm%=percentage phytomass, pc%=percentage cover, ps%=percentage of specimen. 

dataset parameter number of 

states 

number of 

observed time 

steps 

mse R n P 

LINDEN1  8 5 0.0084 0.92 32 0.350 

LINDEN2  8 5 0.0050 0.91 32 0.627 

LINDEN3  8 5 0.0027 0.97 32 0.360 

LINDEN4 pm% 10 5 0.0048 0.91 40 0.270 

LINDEN5  9 5 0.0204 0.75 36 0.300 

LINDEN6  10 5 0.0133 0.69 40 0.119 

LINDEN7  8 5 0.0141 0.81 32 0.112 

LINDEN8  10 5 0.0030 0.90 40 0.192 

HEILIG1  16 8 0.0034 0.87 119 0.657 

HEILIG2 pc% 10 11 0.0018 0.91 110 0.859 

HEILIG3  9 9 0.0161 0.81 80 0.095 

ZAGREB1  14 11 0.0042 0.88 140 0.384 

ZAGREB2 ps% 14 11 0.0068 0.70 140 0.677 

ZAGREB3  18 11 0.0049 0.85 180 0.004* 

MOMAC4  9 15 0.0056 - 126 0.841 

MOMACY  7 5 0.0043 0.88 28 0.554 

MOMIC4  3 15 0.0043 0.79 126 0.130 

MOMICY pm% 3 5 0.0020 0.87 28 0.909 

UNMAC4  12 15 0.0361 - 168 <0.001* 

UNMACY  8 5 0.0065 0.86 32 0.340 

UNMIC4  2 15 0.0112 0.60 168 0.008* 

UNMICY  2 5 0.0116 0.69 32 0.722 

 

 

Table 3: Reduction of mean square error (mse) caused by using time steps of one year instead of 

three months and by using microdata instead of macrodata. Ratios < 1 actually reduce the mse 

and are shown in bold italic. 

land use 

 

time steps one year  

instead of three months 

microdata instead of macrodata 

mown microdata: 0.47  

macrodata: 0.77 

 

steps of one year: 0.47  

steps of 3 months: 0.77 

unmown microdata: 1.04  

macrodata: 0.18 

 

steps of one year: 1.79  

steps of 3 months: 0.31 
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Figure 1             Balzter, H. 
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Figure 2           Balzter, H. 
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Figure 3           Balzter, H. 
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Figure 4           Balzter, H. 
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Figure captions 

 

Figure 1: Changes in percentage phytomass of the plant species in plot LINDEN2. 

Observations (top) and predictions based on 1982 (bottom). The species Agrostis 

capillaris, Festuca rubra/ovina, Medicago lupulina (black medick), Achillea 

millefolium, Trifolium repens, Sanguisorba minor and Lotus spp. are presented 

separately. Species that never exceeded 5% phytomass are aggregated to the state 

'others'.  

 

Figure 2: Changes in relative percentage cover of the plant species in plot HEILIG3. 

Observations (top) and predictions based on 1976 (bottom). The species Plantago 

lanceolata (ribwort), Holcus lanatus, Agrostis capillaris, Achillea millefolium and 

Festuca rubra are presented separately. Trifolium repens, Dactylis glomerata, Rumex 

acetosa, Cirsium arvense and Stellaria graminea are modelled as separate states but 

aggregated to the category 'others' for graphical presentation. 

 

Figure 3: Changes in percentage phytomass of the plant species in the mown part of the 

meadow in Giessen. Observations (top), predictions based on June 1993 for MOMACY 

(centre) and for MOMICY (bottom). The species Glechoma hederacea, Lolium perenne, 

Poa spp., Ranunculus repens, Trifolium repens and Veronica hederifolia (ivy speedwell) 

are presented separately. Species that never exceeded 5% phytomass are aggregated to 

the state 'others'. Predictions for MOMICY are obtained from predicted cluster 

frequencies. 
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Figure 4: Changes in percentage phytomass of the plant species in the unmown part of 

the meadow in Giessen. Observations (top), predictions based on June 1993 for 

UNMACY (centre) and for UNMICY (bottom). The species Glechoma hederacea, 

Medicago x varia, Poa spp., Rumex obtusifolius (broad-leaved dock), Urtica dioica, 

Cirsium arvense and Elymus repens (couch-grass) are presented separately. Species that 

never exceeded 5% phytomass are aggregated to the state 'others'. Predictions for 

UNMICY are obtained from predicted cluster frequencies. 

 

Figure 5: Scatterplots of predicted vs. observed values for all modelled vegetation 

datasets. 

 

Figure 6: Comparison of the goodness of fit of all Markov models assessed with 

Spearman's R and the mean square error (mse). '*' indicates models with significant 

deviation from the observations (Wilcoxon test, P<0.05). Due to inhomogeneity R is not 

calculated for MOMAC4 and UNMAC4. 

 


