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We perform extensive molecular dynamics simulations of a charged polymer in a good solvent in the
regime where the chain is collapsed. We analyze the dependence of the gyration radius Rg on the reduced
Bjerrum length lB and find two different regimes. In the first one, called a weak electrostatic regime,

Rg ∼ l−1=2
B , which is consistent only with the predictions of the counterion-fluctuation theory. In the second

one, called a strong electrostatic regime, we find Rg ∼ l−1=5
B . To explain the novel regime we modify the

counterion-fluctuation theory.
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Introduction.—The conformational states of a flexible
neutral polymer in different solvents are well known. It is
extended in a good solvent due to favorable excluded
volume interactions with the solvent molecules and collap-
ses into a compact globule in a bad solvent [1–3]. In contrast,
a flexible polyelectrolyte (PE)—charged polymer in the
presence of counterions—undergoes an extended to col-
lapsed transition in both good and bad solvents. Unlike
neutral polymers, the conformations of a PEdepend not only
on the solvent quality, but also crucially on the interplay
between electrostatic energy and translational entropy of
counterions [4,5]. The strength of the electrostatic inter-
actions depends on the charge density along the PE, which is
quantified by the dimensionless Bjerrum length lB. For
small charge density, counterions are dispersed away from
the PE, and the chain is in an extended necklace conforma-
tionwhen in a good or theta solvent [3], and is collapsed into
a compact globule in a bad solvent [3,6]. With increasing
charge density, the PE attains an extended conformation,
regardless of the solvent quality and counterions begin to
condense onto the PE, renormalizing its charge density
[3,7,8]. Further increase of the PE charge density results in
an effective attraction between similarly charged monomers
of the PE and it collapses into a globule conformation,
independent of the solvent quality [4–6,9–14].
The compaction of a PE chain into a globular confor-

mation is of great biological importance. For instance,
biological PEs like RNA or DNA are densely packed in
cells and viruses [15–17] which are orders of magnitude
smaller than the contour length of the PE, requiring it to be
highly compacted [18,19]. Furthermore, the effective inter-
actions driving the collapse of a single PE chain are closely
connected to those resulting in aggregation of rigid PEs
[20,21]. Common biological polymers like DNA, actin, and
microtubules are examples of rigid PEs whose aggregates
play a key role in functions like cell scaffolding, making it
vital to understand the nature of attractive forces between
similar charges [22]. Although for compaction or folding of

biological PEs some specific mechanisms may be impor-
tant, the mechanism of electrostatic collapse, as for a simple
homopolymer PE chain, is still essential.
To describe the counterintuitive phenomenon of PE col-

lapse in a good solvent, several competing theories have been
proposed [4,19,23–27]. The first theory is based onmodeling
the collapsed conformation as an amorphous ionic solid [19].
For large charge density of the PE and in the presence of
multivalent counterions the free energy of the solid is smaller
than that of the extended PE, driving the chain collapse. This
theory, however, does not predict any dependence of the
gyration radiusRg onlB. In the second group of theories, it is
assumed that condensed counterions and the PE monomers
form dipoles [23,25–27]. The dipoles freely rotate yielding,
on average, an attractive interaction between the segments of
the chain; this leads to collapse of a PE even in a good solvent.
For a highly charged flexible PE in a salt-free solution, this
theory predicts that the radius of gyration of the collapsed
conformation scales as Rg ∼ N1=3jl2

B − cBj−1=3, where B is
the second virial coefficient, N is the number of chain
monomers, and c is a dimensional constant that depends
on the details of the system [28]. This dependence is predicted
for both good [23,26,27] and bad [23,27] solvents. For theta
solvent with B ¼ 0 [3], a simpler scaling, Rg ∼ l−2=3

B N1=3 is
obtained [23].
Finally, the third theory, referred to as counterion-

fluctuation theory, argues that the collapse of a PE is
due to negative pressure arising from fluctuations in the
density of condensed counterions, which move freely
within a PE globule [4]. Such a physical picture of the
condensed counterion motion agrees with the recent results
of molecular dynamics (MD) simulations [14]. The coun-
terion-fluctuation theory, when restricted to the second
virial coefficient, predicts that in a good solvent Rg ∼
l−1=2
B N1=3. Note that all mechanisms discussed above

imply a collapsed phase, Rg ∼ N1=3 for large charge
density, but different dependence of Rg on lB.
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Because of a great significance for applications, espe-
cially for nanomedicine and biotechnology, it is vital to
have an appropriate theory of the interactions that drive the
collapse of a PE. In this Letter, we report the results of
extensive MD simulations, exploring the collapsed con-
formation of a single flexible PE chain in a good solvent.
Two regimes in the dependence RgðlBÞ have been numeri-
cally revealed: The one, consistent with the counterion
fluctuation theory, Rg ∼ l−1=2

B [4], and the new regime,

Rg ∼ l−1=5
B , which we explain modifying the above theory.

MD simulations.—We model a flexible PE chain as N
monomers of charge e (e > 0 is the elementary charge)
connected by harmonic springs of energy,

UbondðrÞ ¼
1

2
kðr − aÞ2; ð1Þ

where k is the spring constant, a is the equilibrium bond
length, and r is the distance between the bonded mono-
mers. The chain and Nc ¼ N=Z neutralizing counterions,
each of charge −Ze, with Z ¼ 1, 2, 3 being the valency, are
placed in a box of linear size L. Pairs of all nonbonded
particles (counterions and monomers) separated by a
distance r interact through the 6–12 Lennard Jones poten-
tial cutoff at rc:

ULJðrÞ ¼ 4ϵ½ðσ=rÞ12 − ðσ=rÞ6�: ð2Þ

The values of ϵ and rc are varied depending on the system
being simulated. The electrostatic energy between charges
qi and qj separated by rij is

UcðrijÞ ¼
qiqj
εrij

; ð3Þ

where ε is the dielectric permittivity of the solution. The
charge density along the PE chain is parametrized by the
dimensionless Bjerrum length lB [3]:

lB ¼ 1

a
e2

ðεkBTÞ
¼ βe2

εa
; ð4Þ

where kB is the Boltzmann constant, T is temperature,
and β ¼ ðkBTÞ−1. Larger lB corresponds to higher
charge density of the PE. In the simulations, we use
a ¼ 1.12σ, k ¼ 500.0ϵ0=σ2, L ¼ 370σ and the temper-
ature, kBT=ϵ0 ¼ 1, is maintained through a Nosé-Hoover
thermostat. The long-ranged Coulomb interactions
are evaluated using the particle-particle–particle-mesh
(PPPM) technique, e.g., Refs. [6,20].
We now discuss the results from MD simulations of a

single PE in a good solvent with purely repulsive LJ
interactions between all nonbonded pairs of monomers and
counterions. The cutoff of the LJ interaction is set at
rc ¼ σ, and the energy constant is ϵ ¼ ϵ0. We simulate the

system for values of lB where the equilibrium configura-
tion of a PE is a collapsed state with Rg ∼ N1=3. The
variation of the radius of gyration Rg with lB in the
globular regime is shown in Fig. 1. It can be seen from
Fig. 1 that for lB < l�

BðZÞ the observed dependence,
Rg ∝ l−1=2

B N1=3, is consistent with the predictions of the
counterion-fluctuation theory [4]. For lB > l�

BðZÞ, we find
a crossover to a different scaling, Rg ∝ l−1=5

B N1=3, which is
not predicted by any of the existing theories. The two
regimes of lB < l�

BðZÞ and lB > l�
BðZÞ will be referred to

as weak and strong electrostatic regimes, respectively.
Typical snapshots of the system with monovalent coun-

terions in weak and strong electrostatic regimes are shown
in Fig. 2, which demonstrates that the PE is much more
compact in the strong electrostatic regime. Associated
number density profile of counterions measured from the
center of mass of the collapsed PE is also shown in Fig. 2. It
can be seen that the profile has a broader tail in the weak

FIG. 1. Variation of the gyration radius Rg of a PE chain with
the reduced Bjerrum length lB for different valencies of counter-
ions. The chain length is N ¼ 204. The two power laws intersect
at Rg=aN1=3 ≈ 0.63 (Z ¼ 3), 0.66 (Z ¼ 2), and 0.69 (Z ¼ 1) with
the corresponding crossover values l�

BðZÞ ≈ 3.71 (Z ¼ 3), 5.58
(Z ¼ 2), and 13.70 (Z ¼ 1).
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electrostatic regime, suggesting that the counterions are
more loosely bound.
We have verified that the exponents and associated

features seen in Fig. 1 are robust and independent on
the details of the interaction by simulating two other good
solvent conditions (see the Supplemental Material [29]):
(i) LJ interactions being attractive (rc ¼ 2.5σ, ϵ ¼ 0.25ϵ0)
for monomer-monomer pairs and purely repulsive
(rc ¼ 1.0σ, ϵ ¼ ϵ0) for all other pairs and (ii) PE in the
presence of explicit solvent molecules with attractive
interactions between monomers and solvent (rc ¼ 2.5σ,
ϵ ¼ ϵ0) and repulsive for all other pairs. We also confirm
that the results are independent of the length of the chain
for all values of lB that we have simulated (see the
Supplemental Material [29]).
The dependence of Rg on lB in the weak electrostatic

regime supports the basic mechanism of the counterion-
fluctuation theory as described in Ref. [4], where the PE
free energy was truncated at the second virial coefficient.
We now re-examine this theory to explain the dependence
Rg ∝ l−1=5

B N1=3 in the strong electrostatic regime by
including more terms in the virial expansion of the PE
free energy: namely, we use the simplest generalization of
the counterion-fluctuation theory [4], including the third
virial coefficient C.
Theory.—The free energy of the system as a function

of the radius of gyration Rg of a PE chain can be written
as [3,4,31]

FðRgÞ ¼ Fid:chðRgÞ þ FvolðRgÞ þ FelðRgÞ: ð5Þ

Here Fid:chðRgÞ is the entropic part of the free energy
corresponding to the ideal chain [3,4,32],

βFid:ch ≃ 9

4
ðα2 þ α−2Þ; ð6Þ

where α ¼ Rg=Rg:id is the expansion factor, with Rg:id being
the radius of gyration of the ideal chain, R2

g:id ¼ Na2=6.
Fvol refers to the volume interactions between the chain
monomers, which may be written using the second and
third virial coefficients as [3,31] (see the Supplemental
Material [29])

βFvol ¼
�
N2B
2Vg

þ N3C
6V2

g

�
¼

�
N1=2 ~B
α3

þ
~C
α6

�
; ð7Þ

where Vg ¼ ð4π=3ÞR3
g is the volume of gyration and

we introduce the reduced virial coefficients, ~B ¼
9

ffiffiffi
6

p
B=ð4πa3Þ and ~C ¼ 81C=ð4π2a6Þ. Finally, Fel, which

takes into account all the electrostatic interactions (between
the monomers and counterions) as well as the entropic part
of the counterions is given by [4]

βFel

N
¼ 3

ffiffiffi
6

p
lBN1=2ð1 − ~ρÞ2

5α

�
1 −

2Rg

3R0

�

−
3

Z
ð1 − ~ρÞ ln

�
R0

a

�
−
3

2

�
2

π2

�
1=3 lB

ffiffiffi
6

p
Z2=3 ~ρ4=3

N1=6α
:

ð8Þ

Here, ~ρ ¼ ρin=ρ0 with ρin being the number density of
counterions within the volume occupied by the polymer
chain Vg and ρ0 ¼ Nc=Vg ¼ N=ðZVgÞ is the counterion
density at the complete condensation. The value of R0

quantifies the volume 4πR3
0=3 per chain in the solution and

corresponds to L in the MD simulations. The above
expression for Fel is valid for dilute solutions, R0 ≫ Rg

and for N ≫ 1 [33]. The first term in the right-hand side of
Eq. (8) accounts (on the mean-field level) for the electro-
static interactions in the system, while the second term
describes the entropic part of the counterion free energy.
The third term quantifies the contribution from electrostatic
correlations to the free energy, and is absent within the
Poisson-Boltzmann approximation [4].
We now focus on the globular state where Rg ∼ N1=3, so

that α ≪ 1. In this case, the entropic part of the free energy
Fid:ch [see Eq. (6)] may be ignored when compared to the
other parts of the free energy (Fvol þ Fel). Also, in the
collapsed regime, most of the counterions are in the vicinity
of the PE, which suggests the approximation ~ρ ≈ 1 in
Eq. (8). Hence, the electrostatic contribution to the free
energy can be approximated as

FIG. 2. Snapshots of collapsed PE in (a) weak electrostatic
regime, Z ¼ 1, lB ¼ 10.93 (left) and (b) strong electrostatic
regime, Z ¼ 1, lB ¼ 34.86 (right). (c) The corresponding radial
number density profile ρ of the counterions, where r is the
distance of the counterion from the center of mass of the chain. r0
is the distance at which the density is 50% of the density at r ¼ 0

and ρ0 ¼ N=V 0, where V 0 ¼ 4
3
πr03.
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βFel

N
≈ −

~Z2lB

N1=6α
; ð9Þ

where ~Z2 ¼ ð3=2Þð2=π2Þ1=3 ffiffiffi
6

p
Z2=3. Thus, for a single PE

in any solvent, in the regime where the electrostatic
contribution to the free energy dominates over the entropic
one, Eqs. (7) and (9) yield for the free energy,

βF
N

¼ −
~Z2lB

N1=6α
þ

~B

N1=2α3
þ

~C
Nα6

: ð10Þ

Note that while Eq. (10) takes into account the volume
interactions between the chain monomers, such interactions
with counterions may be also important for a dense globule.
It is straightforward to take into account these interactions,
which do not alter the form of the free energy (10), but lead
to the renormalization of ~B and ~C (see the Supplemental
Material [29]). For simplicity we keep the same notations
for the renormalized coefficients.
In what follows we consider the case of a good solvent,

which corresponds to positive coefficients ~B and ~C. To find
equilibrium α and hence Rg, one needs to minimize
Eq. (10) with respect to α. The relative importance of
the virial terms in Eq. (10) depends on N, the virial
coefficients ~B and ~C, and the expansion factor α. The
second virial term dominates when α3 > ~CN−1=2= ~B, which
corresponds to the weak electrostatic regime. Neglecting
the third virial term in Eq. (10) and minimizing F with
respect to α ¼ Rg=Rg:id, we find

Rg ¼
ffiffiffiffi
~B

p
aN1=3ffiffiffi

2
p

~Zl1=2
B

; ð11Þ

as obtained in Ref. [4]. This is consistent with the MD data
for lB < l�

B: Rg ∼ l−1=2
B ; see Fig. 1.

In contrast, in the strong electrostatic regime, when
α3 < ~CN−1=2= ~B, the third virial term is larger than the
second one. Hence, neglecting the second virial term in
Eq. (10) and minimizing the free energy, we obtain

Rg ¼
~C1=5aN1=3

63=10 ~Z2=5l1=5
B

: ð12Þ

This scaling of Rg is consistent with the MD simulation

data for lB > l�
B: Rg ∼ l−1=5

B as shown in Fig. 1.
To check independently our approximations for the

electrostatic and the volume part of the free energy,
Eqs. (9) and (7), we now calculate the respective compo-
nents of the internal energy and compare them to results
from MD simulations. The electrostatic part of the internal
energy Eel ¼ ∂ðβFelÞ=∂β is given by

βEel=ðNlBÞ ¼ − ~Z2aN1=3=
ffiffiffi
6

p
Rg ∼ N1=3R−1

g : ð13Þ

The scaling of Eel as a function of Rg is shown in Fig. 3(a)
from the MD data, which clearly demonstrates the linear
dependence of the electrostatic energy Eel on the inverse
gyration radius Rg as obtained in Eq. (13). We note that
this linear dependence is valid in both weak and strong
electrostatic regimes.
Similarly, the internal energy corresponding to the

volume interactions via LJ interactions, ELJ¼∂ðβFvolÞ=∂β,
is given by

βELJ=N ¼ NB0R−3
g þ N2C0R−6

g ; ð14Þ

where B0 ¼ ð3=8πÞβ∂B=∂β and C0 ¼ ð3=32π2Þβ∂C=∂β. If
the first term in the right-hand side of Eq. (14) dominates,
one obtains ELJ ∼ R−3

g ; if the second one dominates, then
ELJ ∼ R−6

g . In Fig. 3(b) we plot the respective internal
energy due to volume interactions from our MD data. The
figure convincingly illustrates the dominance of the second
and third virial terms in the weak and strong electrostatic
regimes correspondingly, with the crossover occuring at
Rg=aN1=3 ≈ 0.63 (Z ¼ 3), 0.64 (Z ¼ 2) and 0.68 (Z ¼ 1).
These values match closely with the crossover found
in Fig. 1.
Conclusion.—We elucidate the origin of attractive inter-

actions in a collapsed polyelectrolyte in a good solvent
using MD simulations and theoretical analysis. We identify
two collapsed regimes, that we call as weak and strong
electrostatic regimes. In the first regime the gyration radius
Rg of a chain scales with Bjerrum length lB as Rg ∼ l−1=2

B

(b)

(a)

FIG. 3. (a) Variation of the electrostatic energy Eel with the
radius of gyration Rg for different valency. Inset: Variation with
the chain length N. (b) Variation of the LJ energy of the system
with the radius of gyration Rg for different valency.
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while in the second one as Rg ∼ l−1=5
B . This scaling is

robust and independent on the valency of the counterions,
volume interaction models between chain monomers and
on the solvent models. Both regimes may be observed
experimentally (see the Supplemental Material [29] for the
discussion). The detected scaling in the weak electrostatic
regime (Rg ∼ N1=3l−1=2

B ) is not consistent with the pre-
dictions of the theories of fluctuating dipoles
(Rg ∼ N1=3l−2=3

B ) [23,25–27], or of the amorphous ionic
solid (Rg ∼ N1=3l0

B) [19], but agrees with the counterion-
fluctuation theory [4]. At the same time the scaling in the
strong electrostatic regime (Rg ∼ N1=3l−1=5

B ) is not consis-
tent with any of the existing theories.
In this Letter, we modified the counterion-fluctuation

theory [4], in which density fluctuations of delocalized
counterions inside a chain globule give rise to effective
attractive interactions. Including the third virial term into
the volume-interaction part of the free energy of the chain
Fvol, we obtain the correct description for the RgðlBÞ
dependence in both weak and strong electrostatic regimes.
We find that the different electrostatic regimes correspond
to the dominance of different virial terms of Fvol and it may
be envisaged that additional virial terms may be required at
higher electrostatic strengths. We note that various theories
explaining the origin of attractive interactions in a collapsed
state of PE or PE gels [4,19,22–27,35,36] differ mainly in
the form of the electrostatic term. As we show in our MD
simulations the scaling of the electrostatic energy with the
gyration radius Rg is the same for all values of lB and is
consistent with the counterion-fluctuation theory. Hence,
our results strongly support the counterion-fluctuation
mechanism of the PE collapse in a good solvent, suggested
previously in Ref. [4].

The simulations were carried out on the supercomputing
machines Annapurna, Nandadevi, and Satpura at The
Institute of Mathematical Sciences.
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