University of Leicester
Browse
181009-Revised manuscript_GAS.pdf (666.68 kB)

Moderately branched ultra-high molecular weight polyethylene by using N,N′-nickel catalysts adorned with sterically hindered dibenzocycloheptyl groups

Download (666.68 kB)
journal contribution
posted on 2019-05-13, 13:16 authored by M Zada, L Guo, R Zhang, W Zhang, Y Ma, GA Solan, Y Sun, WH Sun
Five examples of unsymmetrical 1,2-bis (arylimino) acenaphthene (L1 – L5), each containing one N-2,4-bis (dibenzocycloheptyl)-6-methylphenyl group and one sterically and electronically variable N-aryl group, have been used to prepare the N,N′-nickel (II) halide complexes, [1-[2,4-{(C 15 H 13 } 2 –6-MeC 6 H 2 N]-2-(ArN)C 2 C 10 H 6 ]NiX 2 (X = Br: Ar = 2,6-Me 2 C 6 H 3 Ni1, 2,6-Et 2 C 6 H 3 Ni2, 2,6-i-Pr 2 C 6 H 3 Ni3, 2,4,6-Me 3 C 6 H 2 Ni4, 2,6-Et 2 –4-MeC 6 H 2 Ni5) and (X = Cl: Ar = 2,6-Me 2 C 6 H 3 Ni6, 2,6-Et 2 C 6 H 3 Ni7, 2,6-i-Pr 2 C 6 H 3 Ni8, 2,4,6-Me 3 C 6 H 2 Ni9, 2,6-Et 2 –4-MeC 6 H 2 Ni10), in high yield. The molecular structures Ni3 and Ni7 highlight the extensive steric protection imparted by the ortho-dibenzocycloheptyl group and the distorted tetrahedral geometry conferred to the nickel center. On activation with either Et 2 AlCl or MAO, Ni1 – Ni10 exhibited very high activities for ethylene polymerization with the least bulky Ni1 the most active (up to 1.06 × 10 7  g PE mol −1 (Ni) h −1 with MAO). Notably, these sterically bulky catalysts have a propensity towards generating very high molecular weight polyethylene with moderate levels of branching and narrow dispersities with the most hindered Ni3 and Ni8 affording ultra-high molecular weight material (up to 1.5 × 10 6  g mol −1 ). Indeed, both the activity and molecular weights of the resulting polyethylene are among the highest to be reported for this class of unsymmetrical 1,2-bis (imino)acenaphthene-nickel catalyst.

Funding

This work was supported by the National Natural Science Foundation of China (No. 21871275 and 51473170). MZ is grateful for a CAS‐TWAS president's fellowship. GAS thanks the Chinese Academy of Sciences for a President's International Fellowship for Visiting Scientists.

History

Citation

Applied Organometallic Chemistry, 2019, 33 (5), e4749

Author affiliation

/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Chemistry

Version

  • AM (Accepted Manuscript)

Published in

Applied Organometallic Chemistry

Publisher

Wiley

issn

0268-2605

eissn

1099-0739

Acceptance date

2018-11-12

Copyright date

2019

Publisher version

https://onlinelibrary.wiley.com/doi/full/10.1002/aoc.4749

Notes

The file associated with this record is under embargo until 12 months after publication, in accordance with the publisher's self-archiving policy. The full text may be available through the publisher links provided above.

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC