Climate Dynamics

The Modulation of the Southern Africa Precipitation Response to the El Niño Southern Oscillation by the Subtropical Indian Ocean Dipole --Manuscript Draft--

Manuscript Number:	CLDY-D-15-00736
Full Title:	The Modulation of the Southern Africa Precipitation Response to the El Niño Southern Oscillation by the Subtropical Indian Ocean Dipole
Article Type:	Original Article
Keywords:	Southern Africa; Precipitation; El Nino-Southern Oscillation; Subtropical Indian Ocean Dipole
Corresponding Author:	Andrew Hoell
	UNITED STATES
Corresponding Author Secondary Information:	
Corresponding Author's Institution:	
Corresponding Author's Secondary Institution:	
First Author:	Andrew Hoell
First Author Secondary Information:	
Order of Authors:	Andrew Hoell
	Chris Funk
	Jens Zinke
	Laura Harrison
Order of Authors Secondary Information:	
Funding Information:	
Abstract:	The climate of Southern Africa, defined as the land area bound by the region 15°S- 35°S; 12.5°E-42.5°E, during the November-March rainy season is driven by Indo- Pacific sea surface temperature (SST) anomaly expressions associated with the El Niño Southern Oscillation (ENSO) and the Subtropical Indian Ocean Dipole (SIOD). The observed November-April 1979-2014 Southern Africa precipitation during the four ENSO and SIOD phase combinations suggests that the phase of the SIOD can disrupt or enhance the Southern Africa precipitation response during ENSO. Here, we use a large ensemble of model simulations driven by global SST and ENSO-only SST to test whether the SIOD modifies the relationship between Southern Africa precipitation and ENSO. Since ENSO-based precipitation forecasts are used extensively over Southern Africa, an improved understanding of how other modes of SST variability modulate the regional response to ENSO is important. ENSO, in the absence of the SIOD, forces an equivalent barotropic Rossby wave over Southern Africa that modifies the regional mid-tropospheric vertical motions and precipitation. El Niño (La Niña) is related with high (low) pressure over Southern Africa that produces anomalous mid-tropospheric descent (ascent) and decreases (increases) in precipitation relative to average. When the SIOD and ENSO are in opposite phases, the SIOD compliments the ENSO-related atmospheric response over Southern Africa by strengthening the regional equivalent barotropic Rossby wave, anomalous mid-tropospheric vertical motions and anomalous precipitation. In contrast, when the SIOD and ENSO are in the same phase, the SIOD disrupts the ENSO- related atmospheric response over Southern Africa by weakening the regional equivalent barotropic Rossby wave, anomalous mid-tropospheric vertical motions and anomalous precipitation.

Suggested Reviewers:	Swadhin Behera behera@jamsetc.go.jp
	J.V. Ratnam jvratnam@jamsetc.go.jp
	Chris Reason chris.reason@uct.ac.za
	D. Manatsa dmanatsa@gmail.com

1	The Modulation of the Southern Africa Precipitation Response to the El Niño
2	Southern Oscillation by the Subtropical Indian Ocean Dipole
3	
4	Andrew Hoell ¹
5	NOAA Earth System Research Laboratory Physical Sciences Division
6	
7	Chris Funk
8	Department of Geography University of California Santa Barbara
9	U.S. Geological Survey
10	
11	Jens Zinke
12	Department of Environment and Agriculture, Curtain University of Technology
13	School of Geography, Archaeology and Environmental Studies, University of
14	Witwatersrand
15	

¹ Corresponding Author Address: Andrew Hoell, NOAA/ESRL/PSD, 325 Broadway, Boulder, CO 80305, email: andrew.hoell@noaa.gov

16	Laura Harrison
17	Department of Geography University of California Santa Barbara
18	
19	
20	
21	
22	3 December 2015
23	

Abstract

25	The climate of Southern Africa, defined as the land area bound by the region
26	15°S-35°S; 12.5°E-42.5°E, during the November-March rainy season is driven by Indo-
27	Pacific sea surface temperature (SST) anomaly expressions associated with the El
28	Niño Southern Oscillation (ENSO) and the Subtropical Indian Ocean Dipole (SIOD).
29	The observed November-April 1979-2014 Southern Africa precipitation during the
30	four ENSO and SIOD phase combinations suggests that the phase of the SIOD can
31	disrupt or enhance the Southern Africa precipitation response during ENSO. Here,
32	we use a large ensemble of model simulations driven by global SST and ENSO-only
33	SST to test whether the SIOD modifies the relationship between Southern Africa
34	precipitation and ENSO. Since ENSO-based precipitation forecasts are used
35	extensively over Southern Africa, an improved understanding of how other modes of
36	SST variability modulate the regional response to ENSO is important.
37	ENSO, in the absence of the SIOD, forces an equivalent barotropic Rossby
38	wave over Southern Africa that modifies the regional mid-tropospheric vertical
39	motions and precipitation. El Niño (La Niña) is related with high (low) pressure over
40	Southern Africa that produces anomalous mid-tropospheric descent (ascent) and

41	decreases (increases) in precipitation relative to average. When the SIOD and ENSO
42	are in opposite phases, the SIOD compliments the ENSO-related atmospheric
43	response over Southern Africa by strengthening the regional equivalent barotropic
44	Rossby wave, anomalous mid-tropospheric vertical motions and anomalous
45	precipitation. In contrast, when the SIOD and ENSO are in the same phase, the SIOD
46	disrupts the ENSO-related atmospheric response over Southern Africa by weakening
47	the regional equivalent barotropic Rossby wave, anomalous mid-tropospheric vertical
48	motions and anomalous precipitation.

1. Introduction

50	The climate of Southern Africa, defined as the land area bound by the region
51	15°S-35°S; 12.5°E-42.5°E, is related with the simultaneous spatial variations of Pacific,
52	Indian and Atlantic Ocean sea surface temperatures (SST) (e.g. Nicholson and Kim
53	1997). The Indo-Pacific Ocean SST anomaly expressions related to Southern Africa
54	climate have been shown to be a consequence of three modes of SST variability: the
55	El Niño Southern Oscillation (ENSO) shown in Fig. 1a, the Indian Ocean Dipole (IOD)
56	(e.g., Chambers et al, 1999; Webster et al, 1999; Saji et al, 1999) shown in Fig. 1b and
57	the Subtropical Indian Ocean Dipole (SIOD) (Behera et al. 2000, Behera and
58	Yamagata 2001) shown in Fig. 1c. In this manuscript, we examine how modes of
59	Indo-Pacific SST variability simultaneously force Southern Africa precipitation during
60	the November-March rainy season.
61	In aggregate, ENSO events force atmospheric circulations over Southern Africa
62	that result in regional precipitation anomalies (e.g. Nicholson and Entekhabi 1986,
63	Lindesay 1988, Jury et al. 1994, Rocha and Simmonds 1997, Nicholson and Kim 1997,
64	Reason et al 2000, Misra 2003). A mid-tropospheric convection dipole between the
65	region that includes the eastern Indian Ocean and Maritime Continent and the

66	central Pacific Ocean during ENSO events excites Rossby waves over Southern Africa
67	(Ratnam et al. 2014, Hoell et al. 2015) that modifies the regional moisture fluxes
68	(Reason and Jagadheesha 2005, Hoell et al. 2015) and vertical motions (Hoell et al.
69	2015) thereby forcing the regional precipitation (Nicholson and Kim 1997). El Niño
70	(La Niña), forces high (low) pressure over Southern Africa, which in turn forces
71	anomalous reductions (increases) in moisture fluxes, anomalous downward (upward)
72	vertical motions and decreases (increases) in precipitation relative to average.
73	There is considerable inter-event variability in the Atlantic and Indo-Pacific
74	SST (Wrytki 1975) and the atmospheric teleconnections driven by those SST over
75	Southern Africa between each El Niño and La Niña (Ratnam et al. 2014, Hoell et al.
76	2015). El Niño and La Niña-forced atmospheric teleconnections over Southern Africa
77	during November-March are modified by SST variability over the Atlantic and Indian
78	Oceans (Nicholson 1997, Goddard and Graham 1999). Observational analyses have
79	suggested that atmospheric teleconnections during La Niña are more sensitive to SST
80	forcing over the Atlantic Ocean while atmospheric teleconnections during El Niño are
81	more sensitive to SST forcing over the Indian Ocean (Nicholson and Kim 1997).
82	Problematically, the differences in the SST expressions between seemingly similar El

83	Niño and La Niña events can compromise the potential predictability of Southern
84	Africa precipitation. Therefore, we reexamine the critical role that Indian Ocean SSTs
85	play in modifying the ENSO-driven Southern Africa precipitation during the
86	November-March rainy season.
87	Indian Ocean SST variability on seasonal to interannual time scales is largely
88	expressed in the form of dipole patterns across the ocean basin as a result of the
89	SIOD (Behera et al. 2000, Behera and Yamagata 2001) whose SST expression is shown
90	in Fig. 1c and the IOD (e.g., Chambers et al, 1999; Webster et al, 1999; Saji et al,
91	1999) whose SST expression is shown in Fig. 1b. The SST anomaly expression of the
92	SIOD (Fig. 2c) forces atmospheric circulations over Southern Africa that modifies the
93	flux of moisture and therefore precipitation (Reason 2001, Washington and Preston
94	2006). The SST anomaly expression of the IOD (Fig. 1b) forces wide-ranging
95	teleconnections across the Indian Ocean basin and surrounding areas by modifying
96	the zonal winds (Saji et al. 1999) and therefore moisture fluxes over Africa (Behera et
97	al. 2005).
98	The relative effects of Indian Ocean SST and Pacific Ocean SST on Southern
99	Africa climate are currently unknown. Manatsa (2011a, 2011b) attempted to

100	decouple the effect of the IOD and ENSO on the leading components of Southern
101	Africa rainfall using observational data. Manatsa (2011a, 2011b) had limited success
102	due to what appeared to be changes in the behavior of the atmospheric circulation
103	during the 1970s and 1990s. However, what is known is that atmospheric models
104	forced by Indian Ocean and Pacific Ocean SST more accurately depict the climate of
105	Southern Africa as compared to the forcing by Pacific SST alone (Reason and
106	Jagadheesha 2005). Therefore, understanding the simultaneous effects of Indo-
107	Pacific SST on Southern African climate is important.
108	The global SST anomaly pattern related to the observed November-March
109	1979-2014 Southern Africa precipitation variability is shown in Fig. 2b. Observed
110	Southern Africa precipitation (Fig. 2b) is related with ENSO (Fig. 1a) and a southwest
111	to northeast oriented dipole SST pattern in the Indian Ocean that is similar to the
112	SST anomaly expression of the SIOD (Fig. 1c). The SST anomaly expression of the
113	IOD (Fig. 1b) is unrelated with historical Southern Africa precipitation during
114	November-March (Fig. 2b). Enhanced Southern Africa precipitation is related with La
115	Niña, defined by a cool east-central tropical Pacific Ocean, and a positive SIOD,
116	defined by a warm southwest Indian Ocean and cool central Indian Ocean. Reduced

117	Southern Africa precipitation is related with El Niño, defined by a warm east-central
118	tropical Pacific Ocean, and a negative SIOD, defined by a cool southwest Indian
119	Ocean and a warm central Indian Ocean. Overall, the observed Southern Africa
120	precipitation (Fig. 2b) is most closely related to opposing phases of ENSO and the
121	SIOD.
122	Observed conditions during 1979-2014 indicate that differences in the
123	simultaneous phasing of ENSO and the SIOD results in precipitation anomalies of
124	varying strength over Southern Africa during November-March (Fig. 3). When ENSO
125	and the SIOD were out of phase, Southern Africa precipitation was strongly reduced
126	during El Niño (Fig. 3a-b) and Southern Africa precipitation was strongly enhanced
127	during La Niña (Fig. 3e-f). In contrast, when ENSO and the SIOD were in phase,
128	Southern Africa precipitation was only marginally reduced during El Niño (Fig. 3c-d)
129	and Southern Africa precipitation was only marginally enhanced during La Niña (Fig.
130	3g-h). The observed November-April 1979-2014 Southern Africa precipitation during
131	the four ENSO and SIOD phase combinations suggests that the phase of the SIOD
132	can disrupt or enhance the Southern Africa precipitation response during ENSO.

133	In this manuscript, we examine how the phase of the SIOD, and therefore the
134	SST anomaly expression of the Indian Ocean, modulates the Southern Africa
135	precipitation response to ENSO through comparisons of two large atmospheric
136	simulation ensembles for 1979-2014. The first ensemble is forced by global SST
137	variability, which includes the combined effects of ENSO and the SIOD, and the
138	second ensemble is forced by SST variability associated only with ENSO. We test the
139	degree to which the SIOD modulates the ENSO-related precipitation response over
140	Southern Africa by comparing the historical atmospheric simulation ensembles
141	separated by phase of the SIOD. In section 2, we describe the observed historical
142	data and the two atmospheric simulations ensembles utilized. In section 3, we
143	examine how the SIOD modulates the atmospheric teleconnections and precipitation
144	associated with ENSO over Southern Africa. In section 4, we provide a summary.
145	
146	2. Data, Models and Methods

- 147 *2.1 Observed Data*
- 148 Observed historical precipitation for 1979-2014 is from the Global
- 149 Precipitation Climatology Project (GPCP) blended satellite and rain gauge estimates

150	version 2.2 on a 2.5°x2.5° latitude-longitude fixed grid (Adler et al. 2003, Huffman et
151	al. 2009). Observed historical SSTs for 1979-2014 are from the merged Hadley-
152	NOAA Optimum Interpolation dataset developed by Hurrell et al. (2008) on a
153	1.0°x1.0° latitude-longitude fixed grid. Observed SST and sea ice from Hurrell et al.
154	(2008) also specify the ocean boundary conditions in historical atmospheric model
155	simulations, commonly referred to as AMIP simulations after the Atmospheric Model
156	Intercomparison Project (Gates 1992).
157	
158	2.2 AMIP Simulations
159	Two separate AMIP experiments for 1979-2014 are used to test whether the
160	SIOD modulates the Southern Africa precipitation response to ENSO during the
161	November-March rainy season. The two AMIP experiments are each made up of 80
162	ensembles, 30 of which are generated using the ECHAM5 model (Roeckner et al.
163	2006) and 50 of which are generated using the GFS version 2 model (Saha et al.
164	2010).
165	The first AMIP experiment is used to test the atmospheric response to the
166	observed global SST, and is driven by time-varying historical monthly global SST, sea

167	ice, greenhouse gas concentrations and aerosols for 1979-2014. The second AMIP
168	experiment is used to test the atmospheric response to ENSO, and is driven by the
169	leading pattern of global time-varying monthly SST anomaly added to the monthly
170	climatology, observed sea ice, greenhouse gas concentrations and aerosols for 1979-
171	2014.
172	The leading pattern of global SST anomaly used to specify the ocean
173	boundary condition in the second AMIP experiment was identified by a covariance-
174	based empirical orthogonal function (EOF) calculation of detrended monthly SST
175	from January 1978-December 2011 (Fig. 4). The leading pattern of SST and the AMIP
176	experiment driven by the leading pattern of SST are hereafter referred to as EOF1.
177	The spatial pattern of EOF1 (Fig. 4a) closely resembles the SST anomaly expression of
178	ENSO (Fig. 1a), and the principal component of EOF1 (Fig. 4b) is correlated with the
179	Niño3.4 index at r=0.97. For 2012-2014, the principal component of EOF1 is
180	calculated by projecting the EOF pattern (Fig. 3a) on to SSTs. The monthly SST
181	expression related to EOF1 for 1979-2014 is obtained by multiplying EOF1 (Fig. 4a)
182	by its principal component (Fig. 4b). The monthly SST anomaly of EOF1 is added to
183	the 1979-2010 monthly SST climatology to obtain the time-varying monthly SST used

as the ocean boundary condition of the AMIP simulations. For more information on

185 these experiments please visit the URL

186 http://www.esrl.noaa.gov/psd/repository/alias/facts.

187

188 2.3 Comparison of Observed and Simulated Southern Africa Precipitation

189 The monthly average 1979-2014 observed precipitation over Southern Africa

190 indicates that the primary precipitation season spans November-March (Fig. 5b).

191 November-March 1979-2014 observed average precipitation over Southern Africa is

192 unevenly distributed in space (Fig. 5a). Regionally, the greatest precipitation

amounts during November-March fall over Malawi, Angola, Zambia and Mozambique

194 while the lowest precipitation amounts fall over the Atlantic facing coastlines of

195 southwest Southern Africa (Fig. 5a).

196 The monthly averaged precipitation variability of the ECHAM5 and GFS

197 version 2 AMIP simulations driven by observed global time-varying SST (Fig. 5d,f) are

198 very similar to the observed precipitation (Fig. 3b), with correlations in excess of 0.98.

199 While the correlation between the observed monthly precipitation climatology and

200 the climatology of the AMIP simulations driven by global SST over Southern Africa

201	are very similar, there is a dry bias in the ECHAM5 and GFS version 2 models of
202	about 30% each month. Due to this dry bias we show standardized precipitation
203	anomalies in time and space in the following analyses. Standardized precipitation
204	anomalies are defined as the precipitation anomaly divided by the seasonal cycle
205	standard deviation of precipitation. The average November-March 1979-2014
206	precipitation of the ECHAM5 and GFS version 2 AMIP simulations driven by observed
207	global time-varying SST over Southern Africa (Figs. 5c,e) are similar in space to the
208	observed precipitation (Fig. 5a).
209	The temporal variability of observed precipitation and precipitation resolved
210	by AMIP simulations driven by global SST and EOF1 of SST over Southern Africa for
211	November-March 1979-2014 are shown in Figs. 6a and 6b, respectively. The
212	ensemble average precipitation variability of the AMIP simulations driven by global
213	SST and EOF1 of SST during November-March 1979-2014 capture in excess of 25%
214	of the variance of observed precipitation over Southern Africa (Fig. 6a). The AMIP
215	experiments capture the interannual variability and magnitude of standardized
216	precipitation anomalies well during prolonged periods. Furthermore, the observed
217	precipitation always falls within the 80-member ensemble spread of the AMIP

218	simulations. The results presented here show that the AMIP simulations forced by
219	global SST and EOF1 of SST capture the precipitation climatology and variability of
220	Southern Africa well and are suitable to test the SST effects on Southern Africa.
221	
222	3. Southern Africa Precipitation Sensitivity to ENSO
223	Fig. 7a shows the correlation of observed SST and Southern Africa
224	precipitation variability in AMIP simulations driven by global SST for November-
225	March 1979-2014. The AMIP simulations driven by global SST affirm the historical
226	observed relationship between SST and Southern Africa precipitation (Fig. 2b).
227	Southern Africa precipitation is associated with ENSO (Fig. 1a) and a southwest-to-
228	northeast dipole of SST in the Indian Ocean similar to the SST anomaly expression of
229	the SIOD (Fig. 1c). AMIP simulations driven by global SST (Fig. 6a) also affirm
230	observed historical conditions in that the IOD (Fig. 1b) is not significantly related with
231	November-March Southern Africa precipitation.
232	Fig. 7b shows the correlation of observed SST and Southern Africa
233	precipitation in AMIP simulations driven by EOF1 of SST for November-March 1979-
234	2014 to test the degree to which ENSO alone is related with Southern Africa

235	precipitation. The AMIP simulations driven by EOF1 once again affirm the observed
236	historical relationship between ENSO and Southern Africa precipitation (Fig. 2b), with
237	similar spatial correlations to the AMIP simulations driven by global SST over the
238	central Pacific Ocean (Fig. 7a). The relationship between Indian Ocean SST and
239	Southern Africa precipitation driven by EOF1 of SST are weak, as evidenced by weak,
240	yet significant, correlations over the central Indian Ocean (Fig. 7b) that are present in
241	EOF1 (Fig. 4a). The SST anomaly expression associated with Southern Africa
242	precipitation in AMIP simulations driven by EOF1 (Fig. 7b) does not include the SST
243	anomaly expression of the SIOD (Fig. 1c) in contrast with the AMIP simulations driven
244	by global SST (Fig. 7a).
245	Since the SIOD is not fully realized in the forcing of Southern Africa
246	precipitation by EOF1 (Fig. 7b), but is fully realized in the forcing of Southern Africa
247	precipitation by global SST (Fig. 7a), we are able to test whether the SIOD modifies
248	the relationship between Southern Africa precipitation and ENSO through a
249	comparison of these two experimental suites. We test whether the SIOD modifies
250	the relationship between Southern Africa precipitation and ENSO though an

examination of Southern Africa precipitation as a function of SIOD phase in AMIPsimulations forced by global SST and EOF1 of SST.

253	Fig. 8 shows the relationship between Southern Africa precipitation, SST and
254	ENSO separated by phase of the SIOD in AMIP simulations forced by global SST.
255	When all November-March seasons are considered, Southern Africa precipitation is
256	associated with the SST anomaly expressions (Fig. 8a) of ENSO (Fig. 1a) and the SIOD
257	(Fig. 1c), and is significantly correlated with the Niño3.4 index (Fig. 8b). When the
258	Niño3.4 and SIOD indices have the opposite sign during November-March, Southern
259	Africa precipitation is again associated with the SST anomaly expressions (Fig. 8c) of
260	ENSO (Fig. 1a) and the SIOD (Fig. 1c), and is significantly correlated with the Niño3.4
261	index (Fig. 8d). The difference between the condition in which the Niño3.4 and SIOD
262	indices have the opposite sign and when all seasons are considered is that the
263	relationship between Southern Africa precipitation and Indo-Pacific SSTs is stronger
264	when the Niño3.4 and SIOD indices have the opposite sign. When the Niño3.4 and
265	SIOD indices have the same sign during November-March, Southern Africa
266	precipitation is associated with an SST anomaly (Fig. 8e) that does not resemble
267	either the ENSO (Fig. 1a) or the SIOD (Fig. 1c) SST anomaly expressions. In fact,

268	when the SIOD and ENSO are in the same phase, Southern Africa precipitation is
269	only closely related with a coherent pattern of western Indian Ocean SST (Fig. 8e).
270	This examination of Southern Africa precipitation as a function of the SIOD
271	phasing indicates that the SIOD modulates the Southern Africa precipitation response
272	to ENSO. When the SIOD and Niño3.4 indices have the opposite sign, which results
273	in an SST expression that closely resembles the historical SST and Southern Africa
274	precipitation relationship (Fig. 2b), this condition results in a stronger Southern Africa
275	precipitation response (Fig. 8). When the SIOD and Niño3.4 indices have the same
276	sign, Southern Africa precipitation is not related to the SST anomaly expressions (Fig.
277	8e) of ENSO (Fig. 1a) or the SIOD (Fig. 1c). Depending on the phase of the SIOD, the
278	effect of the SIOD can either compliment the Southern Africa precipitation response
279	to ENSO, or can disrupt the Southern Africa precipitation response to ENSO,
280	affirming the small sample of observed conditions (Fig. 3).
281	The atmospheric circulation over Southern Africa associated with ENSO and
282	separated by phase of the SIOD during November-March in AMIP simulations forced
283	by global SSTs is shown in Fig. 9. When all November-March seasons are
284	considered, ENSO is related to an equivalent barotropic Rossby wave over Southern

285	Africa, that modifies the regional mid-tropospheric vertical motions and precipitation.
286	El Niño (La Niña) is related with high (low) pressure over Southern Africa (vectors in
287	Fig. 9b) that is responsible for anomalous mid-tropospheric descent (ascent) (Fig. 9b)
288	and decreases (increases) in precipitation relative to average (Fig. 9a). When the
289	Niño3.4 and SIOD indices have the opposite sign during November-March, the SIOD
290	compliments the ENSO-related atmospheric response over Southern Africa by
291	strengthening the equivalent barotropic Rossby wave (Fig. 9d), anomalous mid-
292	tropospheric vertical motions (Fig. 9d) and anomalous precipitation (Fig. 9d). When
293	the Niño3.4 and SIOD indices have the same sign during November-March, the SIOD
294	disrupts the ENSO-related atmospheric response over Southern Africa by weakening
295	the equivalent barotropic Rossby wave (Fig. 9f) anomalous mid-tropospheric vertical
296	motions (Fig. 9f) and anomalous precipitation (Fig. 9e).
297	Fig. 10 shows the relationship between Southern Africa precipitation, SST and
298	ENSO separated by phase of the SIOD in AMIP simulations forced by EOF1 of SST.
299	Note that the correlations of Southern Africa precipitation are to the full SST, and not
300	EOF1 of SST, to demonstrate that the SIOD has no effect in the AMIP simulations
301	driven by EOF1. When all November-March seasons are considered, Southern Africa

302	precipitation is associated with the SST anomaly expression (Fig. 10a) of EOF1 (Fig.
303	4a), which by design is the same as the SST anomaly expression of ENSO (Fig. 1a).
304	When the Niño3.4 and SIOD indices have the opposite sign during
305	November-March, Southern Africa precipitation in AMIP simulations forced by EOF1
306	is related with the SST anomaly expression (Fig. 10c) of ENSO (Fig. 1a), as is
307	expected. The SST anomaly expression of the SIOD also appears in this correlation,
308	but only because the correlation is performed against the full SST field. The SIOD
309	has no effect on Southern Africa precipitation in AMIP simulations driven by EOF1, as
310	the relationship between Southern Africa precipitation and SST (Fig. 10c) is
311	statistically indistinguishable from the aggregate case (Fig. 10a) over the tropical
312	Pacific Ocean. This is in contrast with Southern Africa precipitation in AMIP
313	simulations driven by global SST (Fig. 8), where the relationship between Southern
314	Africa precipitation and ENSO significantly increased from the aggregate case when
315	the SIOD and Niño3.4 indices are in the opposite phase (Fig. 8a,c).
316	When the Niño3.4 and SIOD indices have the same sign during November-
317	March, Southern Africa precipitation in AMIP simulations forced by EOF1 is again
318	related with the SST anomaly expression (Fig. 10d) of ENSO (Fig. 1a). The

319	southwestern dipole of the SST anomaly expression of the SIOD appears in this
320	correlation only because the correlation is performed against the full SST field. The
321	SIOD has no effect on Southern Africa precipitation in AMIP simulations forced by
322	EOF1, as the relationship between Southern Africa precipitation (Fig. 10e) is
323	statistically indistinguishable from the aggregate case (Fig. 10a) over the tropical
324	Pacific Ocean.
325	The atmospheric circulations related to ENSO over Southern Africa in AMIP
326	simulations forced by EOF1 are also statistically indistinguishable when separated by
327	phase of the SIOD during November-March (Fig. 11). As was discussed previously,
328	ENSO is related to an equivalent barotropic Rossby wave over Southern Africa, that
329	modifies the regional mid-tropospheric vertical motions and precipitation (Fig. 11).
330	
331	4. Summary and Discussion
332	The historical ENSO and Southern Africa relationship (e.g. Fig. 2) has
333	facilitated the successful prediction of Southern Africa precipitation during many
334	November-March rainy seasons (e.g. Hastenrath et al. 1995). On average, La Niña is
335	related with enhanced Southern Africa precipitation while El Niño is related with

336	reduced Southern Africa precipitation. However, there have been historical
337	occurrences, namely 1983-1984, 1984-1985, 1985-1986, 1988-1989, 1995-1996, 1999-
338	2000 and 2011-2012, in which La Niña events (Fig. 3g) occurred simultaneously with
339	widespread areas of near average November-March precipitation over Southern
340	Africa (Fig. 3h). Since the SIOD, a mode of SST variability in the Indian Ocean, is also
341	related with Southern Africa precipitation, we examine whether the SIOD modulates
342	the ENSO-related teleconnection over Southern Africa.
343	Observed historical relationships (Fig. 2) and AMIP simulations (Fig. 7) driven
344	by global SST for November-March 1979-2014 indicate that Southern Africa
345	precipitation is associated with ENSO (Fig. 1a) and the SIOD (Fig. 1c). Observed
346	historical relationships (Fig. 2) and AMIP simulations (Fig. 7) driven by global SST also
347	indicate that Southern Africa precipitation during November-March is unrelated with
348	the IOD (Fig. 1b). Enhanced Southern Africa precipitation is related to La Niña,
349	defined by a cool east-central tropical Pacific Ocean, and a positive SIOD, defined by
350	a warm southwest Indian Ocean and cool central Indian Ocean. Reduced Southern
351	Africa precipitation is related to El Niño, defined by a warm east-central tropical
352	Pacific Ocean, and a negative SIOD, defined by a cool southwest Indian Ocean and a

353	warm central Indian Ocean. Overall, AMIP simulations driven by global SST and
354	observed conditions indicate that Southern Africa precipitation is related to opposing
355	phases of ENSO and the SIOD.
356	The average November-March 1979-2014 precipitation anomaly over
357	Southern Africa during ENSO events in which ENSO and the SIOD were out of phase
358	was much greater than the precipitation anomaly during ENSO events in which ENSO
359	and SIOD were in phase (Fig. 3). Therefore, we examine whether the phase of the
360	SIOD can modulate the relationship between ENSO and Southern Africa precipitation.
361	The modulation of the ENSO teleconnection over Southern Africa by the SIOD
362	is tested through comparisons of two large atmospheric simulation ensembles for
363	1979-2014. The first ensemble is forced by global SST variability, which includes the
364	combined effects of ENSO and the SIOD, and the second ensemble is forced by SST
365	variability associated only with ENSO. We test the degree to which the SIOD
366	modulates the ENSO-related precipitation response over Southern Africa by
367	comparing the two large historical atmospheric simulation ensembles separated by
368	phase of the SIOD.

369	AMIP simulations driven by only ENSO indicate that ENSO forces an
370	equivalent barotropic Rossby wave over Southern Africa that modifies the regional
371	mid-tropospheric vertical motions and precipitation (Fig. 11). El Niño (La Niña) is
372	related with high (low) pressure over Southern Africa that is responsible for
373	anomalous mid-tropospheric descent (ascent) and decreases (increases) in
374	precipitation relative to average.
375	The model simulations affirm observed conditions (Fig. 3) in that the SIOD can
376	compliment or disrupt the Southern Africa precipitation response to ENSO (Figs. 8
377	and 9). AMIP simulations driven by global SST indicate that opposing ENSO and
378	SIOD phases generate complimentary telconnections that result in enhanced
379	precipitation changes over Southern Africa. On the contrary, AMIP simulations driven
380	by global SST indicate that when ENSO and the SIOD are in phase, the SIOD disrupts
381	the ENSO-related teleconnections over Southern Africa by weakening the equivalent
382	barotropic Rossby wave (Fig. 9f) anomalous mid-tropospheric vertical motions (Fig.
383	9f) and anomalous precipitation (Fig. 9e).
384	Early methods of rainy season Southern Africa precipitation prediction were
385	based only upon the statistical analyses of historical climate information (e.g.

386	Hastenrath et al. 1995). For the early statistical models, the predictors of Southern
387	Africa precipitation included metrics of ENSO, expressed in terms SST or atmosphere-
388	only indices such as the Southern Oscillation Index (SOI), and the atmospheric
389	circulation. Southern Africa precipitation forecasts have evolved to include both
390	statistical models and dynamical model forecasts simultaneously (Landman and
391	Goddard 2005) or only dynamical model forecasts (Landman et al. 2012, Yuan et al.
392	2014). The recent improvements of dynamical model SST forecasts (Wang et al.
393	2009), which lead to improved guidance on the future conditions of ENSO and the
394	SOID, provide optimism for seasonal prediction of Southern Africa precipitation (Yuan
395	et al. 2014), where SST play a critical role in the regional climate. Here, we have
396	identified a mechanism by which the SOID can disrupt and modulate the important
397	ENSO-related atmosphere and precipitation response over Southern Africa.
398	Therefore, the information presented here can be used alongside improved statistical
399	and dynamical forecasts to make more informed Southern Africa precipitation
400	forecasts during the November-March rainy season.
401	

402 Acknowledgements

- 403 The authors thank Dave Allured for completing the ECHAM5 simulations and
- 404 Tao Zhang for completing the GFSv2 simulations. The authors are grateful for
- 405 support from the Famine Early Warning Systems Network (FEWS NET).

407 **References**

- 408 Adler, R. F., et al. (2003), The Version-2 Global Precipitation Climatology Project
- 409 (GPCP) Monthly Precipitation Analysis (1979–Present), *Journal of*
- 410 *Hydrometeorology*, *4*(6), 1147-1167, doi:10.1175/1525-
- 411 7541(2003)004<1147:TVGPCP>2.0.CO;2.
- 412 Behera, S. K., J.-J. Luo, S. Masson, P. Delecluse, S. Gualdi, A. Navarra, and T. Yamagata
- 413 (2005), Paramount Impact of the Indian Ocean Dipole on the East African Short
- 414 Rains: A CGCM Study, *Journal of Climate*, *18*(21), 4514-4530,
- 415 doi:10.1175/JCLI3541.1.
- 416 Behera, S. K., P. S. Salvekar, and T. Yamagata (2000), Simulation of Interannual SST
- 417 Variability in the Tropical Indian Ocean, *Journal of Climate*, *13*(19), 3487-3499,
- 418 doi:10.1175/1520-0442(2000)013<3487:SOISVI>2.0.CO;2.
- 419 Behera, S. K., and T. Yamagata (2001), Subtropical SST dipole events in the southern
- 420 Indian Ocean, *Geophysical Research Letters*, 28(2), 327-330,
- 421 doi:10.1029/2000GL011451.

422	Chambers, D. P., B. D. Tapley, and R. H. Stewart (1999), Anomalous warming in the
423	Indian Ocean coincident with El Niño, Journal of Geophysical Research: Oceans,
424	<i>104</i> (C2), 3035-3047, doi:10.1029/1998JC900085.
425	Gates, W. L. (1992), AMIP: The Atmospheric Model Intercomparison Project, Bulletin
426	of the American Meteorological Society, 73(12), 1962-1970, doi:10.1175/1520-
427	0477(1992)073<1962:ATAMIP>2.0.CO;2.
428	Goddard, L., and N. E. Graham (1999), Importance of the Indian Ocean for simulating
429	rainfall anomalies over eastern and southern Africa, Journal of Geophysical
430	<i>Research: Atmospheres, 104</i> (D16), 19099-19116, doi:10.1029/1999JD900326.
431	Hastenrath, S., L. Greischar, and J. van Heerden (1995), Prediction of the Summer
432	Rainfall over South Africa, Journal of Climate, 8(6), 1511-1518, doi:10.1175/1520-
433	0442(1995)008<1511:POTSRO>2.0.CO;2.
434	Hoell, A., C. Funk, T. Magadzire, J. Zinke, and G. Husak (2015), El Niño–Southern

- 435 Oscillation diversity and Southern Africa teleconnections during Austral Summer,
- 436 *Clim Dyn, 45*(5-6), 1583-1599, doi:10.1007/s00382-014-2414-z.

437	Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu (2009), Improving the global
438	precipitation record: GPCP Version 2.1, Geophysical Research Letters, 36(17), n/a-
439	n/a, doi:10.1029/2009GL040000.
440	Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski (2008), A New Sea
441	Surface Temperature and Sea Ice Boundary Dataset for the Community
442	Atmosphere Model, Journal of Climate, 21(19), 5145-5153,
443	doi:10.1175/2008JCLI2292.1.
444	Jury, M. R., C. Mc Queen, and K. Levey (1994), SOI and QBO signals in the African
445	region, <i>Theor Appl Climatol, 50</i> (1-2), 103-115, doi:10.1007/BF00864907.
446	Landman, W. A., D. DeWitt, DE. Lee, A. Beraki, and D. Lötter (2011), Seasonal Rainfall
447	Prediction Skill over South Africa: One- versus Two-Tiered Forecasting Systems,
448	<i>Weather and Forecasting</i> , <i>27</i> (2), 489-501, doi:10.1175/WAF-D-11-00078.1.
449	Landman, W. A., and L. Goddard (2005), Predicting southern African summer rainfall
450	using a combination of MOS and perfect prognosis, Geophysical Research
451	<i>Letters, 32</i> (15), n/a-n/a, doi:10.1029/2005GL022910.

452	Lindesay, J. A. (1988), South African rainfall, the Southern Oscillation and a Southern
453	Hemisphere semi-annual cycle, Journal of Climatology, 8(1), 17-30,
454	doi:10.1002/joc.3370080103.
455	Manatsa, D., C. H. Matarira, and G. Mukwada (2011), Relative impacts of ENSO and
456	Indian Ocean dipole/zonal mode on east SADC rainfall, International Journal of
457	<i>Climatology</i> , <i>31</i> (4), 558-577, doi:10.1002/joc.2086.
458	Manatsa, D., C. J. C. Reason, and G. Mukwada (2012), On the decoupling of the

- 459 IODZM from southern Africa Summer rainfall variability, *International Journal of*
- 460 *Climatology*, *32*(5), 727-746, doi:10.1002/joc.2306.
- 461 Misra, V. (2003), The Influence of Pacific SST Variability on the Precipitation over
- 462 Southern Africa, *Journal of Climate*, *16*(14), 2408-2418, doi:10.1175/2785.1.
- 463 Nicholson, S., and D. Entekhabi (1986), The quasi-periodic behavior of rainfall
- 464 variability in Africa and its relationship to the southern oscillation, *Arch. Met.*
- 465 *Geoph. Biocl. A., 34*(3-4), 311-348, doi:10.1007/BF02257765.
- 466 Nicholson, S. E. (1997), AN ANALYSIS OF THE ENSO SIGNAL IN THE TROPICAL
- 467 ATLANTIC AND WESTERN INDIAN OCEANS, *International Journal of Climatology*,

- 468 *17*(4), 345-375, doi:10.1002/(SICI)1097-0088(19970330)17:4<345::AID-
- 469 JOC127>3.0.CO;2-3.
- 470 Nicholson, S. E., and J. Kim (1997), THE RELATIONSHIP OF THE EL NIÑO–SOUTHERN
- 471 OSCILLATION TO AFRICAN RAINFALL, International Journal of Climatology, 17(2),
- 472 117-135, doi:10.1002/(SICI)1097-0088(199702)17:2<117::AID-JOC84>3.0.CO;2-O.
- 473 Ratnam, J. V., S. K. Behera, Y. Masumoto, and T. Yamagata (2014), Remote Effects of
- 474 El Niño and Modoki Events on the Austral Summer Precipitation of Southern
- 475 Africa, Journal of Climate, 27(10), 3802-3815, doi:10.1175/JCLI-D-13-00431.1.
- 476 Reason, C. J. C. (2001), Subtropical Indian Ocean SST dipole events and southern
- 477 African rainfall, *Geophysical Research Letters*, 28(11), 2225-2227,
- 478 doi:10.1029/2000GL012735.
- 479 Reason, C. J. C., R. J. Allan, J. A. Lindesay, and T. J. Ansell (2000), ENSO and climatic
- 480 signals across the Indian Ocean Basin in the global context: part I, interannual
- 481 composite patterns, International Journal of Climatology, 20(11), 1285-1327,
- 482 doi:10.1002/1097-0088(200009)20:11<1285::AID-JOC536>3.0.CO;2-R.

483	Reason, C. J. C., and D. Jagadheesha (2005), A model investigation of recent ENSO
484	impacts over southern Africa, <i>Meteorol. Atmos. Phys., 89</i> (1-4), 181-205,
485	doi:10.1007/s00703-005-0128-9.
486	Rocha, A., and I. A. N. Simmonds (1997), INTERANNUAL VARIABILITY OF SOUTH-
487	EASTERN AFRICAN SUMMER RAINFALL. PART 1: RELATIONSHIPS WITH AIR-SEA
488	INTERACTION PROCESSES, International Journal of Climatology, 17(3), 235-265,
489	doi:10.1002/(SICI)1097-0088(19970315)17:3<235::AID-JOC123>3.0.CO;2-N.
490	Roeckner, E., R. Brokopf, M. Esch, M. Giorgetta, S. Hagemann, L. Kornblueh, E.
491	Manzini, U. Schlese, and U. Schulzweida (2006), Sensitivity of Simulated Climate
492	to Horizontal and Vertical Resolution in the ECHAM5 Atmosphere Model, Journal
493	<i>of Climate</i> , <i>19</i> (16), 3771-3791, doi:10.1175/JCLI3824.1.
494	Saha, S., et al. (2013), The NCEP Climate Forecast System Version 2, Journal of
495	<i>Climate</i> , <i>27</i> (6), 2185-2208, doi:10.1175/JCLI-D-12-00823.1.
496	Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata (1999), A dipole

497 mode in the tropical Indian Ocean, *Nature*, *401*(6751), 360-363.

498	Wang, B., et al. (2009), Advance and prospectus of seasonal prediction: assessment of
499	the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–
500	2004), <i>Clim Dyn, 33</i> (1), 93-117, doi:10.1007/s00382-008-0460-0.
501	Washington, R., and A. Preston (2006), Extreme wet years over southern Africa: Role
502	of Indian Ocean sea surface temperatures, Journal of Geophysical Research:
503	<i>Atmospheres</i> , <i>111</i> (D15), n/a-n/a, doi:10.1029/2005JD006724.
504	Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben (1999), Coupled ocean-
505	atmosphere dynamics in the Indian Ocean during 1997-98, Nature, 401(6751),
506	356-360,
507	doi:http://www.nature.com/nature/journal/v401/n6751/suppinfo/401356a0_S1.ht
508	<u>ml</u> .
509	Wyrtki, K. (1975), El Niño—The Dynamic Response of the Equatorial Pacific Oceanto
510	Atmospheric Forcing, Journal of Physical Oceanography, 5(4), 572-584,
511	doi:10.1175/1520-0485(1975)005<0572:ENTDRO>2.0.CO;2.
512	Yuan, C., T. Tozuka, W. Landman, and T. Yamagata (2014), Dynamical seasonal

- 513 prediction of Southern African summer precipitation, *Clim Dyn*, *42*(11-12), 3357-
- 514 3374, doi:10.1007/s00382-013-1923-5.

517 List of Figures

518	Figure 1: Correlation of November-March 1979-2014 SST anomaly and (a) the
519	Niño3.4 index anomaly, (b) the IOD index anomaly and (c) the SIOD index
520	anomaly. Shading indicates correlations significant at $p < 0.10$. The Niño3.4
521	index is defined as areal average SST over 5°S-5°N; 170°W-120°W shown as the
522	green outline in panel (a). The IOD index is defined as areal average SST over
523	10°S-0°N; 90°E-110°E subtracted from areal average SST over 10°S-10°N; 50°E-
524	70°E, both of which are shown as green outlines on panel (b). The SIOD index is
525	defined as areal average SST over 28°S-18°N; 90°E-100°E subtracted from areal
526	average SST over 37°S-27°S; 55°E-65°E, both of which are shown as green
527	outlines on panel (c)
528	Figure 2: November-March 1979-2014 correlation of observed Southern Africa
529	precipitation anomaly with (a) observed spatial precipitation anomaly and (b)
530	observed SST anomaly. Shading indicates correlations significant at p <0.1041
531	Figure 3: November-March (top) SST anomaly in units of K and (bottom)
532	precipitation anomaly in units of mm d ⁻¹ during El Niño and La Niña events in
533	which the Niño3.4 index anomaly and SIOD index anomaly have the same and

534	opposing signs. El Niño (La Niña) events are defined when the November-
535	March Niño3.4 index anomaly exceeds (falls below) 0.5K (-0.5K)42
536	Figure 4: (a) The leading pattern of global SST anomaly in units of K calculated using
537	a covariance-based empirical orthogonal function (EOF1) and (b) associated
538	principal component for 1978-201443
539	Figure 5: (top) November-March 1979-2014 average rainfall (cm) and (bottom)
540	monthly average 1979-2014 rainfall (cm) in (left column) GPCP, (center column)
541	30 ECHAM5 AMIP simulations and (right column) 50 GFS version 2 AMIP
542	simulations44
543	Figure 6: Simulated November-March 1979-2014 standardized Southern Africa
544	precipitation anomaly forced by (a) global SST and (b) EOF1 of SST. Green dots
545	indicate individual simulated ensembles, the red line shows the simulated
546	ensemble average and the blue line shows observed precipitation45
547	Figure 7: November-March 1979-2014 correlation of observed SST anomaly and
548	simulated precipitation forced by (a) global SST and (b) EOF1 of SST. Shading
549	denotes correlations significant at p <0.1046

551	precipitation anomaly forced by global SST with global SST. (bottom row)
552	Scatter diagrams of observed Niño3.4 anomaly and simulated Southern Africa
553	standardized precipitation anomaly forced by global SST (green dots) with the
554	least squares regression line shown in red. Results are for November-March
555	1979-2014 and are shown (left column) in aggregate, (center column) when the
556	Niño3.4 and SIOD indices have the opposite sign and (right column) when the
557	Niño3.4 and SIOD indices have the same sign. Shading denotes correlations
558	significant at <i>p</i> <0.1047
559	Figure 9: Correlation of Niño3.4 anomaly and simulated global SST-forced (top)
560	standardized precipitation anomaly and (bottom) 700 hPa wind anomaly (vector)
561	and 400 hPa vertical velocity anomaly (shading) for November-March 1979-2014
562	(left column) in aggregate, (center column) when the Niño3.4 and SIOD indices
563	have the opposite sign and (right column) when the Niño3.4 and SIOD indices
564	have the same sign. Shading denotes correlations significant at p <0.1048
565	Figure 10: (top row) Correlation of simulated Southern Africa standardized
566	precipitation anomaly forced by EOF1 with global SST. (bottom row) Scatter

550 Figure 8: (top row) Correlation of simulated Southern Africa standardized

567	diagrams of observed Niño3.4 anomaly and simulated Southern Africa
568	standardized precipitation anomaly forced by EOF1 (green dots) with the least
569	squares regression line shown in red. Results are for November-March 1979-
570	2014 and are shown (left column) in aggregate, (center column) when the
571	Niño3.4 and SIOD indices have the opposite sign and (right column) when the
572	Niño3.4 and SIOD indices have the same sign. Shading denotes correlations
573	significant at <i>p</i> <0.10
574	Figure 11: Correlation of Niño3.4 anomaly and simulated EOF1-forced (top)
575	standardized precipitation anomaly and (bottom) 700 hPa wind anomaly (vector)
576	and 400 hPa vertical velocity anomaly (shading) for November-March 1979-2014
577	(left column) in aggregate, (center column) when the Niño3.4 and SIOD indices
578	have the opposite sign and (right column) when the Niño3.4 and SIOD indices
579	have the same sign. Shading denotes correlations significant at p <0.1050

(a) November-March Nino3.4 and SST 60N 40N 20N 0 20S 40S 60S 0 40E 80E 120E 160E 160W 120W 80W 40W 0 (b) November-March IOD and SST 60N 40N 20N 0 20S 40S 60S 0 40E 80E 120E 160E 160W 120W 80W 40W 0 (c) November-March SIOD and SST 60N 40N 20N 0 20S 40S 60S 0 40E 80E 120E 160E 160W 120W 80W 40W 0 SST Anomaly and SST Index Pearson Correlation -0.6 -0.2 0.2 -0.4 0.4 0.6

- 591 over 28°S-18°N; 90°E-100°E subtracted from areal average SST over 37°S-27°S; 55°E-
- 592 65°E, both of which are shown as green outlines on panel (c).

595 Figure 2: November-March 1979-2014 correlation of observed Southern Africa

- 596 precipitation anomaly with (a) observed spatial precipitation anomaly and (b)
- 597 observed SST anomaly. Shading indicates correlations significant at p<0.10.

600 Figure 3: November-March (top) SST anomaly in units of K and (bottom)

- 601 precipitation anomaly in units of mm d⁻¹ during El Niño and La Niña events in which
- 602 the Niño3.4 index anomaly and SIOD index anomaly have the same and opposing
- 603 signs. El Niño (La Niña) events are defined when the November-March Niño3.4
- 604 index anomaly exceeds (falls below) 0.5K (-0.5K).

605

Figure 4: (a) The leading pattern of global SST anomaly in units of K calculated using
a covariance-based empirical orthogonal function (EOF1) and (b) associated principal
component for 1978-2014.

- 613 monthly average 1979-2014 rainfall (cm) in (left column) GPCP, (center column) 30
- 614 ECHAM5 AMIP simulations and (right column) 50 GFS version 2 AMIP simulations.

616

617 Figure 6: Simulated November-March 1979-2014 standardized Southern Africa

618 precipitation anomaly forced by (a) global SST and (b) EOF1 of SST. Green dots

619 indicate individual simulated ensembles, the red line shows the simulated ensemble

620 average and the blue line shows observed precipitation.

(a) November-March Full AMIP SA Precipitation and SST

623 Figure 7: November-March 1979-2014 correlation of observed SST anomaly and

simulated precipitation forced by (a) global SST and (b) EOF1 of SST. Shading 624

625 denotes correlations significant at p < 0.10.

627

Figure 8: (top row) Correlation of simulated Southern Africa standardized

629 precipitation anomaly forced by global SST with global SST. (bottom row) Scatter

630 diagrams of observed Niño3.4 anomaly and simulated Southern Africa standardized

631 precipitation anomaly forced by global SST (green dots) with the least squares

regression line shown in red. Results are for November-March 1979-2014 and are

633 shown (left column) in aggregate, (center column) when the Niño3.4 and SIOD

634 indices have the opposite sign and (right column) when the Niño3.4 and SIOD

635 indices have the same sign. Shading denotes correlations significant at p<0.10.

637

Figure 9: Correlation of Niño3.4 anomaly and simulated global SST-forced (top)
standardized precipitation anomaly and (bottom) 700 hPa wind anomaly (vector) and
400 hPa vertical velocity anomaly (shading) for November-March 1979-2014 (left
column) in aggregate, (center column) when the Niño3.4 and SIOD indices have the

642 opposite sign and (right column) when the Niño3.4 and SIOD indices have the same

643 sign. Shading denotes correlations significant at p<0.10.

646 Figure 10: (top row) Correlation of simulated Southern Africa standardized 647 precipitation anomaly forced by EOF1 with global SST. (bottom row) Scatter 648 diagrams of observed Niño3.4 anomaly and simulated Southern Africa standardized precipitation anomaly forced by EOF1 (green dots) with the least squares regression 649 650 line shown in red. Results are for November-March 1979-2014 and are shown (left 651 column) in aggregate, (center column) when the Niño3.4 and SIOD indices have the 652 opposite sign and (right column) when the Niño3.4 and SIOD indices have the same 653 sign. Shading denotes correlations significant at p < 0.10.

655 656

Figure 11: Correlation of Niño3.4 anomaly and simulated EOF1-forced (top)

657 standardized precipitation anomaly and (bottom) 700 hPa wind anomaly (vector) and

658 400 hPa vertical velocity anomaly (shading) for November-March 1979-2014 (left

column) in aggregate, (center column) when the Niño3.4 and SIOD indices have the

660 opposite sign and (right column) when the Niño3.4 and SIOD indices have the same

661 sign. Shading denotes correlations significant at p<0.10.