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Abstract 

Significant advances have been made in the measurement of physical activity in youth over the past 

decade. Monitors and protocols promote very high compliance, both night and day, and raw 

measures are available rather than ‘black box’ counts. Consequently, many surveys and studies 

worldwide now assess children’s physical behaviours (physical activity, sedentary behaviour and 

sleep) objectively 24 h a day, 7 days a week using accelerometers. The availability of raw 

acceleration data in many of these studies is both an opportunity and a challenge. The richness of 

the data lends itself to the continued development of innovative metrics, while the removal of 

proprietary outcomes offers considerable potential for comparability between datasets and 

harmonising data. Using comparable physical activity outcomes could lead to improved precision 

and generalisability of recommendations for children’s present and future health. I will discuss two 

strategies that I believe may help ensure comparability between studies and maximise the potential 

for data harmonisation, thereby helping us capitalise on the growing body of accelerometer data 

describing children’s physical behaviours. 

 

Where we are 

Back in the early to mid- 1990’s, there were only a handful of papers published per year relating to 

physical activity and accelerometry. Post 1997, this increased steadily to 28 publications in the year 

2000, then gathered pace rapidly with over 300 papers published in 2010 and more than 1100 

papers published in 2017. From around 2000, accelerometry has been used to objectively assess 

children’s physical activity in large-scale surveys (e.g. National Health and Nutrition Examination  

Survey (NHANES) 2003-4 and 2005-6 (36), Avon Longitudinal Study of Parents and Children (ALSPAC) 

2003-5 (25), the European Youth Heart Survey (EYHS) 2006 (1), Canada Health Measures Survey 

(CHMS) 2007-9 (6) and the Health Survey for England (HSE) 2008 (7)). Studies predominantly used 



3 
 

the ActiGraph or Actical monitor worn on a belt at the waist and removed for water-based activities 

and sleep. 

Until 2010, output from these accelerometry-based activity monitors was provided in proprietary 

counts. Counts are an arbitrary dimensionless unit that depend on the specifications of the 

accelerometer, and therefore cannot be compared between different brands of accelerometer. The 

accumulated counts per day are indicative of the daily volume of activity. Additionally, to give 

biological meaning to the output, cut-points were developed to calibrate accelerometer output, 

typically using regression or ROC (Receiver Operating Characteristic) curves to convert 

accelerometer counts to estimates of time spent at a given activity intensity, e.g. time spent in 

moderate-to-vigorous physical activity (MVPA) (3). 

There are a number of cut-points available for use with each of the various accelerometer brands; 

which of the available cut-points are selected can have a large effect on activity outcomes. For 

example, Bornstein et al. (4) reported that minutes recorded in MVPA for a sample of 419 children 

aged 3–6 y varied from 39 to 269 min per day depending on the cut-points used with ActiGraph 

data. Similarly, in 2043 adolescents, Vanhelst et al. (44) reported that the percentage of adolescents 

meeting the recommendation of 60 min per day of MVPA varied from 6% to 37% depending on the 

ActiGraph cut-points used. 

International Children’s Accelerometry Database (ICAD) 

To address the lack of comparability in accelerometer output variables, in 2008 the International 

Children’s Accelerometry Database (ICAD) was initiated (http://www.mrc-

epid.cam.ac.uk/research/studies/icad/): ICAD is a compilation of waist-worn ActiGraph 

accelerometer-derived estimates of children’s physical activity from a range of studies and settings 

across Europe, the US, Brazil and Australia (33). Crucially, ICAD obtained the epoch level count data 

for each of the studies so was able to process data from all studies using consistent rules for 

classifying wear-time and time spent in activity intensities making the outputs comparable. This 

http://www.mrc-epid.cam.ac.uk/research/studies/icad/
http://www.mrc-epid.cam.ac.uk/research/studies/icad/
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harmonising of waist-worn ActiGraph data from over 37000 children across >20 studies worldwide 

has facilitated the investigation of diverse questions across international datasets. For example, 

findings from studies using ICAD include: across countries children get more active as it gets warmer, 

but only up to about 20o C (14); children in Northern Europe and South-East Australia are more 

active on average than children in the US and Western Europe, but also more active given the 

weather conditions they experience (14); and that shifting the clocks forward in Europe and 

Australia, and consequently having more evening daylight, could potentially increase mean 

population child physical activity levels in a single stroke (13). 

A full list of publications can be found on the ICAD website (http://www.mrc-

epid.cam.ac.uk/research/studies/icad/), where details on how to apply to use ICAD data can also be 

found. Recently ICAD2 was released, further increasing the potential of this valuable resource by 

including longitudinal data and access to a wider range of non-accelerometer data.  

Raw acceleration accelerometry-based activity monitors 

In 2009 there was an Objective Measurement of Physical Activity Expert Consensus Meeting co-

sponsored by the American College of Sports Medicine and the National Institute for Health. A key 

recommendation of this meeting was that monitor data should be collected and saved as raw 

signals, rather than proprietary counts. This would remove the proprietary nature of accelerometer 

output by enabling data transformation to be carried out post-processing using transparent 

replicable methods, potentially facilitating comparisons between output regardless of which brand 

of monitor was used to collect data (46). Following this GENEActiv, ActiGraph and Axivity raw 

acceleration research-grade monitors became commercially available. All are waterproof and 

suitable for wear at multiple wear-sites but have been primarily marketed for wrist-wear.  

Capture of physical behaviours across the 24 h day 

http://www.mrc-epid.cam.ac.uk/research/studies/icad/
http://www.mrc-epid.cam.ac.uk/research/studies/icad/
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These properties make them suitable for wear day and night meaning physical behaviours (sleep, 

sedentary behaviour and physical activity) across the 24 h day can be assessed. Further, 24 h wear 

protocols appear to lead to greater adherence with studies reporting average wear-times 

approaching a full 24 h day (23, 29). In contrast, in the US National Health and Nutrition Examination 

Survey (NHANES) 2003-2006, 40-70% of participants wore a hip-worn ActiGraph for 10 h/day for 6+ 

days, whereas when NHANES 2011-2014 switched to a wrist-worn ActiGraph 70-80% of participants 

wore the monitors for 21-22 h/day for 6+ days (12). The higher compliance persists even across 

multiple measurement points (23, 29). Greater wear-times and fewer instances of non-wear reduce 

the risk of misclassification due to incomplete capture of physical activity and selection bias due to 

exclusion of participants who do not wear monitors for sufficient time (34). 

The International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE) deployed raw 

acceleration waist-worn ActiGraphs in a 24 h a day wear protocol in an ambitious multi-national 

cross-sectional study. Over 7000 children, aged about ten, were recruited from 12 countries 

between 2011 and 2013 (17, 38). Major strengths of this study were the purposeful inclusion of low-, 

medium- and high-income countries spread across the five major regions of the world (Europe, 

Africa, the Americas, South-East Asia and the Western Pacific) and use of a 24 h accelerometer wear 

protocol, facilitating the measurement of all physical activity, sedentary behaviour and sleep over 

the 24 h day. This is the first study to show that children who meet 24 h movement guidelines (35) 

for MVPA (>60 min/day), recreational screen time (<2 h/day) and sleep (9-11 h/night) are 72% less 

likely to be obese (26) and more likely to have better health-related quality of life (HRQoL, 32) than 

those who do not meet any of the guidelines. For obesity, similar results were observed across 

countries, but for HRQoL this was not consistent across study site. However, only 7% of children met 

all three physical behaviour guidelines across the 12 countries, with the highest proportion in 

Australia and Canada (14-15%) and the lowest in China, Portugal and USA (2%) (26). 
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The ongoing research outputs from ICAD and ISCOLE clearly demonstrate the value in harnessing 

accelerometer data across studies and/or populations (2, 33, 38). 

There is now an increasing number of large-scale studies deploying raw acceleration wrist-worn 

accelerometers to assess children’s physical activity including NHANES 2011-2014, the Pelotas Birth 

Cohort (8), the Melbourne Child Health Checkpoint (45), the Millennium Cohort Study (16) and the 

Cork Children’s Lifestyle Study (18). It would be beneficial to ensure data and results from studies 

deploying these wrist-worn raw accelerometers are comparable. 

What (I think) we need to know 

The studies use one of the three research-grade accelerometers which give acceleration units in g 

(GENEActiv, ActiGraph or Axivity) and use the wrist wear-site. This theoretically makes the studies 

comparable (30). However, the availability of raw acceleration data also presents researchers with a 

new and different challenge; without the ‘black box’ generation of proprietary counts, the 

researcher is now responsible for processing and analysing huge amounts of data; one week of 

measuring at 100 Hz, as in most of these studies, generates over 180 million data points for each 

person. Consequently, physical activity research benefits from an increasing number of researchers 

with backgrounds in mathematics, computer science, engineering and statistics as well as sports 

science. 

One of the stated aims of using raw acceleration monitors was to facilitate comparisons between 

output regardless of which brand of monitor was used to collect data. However, with researchers 

now having the responsibility for processing raw acceleration data to generate activity metrics, there 

is a risk that this will not be achieved unless some form of standardisation is agreed on. The 

challenge is twofold: 1) to develop innovative methods that take advantage of the richness of the 

data to classify behaviours, while 2) also ensuring accelerometer output measures that are 

comparable (so avoiding a repeat of the cut-point conundrum). 
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1) Classification of behaviours 

Examination of features of the raw acceleration signal can facilitate classification of types or clusters 

of physical behaviours. For example, if the acceleration signal is cyclic it indicates a behaviour with 

repeating patterns, e.g. walking or running. It is also possible to determine the orientation of the 

monitor, and therefore the position of the wrist. The latter has been used to classify sleep (42) and 

posture (31). 

There is a considerable amount of research into using supervised machine learning (e.g. 21) that 

uses labelled data (i.e. where the activity the child is doing is known) to learn to classify types of 

behaviours from features of the acceleration signal (e.g. sedentary, walking, running). These data are 

typically collected during prescribed or short free-living protocols; however, transferring the 

methods to classification of types of physical behaviours in free-living data is challenging, perhaps 

particularly in children given the transitory nature of their activity patterns. More recently, 

unsupervised machine learning approaches (e.g. 43) have been used with free-living data. These 

methods do not use labelled data (i.e. the activity the child is doing is not known), instead they are 

data-driven and allow the identification of clusters or characteristic states present in the data. It may 

then be possible to explore the physical behaviours these states likely represent, how they differ 

between groups, how they change over time and how they associate with health. 

2) Maximising data comparability and the potential for data harmonisation 

The removal of proprietary outcomes offers considerable potential for comparability between 

datasets and harmonising data. The ability to compare and harmonise these data would lead to 

improved precision and generalisability of recommendations for health. 

While the first of these two challenges (classification of behaviours) requires specialist mathematical 

expertise, everyone assessing physical activity with a raw acceleration device can contribute to the 

second (maximising data comparability). By reporting comparable accelerometer metrics, we will 
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also maximise opportunities for data harmonisation moving forward. ICAD has demonstrated what 

can be achieved when children’s physical activity accelerometer data can be harmonised across 

studies and /or countries. Making data and outcomes from the many studies now using wrist-worn 

raw accelerometers comparable and harmonisation-ready would help us capitalise on the wealth of 

children’s (and adult’s) accelerometer data being collected globally. 

Maximising data comparability - How (I think) we should get there 

Individual studies will use a variety of approaches and outcome measures to address specific 

research questions and/or employ innovative metrics. To aid comparability it would be beneficial if, 

where possible, researchers could also make key standardised physical activity metrics available, 

much as other standard information such as age, height and mass is always given. 

In this paper, I propose two strategies that I believe may help ensure comparability between studies 

and maximise the potential for data harmonisation moving forward. 

1) Agree on and present key standardised accelerometer metrics that are Meaningful, 

Interpretable and Comparable. 

Comparable across populations, yet interpretable for a given population, can seem contradictory. 

However, the metric itself need not be population-specific; instead:  

2) Move population-specific translation and interpretation to post processing/analysis. 

Strategy 1: Agree on and present key standardised metrics that are Meaningful, Interpretable and 

Comparable. 

Meaningful in relation to associations between the metric and children’s health (or performance); 

Interpretable, so can be translated, e.g. in public health messages; 

Comparable with other studies, populations and monitors. 

In addition, the key metrics should: 
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• Reflect directly measured acceleration. The further we move from the measured variable, 

i.e. acceleration, the greater the scope for error (5). 

• Include a single metric for ‘How much?’ or the volume of activity, and a single metric for 

‘How hard?’ the intensity of activity. 

• The metric for volume should not be highly correlated with the metric for intensity; this is 

necessary to facilitate investigation into the relative importance of intensity and volume for 

a given health outcome. 

• The metric for intensity should reflect the entire intensity profile. Typically measures of 

MVPA and/or VPA are used for intensity, this is not ideal as it only covers a very small 

percentage of the amount of activity. Further, time accumulated above acceleration 

thresholds is highly correlated with volume of activity (e.g. counts per day) meaning that it is 

not possible to explore relative contributions of volume and intensity of activity to health 

outcomes. 

• Both metrics should be possible to produce simply using open-source freely available 

software that works with all the three key brands of raw acceleration accelerometers 

(GENEActiv, ActiGraph and Axivity). This enables the same accelerometers metrics to be 

produced that are theoretically equivalent, regardless of device. 

How much? Volume metric: Proposed metric - Average dynamic acceleration (Average acceleration) 

This is the component of the acceleration signal due to movement, i.e. corrected for acceleration 

due to gravity (static acceleration). It is meaningful as it is correlated with energy expenditure (15, 

39) and associated with health outcomes, e.g. adiposity (28). While not immediately interpretable 

(see Strategy 2) it is standardised and thus comparable between populations (Figure 1, upper panel). 

It is already widely used and is the metric reported in the Pelotas birth cohort (8) and Girls Active 

(10) as well as adult surveys, e.g. UK Biobank (9) and Whitehall II (19). It reflects directly measured 

dynamic acceleration over the whole measured time-period, is a single metric for volume of 
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activity, and can be produced using the open-source freely available GGIR R-package 

(https://cran.r-project.org/web/packages/GGIR/index.html, van Hees et al. (40, 41, 42) for the 

GENEActiv, ActiGraph and Axivity). Published evidence suggests that average acceleration can be 

considered equivalent between the GENEActiv and Axivity but is approximately 10% lower for the 

ActiGraph (30). More recent data considering longer free-living periods indicates average 

acceleration from all three monitors can be considered equivalent for monitors worn on the non-

dominant wrist (unpublished data from our laboratory). 

Insert Figure 1 

How hard? Intensity metric: Proposed metric - Intensity gradient 

As well as the confusion in intensity estimates resulting from the multiple cut-points available, 

intensity metrics tend to focus on parts of the intensity range, e.g. time spent in MVPA or time spent 

sedentary. This means that several metrics are needed to cover a range of intensities; ideally, a 

single metric that reflects the entire intensity profile is needed. 

Most of a child’s day is spent in very low intensity activities, somewhat less time in light activities, 

less in moderate- and little in vigorous- and high-intensity activities, such that if you plot time 

accumulated against intensity you get a curvilinear plot (Figure 2). If you take the natural logs of time 

and intensity this becomes a straight-line graph. The intensity gradient describes the slope of this 

(28). The steeper it is (the more negative), the worse the intensity profile, the shallower it is (the less 

negative) the better the intensity profile. It reflects the whole profile of acceleration, rather than just 

a small fraction of it like MVPA. 

Insert Figure 2 

The intensity gradient is a new metric so not widely used. But, as with the average acceleration 

metric, it is meaningful in that it is related to measures of health, e.g. adiposity (28) and shows the 

known age-related decline in children’s physical activity (Figure 1, lower panel). While again not 

https://cran.r-project.org/web/packages/GGIR/index.html
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immediately interpretable (see Strategy 2), it is standardised and thus comparable between 

populations. It also reflects directly measured dynamic acceleration over the whole measured time-

period, is a single metric that reflects the intensity profile, and can be produced using the open-

source freely available GGIR R-package for the GENEActiv, ActiGraph and Axivity. Importantly, 

within a population, the intensity gradient is not highly correlated with average acceleration, 

meaning the two metrics can be used to investigate the relative importance of intensity and volume 

of activity for a given health or performance outcome. For example, in adolescent girls (28) and 10-y 

old children (personal communication Dr Stuart Fairclough), we have shown that the intensity profile 

is associated with body fatness independent of the volume of activity, but conversely the volume of 

activity is not associated with body fatness after controlling for the intensity profile. Further, recent 

free-living data from our laboratory (unpublished) suggests that the intensity gradient can be 

considered equivalent between all three brands of monitor and between wrists. 

Strategy 2: Move population-specific translation and interpretation to post processing/analysis. 

While average acceleration and intensity gradient are standardised and comparable between 

populations, e.g. age, they are not immediately interpretable in the same way as e.g. minutes of 

MVPA or minutes spent walking. However, both metrics do lend themselves to the creation of 

population-specific physical activity percentiles that would facilitate interpretation in relation to 

norms, as Wolff-Hughes and colleagues (47) have done with US children’s age- and sex-specific 

percentile curves for total activity counts per day (TAC/d) for ActiGraph counts. 

To give accelerometer outputs biological meaning while maintaining comparability, cut-point 

translation could be applied either at the time, or a later date. The time spent above incremental 

acceleration thresholds, e.g. 50 mg, is also easily available through GGIR. Reporting these data 

would enable people reading the paper to apply any cut-points to the data. In Figure 3 the time 

spent above incremental 50 mg thresholds is shown, with MVPA and VPA determined from both 

Hildebrand et al. (15) and Phillips et al. (22) children’s cut-points. 
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Insert Figure 3 

A recent paper showed how presenting the time spent above these incremental thresholds could 

also facilitate a ‘ball-park’ comparison to time spent in MVPA reported from children’s studies using 

count cut-points with hip-worn ActiGraphs (27). For example, Figure 4 shows that time spent above 

150 mg compares well to hip-worn ActiGraph MVPA estimates using the age-specific criteria of the 

Freedson group, published by Trost et al. (37), time spent above 200 mg to the Pate et al. (20) cut-

points (all epochs), time above 250 mg to the Evenson et al. (11) cut-points (5 & 15 s epochs), and 

time above 400 mg for the Puyau et al. (24) cut-points (60 s epochs).  

Insert Figure 4 

Alternatively, it would be possible to use accelerations elicited by walking or running for a given age-

group to translate the findings, see Figure 3 showing the acceleration associated with typical 

children’s activities taken from Hildebrand et al (15) and Phillips et al (22). This type of translation 

may aid public health messages and intervention strategies. 

Conclusion 

The benefits of comparable children’s waist-worn accelerometer data have been clearly 

demonstrated by ICAD and ISCOLE, both of which have significantly advanced the use of 

accelerometry to assess children’s physical activity in large studies. Numerous studies worldwide, 

including large-scale surveys, are now measuring children’s physical activity objectively using wrist-

worn raw acceleration accelerometers. It is desirable to be able to directly compare and/or 

harmonise these data, while not interfering with innovation. This paper presents two standardised 

accelerometer metrics that could be presented in research papers alongside sample descriptors (e.g. 

age, height, mass) and in addition to physical activity outcomes specific to the research question 

addressed. Together, the proposed metrics capture the volume and intensity profile of physical 

activity and could allow children’s physical activity studies to be instantly comparable, regardless of 
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age-group and potentially across the three research-grade accelerometers. If, in addition, time 

above incremental 50 mg acceleration thresholds were presented, post-hoc population specific 

interpretation would be possible. In any given paper, if preferred, these metrics could be presented 

as additional online material, so as not to interfere with the message of the overall paper. 

As suggested by Professor Tom Rowland many years ago, population referenced age- and sex-

specific percentiles for physical activity, as have proved valuable for BMI, fitness, height and weight, 

would be extremely beneficial to clinicians and researchers alike. Wolff Hughes and colleagues (47) 

have produced such charts for US youth using TAC/d as a measure of volume of physical activity 

from the ActiGraph that is not dependent on cut-points. It would be possible to use two 

accelerometer metrics (average acceleration and intensity gradient) to do the same for the volume 

and intensity profile of children’s physical activity for the many studies globally using wrist-worn 

accelerometry. Potentially these could become valuable to clinicians and researchers in the future. If 

a sufficient number of researchers bought into these strategies, it may help us capitalise on the 

growing body of accelerometer data describing children’s physical behaviours 24 hours a day, 7 days 

a week. 
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List of figures 

Figure 1. Age related changes in volume (average acceleration, top panel) and intensity (intensity 
gradient, bottom panel) of physical activity in adolescent girls aged 11-14 y (data taken from 
Rowlands et al. (28)). Both the volume of activity and the intensity gradient are lower in older girls.  

Figure 2. The curvilinear relationship between time accumulated (y-axis) and intensity of activity (x-
axis): most of the day is spent in very low intensity activities, somewhat less time in light activities, 
less in moderate- and little in vigorous- and high-intensity activities. The intensity gradient describes 
the slope of the log-log plot (28). The steeper the slope (the more negative) the worse the intensity 
profile, the shallower the slope (the less negative) the better the intensity profile. 

Figure 3. The time spent above incremental 50 mg intensity thresholds for adolescent girls (data 
taken from Rowlands et al. (28)). This type of plot can be used to interpret data in terms of any 
published thresholds, or in typical activities. Examples are shown for time spent in MVPA and VPA, 
and for time spent in typical activity types, according to cut-points and data from Hildebrand et al. 
(15) and Philips et al. (22). 

Figure 4. The time spent above incremental 50 mg intensity thresholds for adolescent girls (data 
taken from Rowlands et al. (28)). Data are interpreted in terms of estimates of MVPA from studies 
reporting time in MVPA from waist-worn ActiGraphs using a range of published cut-points (27). 
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