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Abstract: Methods for reducing the carbon footprint is receiving increasing attention from 

industry as they work to create sustainable products. Assembly line systems are widely utilized 

to assemble different types of products and in recent years, robots have become extensively 

utilized, replacing manual labor. This paper focuses on minimizing the carbon footprint for 

robotic assembly line systems, a topic that has received limited attention in academia. This 

paper is primarily focused on developing a mathematical model to simultaneously minimize 

the total carbon footprint and maximize the efficiency of robotic assembly line systems. Due to 

the NP-hard nature of the considered problem, a multi-objective co-operative co-evolutionary 

(MOCC) algorithm is developed to solve it. Several improvements are applied to enhance the 

performance of the MOCC for obtaining a strong local search capacity and faster search speed. 

The performance of the proposed MOCC algorithm is compared with three other high-

performing multi-objective methods. Computational and statistical results from the set of 

benchmark problems show that the proposed model can reduce the carbon footprint effectively. 

The proposed MOCC outperforms the other three methods by a significant margin as shown by 

utilizing one graphical and two quantitative Pareto compliant indicators.  

Keywords: Robotic assembly line balancing; Carbon footprint; Multi-objective optimization; 

Co-evolutionary computation 

 

1. Introduction 
Assembly lines are flow-oriented systems of great importance in the automotive and 

consumer electronics industries. Robots have in recent years been widely applied in 
these types of systems, replacing manual labor (Gao et al., 2009). Robots are capable 
of operating 24 hours a day without worries of fatigue and can perform different tasks 
by re-programming. The effective utilization of robot assembly lines evolves into the 
need to solve the robotic assembly line balancing (RALB) problem, in which two sub-
problems; task assignment and robot allocation, are addressed simultaneously.  

Assembly line balancing is an important issue that must be addressed when 
considering the design of such systems. The literature study presented in this paper, 
shows that there is no research addressing the optimization of carbon footprint and line 
efficiency of robotic assembly line systems. This paper provides a method to 
simultaneously tackle the carbon footprint and line efficiency for a robotic assembly 
line system. The research contains two significant contributions to the field of robotic 
assembly line balancing. (1) A multi-objective generic model is developed to optimize 
the total carbon footprint and line efficiency. This is the first time the carbon footprint 
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is considered in robotic assembly line systems. (2) A multi-objective co-operative co-
evolutionary algorithm (MOCC) is developed to simultaneously handle the task 
assignment and robot allocation. Multi-objective optimization is applied since the 
criteria of carbon footprint optimization and the line efficiency potentially conflict. 
MOCC is a new co-evolutionary method suitable for handling several sub-problems 
simultaneously and this algorithm suits this problem very well. MOCC is compared 
with three other multi-objective algorithms and a comprehensive study is carried out to 
test the superiority of the proposed MOCC.  

The remainder of the paper is structured as follows. Section 2 presents a detailed 
literature review of the considered problem. Section 3 provides the problem 
assumptions and the mathematical model. Section 4 gives a detailed explanation of the 
proposed method along with a small-sized numerical example. Section 5 details the 
computational and statistical results. Finally, conclusions and future research avenues 
are presented in Section 6.  
 
2. Literature review  

Robotic assembly line balancing (RALB) problem was first introduced by 
Rubinovitz and Bukchin (1991). In Rubinovitz and Bukchin (1991) the allocation of 
the best available robot to the workstation to perform the allocated tasks is done based 
on the criteria of minimizing the number of workstations. Later, Rubinovitz et al. (1993) 
design and balance robotic assembly lines using branch-and-bound algorithm. Levitin 
et al. (2006) and Gao et al. (2009) solve RALB problems with the objective of 
minimizing cycle time through the use of genetic algorithms due to the NP-hard nature 
of the problem. Yoosefelahi et al. (2012) develop a multi-objective model and provide 
three multi-objective evolutionary strategies, while Dang et al. (2012) uses genetic 
algorithms to solve a multi-criteria problem of mobile robot scheduling. Most recently 
Nilakantan et al. (2015c) and Nilakantan and Ponnambalam (2016), utilize particle 
swarm optimization (PSO) algorithms and variants of PSO (Li et al., 2016a) to address 
different types of robotic assembly line balancing problems (one-sided, U-type and 
two-sided robotic assembly lines) with the objective of minimizing cycle time. 
Nilakantan et al. (2017) focuses on solving RALB problem with the objective of 
minimizing total assembly line cost and they utilized differential evolution algorithm 
to solve the problem. Most of the research is focused on RALB for single model 
assembly lines. However, Aghajani et al. (2014) consider the mixed-model two-sided 
RALB problem with a cycle time minimization criterion using a simulated annealing 
algorithm (Lee et al., 2001). The above mentioned literature mainly focused on RALB 
and different objectives analyzed over the years. The following paragraph discusses the 
literature related to energy consumption with respect to assembly line and 
manufacturing systems.    

Research on automotive assembly by Fysikopoulos et al. (2012) report that energy 
costs contribute about 9-12% of the total manufacturing costs. Energy consumption cost 
is one of the major expenses for robotic assembly lines and one of the primary forms of 
energy used in the manufacturing sector is electricity. The manufacturing of electricity 
typically leads to emission of CO2 which amounts to 20% of total emission in the 
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factories (Dai et al., 2013). Recently, Nilakantan et al. (2015a) investigate the energy 
consumption in straight robotic assembly lines and developed two models to minimize 
the cycle time and energy consumption. Due to the problem’s NP-hard nature they 
utilized particle swarm optimization to solve the problem. Nilakantan et al. (2016) 
propose a set of new evolutionary algorithms for designing an energy efficient straight 
robotic assembly line. Nilakantan et al. (2015b) minimize the energy consumption of a 
U-shaped robotic assembly line. Li et al. (2016b) subsequently investigate the reduction 
of total energy consumption in two-sided robotic assembly lines and develop a multi-
objective restarted simulated annealing algorithm to obtain Pareto solutions. Their 
results indicate that the optimization of line balancing and the minimization of energy 
consumption in some situations were conflicting. Recently, researchers propose 
metaheuristic approaches such as the genetic-simulated annealing algorithm (Tang and 
Dai, 2015) and the artificial bee colony algorithm to solve the scheduling problem of a 
flexible flow shop with the objective of reducing energy consumption. The reported 
results show that the proposed approaches could achieve on average a 10% reduction 
in the energy consumption when tested on small and medium sized problems.  

Apart from the financial benefit of reduced energy consumption, the reduction also 
beneficially influences industry’s impact on the environment. Yi et al. (2012) consider 
the carbon footprint in job-shop scheduling and a carbon footprint-aware model was 
developed to optimize makespan and carbon footprint. Liu (2014) develop a genetic 
algorithm to minimize total weighted tardiness and minimizing CO2 emissions. Li et al. 
(2015) analyze the carbon emissions of CNC-based machining systems and consider 
the carbon footprint caused by cutting fluid, wear of cutting tools and material 
consumption. Lin et al. (2015) optimize the makespan and carbon footprint in turning 
processes using a multi-objective algorithm. Both the processing parameter 
optimization and flow-shop scheduling were addressed and the carbon footprints due 
to cutting fluids, disposal of worn tools and material consumption were considered. 
From literature it can be seen that minimal work has been reported to-date with respect 
to carbon footprint reduction and multi-objective optimization in robotic assembly line 
systems. Extensive searching has been done in Scopus database with the following 
keywords: robotic assembly line balancing, carbon footprint and mutli-objective and 
the search resulted in no relevant literature. The focus of this paper will be to develop 
a mathematical model and solution technique that simultaneously optimizes the carbon 
footprint and line efficiency.  
 

3. Mathematical formulation 
This section presents the mathematical model and the assumptions considered when 

solving the proposed problem.  
 

3.1 Model assumptions 
In robotic assembly lines, robots are allocated to each workstation and each performs 

a set of different assembly tasks. The balance of the assembly line and the allocation of 
the robots are two separate sub-problems that should be considered during the line 
balancing process. It is assumed that the carbon footprint is composed of energy 
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consumptions by a variety of different activities such as direct energy consumption, 
disposal of worn tools and material consumption (Lin et al., 2015). The disposal of 
worn tools and material consumption in robotic assembly lines can to some extent be 
regarded to be fixed as the same number of activities must be completed regardless of 
the number of robots used. This paper focuses on the carbon footprint caused by energy 
consumption. In this study, two types of energy consumption are considered. The first 
type of energy consumption is the energy consumed while performing the operation 
and the second type of energy consumption is the energy consumed while the robots 
are kept idle between operations. The following assumptions are similar to those 
presented in Gao et al. (2009) and Nilakantan et al. (2015c): 

 
(1) Robots can be allocated to any workstation and can perform any task.  
(2) The number of workstations is equal to the number of available robots and each 
robot is allocated to exactly one workstation.  
(3) The operation times of tasks depend on the type of robots assigned and the operation 
times for a task vary depending on the robot completing the operation. 
(4) A task can be allocated only when the cycle time and the precedence constraint(s) 
are satisfied.  
(5) Only one kind of product is assembled in straight assembly lines and parallel 
workstations are not considered. 
(6) Setup times, work-in-process inventory and material handling are negligible.  
(7) The carbon footprint is caused by the power consumptions of robots and the carbon 
footprint by other activities is negligible.  
(8) The power consumption consists of operation power consumption and standby 
power consumption, where the standby power consumption is the power consumption 
during the intervals between performing tasks. 
(9) This planning horizon is not considered and the maintenance operations are 
negligible in this study.  
(10) The energy consumed during the maintenance/disposal stage is not considered.  
  

3.2 Notations  
The notations in the mathematical formulation are introduced as follows. 
  

 Indices: 
i,j: Index of tasks 
s: Index of stations 
r: Index of robots 
  
 Parameters: 
Nt: Total number of tasks 
Ns: Total number of workstations 
Nr: Total number of robots 
OPCr: Operation power consumption of the robot r per time unit 
SPCr: Standby power consumption of the robot r per time unit 
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ECFelec: The average electricity carbon footprint of the main power grids 
(ECFelec=0.5488 kg CO2/ kWh (Lin et al., 2015))  
tir: Operation time of task i by robot r  
Pre(i): Set of immediate predecessors of the task i 
 
 Decision variables:  
CFE: Carbon footprint by energy consumption.  
LE: Line efficiency.  
TEC: Total energy consumption.  
ECs: Energy consumption on workstation s.  
OECs: Operation energy consumption on workstation s.  
SECs: Standby energy consumption on workstation s.  
CT: Cycle time. 
xis: 1, if task i is assigned to workstation s; 0, otherwise. 
yrs: 1, if robot r is allocated to workstation s; 0, otherwise. 
 

3.3 Mathematical model for RALB 
The mathematical formulation for the RALB problem is developed with the aim of 

optimizing two objectives. The first objective is to maximize the line efficiency and the 
second objective is to minimize the carbon footprint caused by the energy consumption. 
The detailed mathematical formulation is presented as follows. To a common format, 
maximizing LE in expression (1) is replaced with minimizing 1-LE so that both 
objectives are minimized. Although both these objectives address reducing idle times, 
they might conflict in some occasions due to the diverse operations caused by different 
robot allocations.  
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Objective (1) maximizes the line efficiency of the robotic assembly line. Objective 
(2) minimizes the total carbon footprint by energy consumptions on all the 
workstations. Equation (3) indicates that the energy consumption on a workstation 
consists of operation energy consumption and standby energy consumption. Equation 
(4) calculates the energy consumption on a station, while constraint (5) calculates the 
standby energy consumption at a station. Equation (6) indicates that the cycle time is 
larger than the largest finishing times of tasks on all stations. Equation (7) deals with 
precedence relationship which ensures that the predecessor of task i must be allocated 
before task j. Equation (8) guarantees that each task has to be allocated to a workstation. 
Equation (9) indicates that each workstation is allocated a robot and Equation (10) 
ensures that each robot is allocated to a workstation.  

Note that this mathematical model considers the carbon footprint caused by the total 
energy consumption. The total energy consumed is the sum of all the energy 
consumptions on all workstations as reported in Nilakantan et al. (2015a). In addition, 
energy consumption on each workstation is divided into two modes, operation mode 
and standby mode. Standby mode is the intervals between operations (idle time) and 
the standby power consumption of a robot per time unit can be considered to be 10% 
of the operation power (Bertoldi et al., 2002). 

 
4. Multi-objective co-evolutionary algorithm for RALB problem 

Since the problem consists of two sub-problems and two optimization criteria, this 
research utilizes a multi-objective co-operative evolutionary algorithm (MOCC). This 
algorithm shows promising and competitive results for some multi-objective 
optimization problems (Zhao et al., 2014). The following sections explain the 
implementation steps of this algorithm.  

 
4.1 Procedure of MOCC  
 The proposed MOCC has two sub-populations which optimize the task assignment and 
robot allocation. The rationale of the proposed algorithm is quite simple: a co-
evolutionary greedy multi-objective strategy is iteratively applied over a set of non-
dominated solutions. An extending operator and a restart mechanism are embedded to 
emphasize exploration. The procedure of co-evolution is depicted in Figure 1.  

The proposed MOCC starts with an empty external archive (A), an empty current 
archive (CA) and an initialization procedure. One hundred random individuals 
containing two representatives are obtained in the initialization procedure. These are 
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used to obtain the initial current archive. One individual is selected from the current 
archive as the best individual (BI), which contains two representatives. Following steps 
are performed in a cycle until a termination criterion is satisfied. First, the new 
population Pop (p) is updated with Popsize-1 neighbor solutions of BI and one neighbor 
solution of a randomly selected one from CA. Second, a new solution CP(n) is generated 
by combining the other representative of BI. The best representative from the first 
Popsize-1 is utilized to replace the current BI if new non-dominated solutions can be 
obtained by them. Subsequently, the BI is replaced with a solution from CA based on 
crowding distance if a new non-dominated solution has not been achieved for NI times’ 
iteration. Optimally a restart mechanism is applied when the current archive cannot 
obtain better results and this paper introduces two new types of restart methods. If the 
external archive is updated with the current archive, a set of new neighbor solutions of 
the individuals in the external archive are generated to obtain the new current archive. 
If the external archive cannot be updated, a set of randomly generated solutions are 
utilized to obtain the new current archive.  

Note that the proposed MOCC differs from the one proposed by Zhao et al. (2014) 
by a significant margin in co-evaluation method and extending operator. The main idea 
behind these modifications is to enhance intensification that will be further explained 
later. Especially, the proposed MOCC introduces a restart mechanism to escape from 
local optima. Detailed explanations of these modifications are introduced in the 
following subsections. 

 

4.2 Solution representation and initialization  
The task assignment vector and robot allocation vector are adopted for encoding and 
decoding. The task assignment vector is a 1×Nt vector and each element corresponds to 
a workstation. Suppose that the ith element is s, task i is assigned to the sth workstation. 
The robot allocation vector is a 1×Nr vector and each element also corresponds to a 
robot. If the sth element is r, robot r is allocated to workstation s. An example of the 
encoding and decoding procedure is depicted in Figure 2. As shown in figure the 
elements in the first position and the second position are 1 and 2 and, task 1 and 2 are 
assigned to workstation 1 and 2. The robot sequence is 3, 2, 1 and 4, and due to which 
robot 3, robot 2, robot 1 and robot 4 are allocated to workstation 1, workstation 2, 
workstation 3 and workstation 4. The task to be assigned to a station is determined by 
the precedence relationships. A task is allocated only when all predecessors have been 
allocated. For instance, the predecessor of task 3 is task 1, due to which task 1 is 
assigned first.    
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Figure 1 The co-evolution procedure of MOCC 

 
 

 
Figure 2 Example of solution representation 

 

In the initialization process, the task assignment vector is randomly generated. A 
value between [1, Ns] is generated randomly for each position and an individual is 
generated after generating all values for all positions. The robot allocation is also 
randomly generated. First, a random value between [1, Nr] is obtained, then a second 
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value is obtained from the remaining robots and finally the remaining robot is allocated 
to the last workstation. The robot allocation vector does not affect the feasibility of the 
solutions whereas the task assignment vector may result in infeasible solutions due to 
the precedence relationships. This paper develops a simple repair procedure to create 
an initial feasible solution. For each task i, if the predecessor j of task i is allocated to 
the latter workstation, then the corresponding values of the two tasks in the tasks 
assignment vector are exchanged. This repair procedure terminates only when the 
predecessor of each task is allocated to the former or same workstation. After executing 
this procedure, the precedence constraint is satisfied, and then the tasks are allocated in 
sequence on a workstation based on the precedence constraint. 

   
4.3 Population update and solution evaluation  

As for the population update, this paper implements a big adjustment to the current 
method as found in Zhao et al. (2014). The sub-population Pop(p) is updated by 
Popsize-1 neighbor solutions of BI and one neighbor solution of a randomly selected 
solution from CA. In general, the new sub-population is updated using selection, 
crossover operator and mutation operator on the current sub-population. The proposed 
modification is carried out to achieve computational speed benefits and provides a 
strong local search on BI. In the preliminary experiments, the new population update is 
faster than the original one used in (Zhao et al., 2014). The new sub-population also 
includes one neighbor solution of a randomly selected solution from CA to emphasize 
exploration. To obtain a neighbor solution, two types of neighborhood structures are 
applied for the task assignment and robot allocation vectors. For the task assignment 
vector the alteration operator and swap operator are applied and randomly selected. The 
procedure is depicted in Figure 3. In the alteration operator, a position is selected and 
the workstation of this position is changed to another workstation. In the swap operator, 
the values on two different positions are exchanged. As for the robot allocation vector, 
the insert operator and swap operator are applied and randomly selected.  

 

  
Figure 3 Mutation operator for task assignment 

 
To evaluate an individual in a sub-population, it is necessary to take one individual 

from the other sub-population to obtain a completed solution. This paper combines the 
evaluated individual with the other representative from BI. This new evaluation 
procedure differs from the one utilized in (Zhao et al., 2014) where both the best 
individual and a random individual from other sub-population are utilized. This 
research does not utilize a random individual since the combined solutions with random 
individuals in the preliminary experiments conducted in this study always have poor 
performances. This gives poor computational performance with regards to convergence 
towards a high quality solution. Subsequently, if a solution is not dominated by any 
solution in the current archive, this solution is a new non-dominated solution. This new 
non-dominated solution is added into the current archive and original solutions which 
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are dominated by this solution are removed from the current archive. 
After obtaining all the individuals for each sub-population, the fitness of an 

individual is determined by checking whether the solutions in the external archive 
dominate it. If all the new individuals are dominated, the BI remains unchanged. On the 
contrary, if at least one individual among the former Popsize-1 individuals is not 
dominated by the current archive, the BI is replaced with first one of the non-dominated 
individuals. This modification converts the update of BI into a greedy process and 
guarantees that the search is carried out only near non-dominated solutions. Notice that 
the BI is only updated when at least one of the former Popsize-1 individuals is non-
dominated. The last individual is a neighbor individual of a randomly selected solution 
from CA. If the BI is replaced with the last individual, the new BI has a very small 
relationship with the original BI and the current BI will be abandoned without going 
through an exhaustive local search. 

 
4.4 Extending operator and restart mechanism 
  When utilizing the greedy process on BI the algorithm easily gets trapped in local 
optima is one of the drawbacks. For this reason, when a new non-dominated solution 
has not been achieved within NI iterations, the extending operator takes effect and the 
current BI is replaced with a solution from CA. In this research, an adjustment is 
conducted on the original extending operator by replacing the BI with a selected 
solution from CA rather than replacing a random individual in the sub-population as 
done in Zhao et al. (2014). This modified extending operator along with the population 
update guarantees the strong local search capacity of the individuals in CA.  

Another problem is to select an individual in CA. In general, there are many solutions 
in CA and selecting correctly has a non-trivial impact on the performance. In this paper, 
the extending operator is applied to guide the sub-population to search the regions that 
are not explored enough and the least crowded individual in the current archive is 
usually selected to replace BI. To achieve this, a modified crowding distance 
mechanism is developed, as plotted in Figure 4, to select an individual by taking the 
selection times of the solutions into account. The boundary solutions are set to the 
maximum of the distance of all other individuals rather than a big number. The selection 
time is also adopted and it ensures that the distances of the selected solutions become 
smaller. These two modifications to the crowing distance mechanism ensure that the 
isolated solutions that are less selected have a large possibility of being selected. It 
should be noted that the crowding distance in this selection mechanism is different from 
the one used by Li et al. (2016b). This modification aims at reducing the crowding 
distance of selected individuals at a faster rate.   
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Figure 4 Modified crowding distance mechanism 

 
If all the individuals in the current archive have been selected to replace BI at least 

once, there is a large possibility that the current archive cannot be updated with a small 
adjustment. A restart mechanism is very necessary and this paper develops two types 
of restart methods based on whether the external archive can be updated with the current 
archive or not. If so, there is still a potential that the external archive can be improved 
and the neighbor solutions of the external archive are generated to obtain a new current 
archive. This method preserves the high quality of the current archive while preserving 
the diversity. In this research, both task assignment and robot allocation of the 
individual in the external archive is modified using one of the neighborhood structures 
to obtain neighbor solutions. If the external archive cannot be updated, the method used 
in this paper completely restarts the algorithm with a set of randomly generated 
solutions. 
 

4.5 Numerical example 
This section illustrates the process followed for obtaining the objectives by solving 

a small-sized problem. This problem contains 11 tasks and is completed by 4 robots on 
4 workstations. Table 1 shows the detailed operation times of tasks by each robot. It 
can be observed that the tasks in some cases have different operation times by different 
robots. The assignment and the robot allocation are depicted in Figure 5 and from this, 
the workstation time on each workstation can be obtained. For instance, the operation 
times of task 1 and task 5 by robot 3 are 64 and 48, and the operation time on 
workstation 1 is 64+48=112.  
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Table 1 Operation times of 11 tasks by 4 robots 

Task Robot 1 Robot 2 Robot 3 Robot 4 
1 135 65 64 46 
2 58 27 30 21 
3 37 30 42 26 
4 62 40 68 62 
5 92 37 48 38 
6 100 61 99 27 
7 156 90 73 36 
8 147 37 108 47 
9 122 28 59 29 
10 66 30 72 86 
11 70 29 35 21 

 

 
Figure 5 Example of task assignment and robot allocation  

 

Suppose that the energy consumptions of the robots are: 0.25, 0.4, 0.3 and 0.35. Then 
the carbon footprint caused by energy consumption and the line efficiency is calculated 
in Table 2. The robots follow the power consumption scheme previously listed in 
Section 2.3. Operation energy consumption can be achieved with the product of 
operation time and operation power consumption per time unit using Equation (4). The 
standby power consumption is calculated with the same method using Equation (5). 
The total energy consumption is the sum of the operation power consumption and 
standby power consumption on all workstations using Equation (2), namely 137.36 

units. The carbon footprint by energy consumption and line efficiency are achieved with 
Equation (2) and Equation (1).  

 
Table 2 Carbon footprint and line efficiency evaluation 

Workstations 1 2 3 4 
Cycle time  113 113 113 113 
Robot allocation on workstations 3 1 4 2 
Operation time on workstation s 112 99 113 96 
Standby time on workstation s 1 14 0 17 
Operation power consumption per time unit 0.3 0.25 0.35 0.4 
Standby power consumption per time unit 0.03 0.025 0.035 0.04 
Operation energy consumption on workstation s 33.6 24.75 39.55 38.4 
Standby energy consumption on workstation s 0.03 0.35 0 0.68 
Total energy consumption 137.36    

Carbon footprint by energy consumption 75.383168    

Line efficiency 0.92920354       
 

5. Computational study 
A series of computational experiments are carried out to test the performance of the 

proposed multi-objective model and the proposed MOCC. Details of the benchmark 
problems and the evaluation methodologies are introduced and the parameters of 
MOCC are presented. Subsequently, the MOCC is compared with adaption of three 
multi-objective algorithms to test the performance of the proposed MOCC.  

 
5.1 Benchmark problem and adaption of multi-objective algorithms 

The datasets proposed by Gao et al. (2009) for robotic assembly line balancing 
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problems is adopted in this research to evaluate the multi-objective model and 
algorithms. There are 32 test problems with 8 precedence graphs. Operation power 
consumption per time unit is taken from Nilakantan et al. (2015a) and the standby 
power consumption per time unit is 10% of the operation power consumption (Bertoldi 
et al., 2002). The average electricity carbon footprint of the main power grids is 
0.5488kg CO2/ kWh (Lin et al., 2015). The tested problems range from small-sized 
problem with 25 tasks and large-sized problem with 297 tasks. In this study, the datasets 
are divided into two groups: small-sized problems with 25 to 53 tasks and large-sized 
problem with 70 tasks to 297 tasks.  

To evaluate the proposed MOCC, this paper re-implements three multi-objective 
algorithms. The first is the fast elitist non-dominated sorting genetic algorithm (NSGA-
II) (Deb et al., 2002). NSGA-II is one of the most commonly used algorithms for 
solving multi-objective models and is used as a basic benchmark algorithm for result 
comparison by many researchers (Saif et al., 2014). The second algorithm is the 
restarted simulated annealing algorithm (RSA) as proposed by Li et al. (2016b). The 
RSA has proven to outperform NSGA-II in both convergence and spread criteria. It 
should be noted that although there are many multi-objective algorithms, these are the 
only two multi-objective algorithms that have been applied to solve RALB problems 
under the condition of utilizing two vectors for encoding. In addition, in this paper 
another multi-objective artificial bee colony algorithm (ABC) proposed by Saif et al. 
(2014) is also selected for the comparative study. ABC is included as it also optimizes 
two vectors simultaneously and this mechanism suits the problem considered in this 
research. ABC utilizes the new encoding and decoding in Section 3.2. The pseudocodes 
of the algorithms are not presented due to space constraints. Pseudo codes along with 
codes in C++ programming language are available upon request to the authors.  
  Another important issue for algorithm comparison is the choice of a proper termination 
criterion. This research utilizes elapsed CPU time as the termination criteria which 
assign more time to larger problem instances. This elapsed CPU time is expressed with 

 milliseconds, where  an input parameter. This termination criterion has 
previously been applied for solving assembly line balancing problems (Li et al., 2016c). 
The expression ensures that the computational time increases as the size of problems 
increases. In this paper,  is tested on four levels where   is set to be equal to 10, 20, 
30 and 40. Four termination criteria provide the information on the performance of 
algorithms from short computational time to very large computational time and also 
avoid prejudiced comparison to increase the soundness of the experimental conclusions. 
All the experiments are carried out on a set of personal computers with Intel(R) 
Core2(TM) CPU 2.33GHZ and 3.036 GB RMA and all the algorithms are coded in C++ 
programming language on the Microsoft Visual Studio 2012 platform. 
 
5.2 Performance evaluation methodologies 

The evaluation of single-objective algorithms is straightforward whereas the 
evaluation of the Pareto archives is rather complicated. The easiest comparison happens 
when an archive A is dominated by an archive B, but this situation rarely happens in 
real applications. When this situation does not occur, the determination of which 
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archive is better is a big challenge. According to Ciavotta et al. (2013), there is no 
unambiguous way to determine which frontier is better. In this paper, two Pareto 
compliant quantitative performance indicators are adopted to measure the performance 
of these algorithms: hyper volume ratio (HVR), and Unary Epsilon Indicator . It 
should be noted that other indicator, such as convergence of the Pareto-optimal set and 
spread metric, are not Pareto compliant (Ciavotta et al., 2013) and might give wrong 
and misleading results. The two Pareto compliant indicators are explained as follows. 
HVR (Zhao et al., 2014) is the ratio of the hyper volume of the obtained frontier (S) and 
that of the optimal or near-optimal Pareto front (P), which is calculated with the 
following Equation (11).  

	
						

						
   (11) 

In HVR, the hypercube is constructed with a reference point W and the frontier curve 
and the solutions in the frontier curve are the diagonal corners of the constructed 
hypercube. The reference point W can be achieved by combining the worst objective 
values for all objectives. Zitzler et al. (2001) indicates that HVR can be considered to 
be the most appropriate scalar indicator since it combines both the convergence to the 
true frontier and the spread of the solutions. A value close to 1.0 indicates a better 
approximation to the true frontier.  
The Unary Epsilon Indicator  is also a Pareto compliant indicator, which measures 
the minimum distance between a given frontier and the optimal or near-optimal frontier. 
This indicator has been successfully applied by among others  Ciavotta et al. (2013). In 
this indicator, the objectives are normalized and they are additionally transferred by 
adding one unit to avoid division by zero errors in the calculation process. Formally, 
this indicator is calculated with Equation (12) as follows:  
 

, 	 	          (12) 

A  value close to 1.0 indicates that the obtained frontier is close to the true frontier 
whereas a value close to 2.0 indicates a large distance to the true frontier.  

One possible drawback of these indicators is that they cannot provide information 
about the spatial performance of the compared algorithms e.g. which algorithm 
performs better in a region of the objective space. This research proposes to utilize a 
probabilistic measure called the Attainment Function to show the spatial behavior of 
multi-objective algorithms. The Attainment Function was first developed by da Fonseca 
et al. (2001) and this method has been successfully applied to solve multi-objective 
flow shop problems (Ciavotta et al., 2013). Let ∈ be an arbitrary point in the d-
objective solution space and Γ ∈ , 1,2, … , | |   be a non-dominated 
solution set by an algorithm in a single run. The Attainment Function is calculated with 
Equation (13). Equation (13) describes the probability that the algorithm α generates an 
approximated Pareto front Pα in which at least one element weakly dominates an 
arbitrary point in a single run. Since the algorithms are stochastic, it is impossible to 
obtain accurate values and it is empirically approximated by the outcomes of running 
the algorithms repeatedly. This method is expressed with Equations (14-15), called the 
Empirical Attainment Function (EAF). In Equation (14), Γh is the Pareto set in h’th 
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repetition of the algorithm and Nh is the total number of repetitions of the algorithm 
independently. Equations (14-15) can obtain the probability of obtaining a Pareto front 
in which at least one solution dominates the point α in a single run. To compare the 
performance of several methods, the difference between two EAFs denoted as Diff-EAF 
is defined in Equation (16) (López-Ibánez et al., 2006). This expression denotes the 
probability of ω only being dominated by a Pareto front of algorithm α and not of 
algorithm β. The value of Diff-EAF can be negative or positive. If the value is positive, 
algorithm α has more opportunities for obtaining a Pareto front in which at least one 
solution dominates β. If the value is negative the reverse is true.  

   
∃ ∈ 1: ⊴ )   (13) 

 

∑ Γ ⊴    (14) 

Γ ⊴ 	 1								 Γ ⊴ 	
			0								 	

     (15) 

, ∑ Γ ⊴ Γ ⊴1  (16) 

5.3 Parameter calibration of proposed methods 
In the following the best parameter configuration for the MOCC and other multi-

objective methods is selected. The calibration process of MOCC is illustrated as an 
example, in which the population size (Popsize) and the number of iterations (NI) need 
to be determined prior to executing the extending operator presented in Section 4.4. 
This paper proposes a full factorial design of experiments similar to the one proposed 
in Li et al. (2016c) to investigate the parameter setting. To reduce the calibration 
experiments to manageable levels, the ranges of the parameters are first determined by 
fixing the remaining parameters, and only several best parameters are selected for 
further calibration. In this paper, the Popsize is tested at five levels and NI is tested for 
four levels and the ranges for the two parameters are presented in Table 2.  

Ten cases of P70 (problem with 70 tasks) are selected for the calibration and this case 
is solved ten times. The termination criterion is set to be equal to an elapsed CPU time 
of 10 milliseconds. 1-HVR is selected as the response variable since HVR 
can be considered to the most appropriate scalar indicator as stated by Zitzler et al. 
(2001). An analysis of variance (ANOVA) technique (Montgomery, 2008) is applied to 
analyze the results. To apply ANOVA, the following three hypotheses should be 
fulfilled: independence of residuals, homogeneity of variance and normality of the 
residuals. As in the research presented in Tang et al. (2016) the ANOVA test is carried 
out and the detailed ANOVA table is omitted due to space constraints. Instead, this 
section illustrates the means plots with Tukey HSD intervals for two parameters as 
depicted in Figure 6. Clearly, the combination of 8 for Popsize and 8 for NI obtains the 
peak performance and these two values are selected for the following computational 
experiments.  

The parameters for the other algorithms are calibrated in the same manner. The 
parameter configuration utilized in this paper is presented in Table 3. It might be argued 
that the proposed algorithms can be further improved by consecutive rounds of tuning 
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of a few significant parameters. For instance, the current step for population size of 
NSGA-II is 60 and smaller steps might further improve the performance. This 
consecutive round calibration is not carried out since performance differences in 
preliminary experiments are too small to be relevant. Another issue is whether the 
calibrated parameters can be shared by all the benchmark problems. In the conducted 
tests, the parameters of large-sized problems are similar, but they are different from that 
of small-sized problems. Since this calibration process only considers large-sized 
problems, another calibration is necessary for small-sized problems. It is to be noted 
that parameter calibration is just a fine tuning process and algorithms might perform 
similarly even after calibration.  
 

5.4 Computational result analysis 
In the following section, the proposed multi-objective model is tested and a 

comparison campaign among the tested methods is shown. To test the rationality of the 
multi-objective model it is compared with two single-objective models to minimize 1- 
line efficiency and total carbon footprint. These three models are embedded into the 
simulated annealing algorithms and there are three simulated annealing algorithms: 
RSA with two objectives, SA-1 with the objective of minimizing the 1- line efficiency 
and SA-2 with the objective of minimizing the total carbon footprint.  
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Figure 6 Means plot and Tukey HSD intervals at the 95% confidence level for two parameters 
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Table 3 Parameter values of tested algorithms 
Parameters Range Value 
MOCC algorithm 
 Population size 4, 8, 12, 16, 20 8 
 Number of iterations before executing extending operator 8, 12, 16, 20 8 
NSGA-II algorithm   

 Population size 60, 120, 180, 240, 300 60 
 Selection type Random, tournament  Random 
 Crossover rate 0.1, 0.2, 0.3, 0.4, 0.5 0.4 
 Mutation rate 1- Crossover rate 0.6 
ABC algorithm   

 Population size 60, 120, 180, 240, 300 60 
RSA algorithm  

 

 Initial temperature 0.5, 1.0 1.0 
 Cooling rate 0.9, 0.95, 0.98 0.9 
 Number of iterations before a temperature change 500, 1000, 1500  500 
 Number of moves before restart 100, 200, 300  100 

 

To demonstrate the performances of the three algorithms, the results from P70 with 
14 workstations and P89 with 16 workstations is shown. Each case is solved ten times 
under the termination criterion of an elapsed CPU time of 20 milliseconds. 
Figure 7 (a-b) plots the Pareto archive by RSA and the twenty solutions obtained using 
by SA-1 and SA-2 for two selected problems. The Pareto archive depicted only contains 
the non-dominated solutions for better visualization. In Figure 7 (a), SA1 is capable of 
obtaining better results regarding line efficiency than SA2 with the cost of obtaining a 
large carbon footprint of about 3400 units. On the other hand, SA2 obtains much better 
result regarding carbon footprint, but has poor performance regarding line efficiency. 
The proposed RSA inherits the advantages of SA1 and SA2 by obtaining a Pareto front. 
It is observed that the majority of the results obtained by SA-1 and SA-2 are dominated 
by the Pareto archive by RSA. This small comparison indicates that the multi-objective 
model is reasonable, and it is able to reduce the carbon footprint effectively.  
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Figure 7 Best results of P70 and P89 by SA algorithms with ten runs 

 
The following section focuses on the comparison campaign among the tested four 

algorithms. Table 4 shows the average results of hyper volume ratio and Unary Epsilon 
Indicator under four termination criteria. Each cell in this table contains the average 
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results of four cases and 10 runs. In other words, each cell reports the average result of 
40 cases. From the table, it is observed that, from the shortest elapsed CPU time of 
10 the proposed MOCC is the best performer regarding HVR, and	 . If on ranks 
algorithms using the HVR indicator; MOCC and RSA are the best one and second best 
ones whereas NSGA-II and ABC are the worst and the second worst ones for each 
termination criterion. Specifically, the overall HVR of MOCC is 0.74, 0.79, 0.83 and 
0.85 that is significantly larger than the three comparison algorithms. Perhaps more 
interestingly MOCC achieves all the best average results for all the five large-sized 
problems regarding the HVR indicator and	 indicator. All these results indicate the 
superiority of the proposed MOCC regarding the HVR and  indicators.  

 
Table 4 Computational results for RALB problem 

Problem 
HVR  

NSGA-II ABC SA MOCC NSGA-II ABC SA MOCC 
10         

P25 0.92 0.89 0.95 0.96 1.08 1.09 1.06 1.05 
P35 0.78 0.74 0.83 0.84 1.26 1.27 1.24 1.17 
P53 0.78 0.75 0.79 0.82 1.24 1.23 1.26 1.21 
P70 0.65 0.65 0.73 0.79 1.58 1.53 1.52 1.36 
P89 0.60 0.61 0.67 0.74 1.47 1.42 1.43 1.30 
P111 0.54 0.56 0.53 0.68 1.68 1.60 1.75 1.46 
P148 0.47 0.50 0.43 0.62 1.70 1.63 1.81 1.55 
P297 0.29 0.30 0.13 0.48 2.02 1.93 2.41 1.86 
Avg. 0.63 0.62 0.63 0.74 1.50 1.46 1.56 1.37 

20         

P25 0.92 0.92 0.96 0.96 1.08 1.08 1.05 1.05 
P35 0.83 0.79 0.85 0.84 1.20 1.22 1.21 1.15 
P53 0.78 0.78 0.82 0.83 1.25 1.21 1.23 1.19 
P70 0.66 0.70 0.76 0.83 1.54 1.43 1.42 1.26 
P89 0.62 0.67 0.72 0.77 1.43 1.33 1.36 1.26 
P111 0.59 0.65 0.71 0.77 1.58 1.47 1.48 1.27 
P148 0.51 0.58 0.63 0.72 1.60 1.49 1.52 1.32 
P297 0.37 0.39 0.41 0.60 1.85 1.76 1.84 1.63 
Avg. 0.66 0.68 0.73 0.79 1.44 1.37 1.39 1.27 

30         

P25 0.94 0.93 0.96 0.97 1.07 1.07 1.04 1.04 
P35 0.80 0.82 0.87 0.85 1.22 1.19 1.20 1.16 
P53 0.75 0.81 0.83 0.84 1.28 1.19 1.21 1.18 
P70 0.71 0.74 0.81 0.84 1.44 1.34 1.34 1.24 
P89 0.66 0.70 0.78 0.81 1.39 1.32 1.30 1.21 
P111 0.59 0.65 0.73 0.79 1.53 1.42 1.41 1.22 
P148 0.54 0.63 0.71 0.77 1.52 1.41 1.40 1.22 
P297 0.41 0.48 0.61 0.74 1.64 1.54 1.46 1.31 
Avg. 0.68 0.72 0.79 0.83 1.39 1.31 1.29 1.20 

40         

P25 0.94 0.94 0.96 0.97 1.07 1.07 1.04 1.03 
P35 0.81 0.81 0.87 0.86 1.21 1.20 1.18 1.15 
P53 0.78 0.83 0.85 0.87 1.25 1.18 1.21 1.15 
P70 0.69 0.70 0.82 0.83 1.43 1.39 1.33 1.23 
P89 0.64 0.73 0.79 0.84 1.41 1.29 1.28 1.20 
P111 0.63 0.74 0.79 0.84 1.50 1.32 1.38 1.17 
P148 0.60 0.70 0.80 0.81 1.47 1.36 1.32 1.19 
P297 0.39 0.52 0.64 0.75 1.65 1.49 1.43 1.26 
Avg. 0.69 0.75 0.81 0.85 1.37 1.29 1.27 1.17 

*Best average results in bold.  
 

Though the results in the previous table show quite a clear performance difference, 
it is still prudent to carry out statistical analysis to ascertain whether the observed 
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differences are statistically significant. This research uses non-parametric Friedman 
rank-based analysis (Friedman, 1937) since the normality of the residuals is violated, 
which is observed by an initial analysis with parametric ANOVA technique. This 
situation is caused by the big differences of algorithms’ performance on the different 
tested problems. In Friedman rank-based analysis, the results are replaced with ranks. 
In this paper, the best result is given a rank of 1 and the worst result is provided with a 
rank of 4. It is worth noting that Friedman rank-based analysis neglects the real 
differences in the indicators, and the difference might be smaller or greater with respect 
to the equivalent ANOVA test. However, given the non-normal nature of the results it 
still appears as the most suitable method for comparison. There is still another 
underlying problem that some indicators prefer lower values and others prefer higher 
values. To obtain a common format, the values of the indicators that prefer higher values 
are modified utilizing the reciprocals of these values. After this transformation, the 
algorithm that ranks one is the best performer regardless of indicator. This research 
proposes two quantitative performance indicators and four termination criteria, 
resulting in twenty statistical analysis results. Instead of detailing the statistical results, 
it is chosen to primarily present the average ranks of the algorithms for different 
indicators and termination criteria.  

The primary concern is to compare the performances of algorithms under four 
elapsed CPU time and the HVR indicator is selected as response variable for being the 
most appropriate scalar indicator as stated by Zitzler et al. (2001). Figure 8 (a-d) depicts 
the average ranks of the algorithms along with 95% minimal significant difference 
confidence intervals under 10 (a), 20 (b), 30 (c) and 40 (d). It is observed 
that MOCC ranks first under the four termination criteria indicating that MOCC is the 
best performer. The remaining algorithms, SA, ABC and NSGA-II rank second, third 
and last.  
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(a) Ranks of the algorithms under 10                 (b) Ranks of the algorithms under 20  

          

          
(c) Ranks of the algorithms under 30                (d) Ranks of the algorithms under	 40 

 
Figure 8 Means plot of the average ranks and 95% confidence intervals of algorithms regarding HVR 

indicator 

 
Figure 9 (a-b) also depicts the average ranks of the algorithms along with 95% 

minimal significant difference confidence intervals for	 . It is also observed that the 
proposed MOCC is the best performer under the four termination criteria utilizing this 
indicator. ABC algorithm shows a clear superiority over NSGA-II and RSA becomes 
the second best performer when	 30 and	 40. These statistical tests further 
validate and strengthen the results in Table 4. To further show the spatial performance, 
Figure 10 (a-c) also exhibit the Diff-EAF between MOCC and NSGA-II, MOCC and 
ABC, and MOCC and RSA for instance P89 with 16 workstations under 20 
millisecond termination criterion. This paper employs 50 replicates for each algorithm 
to obtain the three figures above. These figures directly provide information about the 
spatial performance of the compared algorithms. It is observed that MOCC outperforms 
the NGGA-II and ABC for almost all the objective space and the advantage of MOCC 
over NGGA-II and ABC is quite clear. Based on Figure 10c, the results are ambiguous. 
It is clear that MOCC achieves better results at extremes of the frontier whereas RSA 
performs better in the central part of the objective space. In that case, RSA performs 
better in fewer regions, and it is reasonable to state that MOCC outperforms RSA. Using 
this graphic tool, MOCC is confirmed to outperform NSGA-II and ABC by a significant 
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margin and at least be able to obtain competing results compared with RSA.  
         

      
 

(a) Ranks of the algorithms under 10                (b) Ranks of the algorithms under 20  
 
 

     
(c) Ranks of the algorithms under 30                (d) Ranks of the algorithms under 40  

 
 

Figure 9 Means plot of the average ranks and 95% confidence intervals of algorithms regarding  
indicators 
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Figure 10 Differences between Empirical Attainment Functions for MOCC vs NSGA-II (a), MOCC vs ABC (b) 

and MOCC vs RSA (c). 
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6. Conclusion and future research 
Robotic assembly lines are becoming increasingly popular for the assembly of different 
types of products and these types of assembly lines are extensively used in industry. 
Recently, the reduction carbon footprint as a new overall environment criterion has 
become critical for reducing environmental impacts. This paper provides a method to 
simultaneously tackle the carbon footprint reduction in terms of energy consumption 
and line efficiency maximization in robotic assembly line systems.  

This paper has two main contributions. Firstly, a multi-objective model is developed 
to minimize carbon footprint reduction and maximize line efficiency. This model 
considers the carbon footprint caused by the total energy consumption of the line. Two 
types of energy consumption modes are considered: operation and standby mode. 
Secondly, a multi-objective co-operative co-evolutionary algorithm (MOCC) is 
developed and improved to solve this problem. The MOCC contains two sub-swarms 
to optimize the task assignment and robot allocation. The extending operator is 
modified to increase local search capacity and avoid the algorithm being trapped in a 
local optimum. A comprehensive study on a set of 32 benchmark problems is carried 
out and the proposed MOCC is compared with existing well-known algorithms. Two 
quantitative indicators and one graphical indicator are proposed to measure the obtained 
Pareto sets. Computational and statistical results using two Pareto compliant indicators 
and one graphic indicator demonstrate the superiority of the proposed MOCC.  

Energy consumption cost is one of the major expenses for robotic assembly lines 
and reducing the energy usage will assist companies to remain competitive in the 
market. The results obtained from this study can be used to reduce the cost of energy 
consumed and will assist companies in focusing on the correct areas of improvement. 
In the proposed model, robots can be allocated to any station and a task can be operated 
by any robot, which is not necessarily true. This research differs from current state, 
since the majority of the research published to-date focuses on minimizing cycle time 
and number of workstations and no work focuses on simultaneously optimizing carbon 
foot print and line efficiency of a robotic assembly lines. This model will have 
significant managerial implications. It will assist managers in designing/redesigning 
efficient robotic assembly lines with respect to carbon footprint minimization and line 
efficiency maximization.   

This research mainly considers the carbon footprint resulting from power 
consumption and other kinds of carbon footprint caused by material consumption can 
be considered in the future. This research can be further extended by taking the practical 
constraints into account, including the allocation of robots and assignment of tasks. A 
realistic example from robotic assembly lines focusing on the carbon footprint is also 
interesting to narrow the gap between research and real applications. The algorithm can 
be further improved by including energy consumption during maintenance operations 
and effects of failure of the resources in the system. Lastly, the study reported on MOCC 
is minimal and it shows promising results for optimizing two sub-problems 
simultaneously and the further exploration of this method and the applications of the 
algorithm to other research areas may be good research avenues.  
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