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Abstract—Hyperspectral images (HSIs) provide invaluable 

information in both spectral and spatial domains for image 

classification tasks. In this paper, we use semantic representation 

as a middle-level feature to describe image pixels’ characteristics. 

Deriving effective semantic representation is critical for achieving 

good classification performance. Since different image descriptors 

depict characteristics from different perspectives, combining 

multiple features in the same semantic space makes semantic 

representation more meaningful. First, a probabilistic support 

vector machine is used to generate semantic representation based 

multi-features. In order to derive better semantic representation, 

we introduce a new adaptive spatial regularizer which well 

exploits the local spatial information, while a non-local 

regularizer is also used to search for global patch-pair similarities 

in the whole image. We combine multiple features with local and 

non-local spatial constraints using an extended Markov random 

field model in the semantic space. Experimental results on three 

hyperspectral data sets show that the proposed method provides 

better performance than several state of the art techniques in 

terms of region uniformity, overall accuracy, average accuracy, 
and Kappa statistics. 

Index Terms—Hyperspectral image classification, semantic 

representation, Markov random field (MRF), non-local spatial 

constraint 

 

I. INTRODUCTION 

In the past few decades, hyperspectral images (HSIs) have 

been frequently used in earth observation. Hyperspectral 

imaging sensors capture images at hundreds of spectral bands 

with a spatial resolution ranging from 0.75 to 20 m per pixel for 

airborne sensors (e.g. AVIRIS from NASA), and 5 to 506 m per 

pixel for satellite sensors (e.g. EO-1 Hyperion from NASA and 

PROBA CHRIS from ESA). High spectral resolutions provide 

useful information for discriminating different materials and 

objects, and thus HSIs have a variety of applications in various 

areas, such as precision agriculture [1], environmental 

monitoring [2], and military operations [3]. Classification is 

one of the most popular applications in the analysis of HSIs. 

High dimensionality of HSIs makes it possible to achieve 

accurate object identification and classification but also causes 

a challenging problem as training samples can be limited, 

which is known as the Hughes effect [4].  

A variety of spectral pixel-wise classifiers [5]-[8] have been 

proposed to solve this problem. Among these established 

methods, support vector machine (SVM) classifiers [5], to 

some degree, have shown promising success in HSI 

classification and gained large attention due to their robust 

performance in a high-dimensional feature space with the 

ability of dealing with a small number of training samples. 

Recently, many spectral-spatial classification techniques have 

been proposed based on the assumption that image pixels from 

a local region usually belong to the same class. There are many 

ways to impose spatial information, such as post-processing 

techniques [9], [10], composite kernel [11]-[13], joint sparsity 

model [14]-[16], and Markov random fields [17]-[23]. These 

methods can significantly enhance the classification accuracy 

in the applications. 

MRFs are commonly used by incorporating spatial 

information into a Bayesian framework and have shown 

consistent performance in HSI classification. For instance, in 

[17] Tarabalka et al. integrated a probabilistic SVM with MRF 

and achieved good performance. Other MRF-based methods 

for HSIs can be found in [21], [22]. However, the 

over-smoothness problem is a fatal drawback of the traditional 

MRF-based methods, which has attracted many researchers to 

continuously work. Xia et al. proposed using rotation forests 

with a specific constraint to learn the posterior probability and 

then combined this approach with MRF [18]. In [19], an 

adaptive MRF was proposed where a weighting mechanism 

was used. In [20], a set of segmentation techniques were 

incorporated into a MRF-based framework in order to take 

advantage of the boundary information. These methods 

incorporate spatial priors through a regularised term which 

models the relationship between a pixel and its neighborhood 

with the discrete-value labels. It leads to a difficult and discrete 

optimization problem. One of the solutions to this problem is 

using graph-cut techniques [24], which is time-consuming. In 

[23], the spatial prior was modeled as a MRF on implicit 

marginal probabilities instead of discrete-value labels. In [27], 

the semantic representation of image patches was used to model 

MRF spatial priors instead of discrete labels for image 

classification tasks. Due to this modification, both methods 

shown in [23] and [27] allowed one to effectively solve the 

optimization problem with the smoothness constraint and to 
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achieve better performance. Similar to [27], semantic 

representation or semantic multinomial representation for 

computer vision applications [25]-[26] represents the 

probability of a given patch or image belonging to a specific 

category. To correctly classify image pixels in a HSI, it is 

reasonable to consider the semantic representation of a pixel as 

a probability of whether or not the pixel belongs to a specific 

class. So posterior probability or implicit marginal probability 

which reflects the relationship between pixels and labels in the 

Bayesian framework can be treated as an approximation of the 

semantic representation. On the other hand, multiple features 

and non-local spatial information can be exploited to further 

improve the performance of MRF-based methods. 

Since different types of features depict HSIs from different 

perspectives, multiple feature fusion approaches have been 

used to enhance the discrimination capability [16], [28]-[30]. 

However, different types of features usually lie on different 

feature spaces. Combining these features directly using 

methods such as vector stack (VS) has witnessed limited 

performance [29]. In [16] and [30], representation-based 

methods were presented to combine multiple features. Recently, 

a MRF-based multiple feature fusion method for HSI 

classification was proposed [25], which combines multiple 

features whilst using MRF to incorporate spatial information. 

Feature fusion and spatial constraints are conducted separately. 

Unfortunately, the two-part optimization scheme cannot ensure 

global optimization. 

In order to incorporate spatial information and multiple 

features into a MRF model simultaneously, we here propose a 

novel MRF model for HSI classification. As we have known, 

many image pixels belong to the same class with the same 

pattern but locate at different regions in the image. Therefore, 

non-local information may be exploited to enhance the 

discriminability of each pixel in a HSI. 

Inspired by the work reported in [23] and [27], we here 

propose a new approach to combine multiple features with 

adaptive spatial constraints (MFAS), which employs local 

adaptive spatial information whilst combining multiple features 

via an extended MRF model. Firstly, different types of features 

on different feature spaces are mapped to the same semantic 

space via a probabilistic SVM classifier, where multiple 

features lead to various semantic representations. Then various 

semantic representations and local spatial information are 

integrated into the MRF model. Specifically, local information 

is exploited in a superpixel-based method proposed in this 

paper. Finally, the proposed MRF model is transformed to a 

global energy minimization process. Removing the modular 

“Create Nonlocal Neighbors” marked in blue in Fig.1, this 

framework is a simplified MFAS. Furthermore, in order to 

extract spatial information from the non-local regions, a 

non-local regularizer is proposed and added to the MFAS, 

called the non-local extension of MFAS (NE-MFAS). The 

non-local information is extracted by searching for similar 

patches using a K nearest neighbor (KNN) method. In MFAS 

and NE-MFAS, all the information including local, non-local 

and multi-feature information are integrated in one single MRF 

model which is optimized by minimizing the MRF energy 

function. The proposed framework NE-MFAS is illustrated in 

Fig.1. 

The MRF model proposed in this paper is different from the 

conventional MRF models presented in [17]-[23] and [27]. The 

approach shown in [27] incorporates all the semantic 

representations of image patches via Kullback-Leibler (KL) 

divergence and then combines the spatial context with a MRF 

model. However, in our method, we combine multiple features 

with spatial constraints in an objective function. Furthermore, 

we measure the similarity between two image patches 

incorporating non-local information with the basic model 

MFAS. To our knowledge, this is the first time that multiple 

features and non-local information are fused in one single MRF 

model. More importantly, by modeling the MRF spatial prior 

on the semantic space with the geodesic distance, a manifold 

distance for measuring the similarity between two probability 

simplexes [31], our model is finally transformed into a convex 

and derivable problem which can be solved using a gradient 

descent method. Comparably, the approaches presented in 

 

 

Fig. 1. Flowchart of the proposed framework (NE-MFAS). 
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[17]-[22] used graph-cut techniques whilst the work shown in 

[23], modeling a spatial prior with l1-norm, used the alternating 

direction method of multipliers (ADMM) to solve the 

optimization problem.  

The rest of this paper is organized as follows. Section II 

shows the basic spatial context MRF model. In Section III, the 

proposed basic method MFS combining multiple features with 

local and spatial constraints in the semantic manifold is 

presented, and a new approach to construct 

superpixel-constrained neighborhoods is illustrated and used in 

our model, namely MFAS. Finally, the non-local extension of 

MFAS, NE-MFAS, is proposed. In Section IV, the 

performance of the proposed method is compared with several 

state of the art techniques on three hyperspectral datasets and 

the used parameters of the proposed method will be fully 

evaluated. Finally, Section V gives concluding remarks of this 

paper. 

 

II. BASIC SPATIAL CONTEXT MODEL 

 

A. Notations 

Let {1,2,..., }H N  be the indexes of the N pixels of a 

hyperspectral image. Let 1 2{ , ,..., }NX x x x  be a HSI dataset 

including image pixels, where d

n Rx  represents the spectral 

bands of the n-th pixel, and d is the number of the spectral 

bands, and 
1 2{ , ,..., }train M x x xX  represent the labeled 

samples, 
1 2{ , ,..., } M

train MY y y y K   represent the 

corresponding class labels of the samples, where M is the 

number of the labeled pixels, {1,..., }K L  is the set of the class 

labels, and L is the number of the classes. 

The goal of the supervised classification of HSIs is: We 

design a model with { , }train trainYX , then predict a label 
ny  to 

each pixel n H  based  on xn
, given the label set of the 

unlabeled pixels. Finally, the classification map Y can be 

obtained. 

 

B. Basic MRF model 

The posterior probability ( | )n np y x  of the n-th pixel 

obtained by a pixel-wise probabilistic classifier often leads to 

misclassification in homogeneous areas. Considering the 

relations between neighbors, MRF have been successfully used 

to exploit the spatial context of a HSI to classify image pixels. 

In other words, the spatial prior of MRF (if a random field has a 

Gibbs distribution [39]) can be used here for improving system 

performance.  

In a Bayesian framework, the label Ŷ  of a HSI can be 

obtained by maximizing the posterior of Y , given X. 

 ˆ argmax ( | ) argmax ( | ) ( )
N NY K Y K

Y P Y P Y P Y
 

 X X  (1) 

where  ( | )P Y X  and ( )P Y  represent the class-conditional 

probability distribution and the prior probability of the classes, 

respectively. In a MRF framework, maximum a posteriori 

(MAP) decision rules can be used to solve a global energy 

function minimization problem. Then this function can be 

simplified based on the assumption of class-conditional 

independence of the pixels. 

 
1

ˆ argmin log ( | ) log ( ) log ( )
 

 
    

 


N

N

n n n
Y K n

Y p y p y px y    (2) 

where ( | )n np y x  is modeled using a probabilistic SVM [17] or 

a multinomial logistic regression [26], and ( )np y  is omitted as 

we assume all the classes have the same contribution. ( )p y  is 

usually modeled to impose the spatial prior of labels y in the 

HSI classification. The global energy of Eq.(2) in HSIs can be 

formulated as: 

1 ( , )

log ( )
N

n n m

n n m Ne

E y y 
 

 
    

 
 s  (3) 

where ( | )n n np ys x , the first term represents the spectral 

energy function and the second one characterizes the spatial 

energy function. ( , )n m Ne  donates that the n-th pixel and 

m-th pixel are connected in the MRF, μ is the parameter of the 

smoothness level, and ( )   is the Dirac unit impulse function. 

The solution of a MRF-based approach is the global 

minimum of the energy function which is a challenging 

optimization problem. Sun et al. [23] used the implicit marginal 

probability instead of the label y to model the spatial prior. In 

[27], a MRF with semantic representation is used to exploit the 

spatial contexts of image patches. Both the approaches use the 

posterior probability of the image pixels instead of the labels to 

model smoothness and derivable energy functions, which can 

be solved by ADMM and gradient descent, respectively. The 
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Fig. 2. (a) Multiple features lie in different space, (b) basic spatial context, (c) joint multiple feature spatial context. 
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basic MRF model [27] with 4-connected pixels is shown in Fig. 

3(a), where the original semantic representation of each pixel is 

the input of the MRF, and the neighborhood is the spatial 

regular term to constrain the smoothness. The objective 

function of the basic model can be defined as: 

1 1

1 ( , )

( ,..., , ,..., ) ( , ) ( , )
N

N N n n n m

n n m Ne

E g g
 

 
  

 
 s s s s s s s s    (4) 

where 
ns  is an unknown denoised semantic representation 

(DSR) of pixel n. The first term is the spectral energy function 

which measures the similarity between 
ns  and the original 

semantic representation 
ns . The second term as the spatial 

constraint represents the spatial energy function which 

describes the relationships between 
ns  

and the DSRs of the 

neighbors. The energy can be modeled as the distance between 

two different semantic representations. The geodesic distance 

(  ( , ) 2arccos ,g s s s s ) where s represents 

element-wise square root) is a suitable choice [31] for 

measuring the distance between two semantic representations, 

i.e., probability vectors, and it has been proved to be effective in 

a semantic manifold [40]. 

To minimize the global energy, we resort to the iterative 

conditional modes (ICM) method [41], which iterates over 

every pixel whilst minimizing the local energy related to one 

particular variable and keeping others fixed. Then the global 

optimization problem shown in Eq. (4) is transformed to 

several sub-problems, and the energy function of n-th (n=1...N) 

pixel can be written as: 

1
( ; ) ( , ) ( , )

n

n n n n n m

m Bn

E B g g
B




  s s s s s  (5) 

where Bn is the spatial neighborhood of pixel n. In Fig. 3(a), Bn 

contains four neighbors. It is normalized by the size of the 

neighborhoods |Bn| for convenience, and α is the penalty value 

for the spatial item. 

III. PROPOSED METHOD 

 

A. Probabilistic SVM classification 

In our application, semantic representation of image pixels in 

HSIs can be regarded as the probability of whether or not the 

pixels belong to individual classes. We adopt the popularly 

used probabilistic SVM [17][21][29] to describe the semantic 

representation of each pixel. 

Given a pixel xn, to obtain the semantic representation of this 

pixel, we need to map xn to a middle-level space i.e., the 

probability space. 

For this purpose, we need to know the posterior probability 

of the pixel belonging to each class k. Originally, the SVM 

classifier does not provide class probability estimates, and it 

only provides a decision value ( | )nd k x  that indicates the 

distance between the pixel and the separating hyperplane of 

class y. In [37], ( | )np k x  is calculated using a sigmoid 

function. 

1
( | )

1 exp( ( | ) )
n

c n c

p k
A d k B


  

x
x

 (6) 

where Ac and Bc are estimated by the SVM classifier. Here we 

use the LIBSVM library [38]. Then we use ( | )n np ks x  as the 

semantic representation of the n-th pixel.  

 

B. Multiple Features of HSI 

The combination of multiple features can enhance the 

discriminability and positively supports the classification task 

[16], [28]-[30]. In order to extract meaningful information of 

HSIs, we use low-level feature extraction methods. The first 

one is the original spectral feature which can preserve the 

original information of HSIs. The second one is the use of 

Gabor features [32][33] which describe the texture information 

of HSIs. In order to exploit the shape information of HSIs, we 

extract differential morphological profiles (DMP) features [29]. 

Three features and their results are shown in Table I. We obtain 

the first three principal components of the HSI using principal 

component analysis (PCA). Then we extract Gabor and DMP 

features on the first three PCs based images. For the Gabor 

feature extraction, we implement Gabor filtering with eight 

angles and five wavelengths individually on each PC. For the 

DMP feature extraction, the structure sizes of the 

morphological opening and closing operation are set to be 2, 4, 

6, 8, and 10 respectively. Then we calculate the difference of 

the morphological processing results between the adjacent 

structure sizes. 

Each type of features for a pixel is represented as a vector, 
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Fig. 3. (a) Basic model with 4-connected pixels, (b) multi-feature combination, (c) MFS model. 
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(1,2,..., )vdv

n R v V x  are the v-th type of features of the n-th 

pixel, V and dv are the number of feature types and the 

dimension of the v-th type of the features, respectively. The 

parameters for each type of the features are shown in Table I. 

One of the traditional approaches for integrating multiple 

features is to use vector stacking (VS) which concatenates 

multiple features directly before they are sent to a classifier. 

Although VS has been widely used for multi-feature fusion [34], 

the study reported in [35] shows that the accuracy of a classifier, 

e.g. SVM with combined features, may decline significantly 

and the hyperdimensional features may cause the over-fitting 

problem. In addition, since each type of features and the 

feature-specific spatial contexts lie in different feature spaces 

(see Fig.2), combining different types of features is not the best 

option.  

In our study, we firstly map these low-level features to a 

middle-level space namely semantic space via a probabilistic 

SVM classifier which has been introduced in the previous 

section, and then combine these middle-level features in the 

semantic space. We expect to take advantage of multiple 

features and overcome the Hughes effect and the over-fitting 

problem. 

 
TABLE I   

INTRODUCE OF BASIC FEATURES 

Features Parameters Dimension 

Spectral feature All the bands of HSI 
the number of 

bands 

Gabor texture feature 
Base image : PC1,PC2,PC3 

Num. of angles : 8 

Num. of wavelengths : 5 

3×8×5=120 

DMP feature 
Base image : PC1,PC2,PC3 
Size of structure elements : 

2,4,6,8,10 

3×2×4=24 

 

C. Multiple-Feature with Spatial Constraint 

For the n-th pixel with multiple features (1,..., )v

n v Vx , the 

multiple semantic representation v

ns
 
can be obtained using the 

probabilistic SVM. Different from the low-level features which 

lie on individual feature spaces, the semantic representations 

lye on the same middle-level feature space. We can combine 

these middle-level features through various ways. The work 

shown in [29] reveals a SVM classifier to fuse probability 

estimations. It is also shown that minimizing the 

Kullback-Leibler (KL) divergence led to better classification 

performance [27]. Here, we use the MRF model shown in Eq. 

(4) to fuse these middle-level features whilst combining all the 

local spatial information. Then we can easily transform the 

objective function as follows: 

(1) (1)

(1,..., )

(1)

, (1,..., )

1
( ; ) ( , )

1
( , )

n

v

n n n n

v V

v

n m

m B v Vn

E B g
V

g
V B





 










s s s

s s

 (7) 

where (1)

ns  represents the first order DSR of pixel n. Notice 

that for a training set, if the pixel i is a training sample 

belonging to class k, the value of v

is  is a L-dimensional vector 

with 
,

v

i ks  (the kth element of v

is ) being one and the other 

elements being zeros. If Bn contains the training sample i, 
(1)

,n ks  

(the kth element of (1)

ns ) will be bigger. Similarly, the label 

information will be integrated together at the same time for 

better performance. The label of the unlabeled pixel can be 

determined using the maximum element of (1)

ns .  

Let (1) (1) (1) (1)

1 2{ , ,..., }NS s s s  be the set of the first order 

DSRs, and  
1 2{ , ,..., }, (1,2,..., )v v v

N v V S s s s  be the set of the 

original semantic representations. Since the optimization of the 

solution is carried out by an ICM method, a number of 

iterations are necessary. It is reasonable for us to use (1)
S  as the 

input, and go through every pixel. Then we can obtain a reliable 

and precise second order DSRs (2)
S . Continuously, we can 

also derive ( )t
S  through ( 1)t

S , (t = 2, 3, 4,…). Notice that 

multiple semantic representations’ fusion has been performed 

in the process of deriving (1)
S . So we simplify the objective 

function as: 

( ) ( ) ( 1)

( ) ( 1)

( ; ) ( , )

1
( , )

n

t t t

n n n n

t t

n m

m Bn

E B g

g
B











 

s s s

s s
 (8) 

where ( ) ( ) ( ) ( )

1 2{ , ,..., }t t t t

NS s s s  is the t-th order DSRs. The 

above process is iterated tmax times to obtain the final results. 

The final DSRs are expected to be more robust with less noise. 

The above method namely multiple-features with spatial 

constraints (MFS) is shown in Fig.3(c). 

Particularly, α is the penalty factor to control the importance 

of the spatial neighbors and |Bn| stands for the size of the 

neighborhood shown in Eqs. (7) and (8). We define 
nB   

for simplification, indicating that the weight of each neighbor is 

the same as that of the center pixel in this MRF model.  

 

D. Superpixel-Constrained Neighborhood 

All the MRF-based and spatial-spectral approaches are based 

on the assumption that image pixels from the same local region 

belong to the same class. But the investigated window usually 

contains some pixels which belong to other classes. 

Researchers find various ways to overcome this issue, e.g. 

using weight coefficients [19][30][46], superpixel 

segmentation [16][42], and adaptive neighborhood 

construction such as anisotropic local polynomial 

approximation intersection of confidence intervals (LPA-ICI) 

[43]. 

In this paper, a superpixel segmentation method based on 

entropy rates [44] is used to generate a 2-D superpixel map. 

Specifically, this is a graph-based clustering algorithm which 

can generate compact, homogeneous and balanced superpixels. 

Also it only has one parameter to be tuned, which controls the 
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number of the superpixels in the base image. Here, the first 

principal component (PC) of HSIs by PCA is used to generate 

the base image for the superpixel segmentation (shown in Fig. 

4(a)). Having superpixels, some superpixel-based methods 

[16][42] treat each superpixel as a unit based on the result of the 

image segmentation. Different from these methods, our 

superpixel-based approach is developed using the segmentation 

result to constrain the neighborhood that helps us to include the 

neighboring pixels which belong to the same class as that of the 

target pixel. It also enhances the identification of the target 

pixel. As shown in Fig. 4(b), the blue points are the target pixels, 

and the red window represents the neighboring window of each 

target pixel.  

  

 

 

(a) (b) 

Fig. 4. (a) The first PC of Indian Pines image. (b)  The segment map with 
some instance of superpixel-based neighborhood  in the Indian Pines 

image. 

Finally, a large window with detailed information can be 

extracted with less mis-classified pixels, whilst the boundary 

information can be well preserved. Taking superpixel-based 

neighborhoods, we can transform our basic model (MFS) to a 

new model namely multiple feature with adaptive spatial 

constraints (MFAS). 

E. Non-local Extension of MFAS 

Non-local information has demonstrated its importance in 

HSI analysis [46]-[49]. The motivation for extending our model 

to the non-local one is because of the high degree of 

redundancy in each HSI. Traditional spatial-spectral methods 

hold the assumption that image pixels in a local region belong 

to the same class, but we also observe that pixels belonging to 

the same class can be found in different regions. Non-local 

techniques can be used to explore this similarity. To utilize the 

non-local spatial information, we measure the similarity 

between the patch centered with the concerned pixel and the 

other non-local patch. Adding the non-local similarity 

information, we propose a non-local extension method 

NE-MFAS (see Fig. 5(a)).   
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(a) (b) 

Fig. 5. (a) NE-MFAS model.(b) Illustration of non-local neighbors. 

Spatially neighboring pixels tend to belong to the same class 

and a pixel can be represented by its local neighbors. Therefore, 

the similarity of two pixels can be approximated by the 

similarity of two image patches. Our superpixel-based 

neighborhood method can be used to construct a patch 

structure. 

Given an image patch, non-local means (NLM) algorithms 

[45]-[48] expect to find the patches being spatially far from this 

given patch but having structures similar to that of the given 

patch. The non-local constraint can be applied to this 

classification, and we can extract the spatial information from 

both local and non-local neighbors. 

To measure the similarity between two patches, we use a 

variation of the standard KNN method. Firstly, the average 

pooling strategy is applied to each patch exploiting the most 

significant information of the patch. Then, the similarity of the 

two patches is measured using geodesic distance (GD) which 

can capture the manifold structure of the HSI. We define the 

similarity of pixels n and n using GD as: 

1 1
( , ) ( , )

n n

p p

m m

m U m Un n

SGD n n g
U U





 

   x x  (9) 

where p

mx  stands for the spectral feature of pixel m and Un 

represents the superpixel-based neighbors of pixel n. Finally, 

C-nearest pixels are selected to form a group which is called the 

non-local neighbors of pixel n. Fig. 5(b) illustrates an example 

 

Algorithm 1: NE-MFAS for HSI classification 

    Input: 1) HSI data set with labels of training samples 

          2) The number of superpixels L 

          3) The number of non-local neighbors C, local and non-local  

               structure window size Wlocal and Wnon-local 

Step 1: Extract multiple features of each pixel from the HSI 

Step 2: Map multiple features to the same semantic space through 

            probabilistic SVM 

    Step 3: For each test sample: 

        Step 3.1: Construct the superpixel-constrained neighborhood 

        Step 3.2: Calculate C-nearest non-local neighbors and    

                       corresponding weight by Eqs. (9) and (10) 

        Step 3.3: Obtain the first order DSR by Eq. (11) 

        Step 3.4: Initialize the highest order of DSR tmax, and t ← 2 

               
      

  While maxt t , do 

                         (1) Obtain ( )t

ns  through ( 1)t 
S  by Eq. (12)  

                        
 (2) t ← t + 1

 

                        End while 

        Step 3.5: Let yn equal to the index of maximum element of max( )t

ns  

Output: Predict labels of testing samples Ytest
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of the non-local neighbors of pixel n on the Indian Pines data 

set. The green point in the white rectangle is the target pixel and 

the other white points are the neighbors. From this map, we 

observe that these image pixels all belong to the same class but 

lie in different regions. 

In order to reflect the difference between the neighbors with 

different similarities, we define the weight coefficient of the 

non-local neighbors as: 

( , )

( , )
exp( )n n

SGD n n






  (10) 

where n denotes one of the non-local neighbors of pixel n and 

γ is the scale parameter. By incorporating the non-local spatial 

information, the objective function shown on Eq. (7) can be 

extended to:  

(1) (1)

(1,..., )

(1) (1)

( , )

(1,..., ) (1,..., )

1
( ;( , )) ( , )

( , ) ( , )
n n

v

n n n n n

v V

v v

n m n n h h

m B v V h C v V

E B C g
V

g g 



   


 




   





   

s s s

s s s s

 (11) 

where Cn is the non-local neighborhood of pixel n, the second 

term represents the local spatial energy and the third term 

stands for the non-local spatial energy. Then, the corresponding 

t-th order objective function becomes: 

( ) ( ) ( 1)

( ) ( 1) ( ) ( 1)

( , )

( ;( , )) ( , )

( , ) ( , )
n n

t t t

n n n n n

t t t t

n m n n h h

m B h C

E B C g

g g 



 

 



   

s s s

s s s s
 (12) 

We can use gradient descent to minimize Eqs. (12) and (13) 

for each pixel n. The gradient of pixel n can be derived as (k is 

the index of the element): 

, ,

(1,..., ),

, ,

(1,..., )

, ( , ) ,

(1,..., )

( ;( , )) 1
( , )

1
( , )

1
( , )

n

n

vn n n
n k n k

v Vn k

v

n k m k

m B v V

v

n k n h h k

h C v V

E B C
f

V

f
V

f w
V



 

 








 



 

 

s
s s

s

s s

s s

 (13) 

where  

2

( , )
( , )

2 1 ( )

yg x y
f x y

x x x y


  

 
 (14) 

The complete process of the proposed NE-MFAS algorithm 

for the HSI classification is summarized in Algorithm 1. 

 

IV. EXPERIMENTAL RESULTS 

In this section, we show the effectiveness and efficiency of 

the proposed NE-MFAS on three recognized hyperspectral 

datasets. The classification results are compared with those of 

several state-of-the-art methods. 

A. Data sets 

The first hyperspectral dataset was acquired by the Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS) sensor over 

the Indian Pines region in Northwestern Indiana on June 12, 

1992, each of which consists of 145×145 pixels and 220 

spectral reflectance bands in the wavelength ranging from 0.4 

TABLE II 

TRAINING AND TEST SETS FOR IN AVIRIS INDIAN PINES 

No Class Train Test 

1 Alfalfa 3 43 

2 Corn-notill 72 1356 

3 Corn-min 42 788 

4 Corn 12 225 

5 Grass/Pasture 25 458 

6 Grass/Trees 37 693 

7 Grass/Pasture-mowed 2 26 

8 Hay-windrowed 24 454 

9 Oats 1 19 

10 Soybeans-notill 49 923 

11 Soybeans-min 123 2332 

12 Soybeans-clean 30 563 

13 Wheat 11 194 

14 Woods 64 1201 

15 Bldg-grass-trees-drives 20 366 

16 Stone-steel towers 5 88 

Total 520 9729 

 
TABLE III 

TRAINING AND TEST SETS FOR IN ROSIS PAVIA UNIVERSITY  

No Class Train Test 

1 Asphalt 332 6299 

2 Meadows 933 17716 

3 Gravel 105 1994 

4 Trees 154 2910 

5 Metal sheets 68 1277 

6 Bare Soil 252 4777 

7 Bitumen 67 1263 

8 Bricks 185 3497 

9 Shadows 48 899 

Total 2144 40632 

 
TABLE IV 

TRAINING AND TEST SETS FOR IN AVIRIS SALINAS 

No Class Train Test 

1 Broccoli green weeds 1 21 1988 

2 Broccoli green weeds 2 38 3688 

3 Fallow 20 1956 

4 Fallow rough plow 14 1380 

5 Fallow smooth 27 2651 

6 Stubble 40 3919 

7 Celery 36 3543 

8 Grapes untrained 113 1115 

9 Soil vineyard develop 63 6140 

10 Corn senesced weeds 33 3245 

11 Lettuce romaine 4 weeks 11 1057 

12 Lettuce romaine 5 weeks 20 1907 

13 Lettuce romaine 6 weeks 10 906 

14 Lettuce romaine 7 weeks 11 1059 

15 Vineyard untrained 73 7195 

16 Vineyard vertical trellis 19 1788 

Total 549 53580 
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to 2.5 μm. We remove 20 water absorption bands, leaving 200 

radiance channels to be used. The spatial resolution of this 

image is about 20m per pixel. This image contains 16 

ground-truth classes as shown in Table II. The false color map 

and the corresponding reference map are shown in Fig. 6(a) and 

(b). 

The second one is an urban image acquired by the Reflective 

Optics System Imaging Spectrometer (ROSIS) over Pavia 

University, northern Italy. It includes 610×340 pixels and 115 

spectral reflectance bands ranging from 0.43 to 0.86 μm and has 

a spatial resolution of 1.3 m per pixel. We select 103 of the 

bands with 12 noisy bands removed. This image contains 9 

classes of ground-truth data as shown in Table III. The false 

color map and the corresponding reference map are shown in 

Fig. 7(a) and (b). 

The final data set was acquired over Salinas Valley, 

California, in 1998, by the Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS) sensor. The original data set is 

composed of 224 bands with a spectral range from 0.4 to 2.5 

μm. The image has a size of 512×217 pixels with a spatial 

resolution of 3.7m. We also remove 20 water absorption bands 

with 204 bands left. This image contains 16 ground-truth 

classes which are described in Table IV. The false color map 

and the corresponding reference map are shown in Fig. 8(a) and 

(b). 

 

B. Experimental Setting 

To investigate the effectiveness of the proposed method for 

hyperspectral classification, our method NE-MFAS is 

compared against the basic models of our framework (SVM 

with each type of features, MFS, MFAS) to investigate the 

effectiveness of our method. Then we compare our method 

with the other state of the art techniques, including SRC [14], 

SVM-CK [11], SVM-MRF [17], and SOMP [14]. 

In our method, the SVM classifier uses the Gaussian kernel 

and the parameters are obtained by cross-validation. The 

parameter setting for the other SVM classifiers is also selected 

via cross-validation. The parameters of SRC and SOMP are the 

same as that shown in [14]. The experiments are conducted ten 

times and the average values of the experimental results are 

recorded in order to avoid the bias induced by random 

sampling. 

To measure the classification performance, overall accuracy 

(OA), average accuracy (AA), accuracy for each class and 

kappa coefficient are calculated. All the results are averaged 

over ten times’ run to reduce possible biases induced by 

random sampling.  

 

C. AVIRIS Indian Pines data set 

In this experiment, about 5% samples are randomly selected 

from each class for training (total 520 samples) and the rest 

samples (total 9729 samples) for testing (see Table II). Table V 

shows the classification results of SVM with different types of 

features, MFS, MFAS, NE-MFAS and the other similar 

methods, in which the best results are marked in bold. 

For MFS, MFAS and NE-MFAS, the local window size is set 

to be 5×5 (Wlocal = 5) and the number of the iteration is set to 3. 

The non-local window size and the number of non-local 

TABLE V 
CLASSIFICATION ACCURACY (%) FOR THE INDIAN PINES IMAGE ON THE TEST SET 

 

Class 
SVM 

(Spectral) 

SVM 

(Gabor) 

SVM 

(DMP) 

SRC 

(Spectral) 

SVM-MR

F 
SVM-CK SOMP MFS MFAS NE-MFAS 

1 8.37 42.56 0 49.62 0 63.64 55.00 96.50 100 100 

2 71.11 68.60 69.11 59.10 81.32 90.48 85.45 95.64 95.27 96.65 

3 58.65 72.51 75.62 55.66 67.80 91.86 75.07 95.56 97.86 97.73 

4 21.16 58.36 62.18 36.32 40.84 83.81 81.17 90.71 90.04 88.44 

5 83.12 83.91 84.83 85.79 89.43 88.41 88.92 92.93 94.69 95.80 

6 92.74 89.67 93.46 93.61 99.27 97.75 98.54 99.15 99.96 99.98 

7 0 0 0 64.80 0 73.33 7.20 95.00 91.54 99.52 

8 98.90 96.59 97.78 98.24 99.63 98.90 99.74 100 100 100 

9 0 0 0 42.11 0 54.73 6.40 54.74 75.79 75.68 

10 59.92 75.74 80.48 66.28 72.60 86.43 70.17 94.24 92.34 96.90 

11 82.41 83.48 87.23 74.35 95.39 92.29 93.50 98.92 99.10 99.56 

12 48.31 62.61 52.42 47.50 74.36 83.94 70.89 94.40 95.60 97.51 

13 91.91 94.43 95.83 97.92 98.82 98.97 98.71 96.08 99.48 99.48 

14 95.77 95.15 96.19 94.93 97.99 96.82 98.52 99.80 99.93 99.59 

15 45.00 81.50 71.58 34.13 60.35 89.21 90.55 96.23 96.15 99.49 

16 79.89 86.93 47.50 87.03 90.67 91.69 91.43 93.30 98.98 99.01 

OA 74.63 80.12 80.89 72.07 84.91 91.59 87.55 96.87 97.24 98.20 

AA 58.58 68.25 64.66 67.96 66.80 86.39 75.30 93.30 95.42 96.46 

Kappa 0.7073 0.7722 0.7672 0.6805 0.8257 0.9042 0.8572 0.9642 0.9685 0.9794 
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neighbors are set to be 21×21 (Wnon-local = 21) and 40 (C=40) for 

NE-MFAS. For MFAS and NE-MFAS, the number of 

superpixels is set to 100. 

From Table V, we clearly see that the methods with spatial 

information (MRF prior, CK and SOMP) have better 

performance compared to the pixel-based classifiers (SVM and 

SRC). It is also shown that SVMs with different types of 

features result in different performance. The DMP-based SVM 

leads to better performance than the others. However, it is a 

complicated scenario. For instance, SVM with spectral features 

has the best performance on classes 2 and 8; the Gabor texture 

feature leads to the best performance on classes 1, 12, 15 and 16; 

the DMP feature results in the best results on the rest of the 

classes. Our methods, MFS, MFAS and NE-MFAS, which 

exploit local spatial information whilst combining multiple 

features, give better performance than the other methods. 

Especially, NE-MFAS produces the highest overall accuracy 

and the best class classification accuracy for most of the classes 

(twelve of the total sixteen classes). Meanwhile, by 

incorporating the adaptive window constraint, MFAS achieves 

about 0.5% better than MFS in OA. Moreover, combining 

non-local spatial information, NE-MFAS makes the system 

performance 1% better than MFAS. It is obvious that the other 

methods fail to identify the samples of the Alfalfa class. The 

Alfalfa class has only 46 samples in total with merely 3 for 

training which only covers a small region. For the pixel-based 

classifiers (SVM and SRC), only 3 training samples cannot be 

used to learn an effective model for the rest samples. For the 

SVM-MRF, without any constraint, the over-smoothing effect 

causes the Alfalfa region to be erode by the regions around it 

(Corn-notill and Soybeans-notill). For SOMP and SVM-CK, 

with the fixed window (7×7), most the neighbors of each 

Alfalfa pixel are belonging to two adjacent classes (Corn-notill 

and Soybeans-notill). Assuming each Alfalfa pixel has a pattern 

similar to that of its neighbors, the Alfalfa pixels could be 

classified as Corn-notill and Soybeans-notill. Better 

classification accuracy is achieved with the MFS using a 

relatively small size (5×5) and incorporating multiple features. 

MFAS and NE-MFAS achieve correct identification of all the 

Alfalfa pixels by exploiting adaptive local spatial information 

and non-local spatial information. The same conclusion can be 

made in Oats and Grass/Pasture-mowed classes, reflecting that 

the proposed method not only achieves good performance in 

large homogenous regions but also effectively identifies small 

objects. 

 

    
(a) False color map (b) Groun-dtruth (c) SVM(Spectral) (d) SVM(Gabor) 

    
(e) SVM(DMP) (f) SRC (g) SVM-MRF (h) SVM-CK 

    
(i) SOMP (j) MFS (k) MFAS (l) NE-MFAS 

Fig. 6. Indian Pines image. (a) false color map; (b) ground-truth; (c) SVM with original spectral feature(OA=72.64%); (d) SVM with Gabor 
texture feature (OA=78.79%) (e) SVM with DMP feature (OA=79.62%) (f) SRC (OA=73.11%); (g) SVM-MRF (OA=88.27%); (h) SVM-CK 

(OA=92.26%); (i) SOMP (OA=89.38%); (j) MFS (OA=97.03%); (k) MFAS (OA=97.64%); (l) NE-MFAS (OA=98.52%). 
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Fig. 6(b) shows the ground-truth. The classification maps of 

the different methods are shown in Fig. 6(c)-(l) with the fixed 

training samples. In Fig. 6, the methods with spatial 

information have more accurate results than the others. 

Nevertheless, it also can be seen that SVM-MRF, SVM-CK, 

SOMP yield misclassification at the boundaries or small 

objects, as these methods do not consider boundary information 

and only use one type of features. MFS gives better uniformity 

and boundary location results than the traditional 

spectral-spatial methods. In addition, from the three white 

rectangles shown in Fig. 6(j) and (k), we observe that MFAS 

leads to clearer boundaries  than MFS.  This is because the fact 

that an adaptive window helps to preserve boundary 

information. From the two white circles shown in Fig. 6(j),(k) 

 

TABLE VI 
CLASSIFICATION ACCURACY (%) FOR THE UNIVERSITY OF PAVIA IMAGE ON THE TEST SET 

 

Class 
SVM 

(Spectral) 

SVM 

(Gabor) 

SVM 

(DMP) 

SRC 

(Spectral) 

SVM-MR

F 
SVM-CK SOMP MFS MFAS NE-MFAS 

1 90.49 90.25 90.98 74.32 98.43 98.13 86.83 99.41 99.46 99.85 

2 96.53 97.04 96.09 94.52 99.83 99.60 99.50 100 99.99 100 

3 70.34 68.58 81.97 59.54 71.45 88.00 90.77 96.16 96.52 99.91 

4 92.11 92.90 79.37 81.68 90.14 97.82 89.34 99.02 97.71 99.04 

5 99.18 97.34 91.10 99.62 99.78 99.69 99.98 100 99.71 99.89 

6 76.03 65.13 85.16 54.59 84.58 98.19 92.15 96.10 96.27 99.92 

7 76.28 69.83 66.14 76.56 79.81 96.06 94.59 94.26 96.98 99.62 

8 85.28 84.99 90.50 75.66 95.99 93.52 95.48 99.48 99.47 99.76 

9 98.93 99.71 89.43 89.84 98.44 98.18 90.20 99.81 99.15 99.47 

OA 90.12 88.29 90.41 81.93 94.75 97.85 94.82 99.04 99.09 99.85 

AA 87.24 84.98 85.64 78.48 90.94 96.58 93.20 98.34 98.51 99.72 

Kappa 0.8680 0.8431 0.8724 0.7568 0.9295 0.9714 0.9312 0.9873 0.9879 0.9980 

 

      
(a) False color map (b) Ground-truth (c) SVM (Spectral) (d) SVM (Gabor) (e) SVM (DMP) (f) SRC 

      
(g) SVM-MRF (h) SVM-CK (i) SOMP (j) MFS (k) MFAS (l) NE-MFAS 

Fig. 7. The University of Pavia image. (a) false color map; (b) ground-truth; (c) SVM with original spectral feature(OA=90.32%); (d) SVM with Gabor texture 
feature (OA=87.40%) (e) SVM with DMP feature (OA=90.25%) (f) SRC (OA=82.23%); (g) SVM-MRF (OA=95.42%); (h) SVM-CK (OA=97.72%); (i) SOMP 

(OA=95.13%); (j) MFS (OA=99.20%); (k) MFAS (OA=99.35%); (l) NE-MFAS (OA=99.77%). 
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and (l), we notice that the classification map of NE-MFAS not 

only has clearer boundaries but also has better spatial 

consistency in the image, which shows the contribution of the 

non-local information. Overall, the proposed method 

NE-MFAS achieves better classification performance than the 

others. 

 

D. ROSIS University of Pavia data set 

In this section, we evaluate the proposed methods on the 

ROSIS University of Pavia dataset while comparing it with the 

aforementioned methods. Around 5% samples from each class



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

12 

 
TABLE VII 

CLASSIFICATION ACCURACY (%) FOR THE SALINAS IMAGE ON THE TEST SET 

 

Class 
SVM 

(Spectral) 

SVM 

(Gabor) 

SVM 

(DMP) 

SRC 

(Spectral) 

SVM-MR

F 
SVM-CK SOMP MFS MFAS NE-MFAS 

1 98.20 97.03 95.03 99.92 99.98 97.91 100 100 100 100 

2 98.56 98.61 97.14 99.71 99.47 98.01 99.87 100 99.93 100 

3 87.57 81.41 85.46 92.72 98.90 96.19 96.90 99.96 98.13 97.83 

4 98.20 95.02 93.90 99.13 96.05 97.14 89.42 83.88 99.00 98.73 

5 96.11 96.36 92.71 93.74 99.53 95.66 82.29 96.95 99.25 99.47 

6 99.48 99.70 98.46 99.97 99.82 97.70 99.81 99.88 99.99 100 

7 99.23 96.44 95.47 99.93 99.56 97.15 98.89 99.17 98.92 98.74 

8 87.25 86.91 88.85 78.46 97.78 93.11 95.37 99.66 99.11 99.26 

9 98.84 96.73 98.45 99.53 98.39 97.69 99.86 99.90 99.57 99.70 

10 86.24 80.55 94.16 93.85 98.38 98.87 95.43 99.80 99.12 99.56 

11 81.44 57.11 91.75 97.78 95.18 87.24 91.11 91.84 95.61 98.58 

12 99.09 81.33 90.81 98.17 99.97 97.35 88.97 96.64 97.15 97.17 

13 96.35 87.95 63.58 97.07 97.08 99.12 74.86 83.31 95.85 94.92 

14 89.14 81.11 90.39 95.56 95.28 96.56 93.44 80.96 91.03 95.37 

15 61.55 53.65 79.39 56.58 59.74 89.79 80.23 98.65 95.86 99.39 

16 95.88 91.79 96.21 98.57 97.42 96.14 96.62 100 99.96 99.97 

OA 89.46 85.68 91.12 88.35 92.98 95.31 93.49 98.16 98.53 99.33 

AA 92.07 86.36 90.73 93.81 95.47 95.98 92.69 95.66 98.10 98.83 

Kappa 0.8822 0.8398 0.9010 0.8702 0.9214 0.9477 0.9274 0.9794 0.9836 0.9926 

 

      
(a) False color map (b) Ground-truth (c) SVM (Spectral) (d) SVM (Gabor) (e) SVM (DMP) (f) SRC 

      
(g) SVM-MRF (h) SVM-CK (i) SOMP (j) MFS (k) MFAS (l) NE-MFAS 

Fig. 8. The Salinas image. (a) false color map; (b) ground-truth; (c) SVM with original spectral feature(OA=87.73%); (d) SVM with Gabor texture feature 
(OA=85.78%) (e) SVM with DMP feature (OA=91.57%) (f) SRC (OA=88.86%); (g) SVM-MRF (OA=92.95%); (h) SVM-CK (OA=94.75%); (i) SOMP 

(OA=94.18%); (j) MFS (OA=97.42%); (k) MFAS (OA=98.06%); (l) NE-MFAS (OA=99.01%). 
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are randomly chosen for training and the remaining samples for 

testing (see Table III). Table VI shows the classification results 

of each method, and the best results are marked in bold. For 

MFS, MFAS and NE-MFAS, the size of the local window is set 

to be 7×7 (Wlocal = 7) and the number of the iterations is set to 2. 

The number of superpixels is set to 800 for the 

superpixel-based neighborhood. For NE-MFAS, the non-local 

window size and the number of non-local neighbors are set to 

be 25×25 (Wnon-local  = 25) and 60 (C = 60) respectively. 

From Table VI, we can draw the same conclusion as that 

shown in the last section: Using spatial information is 

beneficial. Different from the Indian Pines dataset, University 

of Pavia dataset is an urban area without much homogeneity, so 

it is hard to find an adaptive window for each pixel. MFAS only 

achieves about 0.05% better than MFS in OA, and about 0.2% 

higher in AA. NE-MFAS is about 0.8% higher than MFS, and 

NE-MFAS achieves the best accuracy among all the methods in 

OA, AA and Kappa, because of the impact of the non-local 

spatial constraint. 

Fig.7(c)-(l) illustrates the classification maps of the different 

methods. The spectral-spatial methods (e.g., SVM-MRF, 

SOMP) result in much better classification maps than the 

pixel-based methods (e.g., SVM and SRC). Although all the 

methods with spatial information obtain satisfactory results, 

our methods (MFS, MFAS and NE-MFAS) achieve better 

consistency in large regions and better identification in the 

small regions. From the white rectangle and the two white 

circles shown in Fig. 7(j)-(k) we witness that MFAS and 

NE-MFAS outline boundaries better than MFS. NE-MFAS 

shows good performance in detecting small regions such as 

trees in the white circle (the top one), which have less local 

spatial information but more non-local information. The 

non-local regularizer helps NE-MFAS fuse spatial information 

from those non-local regions, and improves the accuracy of 

classifying these tree pixels. Indeed, the proposed method 

NE-MFAS has achieved promising performance in terms of 

region uniformity and boundary outlining. 

 

E. AVIRIS Salinas data set 

For this data set, we randomly select 1% samples from each 

class to form the training set and the rest of the samples for 

testing (see Table IV). The classification results of each method 

have been shown in Table VII, and the best results are marked 

in bold. 

Due to the large homogeneity of this image, the size of local 

and non-local windows is larger than those used for the Indian 

Pines and Pavia University datasets. The local window size is 

set to be 15×15 (Wlocal = 15) for MFS, MFAS, NE-MFAS. For 

NE-MFAS, the size of non-local windows and the number of 

non-local neighbors is set to be 33×33 (Wnon-local = 33) and 100 

(C = 100) respectively. The number of superpixels is set to be 

500 in experiments. 

For this dataset, all the methods have good classification 

results, but our methods perform better. MFAS is only about 

0.3% higher than MFS in OA, but 2.5% higher than that in AA.  

Even though MFS obtains the best results in some classes, the 

AA of MFS is worse than that of MFAS due to low accuracy in 

classes 13 and 14. This is due to the fact that MFAS can identify 

the boundary between Lettuce romaine 6 weeks and Lettuce 

romaine 7 weeks’ samples. NE-MFAS achieves the highest 

accuracy. It is about 0.8% and 0.7% higher than MFAS in OA 

and AA respectively. These results further confirm the 

effectiveness of our MRF model and the significance of the 

adopted adaptive window and the non-local regularizer. 

Fig. 8(b) shows the ground-truth of this dataset, and the 

classification maps of the different methods are shown in Fig. 

8(c)-(l). Fig. 8 illustrates that our methods result in more 

accurate classification maps than the others. The white 

rectangle and the white circle regions shown in Fig. 8(j)-(l) 

illustrate better uniformity of using NE-MFAS than MFS and 

MFAS. It is evident that incorporating adaptive windows can 

make boundary outlining more accurate, but fixed windows 

may lead to better performance in large homogenous regions. 

The integration of non-local information in NE-MFAS leads to 

better performance in most of the regions.  

 

F. Parameter Analysis 

In this section, we discuss the effects of changing some 

parameters involved in our model on the system performance 

using two datasets, the Indian Pines and the University of Pavia. 

We still use 5% samples per class for training and the remaining 

for testing. Meanwhile, the experiments are conducted for five 

  
(a) (b) 

Fig. 9.  Impact of the local window size Wlocal  for  (a) the Indian Pines and  (b) the Pavia University. 
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times and the average results are recorded to avoid the bias 

induced by random sampling. 

 

1) Effect of local window size 

Firstly, we investigate the effect of the local window size 

Wlocal on the performance of MFS, MFAS and NE-MFAS using 

the two data sets. The local window size Wlocal ranges from 3×3 

(Wlocal = 3) to 13×13 (Wlocal = 13) with the other parameters 

fixed. The OA values with the standard deviations for the two 

datasets are shown in Fig. 9, where the X-axis stands for the 

window size Wlocal and the Y-axis represents the OA. 

From Fig. 9(a) and (b), we can see that the local window size 

Wlocal has certain impacts on the classification performance of 

the proposed methods. Compared with MFS, the OA results of 

NE-MFAS and MFAS are consistently higher than those of 

MFS, especially when the size of Wlocal is large. The fixed 

window used in MFS cannot change adaptively according to 

different situations and thereby contains false neighbors. MFS 

is very sensitive to the size of Wlocal. The performance decreases 

significantly with the increase of the window size. MFAS 

performs much better than MFS except for the case of Wlocal of 

3×3. This demonstrates that our superpixel-based 

neighborhood method is effective for his classification. 

NE-MFAS is not sensitive to this parameter and has the best 

 

  
(a) (b) 

Fig. 10. Effects of non-local window size Wnon-local and the number of neighbors C using NE-MFAS (a) the Indian Pines and (b) the Pavia University. 

 

 

 
 

(a) (b) 

  

(c) (d) 

Fig. 11. Effects of the number of iterations and the number of samples, (a) the Indian Pines, (b) the Pavia University, 
(c)  the Indian Pines use 1% training samples and (d)  the Pavia University use 1% training samples 
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performance, even with a small window size of 3×3. According 

to the above experiments, we set Wlocal to be 5, 7 and15 for the 

Indian Pines, the University of Pavia and the Salinas, 

respectively.  

 

2) Effect of non-local structure window size and the number of 

non-local neighbors 

We examine the effects of the non-local structure window 

size Wnon-local and the number of the non-local neighbor C for 

NE-MFAS. For Indian Pines and University of Pavia datasets, 

the non-local structure window size Wnon-local varies from 9×9 to 

25×25, and the number of the non-local neighbor C ranges from 

0 to 100 with 20 as the interval. The OA values are shown in 

Fig. 13, where the X-axis is the non-local structure window size 

Wnon-local, the Y-axis is the number of the neighbors C and the 

Z-axis stands for the OA. 

Fig.10(a) and (b) reveal that NE-MFAS with a large size of 

Wnon-local (17 to 25, 21 for Indian Pines data set and 25 for Pavia 

University dataset) can lead to satisfactory classification 

accuracy at different numbers of neighbor C, except that C is 

equal to zero. For a fixed Wnon-local, the number of non-local 

neighbors C has limited effects on the OA results. It favors a 

middle value (40 for Indian Pines dataset and 60 for Pavia 

University dataset) in consideration of a good balance between 

the OA results and computational efficiency. It is noticed that a 

large number of non-local neighbors may lead to poor results in 

a small number of classes. This is because the number of pixels 

belonging to these classes may be less than C. Many pixels 

belonging to the other classes are treated as non-local 

neighbors. 

 

3) Effect of the number of training samples and the number of 

iterations 

Finally, we discuss the effect of the number of samples and 

the number of iterations. For Indian Pines and University of 

Pavia datasets, the number of iterations ranges from 1 to 5 and 

about 5%, 10%, 20%, 30% of the labeled samples from each 

class are selected randomly as the training set. The 

time-consumption increases dramatically with the increasing of 

the number of the iterations. The OA results are illustrated in 

Fig. 11(a) and (b), where the X-axis is the number of the 

iterations and different colors stand for different numbers of the 

training samples. 1% training samples of the two datasets are 

shown in Fig. 11 (c) and (d) respectively. 

As shown in Fig. 11, the performance of NE-MFAS is 

improved and the rate of convergence increases with the 

increased number of the training samples. We use the posteriori 

results to guide us to choose the number of iterations. For 

Indian Pines and Pavia University datasets with 5% training 

samples, the numbers of the iterations are set to be 3 and 2 

respectively. We also can select the number of iterations by 

some convergence criteria (for example, the change rate of the 

class set of the test samples) which will cost more time due to 

the increase of the number of the iterations. The convergence 

result is the same in most cases. Even if there may have a 

tendency of decrease in some cases such as Fig. 11(b), the 

convergence result is 0.1% lower than the best result at most. 

Fig. 11(c) and (d) show that NE-MFAS can achieve satisfactory 

classification accuracy with 1% training samples for the two 

datasets, but the computational complexity due to the large 

number of iterations may be a drawback. 

The 9-th class of Indian Pines is the smallest class with only 

twenty samples, and we have only one single training sample in 

our experiments, which always result in poor OA performance. 

We choose this class to illustrate the impact of the iterations on 

the performance of NE-MFAS. In Fig. 12, the semantic 

representation of every pixel by NE-MFAS in the 9-th class of 

the Indian Pines data set is shown, where the X-axis represents 

the class label, and the Y-axis is the probability of the pixel 

belonging to each class and different colors in the histogram 

stand for different pixels (19 testing samples in total). C9i in the 

legend represents the i-th sample of the 9-th class. 

Fig. 12(a)-(c) are the first, second and third order DSRs 

respectively. The DSRs vary from a disorganized situation to a 

reasonable and stable settlement. With the increase of the 

number of the iterations, the result of DSRs converges to a 

stable value, finally. It is noticed that during this process, the 

probabilities of pixels belonging to the 9-th class increase, 

while the probabilities of pixels belonging to other classes 

decrease. Fig.12(c) shows that most of the pixels are classified 

to the 9-th class. 

 

G. Computational time analysis 

Time consumption in computation as an indicator of the 

algorithm performance is discussed. The computational time of 

all the considered methods on the Indian Pines data set is given 

in Table VIII. The experiments of all the methods are 

implemented using MATLAB R2014b on a 4.00 GHz Intel 

    

(a) (b) (c) (d) 

Fig. 12. The semantic representations of samples in 9-th class in Indian Pines dataset  
(a) First order DSRs (b) Second order DSRs (c) Third order DSRs (d) legend 
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CPU with 8GB of RAM.  

As shown in Table VIII, the proposed MFAS is a faster than 

MFS, even though the superpixel segmentation takes time to 

accomplish. NE-MFAS is much slower than MFS and MFAS. 

Without considering the iterations of ICM, the computational 

complexity of MFS and MFAS are linear with respect to u and l 

where u is the number of the unlabeled pixels and l is the 

average number of the neighbors of the unlabeled pixels, i.e., 

( )O l u . For MFS, l is equal to Wlocal squared. However, l is less 

than Wlocal squared for MFAS due to the superpixel constraint, 

resulting in less time used for MFAS. In the same case, the 

computational complexity of NE-MFAS is (( ) )O l C u   where 

C is the number of non-local neighbors of each pixel. Also there 

is a precomputation for the non-local similarity matrix, and 

hence the time-consumption is higher than the other two 

methods.  

Usually u is much larger than l and C. Taking into account 

the ICM iteration, the computational complexity of our 

methods MFS, MFAS and NE-MFAS are similar to that of ICM 

which is proportional to tmax and u, i.e., O(tmax·u) where tmax is 

the iteration times. Usually tmax is far less than u, and the 

computational complexity of the proposed methods is O(u). 
TABLE VIII 

COMPUTATIONAL TIME ON INDIAN PINES DATA SET (SECOND) 

METHOD SVM SRC SVM-MRF SVM-CK 

TIME 28.75 58.11 108.93 43.17 

METHOD SOMP MFS MFAS NE-MFAS 
TIME 409.25 227.07 207.81 450.91 

 

V. CONCLUSION 

In this paper, we have proposed a novel method which could 

obtain semantic representation of each pixel with more detailed 

information and less noise for hyperspectral image 

classification. Firstly, different types of features were extracted 

to host comprehensive information of HSIs. Secondly, the 

probabilistic SVM was used to map these features which lie on 

different spaces to the same semantic space. Thirdly, in order to 

incorporate spatial information as well as multiple-semantic 

information, the modified MRF model has been applied, and 

also, in order to better describe the structure of the HSI, a new 

approach to construct adaptive windows has been proposed and 

used in our model. Furthermore, due to the redundancy of 

non-local spatial information, the non-local neighbors also 

have been exploited by a variation of KNN and incorporated in 

our MRF model at the same time, which makes the semantic 

representation of each pixel more meaningful. Finally, our 

model was transformed to a single optimization problem which 

can be solved by gradient descent. The experimental results on 

the three data sets have proved that our method outperforms the 

other state-of-the-art methods, and also can achieve good 

performance with small training samples. 

The model proposed in this paper not only can combine 

multiple features but also incorporate different classifiers i.e. 

SVM, SRC, and MLR which obtain the probability results of 

each pixel and our model can assemble weak classifiers to 

become a stronger one. 
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