University of Leicester
Browse
Mutations in troponin T associated with Hypertrophic Cardiomyopathy increase Ca(2+)-sensitivity and suppress the modulation of Ca(2+)-sensitivity by troponin I phosphorylation.pdf (1.75 MB)

Mutations in troponin T associated with Hypertrophic Cardiomyopathy increase Ca²⁺-sensitivity and suppress the modulation of Ca²⁺-sensitivity by troponin I phosphorylation

Download (1.75 MB)
journal contribution
posted on 2016-09-13, 08:50 authored by Andrew E. Messer, Christopher R. Bayliss, Mohammed El-Mezgueldi, Charles S. Redwood, Douglas G. Ward, Man-Ching Leung, Maria Papadaki, Cristobal Dos Remedios, Steven B. Marston
We investigated the effect of 7 Hypertrophic Cardiomyopathy (HCM)-causing mutations in troponin T (TnT) on troponin function in thin filaments reconstituted with actin and human cardiac tropomyosin. We used the quantitative in vitro motility assay to study Ca²⁺-regulation of unloaded movement and its modulation by troponin I phosphorylation. Troponin from a patient with the K280N TnT mutation showed no difference in Ca²⁺-sensitivity when compared with donor heart troponin and the Ca²⁺-sensitivity was also independent of the troponin I phosphorylation level (uncoupled). The recombinant K280N TnT mutation increased Ca²⁺-sensitivity 1.7-fold and was also uncoupled. The R92Q TnT mutation in troponin from transgenic mouse increased Ca²⁺-sensitivity and was also completely uncoupled. Five TnT mutations (Δ14, Δ28 + 7, ΔE160, S179F and K273E) studied in recombinant troponin increased Ca2+-sensitivity and were all fully uncoupled. Thus, for HCM-causing mutations in TnT, Ca²⁺-sensitisation together with uncoupling in vitro is the usual response and both factors may contribute to the HCM phenotype. We also found that Epigallocatechin-3-gallate (EGCG) can restore coupling to all uncoupled HCM-causing TnT mutations. In fact the combination of Ca²⁺-desensitisation and re-coupling due to EGCG completely reverses both the abnormalities found in troponin with a TnT HCM mutation suggesting it may have therapeutic potential.

History

Citation

Archives of Biochemistry and Biophysics, 2016, 601, pp. 113-120

Author affiliation

/Organisation/COLLEGE OF MEDICINE, BIOLOGICAL SCIENCES AND PSYCHOLOGY/MBSP Non-Medical Departments/Molecular & Cell Biology

Version

  • VoR (Version of Record)

Published in

Archives of Biochemistry and Biophysics

Publisher

Elsevier

issn

0003-9861

eissn

1096-0384

Acceptance date

2016-03-26

Copyright date

2016

Available date

2016-09-13

Publisher version

http://www.sciencedirect.com/science/article/pii/S0003986116300790

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC