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Abstract -This paper presents an innovative approach for T-wave peak detection and subsequent T-wave 

end location in 12-lead paced ECG signals based on a mathematical model of a skewed Gaussian function. 

Following the stage of QRS segmentation, we establish search windows using a number of the earliest 

intervals between each QRS offset and subsequent QRS onset. Then, we compute a template based on a 

Gaussian-function, modified by a mathematical procedure to insert asymmetry, which models the T-

wave. Cross-correlation and an approach based on the computation of Trapezium’s area are used to 

locate, respectively, the peak and end point of each T-wave throughout the whole raw ECG signal. For 

evaluating purposes, we used a database of high resolution 12-lead paced ECG signals, recorded from 

patients with ischemic cardiomyopathy (ICM) in the University Hospitals of Leicester NHS Trust, UK, 

and the well-known QT database. The average T-wave detection rates, sensitivity and positive 

predictivity, were both equal to 99.12%, for the first database, and, respectively, equal to 99.32% and 

99.47%, for QT database. The average time errors computed for T-wave peak and T-wave end locations 

were, respectively, -0.38±7.12ms and -3.70±15.46ms, for the first database, and 1.40±8.99ms and 

2.83±15.27ms, for QT database. The results demonstrate the accuracy, consistency and robustness of the 

proposed method for a wide variety of T-wave morphologies studied. 

Index Terms - T-wave peak, T-wave end, T-wave modelling, skewed Gaussian function, cross-correlation, 

paced electrocardiogram (paced ECG). 

 

1. Introduction 

The electrocardiogram (ECG) consists of the measurement of electrical activity on the body surface 

associated with myocardial contraction with respect to time. Each cardiac cycle in the ECG is 

normally characterised by a sequence of waveforms known as P wave, QRS complex and T wave, so 

that time intervals between onset and offset of different waves are significant because they reflect 

physiological processes of the heart and of the autonomous nervous system [1]. Regarding paced 

ECG, its computerized analysis is essential to follow-up evaluation of patients with implanted 

pacemakers and also presents other important applications such as assessment of ventricular 

arrhythmia and sudden death risk in patients with ischemic cardiomyopathy [2] and prediction of 

reduction of left ventricular and systolic volume after cardiac resynchronization therapy [3].  

Concerning T-wave, its detection and segmentation following QRS segmentation provide the 

beat-to-beat analysis of the time intervals between the QRS onset and the T-wave end, known as QT 

intervals, whose prolongation is a marker of risk for ventricular arrhythmias [4]. The QT intervals 

depend on the accuracy with which both points (onset and offset) are determined. A recent technique, 



microvolt T-wave alternans (MTWA) has the ability to identify patients at high risk for sudden 

cardiac death. Its spectral method of analysis allows detection of beat-to-beat alternans in the 

microvolt range of T-wave amplitudes [5,6].  

 Another measurement used for the duration of repolarisation is the QTapex. The beginning of 

the QTapex interval is defined in the same way as that for the QT interval, but its end point is defined as 

the peak amplitude of the T-wave on each lead [7,8]. Because of the known difficulties in identifying 

T-wave end, QTapex has been used in medical applications where a precise ECG fiducial point has 

been required. In a recently published approach, Nicolson et al. have developed a novel ventricular 

arrhythmia risk marker, R2I2, based on the analysis of diastolic intervals and action potential 

durations in paced ECG signals [2]. The diastolic interval was taken as the period from T-wave peak 

on the last beat of a drive train to the subsequent QRS onset of an extra-stimulus, and the surrogate 

action potential duration was taken as the period from the QRS onset of the same extra-stimulus to the 

subsequent T-wave peak. 

T-wave end location is one of the most difficult ECG waveform boundary location problems, 

due to the slow transition of the signal around each T-wave end [4,9,10]. Furthermore, according to 

Murray et al. [10], manual measurement of QT interval exhibits considerable inter and intra-observer 

variability. Various automatic methods have been proposed for both detection and segmentation of T-

wave, based on: trapezium’s area approach [4], accumulative area approach [11], mathematical 

models of the ECG [9,14], discrete wavelet-based estimators using the derivative of a smoothing 

function as the prototype wavelet [15], singular value decomposition (SVD) of multiple lead ECG 

signals [12], ECG curve length transform [13], phasor transformed ECG and instantaneous phase 

variation [17], other approaches based on Wavelet transform [18,19], pattern recognition techniques 

[22], among other methods. 

The idea of mathematical modelling segments of the cardiac cycle is by no means new. 

Firstly, the purpose was to provide tools for the spectral analysis of the real cardiac signal departing 

from a modelled signal. Richardson et al. [23] proposed three mathematical models for individually 

modelling P-wave, QRS complex and T-wave using Gaussian functions and their first and second 

derivatives. In more recent developments, mathematical modelling is part of a dual-stage framework. 

A parametric function related to a segment of the cardiac cycle is obtained and algorithms for 

waveform characterization are applied starting with the parameters of the model fitted [24,25,26].    

Padrini et al. [26] and Vila et al. [9] presented a method that uses a simple parametric 

function to model the Action Potential (AP). Four APs are obtained, where the differences between 

the first two ones will model the morphology of the T-wave, whilst the differences between the other 

two relate to the U-wave. After obtaining the model, they provide the detection of initial and final 

points of each wave (TU complex), as well as their maximum or maxima for biphasic waves, not by 

working on the real signal, but on the modelled one. The method is robust to noise and can adapt itself 

to various T-wave morphologies, but it is highly expensive in terms of computing effort, given that 

the process of parameterisation (made for each cardiac cycle) requires to find the point in a seven-

dimension space that minimizes an error function.  

The purpose of this paper is to propose a new algorithm for the detection of T-wave 

(detection of maximum or maxima for biphasic waves), as well as for the location of T-wave end, 

based on a mathematical model given by a skewed Gaussian function, in 12-lead paced ECG signals. 

The most remarkable difference from existing algorithms (specifically algorithms based on 

mathematical models) is its innovative and consistent method which makes use of a simple 

mathematical function, manipulated for skewness, in order to model the T-wave behaviour. Its 

performance is evaluated using a database of manually annotated 12-lead paced ECG signals recorded 

during an electrophysiology study of patients with ischemic cardiomyopathy (ICM) undergoing risk 

stratification for implantable cardioverter defibrillator at the University Hospitals of Leicester 

National Health Service Trust, Leicester, UK [2]. Additionally the suitability of the method is also 

evaluated using all the publicly available records of the annotated QT database [27]. 

 

 



 

2. Materials and Methods 

This paper considers only T-wave peak and T-wave end detections. Obviously, the R-wave and QRS 

onset and offset need to be accurately detected previously in order to delimit an interval that contains 

the T-wave. We have adopted our already validated QRS detection and segmentation approach [1,16], 

which is based on Hilbert and Wavelet transforms, first-derivative and adaptive threshold technique.  

Let us first consider monophasic T-waves (positive or negative). Biphasic T-wave can be treated as a 

particular case of this one, as described in the following section.  

 

2.1. T-wave modelling: Skewed Gaussian Function 

The different stages of the T-wave detection and T-wave end location algorithm are illustrated in 

Figure 1. As a starting point, a zero-phase band-pass FIR filter using a Hamming window is applied to 

each interval between a given QRS offset (J-point) and the subsequent QRS onset (which is named 

W[n]) for noise attenuation while preserving the essential spectral content of the T-wave. To avoid the 

end effects of the digital filter, we consider an extra offset of 50ms in the edges of the input signal. 

The cut-off frequencies were selected as [0.01, 12] Hz based on the experimental observation that T-

wave spectral content was concentrated within the range [2.5, 4] Hz (the upper frequency of the pass-

band allows for up to three harmonics of 4 Hz). For more explanations, see the Appendix. 

The order of the FIR filter was experimentally selected as 32. Then, inside the training stage, a 

mathematical modelling is proposed for T-wave obtaining a set of two numerical parameters (standard 

deviation of a Gaussian function σ and distortion angle α) that characterise the T-wave. After 

determining the optimal skewed Gaussian function that best models T-wave waveform, cross-

correlation function is applied between the original waveform and the proposed kernel to identify the 

T-wave peak. Based on some reference points firstly detected in the optimal skewed Gaussian 

function and, then, mapped into the original waveform, an algorithm based on Trapezium area 

approach [4] is applied to identify each T-wave end. 

Before the explanation of the training stage, we will introduce the proposed method to insert 

distortion in the common Gaussian function, which will provide a model for the T-wave. Given a 

Gaussian function G(x) with its maximum amplitude multiplied by a constant AG, defined in the 

interval xG1 ≤ x ≤ xG2, with standard deviation σ1, and given a linear function f(x) passing through the 

origin and with a slope α, we derive a resulting function G’(x), where 
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As we can see in the example illustrated in Figure 2, where AG = 10, [xG1, xG2] = [-3,3], σ1 = 0.8 and α 

= π/40, this method produces an asymmetric function G’(x) from the Gaussian function G(x). 

 



 

Figure 1. Overall view of the T-wave detection and T-wave end location algorithm. 

 

 

  (a)         (b)           (c) 

Figure 2. Proposed process for introducing distortion to a Gaussian function: a) Gaussian function G(x) with standard 

deviation (σ1) 0.8, b) linear function f(x) = f(G(x)) with slope (α) π/40 and c) resultant skewed Gaussian function G’(x). 

The Gaussian distortion or skewness is linearly dependent on its amplitude and for each amplitude 

point it is linearly dependent to the slope angle α. For the case shown in Figure 2, we have introduced 

a skewness that pulls the Gaussian function to the right, but we can also define a negative angle α, 

such that we can pull the Gaussian function to the left.  

Concerning the training stage, for each one of the earliest N intervals between each QRS onset and 

subsequent QRS offset, we apply the cross-correlation function between the corresponding signal 

window W[n] and a set of skewed Gaussian functions. Each original Gaussian function G(x) is 

defined in the interval xG1 ≤ x ≤ xG2, with a resolution equal to NG (total number of samples) and 

standard deviation (σ) defined in the interval σ1 ≤ σ ≤ σ2. The set of distortion angles (α) are defined in 



the interval α1 ≤ α ≤ α2. Naming each skewed Gaussian function as ][' , nG  , we obtain the resultant 

filtered signal S[n] as  

     .'. ,
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The location of the maximum amplitude of ][nS , 
)1(

P , is determined. For each signal window W[n], 

an error function
1

,E is computed through the following sequence of steps: 

 We take a subset of the samples of W[n], given by Ws[k], 2

)1(

1

)1(    PkP , where γ1 and 

γ2 are offset times.  

 Then, the skewed Gaussian function ][' , nG   
is normalised according to the maximum and 

minimum values of |Ws[k]| and aligned by its peak amplitude location with 
)1(

P . 

 Naming the resulting shifted and normalised skewed Gaussian function as ][''

, kG  , 
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After computing 
)1(

,E  for all the possible combinations of the pair (σ, α), σ1 ≤ σ ≤ σ2 and α1 ≤ α ≤ α2, 

we find the particular pair (σs, αs) which corresponds to the lowest value of 
)1(

,E , for each signal 

window W[n]. Then, naming the location 
)1(

P  found with (σs, αs) as 
)2(P , we obtain another set of 

values for an error function 
)2(

,E . As we had done for the computing of 
)1(

,E , we normalise and align 

the skewed Gaussian functions according to the maximum and minimum values of |Ws[k]|, 
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The optimal parameters (σo, αo) which model a given T-wave are the ones that correspond to the 

lowest value of 
)2(

,E . We average the individual values related to each one of the T-waves pertaining 

to the training set to obtain o  
and o . The average of the minimum values obtained for 

)2(

,E , 

related to each T-wave, is stored and named as 
)2(

minE .  



The optimal parameters o  and o  
are used to characterise the skewed Gaussian function 

]['
,

nG
oo   

and model each one of the T-waves throughout the whole ECG signal. The detection of 

the peak of each T-wave, whose location we name Tp[m], 1 ≤ m ≤ M, M being the total number of T-

waves, is performed by computing the cross correlation function 
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and locating the maximum amplitude of ][nS . If, at any time, the associated error function (see 

equation 5) between the corresponding signal window and ][''
,

kG
oo   

(shifted and normalised 

skewed Gaussian function), ,][][ 21   mTkmT pp  
is higher than 

)2(

min.E , where θ is a 

tolerance factor, then we proceed with another learning process for this specific signal window. For 

the other signal intervals, we keep the parameters o  
and o . 

We illustrate in Figure 3 different T-wave morphologies (continuous line) with the proposed skewed 

Gaussian functions (dashed line) after determining the corresponding optimal parameters o  
and o . 

The detected T-wave peaks are already highlighted.  

 

2.2. The issue of biphasic T-waves 

Concerning biphasic T-waves, the proposed skewed Gaussian function, which is essentially a 

monophasic function, is able to model the T-wave phase with the highest energy in the training stage. 

However, for biphasic T-waves the predominance of each phase can change, throughout the ECG 

signal (especially in paced ECGs). Therefore, the following simple rule is adopted. In the analysis 

stage, we search for the local maxima or minima in each filtered signal S[n] (equation 7) whose 

absolute values exceed 70% of the maximum value of |S[n]| (experimentally selected threshold). 

Then, if we find a local maximum and a local minimum, we test if the optimal skewed Gaussian 

function is positive or negative, and we choose as the T-wave peak the sample with the same 

amplitude sign as the optimal skewed Gaussian function. 

 

 

                                                (a)                                                                                  (b) 



 

                                               (c)                                                                                    (d) 

Figure 3. Examples of different T-wave morphologies (continuous line) with the optimal skewed Gaussian functions 

(dashed line) modelling each waveform and the corresponding T-wave peaks detected. 

 

2.3. T-wave end detection: combination of approaches 

Before proceeding with the algorithm for T-wave end detection, we need to figure out the wave 

morphology, e.g. determine in an automatic way if it is monophasic or biphasic. For each signal 

window W[n], we compute for each instant k inside the referred window [11] 
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where w (sliding window) is equal to the number of samples corresponding to the time duration of 

128 ms and p (smoothing window) is equal to the number of samples corresponding to the time 

duration of 16 ms  [11]. 

Then, we find k1 and k2, respectively, as the locations where we have the maximum and minimum 

values of Ak inside W[n]. For a given parameter λ, we test the condition [11] 
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such that, if it is true, then we have biphasic T-wave. Otherwise, we have monophasic T-wave. 

In the case of monophasic T-wave, the following sequence of steps is performed: 

 We search in the optimal skewed Gaussian function for the location of the sample with the 

maximum absolute value of the first-derivative function after the peak location. This position and 

the corresponding absolute value of the first derivative function are named Tder and Mder. 

 Afterwards, we search also in the referred kernel for the location of the first sample after Tder 

whose magnitude of the first-derivative is below β1.Mder, where β1 is a percentage factor.The 

corresponding position is named Tmin. 



 These two obtained locations are mapped into the signal window W[n] and we apply the 

Trapezium area approach, proposed by Vázquez-Seisdedos et al. [4]. 

Basically, we define a moving sample, Te, where Tder ≤ Te ≤ Tmin. The vertices of the trapezium are 

defined by the following pairs (x,y): (Tder,W[Tder]), (Te,W[Te]), (Tmin, W[Te]) and (Tmin,W[Tder]). The 

area of the trapezium is given as: 

    .2][][5.0 min dereedereT TTTTWTWTA                    (11) 

Then, T-wave end is defined as the point where the area AT(Te) is maximum, and we name its location 

Tend[m], 1 ≤ m ≤ M , M being the total number of T-waves. 

As an illustrative example, for a given search window W[n], the detection of the referred samples 

locations Tder and Tmin is illustrated in Figure 4(a). The computing of the trapezium’s area AT(Te), its 

corresponding behaviour with the maximum point AT(Tend) and, finally, the location of the T-wave end 

are shown, respectively, in Figures 4(b), 4(c) and 4(d). 

 

                                             (a)                                                                                      (b) 

 

                                           (c)                                                                                       (d) 

Figure 4. Process to identify T-wave end: (a) detection of the samples locations Tder and Tmin in the skewed Gaussian 

function (dashed line) and their projection upon the T-wave search window (continuous line), (b) designing of the 

trapezium’s area approach, (c) computing of AT(Te) with its maximum occurring in the T-wave end and (d) location of the 

sample related to T-wave end. 

 

In the case of biphasic T-waves, we firstly verify which phase is modelled by the optimal skewed 

Gaussian function. For this we test if the obtained kernel is positive or negative and, then, we 

determine if k1 is located before k2 or vice-versa (see equations 8, 9 and 10). If the optimal skewed 

Gaussian function models the second phase of the biphasic T-wave, then the process to identify the T-



wave end follows the same sequence of steps explained for monophasic T-waves. Otherwise, we 

proceed with the following sequence of steps:  

 We select other window which confines the peak and the end of the second phase, W2[n]. 

Considering the optimal skewed Gaussian function which models the first phase of the T-wave, 

the beginning of W2[n] is defined as the position Tder.  

 The end of W2[n] is defined as the subsequent QRS offset.  

 Then, we search inside W2[n] for the sample related to the peak (local maximum or local 

minimum) of the second phase, Tp
(2)

, which may be located before the latest location among k1 and 

k2.  

 After that we search for the sample located after Tp
(2)

 which is related to the local maximum 

(magnitude) of the first-derivative function. This position and the corresponding absolute value of 

the first derivative function are named 
)2(

derT and 
)2(

derM .  

 Analogously as implemented for monophasic T-waves, we detect the first sample whose absolute 

value of the first-derivative function is below β2.
)2(

derM , where β2 is a percentage factor. We name 

the corresponding position 
)2(

minT . For its detection, we consider a time threshold given as 100 ms 

after Tp
(2)

.  

 Finally, we compute the Trapezium area expression AT(Te
(2)

), now considering Te
(2)

 as the moving 

sample, where
)2(

min

)2()2( TTT eder  . T-wave end is defined as the point where the area AT(Te
(2)

) has 

maximum value. 

As an example of the application of the proposed approach, a T-wave search window containing a 

biphasic waveform and the skewed Gaussian function which models its first phase are shown in 

Figure 5(a). The window W2[n] and the computing of the trapezium area expression for the second 

phase are presented in Figure 5(b). As illustrated in Figures 5(c) and 5(d), T-wave end is located as 

the sample related to the maximum value of AT(Te
(2)

).  

 

 

                                            (a)                                                                                       (b) 



 

                                              (c)                                                                                       (d) 

Figure 5. Process to identify T-wave end in biphasic T-waves: (a) detection of the peak (TP) and the subsequent location of 

the maximum first-derivative (Tder) of the first phase, (b) designing of the Trapezium area approach with detection of the 

peak TP
(2), the subsequent maximum derivative (Tder

(2)) and subsequent minimum derivative (Tmin
(2)) of the second phase, (c) 

computing of AT(Te
(2)) with its maximum occurring in the T-wave end and (d) location of the sample related to T-wave end. 

 

2.4. Databases and Validation Methods 

 

A. Database of 12-lead paced ECG signals 

For the validation of the proposed approach, we used a set of 12-lead paced ECG signals related to 13 

patients, which were collected in the University Hospitals of Leicester National Health Service Trust, 

UK, containing a total of 4680 annotated T-wave peaks and ends. Regarding the set of patients, all of 

them had undergone an electrophysiology study (EPS) between 1
st
 January 2010 and 31

st
 March 2012. 

Ten patients present a history of ischemic cardiomyopathy, and for them the EPS was part of clinical 

risk stratification for ICD implantation. The other three had an electrophysiology study for diagnosis 

and treatment of supraventricular tachycardia. This database was part of another research project 

which aimed to prospectively investigate a new electrophysiological measure of electrical restitution 

heterogeneity for predicting risk of ventricular arrhythmia/death in patients with ischemic 

cardiomyopathy who were candidates for ICD therapy [2]. Concerning that study, ethical approval 

was granted by the Derbyshire Research Ethics Committee and the study protocol was approved by 

the Research and Development Office of the University Hospitals of Leicester National Health 

Service Trust, UK. All patients gave written, informed consent.  

The standard 12-lead electrocardiograms were recorded at 1 kHz sampling rate, with a high pass filter 

set to 0.01 Hz and a low pass filter set to 50 Hz, and exported at 16-bit digital resolution. The medical 

study protocol used a 10-beat train at drive cycle lengths of 600 ms and 400 ms. A single 

extrastimulus protocol was followed with decrements of 20 ms to 300 ms and then 10 ms to effective 

refractory period. For the last two beats of each drive train and the extra stimulus (considering all the 

12 leads of each patient), the timing of QRS onset, T-wave peak and T-wave end were manually 

identified by a senior electrophysiology research fellow from the Department of Cardiovascular 

Sciences of the University of Leicester. For each analysed T-wave, we process each lead 

independently and compute the time difference (error) between the automatic detections and the 

manual annotations for both T-wave peak and T-wave end. The detection of each T-wave was also 

evaluated for each signal lead by computing the sensitivity, Se, the positive predictivity, P
+
 , and the 

failed detection percentage, Fd . 



B. Database from PhysioNet: QT database 

Additionally, we evaluated the algorithms using the publicly available QT database (QTDB). The 

QTDB was developed for wave limit validation purposes with a total of 105 records and with two 

leads, each of them with a length of 15 minutes and 250 Hz sampling frequency. It provides 

annotations, by an expert cardiologist, for at least 30 beats per recording, with marks including QRS 

complexes, P and T wave peaks, onsets and offsets. QTDB includes some recordings from European 

ST-T database, MIT-BIH Arrhythmia database and several other MIT-BIH databases (ST Change, 

Supraventricular Arrhythmia, Normal Sinus Rhythm, Sudden Death and Long Term) [27]. 

  

3. Results and Validation 

The suggested values for the whole set of parameters needed for the proposed system, which were 

determined based on extensive experimental tests, are presented in Table 1, divided in two groups: 

training stage parameters and analysis stage parameters. Only the Gaussian resolution (NG) is adapted 

according to the sampling frequency of the analysed ECG signals. 

 

Table 1. Set of parameters and their respective values. 

Training stage parameters Values 

N (beats for training stage) 5 

[σ1,σ2] [0.3,1.2] 

[α1,α2] [0,π/20] 

AG 10 

[xG1,xG2] [-3,3] 

NG (Gaussian resolution), 1 kHz 

sampling frequency 

500 

NG (Gaussian resolution), 250 

Hz sampling frequency 

125 

γ1 60 ms 

γ2 100 ms 

 

Analysis stage parameters Values 

Θ 3 

λ 10 

β1 1% 

β2 5% 

 

Some special cases of T-wave morphologies with the corresponding results for the parameterized 

skewed Gaussian function as well as for T-wave peak detection and T-wave end location are 

illustrated in Figures 6(a) – 6(m). Results reported by Figures 6(a) – 6(h) are related to the database of 

12-lead paced ECG signals (lead I for all the cases). Whereas Figures 6(i) – 6(q) are related to ECG 

signals from QT database (various leads). 

 



 

    (a)       (b) 

 

   (c)       (d) 

 

   (e)       (f) 

 

   (g)      (h) 



 

   (i)      (j) 

 

   (l)      (m) 

 

   (n)      (o) 

 

   (p)      (q) 

Figure 6. Results for skewed Gaussian function parameterization as well as for T-wave peak and T-wave end locations for 

different morphologies: (a) and (b), negative paced T-wave, (c) and (d), biphasic paced T-wave with the peak in the second 



phase, (e) and (f), positive paced T-wave, (g) and (h), negative paced T-wave with low SNR, (i) and (j), ascending non-

paced T-wave, (l) and (m), positive non-paced T-wave, (n) and (o) predominant negative non-paced T-wave morphology and 

occurrences of premature ventricular contraction, (p) and (q) predominant positive paced T-wave morphology alternating 

with negative non-paced T-wave morphologies. 

 

A. Results over the database of 12-lead paced ECG signals 

The overall results of the validation for T-wave detection in terms of positive predictivity, sensitivity 

and failed detection percentage considering all the 13 patients, are illustrated in Table 2. The overall 

results for T-wave peak and T-wave end locations in terms of the average and standard deviation (m ± 

sd) of the time errors are illustrated in Table 3. Finally, the detailed results of the average and standard 

deviation of the time errors for both T-wave peak and T-wave end locations for each lead, considering 

all the 13 patients, are synthesized in Table 4. The tolerance for the standard deviation of detection 

time errors for T-wave end given by the Common Standards of Electrocardiography (CSE) Working 

Party [15,20,21] is presented in the last row of Table 4.  

 

Table 2. Overall results for T-wave detection performance for all patients. 

Fiducial Point Se(%) P
+
(%) Fd(%) 

T-wave peak 99.12 99.12 1.76 

 

 

Table 3. Overall results for T-wave peak and T-wave end locations for all patients (TE: time error). 

Fiducial Point TE (m ± sd)(ms) 

T-wave peak -0.38 ± 7.12 

T-wave end -3.70 ± 15.46 

 

Table 4. Performance comparison of T-wave peak and T-wave end locations considering each ECG lead for all patients (TE: 

time error). 

Lead T-wave peak: 

TE (m ± sd)(ms) 

T-wave end: 

TE (m ± sd)(ms) 

I -4.17 ± 18.65 2.44 ± 33.30 

II 0.18 ± 4.95 -3.53 ± 15.58 

III 0.73 ± 5.24 -2.56 ± 12.44 

aVR -1.15 ± 8.91 1.16 ± 18.89 

aVL -2.37 ± 15.10 -3.59 ± 19.20 

aVF 2.32 ± 8.03 -5.69 ± 16.86 

V1 -0.56 ± 4.13 -2.59 ± 10.33 

V2 0.12 ± 2.97 -2.57 ± 12.00 

V3 0.10 ± 1.12 -4.13 ± 10.06 

V4 0.04 ± 2.47 -4.66 ± 9.76 

V5 0.40 ± 2.85 -6.29 ± 9.45 

V6 -0.83 ± 10.64 -4.38 ±14.68 

Tolerances (2sCSE)(ms) 30.6 

 



In order to provide comparison of the detailed evaluation results for each one of the twelve ECG 

leads, we have also analysed the differences considering T-wave power throughout the different leads. 

For this, we have computed the signal-to-noise ratio (SNR) inside the T-wave search windows of each 

lead for every patient, considering that the same band-pass filter used at this approach (see section II-

A) provides signal denoising. Firstly, we average the results of each lead for each individual patient. 

Then we compute the median for the set of average results related to each lead over all patients, as 

well as the 25
th
 and 75

th
 percentiles. We illustrate the results of this analysis in Figure 7 using a box 

plot in which the central mark is the median, the edges of each box are the 25
th
 and 75

th
 percentiles 

and the whiskers extend to the most extreme observed values, excepting for outliers, which are 

represented by markers ‘+’. As we can see, lead I and lead aVL presented the lowest median values at 

23.8 dB and 22.2 dB, respectively, and the highest data dispersion. Lead I presented the lowest 

‘minimum’ and the lowest ‘maximum’ observed values, respectively, at 1.7 dB and 26.4 dB. Leads 

V2-V5 presented the highest median values, all above 27 dB, and the lowest data dispersion. Lead V4 

presented the highest ‘minimum’ and the highest ‘maximum’ observed values, respectively, at 22.4 

dB and 28 dB.  

 

 

Figure 7. Analysis using box plot of Signal-to-Noise ratio (SNR) inside T-wave search segments for each lead considering 

all patient data using 12-lead paced ECG signals. 

 

B. Results over QT database  

The global validation results of T-wave detection rates, sensitivity and positive predictivity, over all 

the publicly available records, using both the available channels, as well as the overall average and 

standard deviation of T-wave peak and T-wave end time locations errors obtained by our approach 

and by other five different segmentation algorithms are shown in Table 5. Considering that the 

manual annotation process of T-wave peaks and ends for QTDB was performed having in sight each 

pair of available leads, we choose for each point the channel with less error, as recommended by 

Martínez et al. [15] and Zhang et al. [11].  

 



Table 5. Performance comparison of T-wave detection rates, T-wave peak and T-wave end time locations errors in the 

QTDB (N/A: not applicable, N/R: not reported, TE: time error)      

Approach Se (%) P+ (%) T-wave peak: 

TE (m ± sd) (ms) 

T-wave end: 

TE (m ± sd) (ms) 

Presented approach 99.32 99.47 1.4 ± 9.0  2.8 ± 15.3 

Arturo Martínez et al. [17] 99.20 99.01 5.3 ± 12.9 5.8 ± 22.7 

Ghaffari et al. [18] 99.87 99.80 0.3 ± 4.1 0.8 ± 10.7 

J. P. Martínez et al. [15] 99.77 97.79 0.2 ± 13.9 -1.6 ± 18.1 

Vila et al. [9] 92.6 N/R -12 ± 23.4 0.8 ± 30.3 

Zhang et al. [11] N/R N/R N/A 0.31 ± 17.43 

 

 

4. Discussion 

Processing paced beats from ICM patients implies both an innovative and a challenging task, as we 

can find different kinds of restrictions and morphology changes which are not seen in normal sinus 

beats, such as considerable shortening of the ST-segment, wide QRS complexes, P-waves 

superimposing the ST-segment or even the T-wave waveform, alternation of specific morphologies, 

such as monophasic T-wave and biphasic T-wave in a single beat train, and so on. In addition, each 

lead represents the ventricular repolarisation activity with a specific morphology, time-duration and 

signal-to-noise ratio. According to the most recent available publications up to our knowledge, there 

is no other published work which has validated the T-wave peak and T-wave end locations using all 

the available 12 leads for paced ECG signals.  

The approach is not time-consuming because the parameters of the model are defined in a training 

stage, which makes use of a number of the earliest intervals between each QRS offset and subsequent 

QRS onset. The structure of the training and analysis stages provides the system with robustness to a 

wide variety of T-wave morphologies and adaptability for eventual morphology changes, as well as 

for the incidence of physiological artefacts or baseline fluctuations. Even after the training stage had 

defined a kernel which best fits the predominant T-wave morphology, we can initiate other learning 

processes in the analysis stage if we identify significant morphology variations.  

The overall results of T-wave detection rates shown in Table 2, concerning the database of 12-lead 

paced ECG signals, and Table 5, for QT database, indicate that the proposed kernel of skewed 

Gaussian function is suitable for modelling the T-wave with high accuracy for a wide variety of 

morphologies, as it is also observed through Figures 6(a)-6(q). These results in themselves indicate an 

improvement over the approaches reported by Arturo Martínez et al. [17] and Vila et al. [9].   

Regarding the overall averages and standard deviations of the time errors related to T-wave peak and 

T-wave end locations presented in Table 3 and Table 5, for the used databases, we see that the method 

provides automatic locations with both high accuracy and repeatability. For the results presented in 

Table 6, both accuracy (less than one sampling period) and repeatability (between two and three 

sampling periods) are higher than those ones reported by Vila et al. [9] and Arturo Martinez et al. 

[17]. For T-wave end location, the repeatability is higher than four other approaches [9,11,15,17]. 

Considering also the inherent challenges related to paced beats and cardiac ischemic diseases, these 

results can be considered outstanding.    

Concerning the results detailed in Table 4, the precordial leads V2-V4 produced the lowest time-

errors (lowest average and standard deviation values) for T-wave peak location and the precordial 

leads V1-V5 produced the most consistent results for T-wave end location. For the standard 



deviations (repeatability), minimum values of 1.12ms (lead V3), for T-wave peak, and 9.45ms (lead 

V5), for T-wave end, were obtained. The corresponding maximum values were, respectively, 18.65ms 

and 33.30ms, both considering lead I, which is related to one of the lowest median SNR levels in the 

T-wave search windows. 

 

5. Conclusions 

This paper presents an innovative approach for automatic T-wave peak detection and T-wave end 

location based on a mathematical model of a skewed Gaussian function in 12-lead paced ECG signals. 

The results obtained suggest that the proposed kernel is able to model a wide diversity of T-wave 

morphologies (both paced and non-paced ones) and that it has a good performance in noisy 

conditions. Other important advantage is that the modelling of the T-wave does not depend on any 

empiric factor and neither the intervention of human experts. The kernel also adapts itself when 

morphology changes occur throughout a patient’s signal. 

The most significant contributions from this work were the proposal of an innovative and simple 

mathematical function to model the T-wave behaviour, the achievement of correct T-wave detections 

(higher than 99%) when applied over 12-lead paced ECG signals from patients with ischemic 

cardiomyopathy diseases and the publicly available records of the QT database, the accurate and 

consistent automatic locations of T-wave peak and T-wave end, and the comparison of the accuracy 

and repeatability of the automatic detections on all the standard twelve leads considering the SNR 

behaviour for each lead. 
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