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Abstract

The nonlinear analysis of biological time series provides new possibilities to improve computer aided diagnostic systems,

traditionally based on linear techniques. The Cardiotocography (CTG) examination records simultaneoulsly the fetal heart rate

(FHR) and the maternal uterine contractions (UC). This paper shows, at first, that both signals present nonlinear components based

on the surrogate data analysis technique and exploratory data analysis with the return (lag) plot. After that, a nonlinear complexity

analysis is proposed considering two databases, intrapartum (CTG-I) and antepartum (CTG-A) with previously identified normal

and suspicious/pathological groups. Approximate Entropy (ApEn) and Sample Entropy (SampEn), which are signal complexity

measures, are calculated. The results show that low entropy values are found when the whole examination is considered,

Apen=0,3244±0,1078 and SampEn=0,2351±0,0758 (average±standard deviation). Besides, no significant difference was found

between the normal (Apen=0,3366±0,1250 and SampEn=0,2532±0,0818) and suspicious/pathological (Apen=0,3420±0,1220

and SampEn=0,2457±0,0850) groups for the CTG-A database. For a better analysis, this work proposes a windowed entropy

calculation considering 5-minutes window. The windowed entropies presented higher average values (Apen=0,6505±0,2301 and

SampEn=0,5290±0,1188) for the CTG-A and (Apen=0,5611±0,1970 and SampEn=0,4909±0,1782) for the CTG-I. The changes

during specific long term events show that entropy can be considered as a first level indicator for strong FHR decelerations

(Apen=0,1487±0,0341 and SampEn=0,1289±0,0301), FHR accelerations (Apen=0,1830±0,1078 and SampEn=0,1501±0,0703)

and also for pathological behavior such as sinusoidal FHR (Apen=0,1808±0,0445 and SampEn=0,1621±0,0381).

Index Terms

Fetal Heart Rate (FHR), Uterine Contractions (UC), Cardiotocography (CTG), nonlinear analysis, entropy.

1Corresponding author. Address: Estrada Marginal da Ilha Verde, 14-17, Macau, China. E-mail: alexandre.lobo@usj.edu.mo
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I. INTRODUCTION

Biological time series interpretations require not only the definition of the appropriate method of analysis but also to

characterize the signal according to its nature such as linear, nonlinear, random and chaotic. Many of these signals present

nonlinearities and from a mathematical point of view a description using nonlinear models is more realistic than the linear

systems usually applied [1].

According to [2], the processes inside biological systems can not be conventionally classified based on linear modeling.

There are balanced dynamics in live beings with self-destroying and self-fixing mechanisms, usually submitted to constant

changes in internal and external conditions, which results in a complex and multi-variable domain.

The heart signal has been extensively studied in several different aspects, such as detection, segmentation in several levels

and feature extraction [3] [4] [5] with the aim to develop medical decision supporting systems. Nevertheless, the complexity

of the parameters must be deeply analyzed to obtain underlying information from nonlinear characteristics that may not be

considered in any visual analysis using time domain metrics.

The balance between the sympathetic and parasympathetic subsystems of the Autonomous Nervous System (ANS) is an

example of dynamical balance resulting in oscillations of heart rate and intervals between beats. Actually, nonlinear modeling

allows new interpretations of heart beat dynamics and its physiopathological representation [6].

In fetal monitoring area, the FHR and the UC signals can be simultaneously obtained from the CTG exam and are clinically

relevant to detect problems and prevent fetal distress. For example, in FHR analysis the variability reflects the fetal development

and is directly affected by pathological conditions. This signal may be characterized by its nonlinear irregularities and dynamics

[7].

A nonlinear complexity analysis of biological systems is usually started by the meaning of complexity for that system

and how it can be used to measure irregularities or the general behavior of that time series. A system can be classified

as complex when many diferent and independent elements are continuously interacting in time, spontaneously reorganizing

themselves resulting in more elaborated structures [8]. Those signals can be considered complex in space and time since they

are composed by many interconnected feedback loops, many of them interdependent and sometimes redundant [9].

Many different nonlinear measures are proposed to quantify system complexity, such as Lempel-Ziv complexity [10], the

Approximate Entropy (ApEn) [11], the Sample Entropy (SampEn) [12] and the Multiscale Entropy [13].

With all presented, the use of nonlinear metrics to support medical decision is a growing area of interest since it can

establish new alarms and thresholds or even create new possibilities of interpretation for traditionally visual analysis in time

based examinations.
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Some of those metrics has been applied in biological signal and fetal heart rate analysis. Nevertheless, no consensus can

be found yet when considering the evolution of nonlinear metrics according to the fetal age [14] and [15]. These conflicting

results may be influenced because the entropy measure consider the whole examination and the long term changes in the signal

may not be considered.

This paper presents a nonlinear characterization of FHR and UC signals and an innovative windowed complexity analysis

of the FHR signals based on entropy measures. The entropy is calculated every 5 minutes interval to create a first level of

triggers to support medical analysis, since the clinical use of CTG visual analysis is subjective and presents high levels of

false positives and false negatives on fetal distress.

II. MATERIALS AND METHODS

This section presents the main concepts about the nonlinear characterization and complexity analysis.

A. Development Environment and Databases

The system was developed using the Matlab scripting language and the implementations are based in two CTG databases

provided by Trium Analysis Online, from Munich, Germany, partner of this project. The first database is identified as CTG-

I and has 22 examinations during labour (intrapartum) all classified as normal examinations. The intrapartum examinations

present a high level of dynamics inside the system, when uterine contractions are periodic and usually influences the FHR.

The second database is CTG-A and presents 148 antepartum examinations (from 28 to 34 weeks of pregnancy), with 103

exams previously classified as normal and 45 as suspicious or pathological.

B. Nonlinearity Characterization

The first aspect of nonlinear analysis of biological time series is if they really have nonlinear components. The characterization

of nonlinearity in both CTG signals presented in this paper consider the surrogate data analysis method and the exploratory

data analysis based on the return map evaluation [16].

Consider f(x) the original time series and g(x) the surrogate data time series. The ApEn is considered as the nonlinear

metric for the null hypothesis H0 given by

ApEn[f(x)] = ApEn[g(x)], (1)

where ApEn[f(x)] is the Approximate Entropy of f(x) and ApEn[g(x)] is the Approximate Entropy of g(x).
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The whole set of samples are considered for this calculation. When H0 is rejected then the existence of nonlinear components

shall be considered. This is executed for both FHR and UC signals during antepartum and intrapartum times.

A graphic exploratory data analysis can be done with the time delay embedding plot, or return map, for the original and the

surrogate data, i.e., the trace of f(x) versus f(x+τ), where τ = 1. Since both series have the same linear statistical properties,

the differences in shape when comparing both plots can be classified as due to the influence of nonlinear components [17].

C. Approximate Entropy

The Approximate Entropy (ApEn) is a measure of the degree of data dispersion in a system. With a relatively small amount

of data it is already possible to estimate the time series complexity, in the opposite of other measures which suffers of the

curse of dimensionality.

The ApEn is robust against low frequency noise and the sparse occurrence of artifacts. The result of this logarithmic ratio

entropy is a non negative number, where higher values indicate higher complexity. Moreover, it indicates patterns of time series

changes usually not detected with classical tools based on statistical moments, like correlation and spectral analysis [18].

For a better comprehension about the signal complexity estimation using these entropies, it is necessary to understand the

basic mathematical steps for the measure calculation.

Consider SN as a time series with N samples {S1,S2,...,SN}. Two input parameters m and r must be determined to calculate

the Approximate Entropy ApEn(SN ,m, r). The parameter m is the length of a subset of SN , while r is the similarity criteria

[11]. The subset of SN with m samples starting on the i-th sample is named as pm(i).

Two subsets pm(i) and pm(j), starting on the i-th e j-th samples, respectively, are considered similares if the euclidean

distance between them is less than r, i.e.

|Si+k − Sj+k| < r, para 0 ≤ k < m. (2)

Now consider Pm as the whole set of m-length patterns of SN . The relationship can now be established

Ci,m(r) =
ni,m(r)

N −m+ 1
, (3)

where ni,m(r) is the number of patterns in Pm that are similar to pm(i), according to the similarity criteria r. This calculation

is done for each pattern of Pm. Cm(r) is the average of all Ci,m(r).

Finally, the Approximate Entropy ApEn(SN ,m, r) of SN , for m-length subsets and similarity criteria r can be defined as

[11]
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ApEn(SN ,m, r) = ln
Cm(r)

Cm+1(r)
, (4)

D. Sample Entropy

The Sample Entropy SampEn(SN ,m, r) for the SN time series is calculated following the same procedure and parameters

as in the ApEn.

The main difference between the two measures is the fact that subsets pm(i) self-matches are considered for the ApEn and

must not be considered for the SampEn. This reduces the bias created by these self-matches, specially when there are just a

few or no matches.

The statistical properties of the SampEn allow us to consider it as an useful for biological time series analysis [12].

1) Entropy Parameters: The parameter definition is not an easy task on complexity analysis because the number of samples

N and the value of the parameters m and r could significantly influence on the results.

Previous works suggest optimized values for both parameters, e.g., for the ApEn are suggested m = 2 e r = 0.2σ(SN ),

where σ(SN ) is the standard deviation of the time series [19]. Automatic r parameter adjustment was also proposed in [20],

considering r = 0.2σ(SN ) for low dynamics signals such as EKG time series, and an automatic calculation of r is proposed

for high dynamics signals.

A mathematical approach for the SampEn parameters determination applied to heart rate signals can be found in [21]. A

randomly determined training dataset extracted from a neonatus HR monitoring database is considered. The subset length

m = 2 is estimated based on autoregressive (AR) models of various orders for this training dataset. The optimal parameter

r = 0.2σ(SN ) is found after calculating the SampEn for a wide range of different m and r for the training dataset and finding

the maximum relative error based on a variance estimation.

E. Complexity Analysis

The FHR complexity analysis is based on the calculation of ApEn and SampEn considering the whole dataset and also

different subsets of length ∆te. The intervals were ∆te = {1, 2, 5, 10} minutes.

This analysis aims to suggests an optimal value for ∆te which could represent the signal dynamics based on the entropy

results and CTG biomedical premises.

The diagram presented in Figure 1 explains the approach presented in this paper to consider the use of windowed entropy

analysis. The metrics calculated during FHR long term irregularities such as accelerations and decelerations are evaluated as

possible detectors for CTG automatic analysis.
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Figure 1. Block diagram with the windowed entropy analysis for the CTG examination.

Considering the other monitored signal, the uterine contractions are not considered to classify fetal status directly, but in

conjunction with the FHR. For the presented database, it is available in two different conditions. The first one is for the

antepartum database which is during the pregnancy, with low levels of changes in the uterine tonus. The second is during

labour when the uterus muscles are active and dynamical, presenting contractions of different intensities, during periodic or

aperiodic intervals.

The ApEn is used as the complexity measure to show that the nonlinear complexity increases significantly during labour.

These nonlinearities may come from multiple interactions between different sources, like neural and hormonal subsystems.

III. RESULTS AND VALIDATION

In this section, all the results for the proposed approaches are presented for FHR and UC signals.

A. Nonlinear Characterization

The surrogate data nonlinear characterization method is considered for the FHR for the whole dataset and also for the UC

signal only for the CTG-I database, since in antepartum database there are only a few spaced uterine contractions. The ApEn

is considered as the null-hypothesis nonlinear metric, with m = 2 and r = 0.2σ(f(x)).

Different ApEn values can be found for each execution because of the random components used in phase mixing of the

surrogate data generation. Linear parameters considered are mean (µ[f(x)] and µ[g(x)]) and variance (σ2[f(x)] and σ2[g(x)]).

The null hypothesis was rejected for all the examinations while the linear parameters remained constant for the original and

surrogate data. An example set of 5 examinations is shown in Table I

For the uterine tonus contractions, measured in mmHg, similar results were found for the whole set of CTG-I database

examinations, as can be seen in Table II.
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Table I

FHR NONLINEARITY CHARACTERIZATION.

Examination µ[f(x)] = µ[g(x)] σ2[f(x)] = σ2[g(x)] ApEn[f(x)] ApEn[g(x)]

ctg20000101-0419153 131.09 271.73 0.22 0.38

ctg20000103-1637131 154.13 127.47 0.50 0.75

ctg20040113-0227251 156.56 152.40 0.52 0.78

ctg20040112-1053432 140.82 87.97 0.07 0.75

ctg20040111-0827261 139.96 281.49 0.24 0.36

Table II

UTERINE CONTRACTIONS NONLINEARITY CHARACTERIZATION.

Examination µ[f(x)] = µ[g(x)] σ2[f(x)] = σ2[g(x)] ApEn[f(x)] ApEn[g(x)]

ctg20040113-0227251 32.66 277.60 0.21 0.45

ctg20040112-1053432 19.83 105.05 0.16 0.53

The graphical return map analysis is used to complement the nonlinearity characterization analysis. In Figure 2 the original

signal and the surrogate data return maps for an intrapartum CTG are presented. As shown in previous examples, the linear

statistic measures are the same for both signals, hence the difference between them can be classified as a result of nonlinear

components influences.

Figure 2. Nonlinear characterization: (a) FHR, (b) Surrogate data, (c) Return Map of original FHR data and (d) Return Map of surrogate data.
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Figure 3. Run-sequence plot for the ApEn and Sampen values for the CTG-A database.

B. Windowed Entropy Analysis

Both ApEn and SampEn are calculated for the whole set of samples of each record, presenting a long term complexity

metric about the signal. Furthermore, sample subsets are also considered, since one can determine the minimum amount of

samples could also be used to analyze the complexity evolution in time.

The results show that low entropy values are found when the whole examination is considered, Apen=0,3244±0,1078

and SampEn=0,2351±0,0758 (average±standard deviation). Besides, no significant difference was found between the normal

(Apen=0,3366±0,1250 and SampEn=0,2532±0,0818) and suspicious/pathological (Apen=0,3420±0,1220 and SampEn=0,2457±0,0850)

groups for the CTG-A database based on statistical t-test evaluation.

A run-sequence plot for the CTG-A database is presented in Figure 3.

Four different plots for the ctg20040214-0722052 examination are presented in Figure 4 with the ApEn and SampEn

calculated for the proposed different windows of ∆te = (1, 2, 5, 10) minutes

Similar results were found for other examinations in both CTG-A and CTG-I databases. When considering small subsets,

such as ∆te = 1 and ∆te = 2 minutes, the entropy need to be recalculated during long term changes in FHR as they usually

take longer than 2 minutes.

Based on clinical analysis, experienced medical staff evaluation suggested windows of at least 5 minutes and no longer

than 10 minutes for CTG analysis, since this exam is characterized for long term baseline determination and other significant

changes.

For long subsets, ∆te = 2, 400 (10 minutes), small entropy values were usually found. This may hide the influence of long

term variability in FHR. So, ∆te = 1, 200 (5 minutes) was chosen for the evaluated databases as the best window size that

may represent the entropy oscillation according to time changes in FHR.
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Figure 4. Windowed entropy calculation considering four different sample intervals for the ctg20040214-0722052 examination.

After this analysis, the entropy parameters considered in the remaining calculations are ∆te = 5 minutes, m = 2 and

r = 0.2σ(f(x)).

The Figure 5 presents the traces for the FHR and entropies for the ctg20000205-0209311 examination from the CTG-A

database and for the ctg20040128-0337182 examination from the CTG-I database.

Figure 5. Illustration of entropy on both databases (a) CTG-I (b) CTG-A.

For the whole set of examinations in CTG-I and CTG-A databases, both entropies present similar graphics, since the

theoretical assumptions for both measures are similar. The SampEn present smaller values because of the self-matches avoidance.
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Figure 6. Windows of FHR high entropy values.

The windowed entropy analysis is them performed on CTG-A and CTG-I databases and the results are presented in Table III

and Table IV. No significant difference could be found between normal and suspicious/pathological groups in CTG-A database,

considering a t-test statistical analysis.

Table III

GENERAL ENTROPY RESULTS FOR THE ANTEPARTUM (CTG-A) DATABASE, WHERE AWA IS THE AVERAGE AND SDWA IS THE STANDARD DEVIATION

OF THE WINDOWED APEN, WHILE AWS IS THE AVERAGE AND SDWS IS THE STANDARD DEVIATION OF THE WINDOWED SAMPEN.

CTG-A AWA SDWA AWS SDWS

All Examinations 0,6505 0.2301 0.5290 0.1188

Normal 0.6812 0.2221 0.5517 0.1403

Suspicious/Pathological 0.6413 0.2091 0.5301 0.1540

Table IV

GENERAL ENTROPY RESULTS FOR THE ANTEPARTUM (CTG-I) DATABASE, WHERE AWA IS THE AVERAGE AND SDWA IS THE STANDARD DEVIATION

OF THE WINDOWED APEN, WHILE AWS IS THE AVERAGE AND SDWS IS THE STANDARD DEVIATION OF THE WINDOWED SAMPEN.

CTG-I AWA SDWA AWS SDWS

Normal 0.5611 0.1970 0,4909 0.1782

C. Entropy analysis for long term changes in CTG

For each long term change in the FHR signal, the complexity analysis is presented with illustrative examples.

At first, for the examination presented in Figure 5 (b), during 4 ≤ ∆te ≤ 7 windows, high entropy values can be found.

Zooming at the original signal for this interval, many ascendent and descendent changes could be found, which allow us to

consider that this is a high complexity period in FHR, as can be seen in Figure 6.



11

Figure 7. FHR low entropy values during ctg20040215-0803261 examination.

Figure 8. ctg20011218-2348371 examination: (a) FHR baseline tending to normality and (b) FHR entropy behaviour.

For the ctg20040215-0803261 exam, low entropy values are found during 25 ≤ ∆te ≤ 29 windows. A repetitive pattern

can be detected in the original signal (region S1), tending to a sinusoidal behaviour, as can be seen in the subarea S1 from

the Figure 7. This FHR behaviour could be classified as suspicious or pathological [22] and is very hard to be found in visual

inspection.

Another examination previously classified as pathological, ctg20011218-2348371, is presented in Figure 8. At the beginning

there is fetal tachycardia and a low short-term variability is expected. During the examination, there is a decrease in the FHR

baseline, tending to normality. The entropy trace presents low value.

Many examinations presented FHR accelerations and decelerations and the FHR complexity was evaluated during those

events as a possible indice of transitory changes in time.

The ctg20040214-0722052 examination is shown in Figure 9. There are several strong FHR decelerations when the calculated

entropies significantly fell down during the 36 ≤ ∆te ≤ 40 windows. This may indicate a loose of complexity in the system.

Entropy values only increase when the FHR returns to its baseline.

For the FHR accelerations analysis, the ctg20020124-1015523 examination is presented in Figure 10. This examination has
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Figure 9. ctg20040214-0722052 examination: (a) several FHR decelerations and (b) low entropy values.

Figure 10. Part of the ctg20020124-1015523 examination; (a) FHR accelerations and (b) low entropies as an measure of low complexity.

um large set of accelerations which results in a complexity diminution during the 5 ≤ ∆te ≤ 12 windows.

For the uterine contractions signal, the complexity analysis is performed only during intrapartum period of time. An illustrative

example of the ctg20040214-0722052 examination can be seen in Figure 11. The entropy results show, for the 20 ≤ ∆te ≤ 45

windows, that there are increases in the system complexity during strong uterine contractions.

After this qualitative presentation, the changes during specific long term events show that entropy can be considered as a

first level indicator for significant FHR changes, as presented in Table

Finally, the last set of results are about the nonlinear complexity characterization for the uterine contraction signal z(t),

considering the significant changes from the antepartum to the intrapartum phase. In Table VI some exams from the antepartum
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Figure 11. Part of the ctg20040214-0722052 examination: (a) Uterine contractions occurence and (b) high entropy values during the contractions.

Table V

GENERAL ENTROPY RESULTS FOR THE ANTEPARTUM (CTG-I) DATABASE, WHERE AWA IS THE AVERAGE AND SDWA IS THE STANDARD DEVIATION

OF THE WINDOWED APEN, WHILE AWS IS THE AVERAGE AND SDWS IS THE STANDARD DEVIATION OF THE WINDOWED SAMPEN.

Long term event ApEn SampEn

FHR decelerations 0,1487±0,0341 0,1289±0,0301

Strong FHR accelerations Apen=0,1830±0,1078 0,1501±0,0703

Sinusoidal FHR Apen=0,1808±0,0445 0,1621±0,0381

database are compared with intrapartum exams showing that the appearance of the uterine contractions increases the nonlinear

irregularity inside the system, resulting in higher complexity.

Table VI

INCREASE OF UTERINE CONTRACTIONS SIGNAL COMPLEXITY DURING LABOUR.

Examination Database ApEn[z(x)] SampEn[z(x)]

ctg20010223-1429403 CTG-A 0.002 0.001

ctg20020124-1015523 CTG-A 0.002 0.003

ctg20040122-2146381 CTG-I 0.102 0.041

ctg20040128-0337182 CTG-I 0.608 0.447

ctg20040113-0227251 CTG-I 0.964 0.642
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IV. DISCUSSION

Entropy calculation in biological time series analysis is being widely used, specially considering it as a measure of system

complexity [6], [7], [13], [23], [24]. Besides, different applications of the SampEn in heart rate analysis can be found in [21]

and [25].

The results presented for the nonlinear characterization for FHR and UC signals show that both are suited to present nonlinear

components. The null hypothesis was reject for all the cases in the whole dataset and the comparison of the return map plot

from the original time series and the surrogate data presented significant differences.

In this paper, ApEn and SampEn are evaluated as complexity analysis tool for CTG monitored signals. Their implementation

differ in some important aspects, specially for time series with low number of matches and this must be considered when

evaluating the ApEn calculation. It is important to notice that the underlying concept of nonlinear complexity is not only

related to irregularity in time, i.e., low entropy values are not only found when the signal increases the regularity.

For the two databases evaluated in this work, in general both entropies presented similar results even when different number

samples were considered.

Physiological interpretations can be done based on the results.

Low entropy values are found when all the samples are considered. This result may be influenced by the nature of the signal

with long term oscillations around a baseline or even other long term and short term variability aspects.

A windowed entropy approach is them proposed with a 5 minutes windos as the best fitted to capture the signal dynamics,

according to clinical evaluation.

According to the literature, higher entropy values are usually considered as a normality indice of the FHR long term variability

which is an important neural development estimator. For the presented databases, higher entropy values could be found when

using the windowed entropy approach.

When considering significant long term changes in FHR, the decrease in entropy values found in severe FHR accelerations

and decelerations can provide a first level monitoring parameter for the detection of fetal distress.

Besides, low entropy values are also found for repetitive patterns around the FHR baseline which are not classified as

accelerations or decelerations. These sinusoidal fluctuations are classified as suspicious or pathological and are usually hard to

detect with the visual interpretation.

Finally, the last set of results are about the calculation of entropies for the uterine contraction signal z(t), considering the

significant change from the antepartum to the intrapartum phase. The increase of entropy values can be considered the increase

of system complexity during labour.
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V. CONCLUSION

This paper shows the nonlinear nonlinear characterization of FHR and maternal UC signals as a first relevant step to consider

the application of nonlinear metrics for medical decision support. The windowed entropy calculation is them presented following

clinical interpretation of the FHR.

The results present that is suitable to consider nonlinear analysis for FHR and UC signals using windowed entropy measures

(ApEn and SampEn) as classification tools of normal variability and long and short term fetal heart rate changes in time.

Future works may consider other complexity measures based on different approaches, such as Multiscale Entropy and

Lempel-Ziv complexity, to compare the results and propose sensitivity and specificity analysis.
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