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Partly Filled with a Porous Medium Saturated with a Nanofluid 

Basil Mahdi Hadi  

Abstract 

Natural convection inside an enclosure partly filled with a porous slab saturated with a 

nanofluid has been investigated numerically using various thermal boundary conditions. 

The Galerkin finite element method was used to solve the governing equations. Four 

different scenarios were modelled. Firstly, two-dimensional laminar natural convection 

in a vertical or a horizontal alignment to the porous-nanofluid layers was investigated 

with a linearly heated left-hand side enclosure wall. At low values of the thermal 

conductivity ratio and Darcy number, the heat transfer rate was higher for the horizontal 

alignment compared to the vertical alignment and vice versa at a high value of the Darcy 

number. Secondly, the same geometry was studied with a sinusoidally heated left-hand 

side enclosure wall. It was found that the temperature amplitude and wave number of the 

sinusoidally heated wall significantly affected the heat transfer rate. At the thermal 

conductivity ratio < 1 and the Darcy number ≥ 10−3, the heat transfer rate increased in 

the vertical alignment of the porous-nanofluid layers compared to the horizontal 

alignment. In both of these scenarios, the porous slab direction inside the enclosure 

played a significant role on the heat transfer. Thirdly, two-dimensional laminar natural 

convection of a hybrid nanofluid inside the porous-nanofluid layers using a thermal non-

equilibrium model has been simulated. It was found that increasing the modified thermal 

conductivity ratio and interphase heat transfer coefficient values strongly enhanced the 

heat transfer rate and satisfy the thermal equilibrium case. Finally, the amplitude and the 

wave number of the corrugated wall have a significant role on the turbulent natural 

convection in a three-dimensional enclosure partly filled with porous slab saturated with 

a hybrid nanofluid. For all scenarios, the lower thickness of the porous slab using the 

nanofluid predicted a new trend of the fluid flow and heat transfer compared to the porous 

enclosure. 
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Abbreviation 

𝐴 amplitude 

𝑏 heat source length, (m) 

𝐵 dimensionless heat source length, (𝐵 = 𝑏. 𝐿−1) 

𝐶𝑝 specific heat capacity (J. kg. K-1) 

𝐶𝐹 Forchhemier coefficient, (𝐶𝐹 = (1.75 √175⁄ ). 𝜀−1.5) 
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𝐷 dimensionless heat source position, (𝐷 =  𝑑. 𝐿−1) 

𝐷𝑎 Darcy Number, (𝐷𝑎 = 𝜆. 𝐿−2) 

𝐹𝑂 Non-dimensional form drag coefficient, (𝐹𝑜 =  𝐶𝐹 √𝐷𝑎⁄ ) 

𝑔 gravitational field, (m.s-2) 

𝐺𝑟 Grashof number, (𝐺𝑟 = 𝛽. 𝑔. Δ𝑇. 𝐿3/𝜐2) 

ℎ heat transfer coefficient, (W.m-2. K-1) 

𝐻 interphase heat transfer coefficient, ( 𝐻 =(ℎ. 𝐿2) (𝑘)ℎ𝑛𝑓⁄ ) 

𝑘 thermal conductivity, (W.m-1. K-1) 

𝐾 dimensionless thermal conductivity, (𝐾 = (𝑘)𝑝 (𝑘)𝑛𝑓⁄ ) 

𝐿 length of the cavity  

N frequency  

𝑁𝑢 Nusselt number, (𝑁𝑢 = (ℎ. 𝐿 𝑘)⁄ ) 

𝑝 pressure (N.m-2) 

𝑃 dimensionless pressure, (𝑃 = 𝑝. 𝐿 ((𝜌)𝑏𝑓.  (𝛼)𝑏𝑓
2⁄ ))  

𝑃𝑟 Prandtl number, (𝑃𝑟 = 𝜇. 𝐶𝑝 𝑘⁄ ) 

𝑅𝑎 Rayleigh number, (𝑅𝑎 = 𝐺𝑟. 𝑃𝑟) 

𝑅𝑒𝑠 residual error 

𝑠 porous layer thickness (m) 

𝑆 dimensionless porous layer thickness, (𝑆 = 𝑠/𝐿−1) 

𝑠𝑛 selected node of the element 

𝑆𝑁 total selected node of the element  

         𝑇 temperature (K) 
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𝑢, 𝑣, 𝑤 dimensional velocity components in the 𝑥 , 𝑦 and 𝑧-directions respectively. 

(m.s-1) 

𝑈, 𝑉, 𝑊 dimensionless velocity components for (𝑢 𝐿⁄ ), (𝑣 𝐿⁄ ), and (𝑤 𝐿⁄ ) in the 𝑋, 

𝑌 and 𝑍 -directions respectively 

𝑉 volume, (m3) 

𝑥, 𝑦, 𝑧 cartesian coordinates (m) 

𝑋, 𝑌, 𝑍 dimensionless cartesian coordinates at (𝑥 𝐿⁄ ), (𝑦 𝐿⁄ ) and (𝑧 𝐿⁄ ) respectively 

 Greek 
symbols 

 

𝛼 thermal diffusivity, (m2.s-1) 

𝛽 thermal expansion coefficient (K-1) 

𝛾 modified hybrid nanofluid/porous thermal conductivity ratio 

𝜀 porosity, (
V𝑓

V
) 

𝜖 dimensional dissipation rate of specific turbulent kinetic energy (m2.s-3) 

𝐸 dimensionless dissipation rate of specific turbulent kinetic energy, (𝐸 =

𝜖 ((𝛼𝑏𝑓)2 𝐿4⁄ )⁄ ) 

𝜃 dimensionless temperature, (𝜃 = (𝑇 − 𝑇𝑐) (𝑇ℎ − 𝑇𝑐)⁄ ) 

𝜗 kinematic viscosity, (m2. s-1) 

𝜅 dimensional turbulent kinetic energy, (m2.s-2) 

𝛫 dimensionless average turbulent kinetic energy, (Κ =  κ/(𝛼𝑏𝑓
2/𝐿2
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𝜆 permeability of porous medium, (m2) 

𝜇 dynamic viscosity, (Pa.s)  
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𝛷 unknown variable    
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𝛹 dimensionless stream function, (𝜓 𝛼⁄ ) 
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𝐴𝑙2𝑂3 alumina nanoparticles 

𝑏𝑓 base fluid (single-phase fluid) 

𝑐 cold   

𝑐𝑟 corrugated 

𝐶𝑢 copper nanoparticles 

𝑓 fluid 

ℎ𝑛𝑓 hybrid nanofluid 

𝑛𝑓 nanofluid 
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𝑝 porous  

r ratio 

𝑠𝑛 selected node of the element 

𝑆𝑁 total selected node of the element 

𝑡𝑑 dimensionless turbulent flow 

𝑡ℎ thermal  
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 Introduction  

 Context 

The modern world has witnessed remarkable development in the technology of 

components and devices. For example, in some applications, these components or devices 

may increase their temperature due to their electrical resistance, which can sometimes 

lead to an increased risk of the device generating a fault. This initiated the requirement 

to dissipate the heat from these components. The purpose of thermal management is to 

ensure that the temperature of the system components remains within the design limits, 

as well as to ensure the control of convective heat transfer using a single-phase fluid such 

as air, water, mineral oils, or ethylene glycol as the working fluid. In other applications, 

a system receives heat from a source, for instance, a solar collector. Accordingly, 

researchers and scientists aim to find appropriate means of controlling the heat transfer 

rate and enhance the performance of these systems and make them more efficient. In 

these applications, modelling the convective heat transfer within enclosures under 

different boundary conditions, typically using numerical methods, is also important to 

design efficient thermal exchange systems. These models allow for extensive simulation 

and analysis prior to manufacture in order to reduce the costs associated with physical 

tests. Interesting details in this regard can be found in the reference books (Cheng, 1978, 

Nield and Bejan, 2006, Kumar, 2011, Bagchi and Kulacki, 2014). 

Several studies investigated the different types of the laminar and turbulent flow heat 

transfer, including free (natural), forced and mixed convection in enclosures or cavities 

with simple cross-sections, such as square, rectangle, trapezoidal, triangle and circle. 

Heat transfer by forced convection requires a driven flow. This is typically in cooling 

situations. This leads to an extra cost for generating the flow. Alternatively, natural 

convection depends on the density gradient of the upper and lower parts of the free flow, 

which move the fluid at a lower cost. Most studies considered the steady and unsteady 

natural convection of fluid and heat transfer by using different boundary conditions of 

heat sources, such as differentially heated walls distributions (fully uniform or non-

uniform heated walls, partly heated walls and heat flux) and internal heat generation. The 

velocity value of the fluid flow in natural convection is lower as compared with its value 

in forced convection. Therefore, researchers found that the convective heat transfer can 
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be enhanced by changing the geometry design or the position of the selected boundary 

conditions, or by improving the thermal conductivity of the base fluid (Mebrouk et al., 

2016). Accordingly, researchers developed techniques to control the fluid flow and heat 

transfer rate for natural convection, for instance, using a porous medium, nanofluid, and 

corrugated cavity walls techniques.  

In the next sections, this thesis will illustrate the related information in the literature about 

the convective heat transfer controlling techniques to provide an overview of the topic. 

  Flow and heat transfer control techniques 

 

The first technique is the convective heat transfer inside enclosures or cavities containing 

a porous medium. Faghiri (2014) defined a porous medium as a substance with a solid 

matrix where there exist many voids and the induced fluid flows among those pores. The 

specifications of the porous medium have attracted the attention of scientists to use it as 

a way for controlling the heat transfer in specific applications. One of these specifications 

is the ability to dissipate heat over a large area in the porous medium, which is greater 

than by conventional means, such as by using fins that improve the heat transfer rate by 

convection. Another specification is the random movement of the fluid flow through the 

porous medium, which leads to the fluid being more effective in drawing heat from the 

components (Mahdi et al., 2013). Despite these features, the porous medium is generally 

regarded as an insulation medium, due to the flow resistance offered by the porous 

material, which leads to reducing the heat transfer from the heated components. The 

ability of the fluid to penetrate through the porous medium depends on the size and shape 

of the porous medium (Bagchi and Kulacki, 2011, Bagchi and Kulacki, 2010).  

Figure 1.1(a) shows the sketch of an ideal porous medium that consists of regularly 

spaced particles with spherical shape saturated by a fluid. In reality, the porous medium 

particles in nature have irregular shapes; as sketched in Figure 1.1(b). The most 

significant characteristic of the porous medium is its porosity. Porosity (𝜀) can be defined 

as the free space that is inside the porous medium where fluid can flow compared to the 

total volume of the porous medium. In other words, it is the size occupied by the saturated 

fluid in the void space over the volume of the system (Nield and Bejan, 2006). 
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𝜀 =  
V𝑓

V
                                                                                                 

(1.1) 

where, V𝑓 represents the volume of fluid in the void space and, V is the total volume of 

the porous medium. 

  

Figure 1.1: (a) An idealized saturated porous medium; (b) A naturally occurring porous medium 

(Bagchi and Kulacki, 2011). 

Another important parameter of a porous medium is its permeability (𝜆). The 

permeability expresses the ratio of the area through which fluid flows in a porous medium 

to the full cross-section area [m2] (Mahdi et al., 2013). 𝜆 is estimated as: 

λ =  
𝐷𝑝

2 𝜀3

𝐶 (1−𝜀)2
  

(1.2) 

where 𝐷𝑝 is the effective pore diameter and 𝐶 is a dimensionless constant that is related 

to the configuration of the flow-paths. Mahdi et al. (2013) defined the Darcy velocity as 

“the velocity of the fluid inside the porous region and is related to the physical velocity, 

or the actual velocity outside the porous region, by the porosity”. Permeability is one 

factor of the proportionality constant in Darcy’s law that relates the flow rate and physical 

properties of the fluid flow to the pressure gradient across the porous media. 

𝑢𝑝,𝑚 =
𝜆

𝜇

𝑑𝑃

𝑑𝑥
  (1.3) 
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The commonly used equations to describe the motion of a fluid are the Navier-Stokes 

equations. However, these equations do not provide a microscopic description of the flow 

in a porous medium. In fact, different models have been suggested to describe the fluid 

flowing through a porous medium. First, the Darcy model is assumed, and it is used to 

express the relationship between the superficial velocities with the pressure drop. This 

model is simple, and it allows to investigate a wide range of fluid flow cases with low 

velocity. The Brinkman (viscous effects) and the Forchherimer (inertia effects) are used 

with the Darcy model to investigate the more complex configuration of a flow with a no 

slip condition between the fluid and the porous region at a high Rayleigh number 

(buoyancy driven effect). 

 

The type of the selected fluid is an important issue in heat transfer technology. The fluid 

is used to exchange the heat that generates from components that perform work. The 

convective heat transfer by a traditional fluid has attracted considerable attention from 

many researchers in recent years because modern technology requires heat transfer by 

fluid transport. In some cases, the traditional fluids such as air, water, oil, and ethylene 

glycols cannot meet the heat transfer rate. For example, the use of a single-phase fluid 

such as air, water, mineral oils, and ethylene glycol as a working fluid inside a clear 

enclosure (not porous) may not satisfy the temperature design limits of some components. 

In addition, researchers Muthtamilselvan (2011) found that in a porous enclosure with a 

low permeability value of the porous media layers, the heat transfer rate tends to decline. 

As a result, researchers and scientists are attempting to find alternative fluids to enhance 

the heat transfer rate. This motivated researchers to develop the idea of natural convection 

inside enclosures using a new technique, which is called nanotechnology. The suspension 

of nanoparticles in a single-phase fluid is known as a nanofluid. This is obtained with 

nanometer-sized particles of less than 100nm. These particles can be manufactured from 

different types of powder, such as polymer, metallic and non-metallic particles (Chol, 

1995). The nanoparticles may be an oxide ceramic (Al2O3), oxide copper (CuO), a metal 

carbide (SiC), nitride (AIN, SiN) or a metal (Al, Cu) (Chand and Rana, 2012). The 

addition of nanoparticles to the single-phase fluid changes in the heat transfer rate 

depending on the type, volume fraction, and size of the added nanoparticles to the single-

phase fluid. One of the significant points of using nanoparticles is that the nanoparticles 
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have a thermal conductivity that is higher than the one of the single-phase fluid which 

produces changes in the physical properties of the single-phase fluid such as density, 

viscosity and the thermal conductivity (Kakaç and Pramuanjaroenkij, 2009, 

Bashirnezhad et al., 2015). The thermal conductivity of the working fluid has been 

improved by using a new type of nanofluid, which is called hybrid nanofluid. This type 

of nanofluid is prepared by suspending dissimilar nanoparticles either in a mixture or 

composite form in the single-phase fluid (Sarkar et al., 2015). Some metallic 

nanoparticles such as copper, aluminium, and zinc provide high thermal conductivity, but 

these metallic nanoparticles are limited in nanofluid applications because of their high 

reactivity and low stability. In addition, non-metallic nanoparticles such as alumina 

(Al2O3) have lower thermal conductivities than metallic nanoparticles, but these types of 

nanoparticle have preferable properties, such as high stability and chemical inertness 

(Sarkar et al., 2015). 

Figure 1.2 shows a sample of Al2O3 and CuO nanoparticles that is imaged by TEM  

 𝐴𝑙2𝑂3 𝐶𝑢𝑂 

(a) 

  

(b) 

  

Figure 1.2: (a) TEM of nanoparticle agglomerates; (b) TEM of dispersed nanoparticles (Putra et 

al., 2003).  



  

6 

 

(Transmission Electron Microscope) (a) loose agglomerates in the micro meters order (b) 

dispersed particles. This sample can be found in the reference (Putra et al., 2003). Putra 

et al. (2003) observed that the agglomerated particles which dispersed in the fluid seem 

much smaller than those of the powder case. These particles behave the same as the fluid 

molecules in the homogeneous mixture. Therefore, nanofluid can flow smoothly through 

different types of channels or porous media without clogging the passage. 

 

Another approach for enhancing natural convection inside enclosures or cavities is the 

use of wavy and V shape corrugated walls. The parameters that are typically used to 

control the flow and heat transfer inside the wavy geometries are the amplitude and the 

wave number of the wavy surface. (Khanafer et al., 2009, Mushate, 2011, Sojoudi et al., 

2014, Hussain, 2016) found that the convective heat transfer could be controlled using 

the corrugated walls by changing the amplitude and the wave number of the corrugated 

wall. Figure 1.3 shows an application of using convective heat transfer in terms of wavy 

solar energy cavity and in the meantime, this figure displays the convective fluid that can 

be used as a convection medium to perform a thermal exchange between the working 

fluid in the enclosure and the inlet and outlet fluid through the tube. Figure 1.4 shows 

examples of natural convection applications using a porous medium as a heat sink to cool 

the electronic devices that have a low output heat flux. The design of porous medium 

may have a wavy surface area that contributes to increasing the surface area subjected to  

 

Figure 1.3: Performance of nanofluids on heat transfer in a wavy solar collector (Nasrin and Alim, 

2013).  
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Figure 1.4: Examples of industrial applications for various electronica devices (Amecthermasol, 

2017). 

                             

Figure 1.5: Porous medium with various shape designs for cooling electrical device(xxxx). 

the convection as well as disturbs the flow. Therefore, it can dissipate more heat input 

per unit time compared to the flat surface area. A porous medium directly attached to the 

heat source component is shown in Figure 1.5. The use of the opened porous enclosure 

saturated with air as a working fluid as shown in Figure 1.5 produces a better heat transfer 

for cooling the electronically devices; however, in this study, the use of the confined 

square enclosure partly filled with a porous medium saturated with a nanofluid is 

suggested for the academic purposes using the liquid as a working fluid and it may be 

interesting in the next modern industry technology. 
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In general, these techniques are used to control and enhance the convective heat transfer 

either individually (porous medium, nanofluid or corrugated surface wall) or by in 

combination (porous medium-nanofluid, porous medium–corrugated surface wall, 

porous medium-nanofluid and corrugated surface wall) inside enclosures or cavities, 

depending on the application. 

 Aims and objectives 

Despite the fact that natural convection heat transfer inside enclosures using various types 

of controlling flow techniques to enhance the heat transfer has been widely investigated 

over the last few years, it represents a broad range of different convective heat transfer 

cases within the different flow types (laminar and turbulent) and thermal boundary 

conditions. Heat transfer enhancement using various types of convective heat transfer 

controlling techniques has attracted a growing interest in terms of increasing the heat 

received or removed from the heat source. Thus, many interesting investigations to study 

the convective heat transfer inside clear and porous enclosures have been considered  

In the case of laminar flow, several aspects have been considered in the literature such as 

the laminar natural convection inside an enclosure entirely filled with a single-phase fluid 

or nanofluid with uniform and non-uniform thermal boundary conditions. In addition, 

other studies discussed the natural convection inside an enclosure entirely filled with a 

porous medium saturated with a single-phase fluid or nanofluid with uniform and non-

uniform thermal boundary conditions as well as the enclosure that filled partly with a 

porous medium saturated with a single-phase fluid or nanofluid under the effect of the 

uniform heating. In the case of turbulent flow, several important studies have been 

investigated the turbulent natural convection in a two or three-dimensional clear 

enclosure (no porous) filled with a single-phase fluid or nanofluid as well as the two-

dimensional enclosure that was entirely filled with a porous medium saturated with a 

single-phase fluid.  

Nonetheless, the mentioned investigations have helped to motivate the present research 

to carry out further study on the laminar and turbulent heat transfer inside an enclosure 

partly filled with porous medium saturated with nanofluid under various thermal 

boundary conditions. In this study, the porous medium is used as a heat exchanger to 

receive or dissipate the heat from the heat source. A new simulation results are presented 
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to develop the convective heat transfer inside an enclosure partly filled by a porous slab 

rather than that of using a porous enclosure under different thermal boundary conditions 

by a combination with other types of the heat transfer controlling techniques (the 

nanofluid or the corrugated wall of the enclosure). 

The thermal boundary condition such as linear, sinusoidal and heat flux temperature 

distribution and the geometrical design such as the corrugated wall in an enclosure partly 

filled with a porous medium saturated with a nanofluid could have a significant effect on 

the convective heat transfer. The use of theses boundary conditions makes the complex 

nature of the system and it may be important in the sense of many engineering 

applications in the next modern technology. In this enclosure with the suggested 

boundary condition, the heat transfer prediction gives different simulation results 

compared to the enclosures that were used in the previous literature. 

Accordingly, this study have been addressed in four parts to investigate a new simulation 

results in natural convection within enclosure partly filled with a porous medium 

saturated with a nanofluid, of which three parts are focused on the two-dimensional 

laminar heat transfer using the effect of the non-uniform or the heat flux thermal boundary 

condition, while the fourth part is devoted to investigate the turbulent heat transfer inside 

a three-dimensional corrugated enclosure using a uniform thermal boundary condition 

and these parts have not been filled yet. In addition, both of the single-phase fluid and 

different types of the nanofluid, under different parameters are investigated. This thesis 

seeks to obtain data that will help to address these research gaps. The author of this thesis 

believes that this work will be highly applicable and that it can be used in many 

engineering applications, for instance, solar collectors and electrical cooling systems.  

Therefore, the aim of the present study can be summarized as follows: 

 The first aim will study the effect of the linearly heated left-hand sidewall on 

laminar natural convection inside an enclosure partly filled with a porous medium 

saturated with a nanofluid with various physical parameters values like the 

Rayleigh number, the Darcy number, the porous layer thickness and the ratio of 

porous to nanofluid thermal conductivity. A comparison between two cases where 
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the porous medium is in the form of either a vertical or a horizontal slab is 

presented. 

 The second aim will address the effect of a sinusoidally heated left-hand sidewall 

on laminar natural convection inside an enclosure partly filled with a porous 

medium saturated with a nanofluid with various physical parameters like the 

Rayleigh number, the Darcy number, the porous layer thickness, the amplitude 

and wave number of the heating and the ratio of porous to nanofluid thermal 

conductivity. A comparison between two cases where the porous medium is in 

the form of either a vertical or a horizontal slab is investigated. 

 The third aim will investigate the case study of the laminar natural convection 

performance inside an enclosure partially filled with porous medium saturated 

with hybrid nanofluid using a local thermal non-equilibrium (LTNE) model with 

various physical parameters like the Rayleigh number, the Darcy number, the 

porous layer thickness, the modified conductivity ratio, the interphase heat 

transfer coefficient, the heat source length, and the nanoparticles volume fraction.  

 The fourth aim will be accomplished for the performance of turbulent natural 

convection in a three-dimensional corrugated enclosure filled by hybrid 

nanofluid-porous layers using the (κ − 𝜖) turbulence model, enclosure under 

various physical and geometrical parameters effects like the Rayleigh number, the 

Darcy number, the porous layer thickness, the nanoparticles volume fraction, and 

the amplitude and wave number of the corrugated wall. 

This study is concerned with the numerical investigation of natural convection inside 

an enclosure partly filled with a porous medium saturated with a nanofluid. The 

objectives below have guided the conduct of this research and have framed the 

content of this study. The objectives of this research are as follows: 

 To investigate the effect of using the nanofluid on the laminar and turbulent 

heat transfer with different parameters 

 To study the effect of the porous slab thickness on the laminar and turbulent 

heat transfer enhancement. 

 To study the influence of the porous-nanofluid alignment in a vertical and a 

horizontal direction on the laminar heat transfer inside an enclosure. 
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 To understand the effect of the non-uniform heating on the laminar natural 

convection. 

 To investigate the laminar natural convection and the temperature difference 

between the porous medium and the nanofluid phases inside an enclosure 

under the effect of the isoflux heating and different thermo-physical 

parameters. 

 To analyse the turbulent natural convection by combining the selected heat 

transfer controlling techniques under the effect of the uniform heating.  

 Thesis structure  

The overall structure of this thesis consists of eight chapters. Subsequent to the 

introduction in Chapter one, which introduces the context and the main aims and 

objective of this research. Chapter two presents the related literature for the enclosures 

with various convective heat transfer controlling techniques.  

Chapter three includes the laminar and turbulent governing equations and the 

discretization of these equations as well as the domain using the Galerkin finite element 

method. In addition, various validations have been done to have the confidence in the 

obtained results from the present solver with the previous results in the literature. 

The fourth chapter reveals the effects of the linearly heated left-hand sidewall on laminar 

natural convection within an enclosure filled with composite nanofluid-porous layers 

with various physical parameters are described in detail. This chapter contains the first 

aim of this investigation. It includes new findings of the convective heat transfer in a 

comparing of the alignment of the porous slab in a vertical or horizontal direction inside 

the enclosure and focusses on the influences of the thermophysical parameters such as 

the Rayleigh number, the Darcy number, the porous medium thickness, the nanoparticles 

volume fraction, and the thermal conductivity ratio between the porous medium and the 

nanofluid. A comparison between the vertical and horizontal alignments of the porous 

medium and the nanofluid layers in term of the streamlines and isotherms contours, the 

nondimensional velocity and temperature distribution at the interface line between the 

porous and nanofluid layers, the local and average Nusselt number with different 

parameters is included.   
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Chapter five includes the effects of the sinusoidal heated left-hand sidewall on laminar 

natural convection within an enclosure filled with composite nanofluid-porous layers are 

discussed. This chapter contains the second aim of this investigation. It includes new 

findings of the convective heat transfer in a comparing of the alignment of the porous 

slab in a vertical or horizontal direction inside the enclosure and focusses on the 

influences of  the thermophysical parameters on the laminar heat transfer such as the 

Rayleigh number, the Darcy number, the porous medium thickness, the nanoparticles 

volume fraction, the thermal conductivity ratio between the porous medium and the 

nanofluid, the thermal wave number, and the thermal amplitude. A comparison between 

the vertical and horizontal alignments of the porous medium and the nanofluid layers in 

term of the streamlines and isotherms contours, the nondimensional velocity and 

temperature distribution at the interface line between the porous and nanofluid layers, the 

local and average Nusselt number with different parameters is investigated.  

Chapter six focuses on the study of laminar natural convection flow of a hybrid nanofluid 

in a square enclosure partially filled with a porous medium under the effect of the isoflux 

bottom- heated wall of the enclosure using a thermal non-equilibrium model, where the 

temperature of the porous medium phase is different from that of the fluid phase. This 

chapter contains the third aim of this investigation. It includes the influences of the 

thermophysical parameters on the laminar heat transfer such as the Rayleigh number, the 

Darcy number, the porous medium thickness, the nanoparticles volume fraction, the 

modified conductivity ratio, the interphase heat transfer coefficient, and the heat source 

length. 

In Chapter seven, the investigation of the turbulent natural convection in a three-

dimensional enclosure partly filled with hybrid nanofluid-superposed porous layers with 

corrugated right-hand vertical sidewall under the effect of the uniform heating on the left-

hand vertical sidewall using the (κ − 𝜀) turbulence model is completed. This chapter 

contains the fourth aim of this investigation. It includes the influences of the 

thermophysical parameters on the turbulent heat transfer such as the Rayleigh number, 

the Darcy number, the porous medium thickness, the nanoparticles volume fraction, the 

corrugated wall amplitude, the corrugated wall wave number. 
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Finally, Chapter eight will use the research and findings of the previous chapters to 

address the thesis questions and goals regarding the use of the heat transfer controlling 

techniques and provides some recommendations for future study.



 

 Literature review 

 Introduction 

In the past decades, researchers have sought to investigate the convective heat transfer 

inside enclosures or cavities. These studies provided fundamental and important 

information regarding the thermo-physical and geometrical parameters affecting the 

convective heat transfer inside enclosures. In order to meet the objectives stated in 

Chapter 1, it is necessary to understand the effects of the thermo-physical and geometrical 

parameters in heat transfer controlling techniques like a porous medium, nanofluid and, 

complex wall geometries. The topic of this thesis is the laminar and turbulent flow inside 

enclosures using different types of convective heat transfer controlling techniques and 

thermal boundary conditions. There are many investigations on laminar flow natural 

convection, while limited studies have been conducted on turbulent flow natural 

convection. Considerable research into using a porous medium with other techniques has 

addressed the control of the convective heat transfer inside enclosures. Therefore, the 

next subsections will deal with the porous medium with other techniques that include the 

single-phase fluid or the nanofluid as well as the complex geometry of enclosure walls. 

The background of convective heat transfer inside enclosures using different heat transfer 

controlling techniques for laminar and turbulent flows are reviewed in the next sections. 

 Laminar flow 

 

The study of convective heat transfer within an enclosure using porous media is an 

important issue in many industrial engineering applications such as heat exchangers, 

ground-coupled heat pumps, solar collectors, cooling of computers systems, and other 

electronic equipment (Basak et al., 2010). A porous medium has been used to improve 

heat transfer rates in recent years (Al-Nimr and Khadrawi, 2003, Arpino et al., 2011, 

Chamkha and Ismael, 2014, Ismael and Chamkha, 2015). 

There is a growing body of literature that recognizes the importance of using the porous 

medium as a controlling technique in the convective heat transfer inside enclosures. 

Convective heat transfer has been studied by many researchers inside enclosures entirely 

or partially filled with a porous medium saturated with a single-phase fluid or nanofluid. 
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Many works in this topic are related to the convective heat transfer, with the enclosure 

either entirely filled with a porous medium or partly filled in vertical or horizontal slabs.  

2.2.1.1 Enclosure entirely filled with a porous medium saturated with a 

single-phase fluid  

Several numerical studies focused on the steady-state convective heat transfer inside two-

dimensional enclosures filled entirely with porous media and saturated by a single-phase 

fluid with uniform heating on the vertical walls (Walker and Homsy, 1978, de Medeiros 

et al., 1999, Ismaeel, 2011, Tiwari et al., 2012, Fard et al., 2012, Muthtamilselvan, 2011) 

or uniform heating over the horizontal walls (Kim et al., 2003, Balla and Naikoti, 2015). 

Muthtamilselvan (2011) examined the onset of the convective instability inside a porous 

enclosure saturated by water and with the boundary conditions of a cold temperature at 

the sidewalls and a hot temperature at the bottom wall while the upper wall remained 

adiabatic. The results showed that the porous medium, especially at low permeability 

values, caused the heat transfer to decline. Basak et al. (2007) have used the Darcy-

Brinkman model to simulate the momentum equations for natural convection in a square 

porous enclosure saturated with a single-phase fluid under various thermal boundary 

conditions at the left and bottom walls of the enclosure (uniform and non-uniform 

temperature distribution). The Galerkin finite element method was used to solve the non-

linear partial differential equations of the governing flow and heat fields. The main 

conclusion was that at the centre of the non-uniformly heated bottom wall, the heat was 

more than in the case of a uniformly heated bottom wall for all Rayleigh numbers. Basak 

et al. (2009) studied the natural convection flows in porous trapezoidal enclosures with 

various inclination angles. The Brinkman extension of the Darcy model was used to 

simulate the fluid flow in the porous medium. Using the Galerkin finite element method, 

the authors found that the heat transfer rate at the inclination angle of 0° increased more 

than at 30° and at 45°. 

2.2.1.2 Enclosure partly filled with a porous medium saturated with a 

single-phase fluid (multi-layers) 

Several studies investigated the flow inside enclosures with a porous slab. Slabs aligned 

were considered in either the horizontal or the vertical directions. In addition, slab 

surfaces may be permeable or impermeable.  
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For horizontally aligned slabs, Beavers and Joseph (1967) studied experimentally the 

natural convection inside an enclosure partially filled by a porous slab, where the no-slip 

condition due to the tangential velocity was not selected. The case of a multilayer 

enclosure with the permeable interface has received more attention in the literature over 

recent years. The horizontal orientation of the porous medium was considered in the 

published literature that deal with the fluid flow over the porous medium in an 

experimental study like (Wu and Mirbod, 2018) or in numerical studies for the mixed 

convection like (Dixon, 2013) or the free convection as (Poulikakos et al., 1986, Tatsuo 

et al., 1986, Singh et al., 1999, Bagchi and Kulacki, 2011). A numerical study of natural 

convection in a rectangular enclosure horizontally divided into the fluid (silicone oil) and 

the porous (glass beads) regions was performed by Tatsuo et al. (1986). The authors 

concluded that the flow and the heat transfer are influenced by the Rayleigh number and 

the Darcy number values. In addition, the flow rate penetration from the fluid region into 

the porous region significantly changed with the Darcy number. Vasseur et al. (1989) 

examined the effects of natural convection on the instability of the homogeneous fluid 

overlying the porous layer. The vertical walls were insulated, while the bottom and upper 

walls were heated and cooled, respectively, by a uniform heat flux. The results of this 

study showed that, the flow circulation was stable in the presence of the porous layer as 

well as when increasing the solid (porous medium) to fluid thermal conductivity ratio. 

Increasing the Darcy number led to increasing the permeability inside the porous medium 

and thus a reduction in the fluid stability due to the reduction of the flow resistance 

through the porous medium. Two dimensional steady natural convection in an enclosure 

with a bottom porous slab which is heated locally from below has been studied 

numerically by Bagchi and Kulacki (2010) as shown in Figure 2.1. The results of this 

study concluded that there was an inverse relationship between the average Nusselt 

number and the local heating source size. The heating source size did not affect the porous 

layer thickness and the Darcy number, which the Nusselt number depends on. This was 

due to the confining of the circulation centre of the main vortex inside the fluid layer. The 

average Nusselt number increased with the Darcy number. An experimental study by 

Bagchi and Kulacki (2011) examined the findings by Bagchi and Kulacki (2010). The 

enclosure in Figure 2.1 was fabricated as a rectangular chamber with 3mm diameter glass 

beads as the porous medium and the voids saturated with distilled water. 



  

17 

 

                          

Figure 2.1: Enclosure partially filled with a horizontal layer of a porous medium adapted from 

(Bagchi and Kulacki, 2010). 

A match was observed in the effect of the porous layer thickness with the prediction by 

Bagchi and Kulacki (2010), but no strong effect of the local heater size under was 

observed. In a numerical investigation of free convection inside a three-dimensional 

enclosure partly filled by a  porous medium saturated with a single-phase fluid by Arpino 

et al. (2011) have found that modest flow penetration in the porous medium occurs when 

the Darcy number is decreased. In addition, the authors concluded that the difference 

between the two and three-dimensional model predictions of around 4%.  

A considerable number of studies have been published on the two-dimensional natural 

convection that occurs in enclosures with deferentially heated vertical walls and 

adiabatically insulated horizontal walls where the porous layer is disposed vertically and 

this can be found in the references (Tong and Subramanian, 1986, Beckermann et al., 

1987, Sathe et al., 1988, Song and Viskanta, 1994, Goyeau and Gobin, 1999, Gobin et 

al., 2005). Tong and Subramanian (1986) studied the convective heat transfer in a vertical 

enclosure separated into two layers as shown in Figure 2.2. The enclosure was partly 

filled with a single-phase fluid layer and the rest filled with a porous layer saturated by 

the same fluid. This study concluded that the heat transfer could be controlled or 

minimized when the porous layer thickness increased from zero to the enclosure width. 

The study presented by Tong and Subramanian (1986) motivated both scientists and 

engineers to perform for these investigations into the potential application of this finding 

to industrial cases. Most of these investigations focused on the insulating property of the 

porous partition and on the impact of the flow penetration through the porous layer. 
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Figure 2.2: Enclosure partially filled with a vertical layer of a porous medium saturated with a 

single-phase fluid  (Tong and Subramanian, 1986). 

Beckermann et al. (1987) studied numerically and experimentally the free convection in 

the fluid and in the porous layer. These researchers found that the amount of the fluid 

penetrating into the porous layer depended strongly on the product of the Rayleigh and 

Darcy numbers, where these values should be greater than about 50 in order to have fluid 

penetration. Sathe et al. (1988) showed that increasing the porous layer thickness and the 

aspect ratio could minimize the heat transfer in the enclosure if the fluid/solid (porous) 

thermal conductivity ratio is less than one. However, the effect of increasing the porous 

layer thickness on convective heat transfer could be also minimized by increasing the 

Darcy number. 

Several studies focused on heat transfer inside enclosures with three composed layers. 

Chen et al. (2009) studied horizontally the convective heat transfer inside the enclosure 

with three layers of single-phase fluid and porous medium saturated with the same type 

of the single-phase fluid, or vertically like (Du and Bilgen, 1990, Mharzi et al., 2000, Al-

Nimr and Khadrawi, 2003, Bennacer et al., 2003). They concluded that the convective 

heat transfer strongly depended on the dimensionless parameters such as Rayleigh and 

the Darcy numbers, fluid/porous layer thickness, the solid phase properties (especially 

the porous medium thermal conductivity) and the aspect ratio. In general, the previous 

studies have shown that, with the presence of the porous medium, the convective heat 

transfer is increased and thus enhanced the effective thermal conductivity.  
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In addition to conventional uniform heating boundary conditions in natural convection 

enclosures, several studies focused on non-uniformly heated wall thermal boundary 

conditions. This idea attracted researchers due to the fact that a heated wall may be subject 

to non-uniform thermal boundary conditions in a significant number of engineering 

applications, such as in solar collector systems and in the cooling of electronic 

components (Sivasankaran and Bhuvaneswari, 2013). This is because non-uniform 

heating is likely to affect the heat transfer inside enclosures. Therefore, it is important to 

study the effect of non-uniformly heated walls on the convective heat transfer inside 

enclosures. The influence of various thermal boundary conditions on the convective heat 

transfer in an enclosure filled with a porous medium saturated with single-phase fluid is 

reported in (Basak et al., 2010, Basak et al., 2011, Sathiyamoorthy et al., 2007a). 

Sathiyamoorthy et al. (2007a) studied the influence of linear thermal boundary conditions 

on the natural convection inside a porous enclosure saturated with a single-phase fluid. 

They observed that the rate of heat transfer oscillated at high Rayleigh and Darcy numbers 

due to the formation of secondary circulation.  

The majority of the previous work used of local thermal equilibrium model (LTE) where 

the temperature of the solid (porous) phase is equal to the temperature of the fluid phase. 

However, it is important to note that the temperature of the solid phase is actually 

different from that of the fluid phase, which is referred to as the local thermal non-

equilibrium (LTNE) model. This may be found in various engineering applications, such 

as in solar energy collectors and in the cooling of electronic components (Wu et al., 

2015). Several important studies (Baytas and Pop, 2002, Baytas, 2003, Khashan et al., 

2006, Badruddin et al., 2007, Wu et al., 2016, Alsabery et al., 2017a) presented natural 

convection within enclosures entirely filled with porous media saturated with single-

phase fluid under different boundary conditions using the LTNE model. Wu et al. (2016) 

studied the effects of sinusoidally and partially heated vertical sidewalls on the natural 

convection in a porous enclosure saturated with a single-phase fluid using a numerical 

LTNE model. They concluded that the rate of heat transfer in a porous enclosure can be 

enhanced by using sinusoidal heating. In addition, they observed that the temperature 

convergence of the solid and of the fluid phases was satisfied by increasing the interphase 

heat transfer coefficient (𝐻) and the fluid/solid thermal conductivity ratio (𝛾).  
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In addition to using the porous medium as a heat transfer controlling technique, the use 

of nanoparticles with the base fluid can significantly enhance the physical properties of 

the base fluid and, therefore, improve the heat transfer characteristics (Gorla et al., 2011, 

Saleh et al., 2011, Basak and Chamkha, 2012, Selimefendigil et al., 2016). The control 

that this method offers over heat transfer stems from the fact that nanoparticles have 

greater thermal conductivity than that of the same volume of conventional single-phase 

fluid. In clear enclosures (no porous medium), Chol (1995) was the first that described 

the term of nanofluid, and the researcher showed that the thermal conductivity of the base 

fluid could be improved by to two times by adding less than 1% of nanoparticles. 

Corcione (2010) performed a steady numerical investigation of heat transfer in buoyancy-

driven flow with different types of nanofluids inside a rectangular enclosure differentially 

heated at the vertical sidewalls. One of the results was that the rate of heat transfer by the 

nanofluid is significantly higher than that transferred by the single-phase fluid. A 

considerable number of other studies, such as (Putra et al., 2003, Saleh et al., 2011, Basak 

and Chamkha, 2012, Selimefendigil et al., 2016, Corcione, 2010, Corcione et al., 2015, 

Roslan et al., 2012, Rao and Srivastava, 2016, Goodarzi et al., 2014, Garoosi et al., 2015, 

Afrand et al., 2016, Safaei et al., 2016, Akbari et al., 2016) have been published on the 

effects of using the nanofluid as working fluid or using the hybrid nanofluid, like (Sarkar 

et al., 2015, Afrand, 2017, Karimi and Afrand, 2018).  

Natural convection with non-uniformly heated walls in enclosures filled with nanofluid 

has received attention in recent years. The effect of a magnetic field on laminar flow and 

heat transfer in a nanofluid-filled enclosure with walls having a sinusoidal temperature 

distribution was studied by (Sivasankaran et al., 2011, Kefayati, 2013, Elshehabey and 

Ahmed, 2015, Pordanjani et al., 2018), while a linearly heated left hand vertical wall was 

examined in reference (Mahmoudi et al., 2014).  

In the next section, the literature that deals with combining porous media and a nanofluid 

inside an enclosure is reviewed. 
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2.2.2.1  Enclosure entirely filled with a porous medium saturated with a 

nanofluid 

Several studies have paid attention to the two-dimensional steady mixed convection in a 

porous enclosure with a nanofluid, like (Hashemi Amrei and Dehkordi, 2014, Aaiza et 

al., 2015). A further extension to the above-mentioned field is the natural convection heat 

transfer in a porous enclosure saturated with a nanofluid. This problem has been 

investigated numerically by numerous authors, such as (Chand and Rana, 2012, Hassan 

and Ismael, 2015, Bourantas et al., 2014, Dastmalchi et al., 2015, Groşan et al., 2015, 

Nguyen et al., 2015). Bourantas et al. (2014) have concluded that at high Rayleigh 

numbers and also as the Darcy number increases, the permeability of the porous medium 

matrix and the solid volume fraction strengthen the natural convection, which results in 

the reduction of the heat source temperature. The study of natural convection heat transfer 

in a square enclosure filled with a porous medium saturated by a nanofluid with internal 

heat generation was presented by Groşan et al. (2015). Sheremet and co-workers  

published a series of papers on numerical studies of laminar natural convection in a two-

dimensional porous enclosure saturated with a nanofluid (Sheremet et al., 2015a) and in 

a two-dimensional conjugated enclosure with solid walls of finite thickness, like 

(Sheremet and Pop, 2014), or also in a three-dimensional enclosure, like (Sheremet et al., 

2015b). Natural convection inside an enclosure entirely filled with a porous medium 

saturated with a nanofluid has been investigated using the LTNE model in (Sheremet et 

al., 2015a, Alsabery et al., 2016, Sabour and Ghalambaz, 2016, Alsabery et al., 2017a, 

Izadi et al., 2018, Sheremet and Pop, 2018).  

2.2.2.2 Enclosure partly filled with a porous medium saturated with a 

nanofluid 

Laminar natural convection in a two-dimensional enclosure partly filled in a vertical layer 

with a porous medium saturated by Cu-water nanofluid was studied by Chamkha and 

Ismael (2014), as shown in Figure 2.3. The authors have concluded that the laminar 

convective heat transfer is enhanced by using the nanofluid even with a low permeable 

porous medium, while it decreases rapidly with increases in the porous layer thickness. 

Ismael and Chamkha (2015) numerically examined the laminar conjugate free convection 

inside a square composite vertically layered enclosure by using a finite differences 

method. The enclosure consisted of a porous layer between a left hot solid layer and a 
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cold right nanofluid layer. The results of this study concluded that natural convection 

increases when the value of the Darcy number is very low at a thickness of the porous 

medium greater than 0.5; this results in a Rayleigh number less than or equal to 104. 

Alsabery et al. (2015) investigated the heat-line visualization of natural convection in a 

trapezoidal enclosure partly filled with a porous layer saturated by nanofluid and partly 

with a non-newtonian fluid layer using a uniform thermal boundary condition. The 

Brinkman extended Darcy model was used to describe the fluid flow and heat transfer in 

the porous layer. Ag, Cu, Al2O3 or TiO2 nanoparticles were used with water as a base 

fluid to obtain the nanofluid that filled the porous medium. Some conclusions of this 

study are that the increase of the nanofluid thermal conductivity led to an increase in the 

circulation strength. It was also found that a higher value of the Nusselt number occurred 

at a nanoparticles volume fraction 𝜙 = 0.2, however, the Nusselt number dropped lower 

than other values at 𝜙 = 0, 0.05 and 0.1 when the values of the Darcy number was limited 

between 10-4-10-3. Alsabery et al. (2017b) examined the effect of the inclination angle on 

the buoyancy-driven force inside an enclosure filled partly with a porous medium 

                                              

Figure 2.3: Enclosure partially filled with a vertical layer of a porous medium saturated with a 

nanofluid (Chamkha and Ismael, 2014). 

saturated by a nanofluid and employing sinusoidal heating on the vertical walls using a 

finite difference methodology, as shown in Figure 2.4. The results showed that a higher 

heat transfer enhancement was gained with a thin porous layer using Ag nanoparticles, 

whereas the use of Al2O3 enhanced heat transfer with increasing thickness of the porous 

layer. Mohebbi et al. (2019) examined the natural convection flow of a hybrid nanofluid 

inside an inverse (T) porous enclosure with various porous media in a solar energy 
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investigation, as shown in Figure 2.5. They concluded that increasing the Rayleigh 

number, the porosity, the Darcy number ratios of two porous media and decreasing the 

thermal conductivity ratio of two porous media led to a greater heat transfer rate. 

Recently, Chamkha et al. (2019) investigated the natural convection in composite layers 

of solid, porous medium and nanofluid layers using the thermal non-equilibrium model. 

They concluded that increasing the thickness of the nanofluid layer led to more heat 

transfer due to obtaining better nanofluid circulations. 

In spite of the noted previous studies, a careful review of this literature reveals that there 

is a lack of information on the characteristics of laminar natural convection in a square 

enclosure partly filled by vertical or horizontal porous slabs saturated with nanofluids 

under linear or sinusoidal thermal boundary conditions on the left-hand sidewall of the 

enclosure. In addition, to the best of the author’s knowledge, no such an investigation has 

yet been reported in the literature on the laminar flow and heat transfer rates in a 

composite enclosure under the effects of a bottom-heated wall using the hybrid nanofluid 

and the LTNE model. Therefore, in the author’s opinion, this study should make an 

original contribution to this significant scientific field and this will form three of the 

objectives that will deal with in this research. 

 

                   

Figure 2.4: Enclosure partially filled with a vertical layer of a porous medium saturated with a 

nanofluid with non-uniform vertical side-walls heating adapted from (Alsabery et al., 2017b).  



  

24 

 

 

Figure 2.5: Composite porous enclosure saturated with a hybrid nanofluid (Mohebbi et al., 2019). 

 

Another technique of controlling the heat transfer by corrugating the walls of an 

enclosure. Convective heat transfer inside irregular enclosure surfaces is often 

encountered in many engineering applications to control heat transfer, such as in micro-

electronic devices, flat-plate solar collectors and flat-plate condensers in refrigerators, 

and in geophysical applications, for instance, flows over the earth’s crust, underground 

cable systems, electric machinery, cooling system of micro-electronic devices, and 

roughened surfaces (Al-Amiri et al., 2007). In clear enclosures (no porous medium), (Al-

Amiri et al., 2007, Sabeur-Bendehina et al., 2011, Hussain et al., 2011, Hasan et al., 

2012, Hussain et al., 2013, Singh and Bhargava, 2014) studied the laminar natural 

convective heat transfer within different complex geometries of enclosures using a single-

phase fluid. These studies focused on the effects of the Rayleigh number, the corrugation 

amplitude and the corrugation wave number on the fluid flow and heat transfer in a 

corrugated enclosure.  

2.2.3.1 A corrugated enclosure entirely filled with a porous medium 

saturated with a single-phase fluid  

Laminar natural convection in wavy two-dimensional porous enclosures saturated with a 

single-phase fluid has been extensively studied such as (Khanafer et al., 2009, Mushate, 

2011, Sojoudi et al., 2014, Hussain, 2016). Khanafer et al. (2009) found that the number 

of wave number and amplitude of the wavy surface affect the flow and heat transfer inside 
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the porous enclosure that is illustrated in Figure 2.6. The intensity of convection increased 

when the Rayleigh number values rose. Mushate (2011) concluded that the convective 

heat transfer increases as the Rayleigh number increases, while it decreases as the 

amplitude increases. The optimum heat transfer occurred when the corrugated wave 

number was limited to two wave numbers. The authors concluded also that two wavy 

walls were better located on the vertical sides than on the horizontal sides. Sojoudi et al. 

(2014) numerically investigated the effect of sinusoidally corrugated vertical side-walls 

in a porous enclosure on the unsteady natural convection. Sinusoidal hot left and cold 

right walls were assumed to generate the temperature differences inside the enclosure, 

while the adiabatic condition was assumed at the upper and bottom walls. Air was the 

working fluid that saturated the porous medium. The results of this study concluded that 

the unsteady natural heat convection was influenced by the variation of the Rayleigh 

number with the corrugated wall amplitude and wave number. It was also found that 

increasing the Rayleigh number led to an increase in the average Nusselt number and the 

latter is higher for higher corrugation amplitude than corrugation wave number.  

                               

Figure 2.6: A corrugated side-wall enclosure entirely filled with a porous medium saturated with 

a single-phase fluid, adapted from (Khanafer et al., 2009). 

2.2.3.2 A corrugated enclosure entirely filled with a porous medium 

saturated with a nanofluid 

In clear enclosures (no porous medium), several studies (Abu-Nada and Oztop, 2011, 

Nasrin and Alim, 2013, Takabi and Salehi, 2014, Hussein and Hussain, 2016, Shirvan et 

al., 2017, Alsabery et al., 2018, Dogonchi et al., 2018) investigated the laminar 

convection heat transfer in a two-dimensional complex geometry enclosure filled with a 
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nanofluid. Takabi and Salehi (2014) numerically examined and compared water, Al2O3-

water nanofluid, and hybrid nanofluid (Al2O3/Cu-water) to investigate the augmentation 

of the laminar heat transfer performance of an enclosure with sinusoidally corrugated 

walls. Shirvan et al. (2017) found that the heat transfer rate increased by increasing the 

amplitude and wavelength of the corrugated walls to 0.15 and 1 respectively. Sheremet 

et al. (2015c) numerically studied the unsteady laminar natural convection in a two-

dimensional porous open wavy cavity saturated with a nanofluid using Buongiorno's 

mathematical model. The results show that the Nusselt and Sherwood numbers decreased 

with increasing the amplitude number. 

 Turbulent flow 

Few studies concerned turbulent convection in enclosures, which more accurately models 

the typical flow regime in many engineering equipment. Many numerical studies were 

restricted to two-dimensional enclosure models, due to the limitations of computer power 

up until the last decades. In addition, a fewer authors studied the three-dimensional 

convective heat transfer inside enclosures compared to the two-dimensional simulations. 

The development in the central processor unit technology and in computer memory 

motivated researchers to perform three-dimensional numerical simulations, using larger 

computational meshes. These turbulent convection models can benefit the design and 

analysis of industrial engineering equipment. (Farouk and Guceri, 1982, Markatos and 

Pericleous, 1984, Hiroyuki et al., 1985, Ince and Launder, 1989, Barakos et al., 1994, 

Sharif and Liu, 2003, Salat et al., 2004, Abramov and Smirnov, 2006, Dixit and Babu, 

2006, Kocutar et al., 2015, Zhang et al., 2014, Miroshnichenko et al., 2016, 

Miroshnichenko and Sheremet, 2018) studied the turbulent natural convection in a two-

dimensional enclosure entirely filled with a single-phase fluid, while a three-dimensional 

turbulent flow was studied by (Ozoe et al., 1986, Fusegi et al., 1991, Dol and Hanjalić, 

2001, Altaç and Uğurlubilek, 2016). Markatos and Pericleous (1984) proposed the first 

steady two-dimensional turbulence model simulation for the buoyant flow at a Rayleigh 

number up to 1016. Using the standard κ − 𝜖 turbulence model, Ozoe et al. (1986) 

numerically investigated the three-dimensional natural convection in a cubical enclosure 

at 𝑅𝑎 = 106 and 𝑅𝑎 = 107 and 𝑃𝑟 = 0.7. The enclosure was heated from below, one 

vertical side partially was cooled, and the rest of the walls were thermally insulated. A 

top view of the velocity vectors revealed a downward spiral flow near the sidewalls along 
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the cooled vertical wall. A weak vortex was also found along the sidewalls near the wall 

opposing the partially cooled one. In addition, they also found that the isotherm lines and 

velocity vectors for vertical cross sections normal to the cooled wall indicated three-

dimensional effects near the sidewalls. Altaç and Uğurlubilek (2016) compared the effect 

of using different turbulence models on the natural convection in two and three-

dimensional rectangular enclosure. The results revealed that three-dimensional laminar 

and RANS (Reynolds Averaged Navier-Stokes equations) models yield almost identical 

mean Nusselt number predictions up to 𝑅𝑎 = 1010, and these predictions were 

compatible with those from two-dimensional simulations. They also observed that at 

higher Rayleigh numbers, the flow became three-dimensional and the two-dimensional 

RANS models did not yielded accurate predictions. In addition, the three-dimensional 

models yield more accurate mean Nusselt numbers than that from the two-dimensional 

models. 

 

The turbulent natural convection in a two-dimensional porous enclosure saturated with a 

single-phase fluid was investigated by (de Lemos and Pedras, 2001, de Lemos and Braga, 

2003, Braga and de Lemos, 2004, Braga and de Lemos, 2009, De Lemos, 2012, Carvalho 

and de Lemos, 2013, Carvalho and de Lemos, 2014). Braga and de Lemos (2004) 

modelled two-dimensional natural convection in a differentially heated porous square 

enclosure saturated with a single-phase fluid using the κ − 𝜖 turbulent model. They 

concluded that when the parameters like the porosity, the Prandtl number, the thermal 

conductivity ratio (fluid/porous), and (𝑅𝑎𝑓 × 𝐷𝑎) value were kept fixed, a lower Darcy 

number caused to higher heat transfer rates.  

 

For clear enclosures (no porous medium), a study of turbulent natural convection in a 

square enclosure filled by a Copper/water nanofluid was presented by Sajjadi et al. 

(2013). Their results observed that the rate of heat transfer improved by increasing the 

nanoparticles volume fraction. This relation became more irregular at higher values of 

Rayleigh numbers. Mebrouk et al. (2016) numerically studied the turbulent natural 
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convection of nanofluids in a tall enclosure heated from below and cooled from the other 

walls. All values of the Rayleigh number, the heat transfer rates increased with increasing 

the nanoparticles volume fraction and it decreased according to the ordering of 

nanoparticles types Cu, CuO and Al2O3. However, there is no investigation related with 

the turbulent natural convection inside an enclosure entirely or partly filled with a porous 

medium saturated with a nanofluid. Accordingly, the present study will fill this 

knowledge gap. 

 

For clear enclosures (no porous medium), a numerical investigation of turbulent natural 

convection in an inclined square enclosure with a hot wavy wall using a single-phase 

fluid was presented by (Aounallah et al., 2007). The turbulent flow in wavy channels 

using a single-phase fluid was investigated by (Assato and de Lemos, 2009). The study 

of turbulent forced convection in a three-dimensional wavy channel using a single-phase 

fluid was presented by (Promthaisong et al., 2016), and using a nanofluid in (Yang et al., 

2015).  However, there is no study on the turbulent natural convection inside a wavy 

enclosure entirely or partly filled with a porous medium saturated with a single-phase 

fluid or nanofluid. 

Therefore, according to the above review of previous studies, to the best of the author’s 

knowledge, no investigation has yet been reported in the literature about turbulent heat 

transfer in a composite enclosure that combines the heat transfer controlling techniques 

of (a porous medium, a nanofluid and corrugated enclosure walls). Furthermore, a careful 

review of this literature reveals that there is a lack of information regarding the 

characteristics of the turbulent natural convection in a three-dimensional corrugated 

square enclosure partly filled with a porous medium saturated with a hybrid nanofluid.  

 Conclusions 

According to the above review of previous studies using different combinations of the 

heat transfer controlling techniques (the porous medium, the nanofluid and the corrugated 

wall of the enclosure), the convective heat transfer enhanced with increasing the Rayleigh 

number, the nanoparticles volume fraction, the thermal conductivity ratio of the porous 

medium and fluid as well as the increasing of the amplitude of the corrugated wall of the 
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enclosure more than the wave number of the corrugated wall. In addition, the heat transfer 

reduced with increasing the Darcy number and the thickness of the porous slab and it 

enhanced using the nanofluid with increasing the nanoparticles volume fraction 

compared to the single-phase fluid. Some results of literature presented that the porous 

slab can be enhance the heat transfer at a lower thickness.  

Based on the literature review survey, and to the best of the author’s knowledge, it can 

be summarized that the research of the laminar and turbulent convective heat transfer 

using various heat transfer controlling techniques has been actively pursued. Several 

studies that related to the present study used the non-uniform (linear and sinusoidal) 

thermal boundary condition. This was tested on one or two side walls of a clear or a 

porous enclosure filled by a single-phase fluid or nanofluid, or of an enclosure partly 

filled by a porous medium saturated with a nanofluid. No work has yet been done to study 

laminar natural convection inside an enclosure partly filled by either a horizontal or a 

vertical porous slab saturated with a nanofluid under the effect of the linear or sinusoidal 

heating on the left sidewall of the enclosure. In addition, no work has yet been done to 

investigate the laminar natural heat transfer inside an enclosure partly filled by a vertical 

porous layer saturated with a hybrid nanofluid using a local thermal non-equilibrium 

(LTNE) model and a discrete isoflux heat source size.  

Many studies were carried out to investigate the turbulent heat transfer inside a two-

dimensional conventional or complex enclosure filled by a porous medium saturated with 

a single-phase fluid and without porous medium saturated with a single-phase fluid or 

with a nanofluid. However, little attention has been paid to the study of turbulent natural 

convection inside an enclosure partly filled by a porous layer saturated with a nanofluid. 

No work has yet been done to study the turbulent natural convection inside a corrugated 

right-hand side wall of an enclosure partly filled by a porous layer saturated with a hybrid 

nanofluid. Thus, filling these knowledge gaps will form the main objectives of this thesis. 
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 Methodology 

 Introduction 

Computational Fluid Dynamics (CFD) tools are used in both the analysis and the design 

of flows, for example, in aerospace applications, turbo-machinery, weather forecasting, 

electronics cooling arrangements, and heat exchangers (2004). The development of 

computers technology has motivated researchers to use CFD to decrease the costs of 

experiment and optimize the design. Fluid dynamics in heat transport has a key role in 

many industrial applications, where it controls the heat transfer performance. The CFD 

simulations carried out in this study use on the finite element method (FEM) implemented 

in COMSOL Multiphasic 5.1a and 5.3a. 

The finite element method governing the heat transport in discretizes the partial 

differential equations complex geometries. This is due to the ability of this method to 

solve problems in a relatively easy manner (2015). Using the finite element techniques, 

the physical domain is discretized. Concernedly, the partial differential equations 

governing the physical domain are discretized. The state of the discretised domain is 

solved, and the solution analysed. This process is shown in Figure 3.1. In this thesis, 

based on the above features of the CFD finite element method technique, the COMSOL 

Multi-physics solver is used to solve the governing equations of the cases of laminar and 

turbulent natural convection heat transfer. The selected enclosure partly filled by a porous 

medium saturated with a nanofluid is tested under various of thermal boundary 

conditions, and dimensionless parameters, such as the Rayleigh number, the Darcy 

number, the porous layer thickness, the thermal conductivity (porous/nanofluid) ratio, the 

nanoparticles volume fraction, the wave number and amplitude of a sinusoidal thermal 

boundary condition and the wave number and amplitude of a corrugated wall. In the 

present study, the case studies of laminar heat transfer with various thermal boundary 

conditions are applied in a two-dimensional square enclosure, while the case study of the 

turbulent heat transfer is presented in a three-dimensional enclosure. 

This chapter includes a brief characterization of the domain and governing equations 

discretization, the numerical solver, the thermo-physical properties of the working fluid, 
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the governing equations and the code validation for both the laminar and turbulent heat 

transfer. 

 
Figure 3.1: Numerical model flow chart for heat transfer calculations adapted from (Roland et 

al., 2004). 

 The domain and governing equations discretization 

As shown in Figure 3.1, the finite element method requires the discretization of both the 

governing equations and of the domain of the system. In this method, the variables are 

represented by piece-wise distributions over the domain. The discretization of the finite 

element techniques will be discussed in the next sections. 
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The main idea of the domain discretization is to define a piece-wise approximation (Φ) 

of the flow state. This is carried out by discretizing the solution domain by small regions 

called elements. These elements are bounded by points, which are termed ‘nodal points’ 

and consequently, the assembly results are a grid or mesh. The type of element 

(interpolation function) defines the number of nodes that are employed, for example, the 

square and tetrahedron elements shown in Figure 3.2 use four nodes each. The square 

element in laminar flow and the tetrahedron element in turbulent flow are used in the 

present study to discretize the solution domains. The square and tetrahedron elements 

have four nodes, which are located at the vertices of the element. Each node stores one 

record of the local flow state (Φ) over the domain. The numerical accuracy of the results 

of the unknown variables depends strongly on the spacing among the nodes. In general, 

the approximate solution nears the exact solution of the flow governing equations as the 

mesh size approaches zero (Fletcher, 1988, Roland et al., 2004). 

 

 

 

(a) (b) 

Figure 3.2: Element shapes: (a) a square element, (b) a tetrahedron element, adapted from (Roland 

et al., 2004). 

 

The second step of the finite element procedure is the governing equation discretization, 

as mentioned in Figure 3.1. For a steady state, the variation of time is neglected, so the 

discretization is limited to the spatial terms of the governing equations. The Galerkin 

Finite Element Method (GFEM) is used to discretise the governing equations depending 

on the interpolating or shape function (𝐹𝑠𝑛) for the unknown variable. By dividing the 
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domain into several elements, the solution can be approximated over these elements by a 

suitable known function that is employed to represent the solution within the elements. 

These functions are called ‘shape functions’, ‘interpolating functions’, or ‘basis 

functions’ (𝑁)(Roland et al., 2004). The interpolating functions is named so because it 

determines the values of the unknown variables by piecewise interpolating to connect the 

local solution to the nodal values. These functions also known as ‘basis functions’ 

because it is regarded as forming or shaping the basis of the discretization method 

(Roland et al., 2004). The polynomial type function has been widely used as the low-

order piecewise polynomials interpolating functions over the elements of the solution 

region. This feature relatively reduces the non-zero terms which can be located to the 

main diagonal matrix of the solution equations. This is important because the matrix 

solution will be more economical (Fletcher, 1988). The unknown variable values Φ at 

any locations (𝑋, 𝑌, 𝑍) can be calculated using basis set {𝐹𝑠𝑛}𝑠𝑛=1
𝑆𝑁  evaluated at the 

location(𝑋, 𝑌, 𝑍). In order to obtain a discretized form of the numerical governing 

equations, the weak formulation is used. The governing equation is multiplied by a test 

function (Φ) that represents the unknown variables such as the velocity components (U, 

V, W), temperature 𝜃 in the domain as follows: 

𝑈 ≈ ∑ 𝑈𝑠𝑛
𝑆𝑁
𝑠𝑛=1 𝐹𝑠𝑛 (𝑋, 𝑌, 𝑍);  𝑉 ≈ ∑ 𝑉𝑠𝑛

𝑆𝑁
𝑠𝑛=1 𝐹𝑠𝑛 (𝑋, 𝑌, 𝑍), 

𝑊 ≈ ∑ 𝑊𝑠𝑛
𝑆𝑁
𝑠𝑛=1 𝐹𝑠𝑛 (𝑋, 𝑌, 𝑍) ;  𝜃 ≈ ∑ 𝜃𝑠𝑛

𝑆𝑁
𝑠𝑛=1 𝐹𝑠𝑛 (𝑋, 𝑌, 𝑍)  

(3.1) 

where 𝑈𝑠𝑛, 𝑉𝑠𝑛, 𝑊𝑠𝑛and 𝜃𝑠𝑛 are the nodal values of 𝑈, 𝑉, 𝑊 and 𝜃 at the 𝑠𝑛𝑡ℎ node. 

By substituting these expressions for 𝑈, 𝑉, 𝑊and 𝜃 into the governing equations of the 

nanofluid in the fluid layer and through the porous slab and integrating these equations 

and equating to zero. The approximate flow state ( 𝑈𝑠𝑛, 𝑉𝑠𝑛, 𝑊𝑠𝑛and 𝜃𝑠𝑛) is determined 

across the domain. The governing equations discretization and the shape function 

estimation are detailed in Appendix A. 

 Numerical solver 

An iterative approach was used to solve the dimensional and dimensionless governing 

equations with the boundary conditions in equation via the Galerkin finite element 

methodology, using the solver available in the Multiphysics COMSOL 5.1a and 5.3a 

software suite. The nonlinear residual equations were solved where the velocity 
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components, and temperature are subjected to the basis set as illustrated in (Basak et al., 

2007). 

The iteration is terminated when the dependent variables reach steady state and satisfy 

the criterion: 

∑ ∑ ∑ |𝛷𝑖,𝑗,𝑘
𝑟+1−𝛷𝑖,𝑗,𝑘

𝑟 |𝑜
𝑘=1

𝑛
𝑗=1

𝑚
𝑖=1

∑ ∑ ∑ |𝛷𝑖,𝑗,𝑘
𝑟+1|𝑜

𝑘=1
𝑛
𝑗=1

𝑚
𝑖=1

≤ 10−6                                                                                              (3.2) 

where 𝛷 represents the velocity components (U, V, W), temperature 𝜃, or the pressure 

(𝑃) in the domain. The subscripts 𝑖, 𝑗 and 𝑘 indicate the 𝑖𝑡ℎ, 𝑗𝑡ℎ and 𝑘𝑡ℎ grid in the 𝑥, 𝑦 

and 𝑧 directions, respectively. The superscript 𝑟 refers to the 𝑟𝑡ℎ iteration. 𝑚, 𝑛 and 𝑜 

represent the total number of nodes.  

 The governing equations of the laminar and turbulent heat transfer 

The convective heat transfer was simulated using a Navier-Stokes model for the 

nanofluid layer while the Darcy–Brinkmann model is used to solve the governing 

equations in the porous slab. SIMPLE (Semi-Implicit Method for Pressure Linked 

Equations) algorithm (Patankar, 1980) was used to couple the continuity and momentum 

equations. The base fluid (water) and nanoparticles are taken to form a homogeneous 

mixture in thermal equilibrium with no slip velocity between the nanoparticles and the 

base fluid. The flow is considered as steady and incompressible with constant physical 

properties except for the density, where the latter is assumed to vary with temperature 

according to the Boussinesq approximation. The buoyancy-driven flow induced by 

temperature differences is modelled by using the Boussinesq approximation. The 

Boussinesq approximation states that the density variation in a liquid is small and it can 

be neglected except when it is considered with the gravitational acceleration (g). The 

Boussinesq approximation can be expressed (Bagchi and Kulacki, 2010): 

 

𝜌𝑓 =  𝜌𝑜[1 − 𝐵𝑡ℎ(𝑇𝑓 − 𝑇𝑜)]                                                                                              (3.3) 

In the present study, the porosity value (𝜀) of the porous medium was proposed to be 

equal to one (Basak et al., 2007) and the effects of the permeability value (𝜆) in the Darcy 

number were adopted. In addition, the interface of the nanofluid-porous medium layers 
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is assumed permeable with matching values of tangential and normal velocities, shear 

and normal stresses and temperature in the case of (LTE) across the interface which can 

be written as: 

𝜇𝑃 = 𝜇𝑛𝑓 ,      𝜃𝑝 = 𝜃𝑛𝑓 ,     𝜓𝑝 = 𝜓𝑛𝑓 and  
𝜕𝜃𝑛𝑓

𝜕𝑋
= 𝐾𝑟

𝜕𝜃𝑝

𝜕𝑋
 (3.4) 

where 𝐾𝑟 is the ratio of the effective thermal conductivity of the porous medium to the 

thermal conductivity of the nanofluid. 

 

In this study, the local thermal equilibrium (LTE) and local thermal non-equilibrium 

(LTNE) models between the solid matrix of the porous medium and the nanofluid were 

investigated. According to the above assumptions, and depending on the two dimensional 

laminar flow governing equations given by (Hussain and Rahomey, 2018) and by using 

the local thermal equilibrium, the mass, momentum, and energy equations of the 

nanofluid-porous layers are given in Appendix B1( equations B1.1-B1.8) . In addition, 

the governing equations of the case study using the hybrid nanofluid-porous layers with 

non-equilibrium model relations, and the dimensionless parameters are illustrated in 

Appendix B2 (equations B2.1-B2.9).  

 

There are slightly differing equations in terms of variables relevant to the present study 

that have been analysed in some interesting published papers and the final forms of the 

turbulent flow equations considered here are given in detail in (Ozoe et al., 1986, de 

Lemos and Braga, 2003, Mebrouk et al., 2016, Fraikin et al., 1982, Altaç and 

Uğurlubilek, 2016). For the convective heat transfer calculations, several studies adopted 

on the standard κ − 𝜖 model in many engineering investigations. due to its robustness, 

economy and reasonable accuracy (Altaç and Uğurlubilek, 2016). Furthermore, the 

mathematical model of turbulent natural convection equations in a corrugated enclosure 

partly filled by a porous medium saturated with a hybrid nanofluid is presented for the 

first time. The considered turbulent flow is described mathematically by the Reynolds 

Averaged Navier-Stokes (RANS) equations in the hybrid nanofluid layer and Darcy-

Brinkmann model in the porous layer. Based on the mentioned published papers, the 
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dimensionless parameters and the dimensionless turbulent macroscopic governing 

equations are given in Appendix C. 

 Thermo-physical properties 

The thermo-physical properties of the pure and nanoparticles that are used to generate the 

nanofluid and hybrid nanofluid cases are given in Table 3.1.  

Table 3.1: Thermo-physical properties of water, copper, and alumina (Gorla et al., 2017). 

Property Water Copper (Cu) Alumina (Al2O3) 

𝜌 (kg/m3) 997.1 8933 3970 

𝐶𝑝 (J/kg.K) 4179 385 765 

𝑘 (W/m.K) 0.613 401 40 

𝛽 (1/K) 21× 10−5 1.67× 10−5  0.85 × 10−5 

The governing equations are combined with the adopted relations that prescribe the 

physical properties of the nanofluid, which depend on the nanoparticles’ volume fraction, 

𝜙, (Nasrin and Parvin, 2012) as shown in Appendix B1 ( equations B1.11-B1.16). The 

equations of the hybrid nanofluid thermo-physical properties are illustrated in Appendix 

B2 (equations B2.12-B2.16). 

 Code validations 

To build the confidence in the results from the present solver, validation tests were 

performed with previously published studies for different cases. The results from the 

present solver were compared with published results of laminar and turbulent heat 

transfer. 

 

In this section, the validation of the numerical results for the laminar heat transfer is 

presented for seven cases.  

Firstly, the present study is validated by comparing its predictions with the results by 

Chamkha and Ismael (2014). The validation test case domain is that of a two-dimensional 

laminar flow for steady natural convection inside an enclosure filled partly with nanofluid 

and partly with a vertical porous medium slab saturated with the same nanofluid, as 
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shown in Figure 3.3. The vertical walls of the enclosure were isothermal while the 

horizontal walls were adiabatic. The results of the comparison of the stream function and 

isotherms are investigated for 𝑅𝑎 = 105, 𝐷𝑎 = 10-5, aspect ratio = 1 and a porous layer 

thickness equal to 0.3. The nanofluid is composed of water as a base fluid and copper 

nanoparticles at a volume fraction 𝜙 of 0.05. 

  

 

 

  
 (a) Chamkha and Ismael (2014) 

  

 

 

(b) Present study 

Figure 3.3: Streamlines (a) and isotherms (b) of the present study are in agreement with those of 

the benchmark problem of Chamkha and Ismael (2014). 

Secondly, Figure 3.4 shows a comparison between the results of this study and 

corresponding ones Sathiyamoorthy et al. (2007b). The enclosure was entirely filled with 

a porous medium saturated by air with linearly and uniformly heated left and bottom 

walls, respectively, whilst the right wall was uniformly cold, and the upper wall was 

adiabatic. The selected parameters of the comparison were 𝑅𝑎 = 106, 𝐷𝑎 = 10-3 and 𝑃𝑟 = 

0.7. The Brinkman-extended Darcy model was used to solve the equations governing the 

fluid flow in the porous medium for each of the selected comparisons. The results can be 
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seen to be in good agreement with the published reference data and give further 

confidence as to the accuracy of the currently selected FEM solver. 

  

(a) Sathiyamoorthy et al. (2007b)  

  

(b) Present study 

Streamlines Isotherms 

Figure 3.4: Streamlines and isotherms of the present study are in agreement with those of the 

benchmark problem of Sathiyamoorthy et al. (2007b). 

Thirdly, to increase confidence in the results produced by this solver, Figure 3.5 shows a 

further validation with the numerical and experimental results that were presented by 

Beckermann et al. (1987) for the natural convection inside an enclosure partly filled with 

a porous slab saturated with a single-phase fluid. The validation is performed with the 

Brinkman-Forchheimer with Darcy extended model for experiment 2 by using the water 

as the working fluid. The difference between the numerical and the experimental results 

is 7% and this is attributed to the inaccuracies in determining of the exact position of the 

thermocouple probe and to the non-uniformities of the porosity at the walls.   
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Figure 3.5: Validation of numerical and experimental results presented by Beckermann et al. 

(1987) with the present result. 

In the fourth validation study, the domain is that of a two-dimensional laminar flow for 

steady natural convection inside an enclosure filled entirely with a porous medium 

saturated with a single-phase fluid (𝑃𝑟 = 0.71). Sinusoidal heating was applied to the left 

and bottom walls of the enclosure and a uniformly cold temperature was imposed on the 

  

(a) Basak et al. (2007) 

  

(b) Present study 

Streamlines Isotherms 

Figure 3.6: Streamlines and isotherms of the present study are in agreement with those of the 

benchmark problem of Basak et al. (2007).  
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vertical right wall, whereas the upper wall was modelled as adiabatic. The simulation is 

run at 𝑅𝑎 = 106 and 𝐷𝑎 = 10-3. Figure 3.6 compares the predictions by Basak et al. (2007) 

and this study. 

Fifthly, the configuration of a bottom heat source causing laminar natural convection 

inside an enclosure filled with a copper nanofluid is validated against benchmark data by 

Aminossadati and Ghasemi (2009) at 𝑅𝑎= 105, B = 0.4, D = 0.5 and 𝜙 = 0.1, in Figure 

3.7. The streamlines and isotherms of the present study are in agreement with those of 

the benchmark problem of Aminossadati and Ghasemi (2009). Table 3.2 compares the 

average Nusselt number on the heat source wall for different Rayleigh numbers using at 

𝐵 = 0.4, 𝐷 = 0.5 and 𝜙 = 0.1. An acceptably small difference was found between the 

reference and the present, where the difference reduced with increasing 𝑅𝑎. 

 

  

Streamlines ( |Ψ𝑚𝑖𝑛| = 2.988) isotherms 

(a) Aminossadati and Ghasemi (2009) 

  
 Streamlines (|Ψ𝑚𝑖𝑛| = 2.930) Isotherms 

(b) Present study 

Figure 3.7: Streamlines and isotherms of the present study are in agreement with those of the 

benchmark problem of Aminossadati and Ghasemi (2009).  
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Table 3.2: Comparison of the average Nusselt number values on the bottom heat source wall of 

the enclosure between the present model and the results by (Aminossadati and Ghasemi, 2009). 

𝑅𝑎 Aminossadati and Ghasemi (2009) Present study Deviation % 

103 5.451 5.566 2.11 

104 5.474 5.588 2.08 

105 7.121 7.218 1.36 

106 13.864 14.018 1.11 

 

 
 

Figure 3.8: Temperature profile at vertical mid-plane (𝑋 = 0.5). Comparison with Baytas (2003). 

The symbols correspond to results by Baytas (2003) and the lines correspond to the present study. 

A sixth configuration was considered for validating the present model. This is the 

configuration reported by Baytas (2003). It is a model of the natural convection inside a 

porous enclosure with heat generated using the thermal non-equilibrium model. The 

temperature profile was predicted by the Brinkman-Darcy-Forchheimer model at 𝑅𝑎 =

107, 𝐷𝑎 =  10−2, 𝜀 = 0.4, 𝑃𝑟 = 7, 𝐹𝑜= 5.648, 𝛾 = 0.1, 𝐻= 1000 and 𝑋 = 0.5. Figure 3.8 

shows the midplane temperature predicted by the present model versus the reference 

prediction by Baytas (2003). This Figure shows the temperature difference between the 

porous medium phase and the fluid phase due to the thermal non-equilibrium between 

them. The results of the present study are in agreement with those of the benchmark 

problem of Baytas (2003). 
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To validate the hybrid nanofluid model, Figure 3.9 compares the present model 

predictions against results by Gorla et al. (2017) for a porous enclosure saturated with a 

hybrid nanofluid that was differentially heated and cooled using two heat sources and 

sinks, respectively. The streamlines and isotherms are compared at 𝑅𝑎 =104, 𝐷𝑎 =10−3, 

Hartman number = 0, 𝐷 = 𝐵 = 0.5 and 𝜙 = 0.05. The comparison of the results showed 

good agreement between our results and those reported in (Gorla et al., 2017), giving 

confidence as to the accuracy of the finite element model. 

 

  
(a) Gorla et al. (2017) 

  
(b) Present study 

 Streamlines  Isotherms 
 

 

Figure 3.9: Streamlines and isotherms of the present study are in agreement with those from Gorla 

et al. (2017)  
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The validation of the numerical model for turbulent heat transfer predictions is presented 

in four test cases. In the first test case, the turbulent natural convection is modelled inside 

an enclosure entirely filled with a single-phase fluid (𝑃𝑟 = 0.71) and differentially heated 

at the vertical side walls at 𝑅𝑎 = 109. The predictions from the present model are 

compared to predictions by Kuznetsov and Sheremet (2010) in Figure 3.10. The 

streamline and isotherm contours of the present study are in good agreement with those 

from (Kuznetsov and Sheremet, 2010). In the second test case, turbulent natural 

convection is modelled inside a differentially heated enclosure saturated with a single-

phase fluid (𝑃𝑟 = 0.71) for different values of the Rayleigh number as, shown in Table 

3.3. This table shows that the spread among the predicted values of Nusselt number 

increases with increasing 𝑅𝑎. This might be attributed to the insufficient number of the 

selected grid element during the last decades. 

  

(a) Kuznetsov and Sheremet (2010) 

  

(b) Present study 

Streamlines Isotherms 

Figure 3.10 : Streamlines and isotherms of the present study are in agreement with those of the 

benchmark problem of Kuznetsov and Sheremet (2010).  
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Table 3.3: Comparison of Nusselt numbers predicted in a two-dimensional square enclosure with 

the literature turbulent numerical convection. 

𝑅𝑎 108 109 1010 1011 

(Kuznetsov and Sheremet, 2010) 33.41 54.49 - - 

(Sharma et al., 2007) 30.97 58.33 130.77 325.9 

(Dixit and Babu, 2006) 30.506 57.350 103.66 189 

(Henkes et al., 1991) 32.5 47 101.25 218.1 

(ElSherbiny et al., 1982) 28.78 62 133.57 218.1 

(Altaç and Uğurlubilek, 2016) 31.34 54.95 103.9 199.9 

Present results 30.65 53.43 101.45 197.86 

Standard deviation 1.47 4.623 14.378 49.126 

Difference 0.601 2.197 13.18 32.34 

 

The third validation, as shown in Table 3.4 was completed for the turbulent natural 

convection inside a differentially heated porous enclosure saturated with a single-phase 

fluid (air) for different values of Rayleigh number, at , at 𝐷𝑎 = 10−3, 𝜀 = 0.8 and 𝐾𝑟 = 1.  

Table 3.4: Comparison of Nusselt numbers predicted in a two-dimensional square porous 

enclosure with the literature turbulent numerical convection. 

𝑅𝑎 108 109 1010 1011 

(Carvalho and de Lemos, 2013) 1.089 3.106 13.271 41.792 

(Braga and de Lemos, 2004) 1.089 3.102 13.032 40.614 

(Carvalho and de Lemos, 2014) 1.089 3.106 13.315 41.717 

Present results 1.097 3.11 13.319 40.81 

Standard deviation 0 1.885×10-3 0.124 0.538 

Difference 8×10-3 5.333×10-3 0.113 0.564 

Finally, the validation of turbulent natural convection inside a three-dimensional 

enclosure entirely filled with a single-phase fluid (𝑃𝑟 = 0.71) was compared with the 

results of Altaç and Uğurlubilek (2016) in Table 3.5. The results in Table 3.4 and Table 

3.5 show an acceptably small difference and a good agreement between the references 

and the present. This indicates the confidence of using the currently selected FEM solver. 
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Table 3.5: Comparison of Nusselt numbers predicted in a three-dimensional square enclosure 

with [132] turbulent numerical convection. 

𝑅𝑎 108 109 1010 1011 

(Altaç and Uğurlubilek, 2016) 30.23 54.53 103.31 196.86 

Present results 29.47 53.21 100.86 194.94 

Difference (%)  2.51 2.42 2.37 0.97 

 Conclusions  

The simulation of the convective heat transfer inside a physical domain can be analysis 

and design using the Computational Fluid Dynamics (CFD). CFD is used to decrease the 

costs of experiment and optimize the design in many industrial applications. In this study, 

the CFD simulations carried out using the Galerkin finite element method (GFEM) 

implemented in COMSOL Multiphasic 5.1a and 5.3a. 

This chapter observed how the solution of the flow and heat transfer inside an enclosure 

is simulated using GFEM, where the physical domain was discretized. Concernedly, the 

partial differential equations governing the physical domain for the nanofluid and porous 

layers were discretized. The state of the discretised domain was solved, and the solution 

analysed. The laminar and turbulent governing equations for the nanofluid and porous 

layers were presented. The mathematical model of turbulent natural convection equations 

is presented for the first time. The thermo-physical properties of the working fluid that is 

used in the present study were addressed. In addition, various validations have been done 

to have the confidence in the obtained results from the present solver with the previous 

results in the literature. The validation results agreed with those of the benchmark 

problems for different literature in the laminar and the turbulent heat transfers. 
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 Natural Convection within an Enclosure Filled 

with Composite Nanofluid-Porous Layers with a Linearly 

Heated Left Wall 

 Motivation and introduction 

There is a knowledge gap concerning the effect of a linear thermal boundary condition 

on the laminar natural convection inside an enclosure partly filled with a porous medium 

saturated with a nanofluid. In other words, most of the previous literature focused on the 

effect of uniform heating on the laminar convection inside a two-dimensional enclosure 

entirely or partly filled with a porous medium saturated with a single-phase fluid or a 

nanofluid. The linear thermal boundary condition may cause a problem in the thermal 

management in the system. The governing equations are coupled together linked to the 

buoyancy force effect. In addition, the alignment of the porous slab in a vertical or 

horizontal direction with the selected boundary condition may play an important role on 

the convective heat transfer. Therefore, it is necessary to investigate the effects of the 

linear thermal boundary condition and the porous medium alignment to predict the 

thermal control inside the enclosure. The linear thermal boundary condition produces a 

different trend of the flow and heat transfer inside an enclosure partly filled by a porous 

slab compared to the enclosures that were used in the previous literature. A new 

simulation results are presented to develop the convective heat transfer inside an 

enclosure partly filled by a porous slab rather than that of using a porous enclosure under 

the linear thermal boundary condition. This investigation of the present study may be 

interested to the designer to predict the convective heat transfer in the next modern 

industry technology. 

Therefore, this chapter investigates the effects of linear heating on the laminar convective 

heat transfer inside a two-dimensional enclosure partly filled by a vertical or a horizontal 

porous slab saturated by nanofluid. Two cases, which use the vertical and horizontal 

directions for the porous slab are considered. In both cases, the left vertical sidewall is 

linearly heated, whereas the right vertical sidewall is isothermally cooled. The horizontal 

walls are assumed to be thermally insulated. A local thermal equilibrium (LTE) model 

between the solid matrix of the porous medium and the nanofluid is assumed. The ranges 

of the simulation parameters in the present study are: the Rayleigh number (𝑅𝑎), 103 ≤ 
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𝑅𝑎 ≤ 107, the Darcy number (𝐷𝑎), 10−7 ≤  𝐷𝑎 ≤ 1, the porous layer thickness (𝑆), 0.1 

≤ 𝑆 ≤ 0.9, the thermal conductivity ratio of porous/nanofluid layers (𝐾𝑟), 0.1 ≤  𝐾𝑟 ≤ 

100, and the nanoparticle volume fraction (𝜙), 0 ≤ 𝜙 ≤ 0.2. This chapter includes three 

parts, namely the numerical model, which includes the domain physical model, the 

boundary conditions, the numerical procedure, and the grid independence test, the 

numerical results and discussions extracted from this model, and the conclusions. 

 A model problem 

 

Laminar natural convection is modelled in a two-dimensional square enclosure with 

length 𝐿, partially filled by a porous slab saturated by nanofluid. Two slab orientations 

are considered (vertical and horizontal) in two cases, as shown schematically in Figure 

4.1. This figure illustrates case 1, in which the slab is vertical and on the left side of the 

enclosure, while in case 2, the porous slab horizontal and at the bottom of the enclosure. 

The porous slab is saturated with a nanofluid and the remainder of the enclosure is filled 

by the same nanofluid. The porous and nanofluid layers are simulated as having 

thicknesses 𝑆 and 𝐿 − 𝑆, respectively. In both cases, the left vertical wall is linearly 

heated, while the right vertical wall is isothermally cooled; the top and bottom walls are 

thermally insulated. The differentially heated on the vertical walls causes to develop the  

 
Figure 4.1: Vertical (case 1) and horizontal (case 2) porous slabs inside a nanofluid-filled two-

dimensional enclosure. 
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to occur that the density gradient (due to temperature gradient) is horizontal and the 

gravity vector acts perpendicularly, where the circulation behaviour inside the enclosure 

depends on theses vectors orientation. The interface between the nanofluid layer and 

porous layer is permeable with no-slip condition, while all outer boundaries are 

impermeable and with no-slip condition. The equations governing this set up are listed in 

Appendix B1 (equations B1.1-B1.8). The nanofluid is a water-based fluid containing Cu 

nanoparticles, with the thermal properties given in Table 3.1. 

 

The boundary conditions for each case (vertical and horizontal orientation of the porous 

medium –nanofluid layers) are: 

At the left hot wall     𝑈 = 0, 𝑉 = 0,  𝜃 = 1 − 𝑌 (4.1) 

At the right cold wall   𝑈 = 0, 𝑉 = 0,  𝜃 = 0                                                             (4.2) 

At the top and bottom insulated walls (adiabatic)   𝑈 = 0, 𝑉 = 0,  
𝜕𝜃

𝜕𝑌
= 0 (4.3) 

where 

𝑋 =
𝑥

𝐿
, 𝑌 =

𝑦

𝐿
 , 𝑈 =

𝑢𝐿

(𝛼)𝑏𝑓
 , 𝑉 =

𝑣𝐿

(𝛼)𝑏𝑓
 , 𝜃 =

𝑇−𝑇𝑐

𝑇ℎ−𝑇𝑐
   

(4.4) 

 

In this model, the physical domain was discretised by quadrilateral element. The 

computational mesh was bilinearly stretched in 𝑋 and 𝑌. Mesh points close to the 

enclosure perimeter and to the interface between the porous and fluid layers were s  

  
(a) Case 1 (b) Case 2 

 

 
Figure 4.2: Computational mesh of the physical domain for (a) Case 1, (b) Case 2, and (c) Refined 

mesh detail.  
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Figure 4.3: Computational mesh dependence of the average Nusselt number. 

patially refined, as shown in Figure 4.2. Grid independent tests were performed with the 

grid sizes of 6400, 10,000, 14,400, 16,900, 19,600 and 25,600 to determine the mesh 

sensitivity of the predictions. 

Figure 4.3 shows the calculated average Nusselt number for different computational grid 

sizes for an enclosure partly filled with nanofluid and partly filled with a porous layer 

saturated with the same nanofluid for cases 1 and 2, where 𝑅𝑎 = 107, 𝐷𝑎 = 10−3, 𝐾𝑟 = 1, 

𝜙 = 0.1 and 𝑆 = 0.3. A grid size of 16,900 was used in this chapter as this represented 

the best compromise in terms of both the accuracy and computational time. 

 Results and discussion   

 

4.3.1.1 Vertical porous-nanofluid layers (case 1)  

Figure 4.4 shows the streamlines (upper row) and isotherms (lower row) for different 

values of the dimensionless parameters 𝑆, 𝑅𝑎, 𝐷𝑎, and 𝐾𝑟 when the porous and nanofluid 

layers lie in a vertical direction (case 1). Figure 4.4(a)-(c) show the effect of the porous 

layer thickness (𝑆) on the flow behaviour and temperature distribution inside the 

enclosure for 𝑅𝑎 = 106, 𝐷𝑎 = 10−3, and 𝐾𝑟 = 1. Due to the application of linear heating 

to the left wall and uniform cooling on the right wall, the nanofluid inside the porous 

layer rises along the left sidewall and flows down along the cooled right wall in the 

nanofluid layer, forming two circulations. One of these, the main vortex, covers most of 

the enclosure by a clockwise direction while a secondary smaller circulation appears at 
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the top left corner of the enclosure and moves in an anticlockwise direction. For all values 

of 𝑆, the addition of 10% of copper nanoparticles to the single-phase fluid (water) causes 

the streamlines’ strength for the main cell to be stronger than of the single-phase fluid. 

This is because the nanofluid has the ability to absorb more thermal energy than the 

single-phase fluid. This gives an indication that the addition of nanoparticles to the single-

phase fluid increases in the heat convection by changing the mixture properties such as 

the density, viscosity, and thermal conductivity of the nanofluid, as shown in equations 

(B.11, B.12.) and (B.16). It is interesting to note that, as the value of 𝑆 increases, the 

centre of the main cell moves from a location close to the interface line towards the right 

cold wall. Another interesting point that may be noted in Figure 4.4(a)-(c) is that the 

stream through for the porous layer with low thicknesses is stronger than through a 

thicker porous layer. Adding the nanoparticles changes more the streaming in the thinner 

porous slab. This can be clearly seen from the stream function values, |𝛹𝑚𝑖𝑛|, where for 

𝑆 = 0.1, 0.3 and 0.5, the percentage gain of |Ψ𝑚𝑖𝑛| values are 13%, 7.9% and 6.7%, 

respectively. The effects of increasing the porous layer thickness on the reduction of 

circulation strength are attributed to the hydrodynamic resistance provided by the porous 

layer.  

The isotherm lines are parallel to the cold right-hand wall, whereas they turn away from 

the left-hand heated wall. The temperature contour with 𝜃 = 0.31 is pushed towards the 

upper left corner of the enclosure, and the isotherms gradually became denser near the 

left wall at 𝑆 = 0.1, and more so at 𝑆 values of 0.3 and 0.5. The vertical pattern of the 

isotherm lines within the porous layer indicates the dominance of conduction as the 

mechanism of heat transfer, whereas the horizontal isotherm pattern indicates convective 

heat transfer within the nanofluid layer. It is interesting to note that, the spot produced by 

the isotherm contours when 𝜃 ≥ 0.31 in the upper part of the enclosure decreased with 

increasing porous layer thickness. Therefore, this gives an indication that increasing the 

porous layer thickness led to a decrease in the rate of heat transfer. 

The effects of the flow parameter 𝑅𝑎 on the streamlines and on the isotherms at 𝐷𝑎 

= 10−3, 𝑆 = 0.3 and 𝐾𝑟 = 1 are shown in Figure 4.4(d)-(f). The streamlines appeared 

denser at higher values of 𝑅𝑎, indicating a stronger circulation of the main cell. At 𝑅𝑎 

= 104, as shown in Figure 4.4, the streamlines indicate that the porous layer has a resistive   
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(d) 𝑅𝑎 = 104 (e) 𝑅𝑎 = 105 (f) 𝑅𝑎 = 107 

Figure 4.4: Streamlines (upper row) and isotherms (lower row) for case 1 with 𝜙 = 0 (sold lines) 

and 𝜙 = 0.1 (dashed lines) at different dimensionless parameters, (a-c) 𝑆 effect when 𝑅𝑎 = 106, 

𝐷𝑎 = 10-3, and Kr = 1, (d-f) 𝑅𝑎 effect when 𝐷𝑎 =10-3, 𝑆 = 0.3 and 𝐾𝑟= 1.  
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effect on the flow that moves from the nanofluid layer through the porous layer, which 

results in low flow penetration through the porous layer. The intensity of the secondary 

circulation is very low compared to the primary circulation, which filled most of the 

enclosure area. It is interesting to note that, adding a 10% value ratio of nanoparticles to 

the water leads to a reduction in the circulation strength due to increased viscous forces 

opposing the buoyancy force at any specified value of 𝑅𝑎. In contrast, at higher Rayleigh 

numbers, as shown in Figure 4.4(e) and (f), the intensity of the secondary cell increases, 

showing greater elongation, pushing the primary cell towards the lower part of the 

enclosure to a noticeable extent, and with high penetration in the porous layer. The higher 

values of the Rayleigh number strengthen the natural convection due to an increase in 

buoyancy inside the enclosure, which leads to a reduction of the temperature of the heat 

source. The isotherms of Figure 4.4(d)-(f) show an increase in convective heat transfer 

with increasing Rayleigh number, especially for the nanofluid layer with denser 

isotherms. In addition, a temperature hot spot at 𝜃 ≥ 0.31 occurs in the upper part of the 

enclosure. This indicates that the diffusion of heat from the left heated source increases 

due to the strong circulation strength within the main cell.  

Figure 4.5(a)-(c) report the variation of the streamlines and isotherms with dimensionless 

permeability (Darcy number) for 𝑅𝑎 = 106, 𝑆 = 0.3, and 𝐾𝑟 = 1. These figures show that 

the penetration of nanofluid into the porous layer depends on the Darcy number value. 

At 𝐷𝑎 = 10−5, as shown in Figure 4.5(a), the main cell is confined to the region around 

the nanofluid layer, with low penetration of the fluid through the porous layer. Figure 

4.5(b) and (c) shows that increasing 𝐷𝑎 to  10−2and 10−1, respectively, results in an 

increase in the intensity of the main cell accompanied by the appearance of a weak 

secondary cell at the upper left corner of the enclosure. The main cell centre at high values 

of 𝐷𝑎 moves from the nanofluid layer towards the porous layer close to the left heated 

wall, whilst it is fully confined to the region of the nanofluid layer for 𝐷𝑎 = 10−3, as 

shown in Figure 4.4(b). It is interesting to note that, the streamlines at the low Darcy 

number are more affected by the addition of 10% of nanoparticles to the single-phase 

fluid than at the higher 𝐷𝑎 values. This is shown by the |Ψ𝑚𝑖𝑛| values, where for 𝐷𝑎 

= 10−5,  10−2and 10−1, the percentage variations in |Ψ𝑚𝑖𝑛| are 25%, 10.4% and 11%, 

respectively. The isotherm figures show how the Darcy number can be used as a 

controlling parameter to translate the convection from the nanofluid layer to the porous   
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(d) 𝐾𝑟 = 0.1 (e) 𝐾𝑟 = 5 (f) 𝐾𝑟 = 100 

Figure 4.5: Streamlines (upper row) and isotherms (lower row) for case 1 with 𝜙 = 0 (sold lines) 

and 𝜙 = 0.1 (dashed lines) at different dimensionless parameters, (a-c) 𝐷𝑎 effect when 𝑅𝑎 =106, 

𝑆 = 0.3 and Kr = 1, and (d-f) Kr effect when 𝑅𝑎 =106, 𝐷𝑎 =10-3 and 𝑆 = 0.3.  
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layer. The high racking density of the isotherm lines appearing close to the vertical walls 

at the highest magnitude of 𝐷𝑎 is indicative of greater convective heat transfer within the 

enclosure. This causes the temperature of the heat source to be reduced with an increased 

permeability of the porous layer matrix. 

The effect of thermal conductivity ratio, 𝐾𝑟, on the streamlines and isotherms for 𝑅𝑎 

= 106, 𝐷𝑎 =  10−3 and 𝑆 = 0.3 is shown in Figure 4.5(d)-(f). The streamlines show the 

appearance of two recirculation cells when 𝐾𝑟 = 0.1, as shown in Figure 4.5(d). The centre 

of the clockwise primary cell is located adjacent to the right cold wall with steeper 

streamlines on the left-hand heated wall and on the right-hand cooled wall while a small 

weaker anticlockwise-circulating secondary cell is located at the upper left corner of the 

enclosure. At 𝐾𝑟 = 5 (see Figure 4.5(e)), the extrema stream function values of the main 

clockwise and the upper left counter-clockwise cells are higher than that at 𝐾𝑟 = 0.1. The 

primary cell is also compressed by the secondary cell towards the lower right corner of 

the enclosure. The centres of the primary and of the secondary cells move away from the 

left-hand heated source wall towards the right-hand cold wall, resulting in a reduced 

penetration of the nanofluid flow into the porous layer. This pattern increases up to 

𝐾𝑟 =100, resulting in a lower racking density of the streamlines in the region of the left-

hand heated wall. This change in the circulation strength is attributed to an increased 

thermal conductivity ratio (porous/nanofluid). At higher 𝐾𝑟, the increasing strength and 

cell size of the upper, anticlockwise-circulating secondary cell causes the hot nanofluid 

to return the heat towards the upper part of the heat source, which leads to a decrease in 

the overall heat transfer. However, at lower values of 𝐾𝑟, a clockwise convection heat 

transfer dominates the enclosure. The isotherm of Figure 4.5(d)-(f) show that, the 

convection is transmitted from the nanofluid layer to the porous layer at the lower thermal 

conductivity ratio of 𝐾𝑟= 0.1, whilst the isotherm lines are more packed at the left-hand 

heated wall at higher values of 𝐾𝑟, signifying conductive heat transfer at this location. 

4.3.1.2  Horizontal porous-nanofluid layers (case 2)    

Figure 4.6 shows the streamlines (upper row) and isotherms (lower row) for different 

effective dimensionless parameters when the nanofluid layer is overlying the porous 

layer. Figure 4.6(a)-(c) shows the variation of flow and isotherm patterns inside the 

enclosure with varying porous layer thickness, 𝑆, as 𝑅𝑎 = 106, 𝐷𝑎 = 10−3, and 𝐾𝑟 = 1.   
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(d) 𝑅𝑎 = 104 (e) 𝑅𝑎 = 105 (f) 𝑅𝑎 = 107 

Figure 4.6: Streamlines (upper row) and isotherms (lower row) for case 2 with 𝜙 = 0 (sold lines) 

and 𝜙 = 0.1 (dashed lines) at different dimensionless parameters, (a-c) 𝑆 effect when 𝑅𝑎 = 106, 

𝐷𝑎 =10-3, and Kr = 1, (d-f) 𝑅𝑎 effect when 𝐷𝑎 =10-3,  𝑆 = 0.3 and Kr = 1.  
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As in the previous case, due to the linear thermal boundary conditions applied to the left-

hand sidewall of the enclosure, the nanofluid inside both layers rises along the left-hand 

heated wall and flows down along the cooled right-hand wall, causing two circulating 

regions. The primary circulation covers most of the enclosure, rotating in a clockwise 

direction, while the secondary circulation turns in the anticlockwise direction and is 

confined to the upper region of the left-hand heated wall. Figure 4.6(a) shows a low 

penetration of the streamlines into the porous layer as compared with case 1, which shows 

the effect of the porous slab orientation. It is interesting to note that, the centre of the 

main cell remains close to the left-hand heated wall while the secondary cell tends to 

compress the main cell towards the porous layer, which is in contrast with case 1 where 

the upper circulation tends to push the main cell towards the right-hand cooled 

wall. |Ψ𝑚𝑖𝑛| shows that the intensity of circulations, in this case, is stronger than for case 

1 for different thicknesses of the porous layer. However, the addition 10% of 

nanoparticles to the single-phase fluid by volume leads to a lower increase in the 

percentage of |Ψ𝑚𝑖𝑛| values compared to case 1, except at 𝑆 = 0.3, where for 𝑆 = 0.1, 0.3 

and 0.5, the gain in percentages of |Ψ𝑚𝑖𝑛| were 10.8%, 8.3% and 5.5%, respectively. 

Although the increases in percentage were lower in this case, it is expected that the overall 

higher intensity of the circulation might actually increase the convective heat transfer. 

The isotherms in the vicinity of the heat source, in this case, is denser than in case 1. The 

temperature contour with 𝜃 ≥ 0.31 is also pushed towards the top left corner of the 

enclosure with a relatively lower thickness of the thermal boundary (steeper lines) 

compared to case 1, and this thickness increases with increasing thickness of the porous 

layer, especially for the nanofluid contour. 

Figure 4.6(d)-(f) shows the effect of the Rayleigh number on the streamlines and 

isotherms for case 2 with 𝐷𝑎 = 10-3, 𝑆 = 0.3 and 𝐾𝑟 = 1. The streamlines in the upper 

panel of Figure 4.6(d) depicts the flow inside the enclosure at 𝑅𝑎 = 104. It is clear that 

the porous layer has an effect on the transport flow within the porous layer, with low 

penetration of the nanofluid. The intensity of the secondary cell is very low as compared 

with the main cell strength. The intensity of the main circulation is also low, with a 

horizontal elongation in a semi-circular shape parallel to the interface between the porous 

and nanofluid layers when compared with case 1 (see Figure 4.4 (d). A significant change 

in the flow pattern inside the enclosure occurs by increasing the Rayleigh number to 𝑅𝑎 
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=  105 and then to 𝑅𝑎 = 107, as shown in Figure 4.6(e) and (f), respectively. The 

secondary cell circulation at the upper left corner strengthens and extends away from the 

corner. The primary cell has relatively more intensity than in case 1 (see Figure 4.4(f)). 

The secondary cell tends to compress the main cell, leading to the generation of two poles 

whose centres are closed to the cooled right-hand and hot left-hand walls. The isotherms 

of Figure 4.6(d)-(f) shows that the thickness of the thermal boundary layer is less in case 

2 as compared with case 1 due to the augmentation of circulation intensity by the 

formation of two poles close to the left and right vertical walls. 

Figure 4.7(a)-(c) shows the streamlines (upper row) and the isotherms (lower row) at 𝑅𝑎 

= 106, 𝑆 = 0.3 and 𝐾𝑟 = 1 for different values of 𝐷𝑎. It can be observed from the 

streamlines that the nanofluid flow circulation is strongly dependent on the Darcy 

number. At 𝐷𝑎 = 10−5, as shown in Figure 4.7(a), two cells are observed in the enclosure. 

One is the strong main cell with a clockwise flow circulation, and which is dominated 

across the majority of the enclosure, while the weak anti-clockwise flow circulation 

appears at the upper left corner of the enclosure with low penetration into the porous 

layer. It is interesting to note that, the streamlines at 𝐷𝑎 = 10−5 for this case have a higher 

value of |Ψ𝑚𝑖𝑛| = 20.5 for the nanofluid than |Ψ𝑚𝑖𝑛| = 18.7 for the single-phase fluid as 

compared to case 1. The streamlines behave in a different manner than in case 1, as seen 

in Figure 4.5(a). As 𝐷𝑎 increases, the penetration of the nanofluid flow increases. This is 

accompanied by higher circulation intensities. The addition of 10% Cu nanoparticles by 

volume to the single-phase fluid result in percentage gains in |Ψ𝑚𝑖𝑛| for 𝐷𝑎 = 10−5,  10−2 

and  10−1 of 9.6%, 11.37% and 11.53%, respectively. Although the percentage gain for 

the case at 𝐷𝑎 =  10−5 is lower than in case 1, it seems that a higher temperature gradient 

forms within the thermal boundary layer in the nanofluid layer along the left wall as 

compared to the vertical left wall in case 1. Another comparison between these cases is 

that the isotherm 𝜃 ≥ 0.31 for 𝐷𝑎 =  10−2 and  10−1 has more spots in the upper part of 

the enclosure compared to case 1 with greater diffusion of the heat from the heat source, 

indicating that of the convective heat transfer for case 2 is greater than that for case 1.  

Figure 4.7(d)-(f) displays the streamlines (upper row) and isotherms (lower row) with 𝑅𝑎 

= 106, 𝐷𝑎 =  10−3 and 𝑆 = 0.3 for different thermal conductivity ratios (𝐾𝑟). The 

streamlines within the enclosure show the typical trends of a primary cell and a secondary   
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(d) 𝐾𝑟= 0.1 (e) 𝐾𝑟= 5 (f) 𝐾𝑟= 100 

Figure 4.7: Streamlines (upper row) and isotherms (lower row) for case 2 with 𝜙 = 0 (sold lines) 

and 𝜙 = 0.1 (dashed lines) at different dimensionless parameters, (a-c) 𝐷𝑎 effect when 𝑅𝑎 = 106, 

𝑆 = 0.3 and Kr = 1, and (d-f) Kr effect when 𝑅𝑎 = 106, 𝐷𝑎 =10-3,  and 𝑆 = 0.3.  



  

60 

 

cell inside the enclosure. The location of the main cell centre is close to the left-hand 

heated sidewall while the secondary circulation is confined to the upper left corner of the 

enclosure. The intensity of the primary and secondary circulations increases with 

increasing thermal conductivity ratio. At 𝐾𝑟 = 0.1, the primary cell covered most of the 

enclosure area with low penetration of the porous layer, as shown in Figure 4.7(d). It is 

interesting to note that, the stream function strength of the primary cell is significantly 

greater than that for case 1 at 𝐾𝑟 = 0.1. In addition, the centre of the primary cell is closer 

to the left-hand heated wall causes denser streamlines along the vertical walls in the 

nanofluid layer. Figure 4.7(e) shows that the streamlines inside the enclosure for 𝐾𝑟 = 5 

define a secondary cell of greater intensity and elongation than for 𝐾𝑟 = 0.1, causing the 

compression of the primary cell towards the porous layer. Another significant point is 

that, the centres of the nanofluid cells, due to the additional 10% Cu nanoparticles present, 

move vertically more into the nanofluid layer compared to the centres of the single-phase 

fluid cells, which leads to the stream function of the nanofluid having greater strength 

than that of the single-phase fluid. As 𝐾𝑟 increases to 𝐾𝑟 = 100, the flow pattern within 

the enclosure remains qualitatively constant up to 𝐾𝑟 = 100, though with greater 

elongation of the secondary cell, which causes the rotation of the flow towards the left-

hand heated wall. In Figure 4.7(d)-(f), the horizontal isotherms lines indicate convective 

heat transfer, while the vertical isotherm lines indicate conductive heat transfer. The 

isotherm lines are denser and closer to the left and right vertical walls due to the 

elongation of the cells towards the vertical walls with the reduced thickness of the thermal 

boundary layer along the vertical walls. At 𝐾𝑟 = 0.1 with the isotherm 𝜃 ≥ 0.25, the 

convective heat transfer is dominant in the enclosure, even at the porous layer, and the 

heat transport at the top portion of the enclosure is more diffused compared to case 1. As 

𝐾𝑟 increases towards 100, the convective heat transfer remains confined to the nanofluid 

layer, while the conductive heat transfer appears in the porous layer when the thermal 

boundary layer is relatively thick. The high packing density of the isotherms close to the 

left and right walls in the nanofluid layer resulted in significant heat diffusion from the 

heat source when compared to case 1. The increment in 𝐾𝑟 forms two recirculation cells 

of similar extent in place of one dominant cell. This prevents the flow from residing 

longer closer to the heat source and to the heat sink. Therefore, the fluid in motion 

receives and rejects comparatively less heat per full circulation round the cell, resulting 
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in a lower overall rate of heat transfer. The heat transfer decreases with increasing 𝐾𝑟, 

especially in case 1. 

 

The distributions of the velocity components 𝑈, 𝑉 and of the velocity magnitude 𝑅, are 

examined at the interface between the porous-nanofluid layers along the 𝑌-axis and 𝑋-

axis for case 1 and case 2, respectively, at 𝑆 = 0.3, 𝜙 = 0.1 and 𝐾𝑟 = 1 with 𝑅𝑎 = 104 and 

106 for different 𝐷𝑎 values, as shown in Figure 4.8. 

4.3.2.1  Vertical porous-nanofluid layers (Case 1) 

Figure 4.8(a) shows the variation of the velocity components for different 𝐷𝑎 values at 

the interface between the porous-nanofluid layers for case 1 as 𝑆 = 0.3, 𝜙 = 0.1 and 𝐾𝑟 = 

1 when 𝑅𝑎 =  104 and 106. Increasing the Rayleigh number causes a significant 

augmentation in the velocity components within the enclosure due to the strengthened 

buoyancy force. The flow exchange through the interface increases and the maximum 

and minimum velocity components at the interface of the enclosure with 𝐷𝑎 = 10−1 

became greater than those for 𝐷𝑎 = 10−5. This is attributed to the increased permeability 

of the porous layer, which causes a reduction in the resistance offered by the porous layer 

to the nanofluid flow, resulting in an increase in velocity. Figure 4.8(a)(i) shows the 

effects of the Darcy and Rayleigh numbers on the horizontal velocity component at the 

interface for case 1. It is interesting to note that, for the velocity profile at 𝑅𝑎 = 104, it 

appeared that the velocity of the nanofluid flow towards the upper part of the interface is 

lower than the flow at the bottom of the interface. This is because of the buoyancy force 

being highest at the bottom left hand-side wall which causes to accelerate the flow at the 

bottom part of the porous slab. However, this pattern takes the opposite trend with 

increasing 𝑅𝑎 values because of the increase of the size and strength of the secondary 

cell at the upper left corner of the enclosure which causes to accelerate the flow at the 

upper side of the porous slab. The positive and negative values of the horizontal velocity 

close to the upper and the bottom adiabatic walls, respectively, are attributed to the 

clockwise flow direction of the primary cell. Figure 4.8(a) (ii) shows the effect of the 

permeability of the porous layer on the vertical velocity component along the interface 

for case 1 with different values of 𝑅𝑎. Parabolic curves of positive values of the vertical 

velocity are predicted at 𝑅𝑎 = 104. Increasing 𝑅𝑎 to 106 causes a disturbance in this   
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Figure 4.8: Variation of velocity profile components (i) 𝑈, (ii) 𝑉, and (iii) 𝑅 at the interface line 

of (a) case 1 and (b) case 2 for different Darcy numbers as 𝑆 = 0.3 , 𝜙 = 0.1 and Kr = 1at 𝑅𝑎 = 

104 and 𝑅𝑎 = 106. 

behaviour due to the non-uniform pattern of the streamlines at the interface with higher 

values of 𝑅𝑎 at approximately 𝑌 = 0.7 and 0.8 for 𝐷𝑎 =  10−3 and 10−1, respectively. 

This is attributed to the higher buoyancy force that is generated at the increased Rayleigh 

number and due to the higher penetration of the nanofluid through the porous layer at 

higher Darcy numbers. This leads to the main recirculation cell penetrating strongly into 

the porous layer. The local distribution of the velocity magnitude for case 1, shown in 

Figure 4.8(a) (iii), clarifies the effect of the Darcy number on the nanofluid flow inside 

the enclosure. The velocity magnitude at 𝐷𝑎 = 10−5 is almost zero compared to the that 
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at higher value of 𝐷𝑎, which means less hydrodynamic resistance with higher 

permeability of the porous matrix. At 𝑅𝑎 =  104 with 𝐷𝑎 = 10−1, the velocity magnitude 

displays two maxima at about 𝑌 = 0.1 and 𝑌 = 0.7, while a local minimum occurs at about 

𝑌 = 0.4. Increasing 𝑅𝑎 causes the minimum values to approach zero between 𝑌 = 0.4 and 

𝑌 = 0.6, due to the localization of the cell core at this height inside the enclosure. 

4.3.2.2 Horizontal porous-nanofluid layers (Case 2) 

Figure 4.8(b) shows the effect of the permeability parameter (𝐷𝑎) on the velocity 

components 𝑈, 𝑉 and the velocity magnitude 𝑅 for case 2 as 𝑆 = 0.3, 𝜙 = 0.1 and 𝐾𝑟= 1 

when 𝑅𝑎 =  104 and 106. At 𝑅𝑎 = 104, as shown in Figure 4.8(b) (i), the curves with 

negative horizontal velocity values appear at the interface between the porous-nanofluid 

layers. The symmetric behaviour with negative values results from the main circulation 

streamlines being undisturbed where the flow turns towards the left wall, with a 

maximum value at about 𝑋 = 0.5. Increasing the Rayleigh number to  106 leads to an 

increase in velocity along the interface with considerable disturbance due to the non-

uniform paths of the main vortex streamlines in this region.  

Figure 4.8(b) (ii) shows the variation of the vertical velocity profile for case 2 for different 

Da values along the horizontal interface line at 𝑌 = 0.3 for 𝜙 = 0.1 and 𝐾𝑟 = 1 when 𝑅𝑎 

=  104 and 106. The effect of changing the Darcy number values seems clearer at lower 

values of 𝑅𝑎. Increasing 𝐷𝑎 causes the vertical velocity component to increase near the 

vertical walls, where the velocity near the left wall is relatively greater than near the right 

wall. This is due to the increase of the buoyancy force close to the heated wall. The 

increase in 𝑅𝑎 value causes a change in the trend of the vertical velocity profile at the 

interface from an oscillatory to a uniform pattern with near to zero values between 𝑋 = 

0.2 - 0.6, with large velocities near the vertical walls. This is because of the elongation of 

the main cell along the interface line. Figure 4.8(b) (iii) illustrates the velocity magnitude 

of the nanofluid flow for different 𝐷𝑎 values along the horizontal interface for case 2 as 

𝜙 = 0.1 and 𝐾𝑟 = 1 when 𝑅𝑎 =  104 and 106. At 𝑅𝑎 =  104, it seems that the pattern seen 

for the velocity magnitude in this case is similar to the previous case, though with 

relatively greater strength than for case 1. However, this pattern breaks with increasing 

𝑅𝑎 value to  106, with a uniform velocity distribution between 𝑋 = 0.2 - 0.8 with large 

velocities near the vertical walls of the enclosure. This is due to the dominant and 
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elongated main circulation pattern along the interface. In general, the velocity magnitude 

in case 2 is greater than in case 1. This is due to the direction of the porous-nanofluid 

layers. Therefore, it is expected that the heat removal from the left-hand heated wall for 

case 2 will be greater than that for case 1.  

 

In this section, the dimensionless temperature distribution 𝜃 along the interface at 𝑋 = 

0.3 for (i) case 1 and at 𝑌 = 0.3 for (ii) case 2 is examined in terms of the dimensionless 

parameters (a) 𝑅𝑎, (b) 𝐾𝑟, and (c) 𝑆, as shown in Figure 4.9. 

4.3.3.1  Vertical porous-nanofluid layers (Case 1) 

Figure 4.9(i) (a)-(c) illustrates the dimensionless temperature distribution versus distance 

along the vertical interface for case 1 at 𝑋 = 0.3. In Figure 4.9(i) (a), the temperature 

distribution shows a higher value at the lower value of 𝑅𝑎 when 𝑌 = 0 due to the 

prevalence locally of conductive heat transfer and a minimum temperature value at the 

upper part of the interface. This pattern is reversed for high values of 𝑅𝑎 due to the 

increase in buoyancy, which activities substantial convective heat transfer. The effect of 

increasing the thermal conductivity ratio (porous to nanofluid) on the temperature 

distribution along the interface for case 1 is illustrated in Figure 4.9(i) (b). At 𝑌 = 0, the 

temperature increases with increasing 𝐾𝑟 at the bottom part of the interface between the 

porous and the nanofluid layers. This is attributed to that, higher values of 𝐾𝑟, increasing 

the size and the streamlines strength of the secondary cell and its extension from the 

porous layer towards the fluid layer. This  causes to accelerate and move the core of the 

primary cell close to the interface line away from the left heated wall with higher 

streamlines strength compared to the lower values of 𝐾𝑟, where the core of the primary 

cell close to the left heated wall as shown in Figure 4.5(d)-(f). The temperature increases 

monotonically along the interface for low values of 𝐾𝑟 up to 𝑌 = 1, while this behaviour 

is reversed for high values of 𝐾𝑟. This is due to the secondary cell effects tends to turn 

the cold nanofluid from the fluid layer into the porous layer.at the upper part of the 

interface line. 

The effect of increasing the porous layer thickness on the temperature profile along the  
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Figure 4.9: Local distribution of dimensionless temperature along the interface line for (i) case 1 

and (ii) case 2 with different dimensionless parameters (a) 𝑅𝑎 effect, (b) Kr effect, and (c) 𝑆 effect. 

interfaces line for case 1 is illustrated in Figure 4.9(i) (c). The temperature decreases with 

increasing 𝑆 at 𝑌 = 0 - 0.8 because of the increasing the interface distance from the heat 

source. However, at 𝑌 ≥ 0.8, the temperature profile behaves in the opposite manner due 

to the vertical interface being closes to the right-hand cooled wall, where there is a low 

temperature at the upper part of the enclosure. Increasing the porous layer thickness 𝑆 

means increasing the flow resistance, which results in reduced heat removal from the left-
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hand heated wall. Therefore, at sufficiently large 𝑆 and 𝑅𝑎, the anti-clockwise convective 

cell transports cold flow from right to left near the top boundary of the interface line. 

4.3.3.2 Horizontal porous-nanofluid layers (Case 2) 

Figure 4.9(ii) (a-c) illustrates the dimensionless temperature distribution versus distance 

along the interface for case 2 at 𝑌 = 0.3 for various parameter effects. At 𝑋 = 0, 𝜃 = 0.7 

for all values of 𝑅𝑎 because the base of the horizontal interface is located on the left-hand 

heated wall at 𝑌 = 0.3, as shown in Figure 4.9(ii) (a). At 𝑋 ≤ 0.1, the temperature 

distribution sharply decreases with increasing 𝑅𝑎, then 𝜃 monotically increases, while 

the opposite can be seen for 𝑋 > 0.3. This indicates that the removal of heat from the heat 

source increases with increasing Rayleigh number. The variation in the temperature 

profile along the interface with different values of thermal conductivity ratio for case 2 is 

illustrated in Figure 4.9(ii) (b). The temperature profile sharply decreases at 𝑋 < 0.2 with 

decreasing 𝐾𝑟 values. Low 𝐾𝑟 values result in a decrease in the temperature distribution 

along the interface due to the dominance of the main circulation along the interface with 

the convective heat transfer mode through the porous layer. At high values of 𝐾𝑟, a linear 

temperature distribution appears along the interface. Figure 4.9(ii) (c) shows the effect of 

changing 𝑆 values on the temperature distribution along the interface between the 

nanofluid and the porous layers. It is interesting to observe that, the temperature for case 

2 is greater than for case 1 at 𝑋 = 0 for all values of 𝑆 due to the linear heating. Increasing 

𝑆 leads to a rise in the temperature across the interface due to the increase in area of high 

nanofluid flow due to the porous layer, which leads to a decrease in the stream function 

strength of the main cell. This also causes an increase in the thermal boundary layer 

thickness as shown in Figure 4.6(a-c). At 𝑆 ≤ 0.5, the temperature distribution decreases 

along the interface due to the distance from the left-hand heated wall. In case 2, the 

temperature along the interface is a maximum at 𝑋 = 0 when 𝑆 = 0.1, while the opposite 

behaviour is seen along the interface up to 𝑋 = 1. The opposite pattern occurs along the 

interface in case 1, where 𝜃 is higher at 𝑋 = 1and lowest at 𝑋 = 0. The temperature 

increases with decreasing porous layer thickness along the interface up to 𝑌 = 0.7. This 

change in the temperature distribution pattern can be attributed to the effect of the porous-

nanofluid layers’ orientation, which results in different behaviours of the streamlines in 

the enclosure. 
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The local Nusselt number is computed by the following relations (Oztop et al., 2012)  

𝑁𝑢𝑙𝑜𝑐𝑎𝑙 =  
ℎ.𝐿

(𝑘)𝑏𝑓
  (4.5) 

The local heat transfer coefficient ℎ is expressed as   

ℎ =  
(𝑞)𝑤

(𝑇ℎ− 𝑇𝑐)
  (4.6) 

(𝑘)𝑛𝑓 =  
− (𝑞)𝑤

𝜕𝑇

𝜕𝑥

  (4.7) 

By substituting equations (4.6) and equation (4.7) into equation (4.5) and using the 

dimensionless quantities in equation (B1.10), the local Nusselt number on the hot and 

cold walls (𝑁𝑢𝑙 and 𝑁𝑢𝑟) are written as 

𝑁𝑢𝑙𝑜𝑐𝑎𝑙= - 
(𝑘)𝑛𝑓

(𝑘)𝑏𝑓
 (

𝜕𝜃

𝜕𝑛
)

𝑋=0,1
 (4.8) 

Where 𝑛 is the outwards unit normal vector from the boundary wall and for the cold wall 

𝑛 = 𝑋. 

The distribution of the local Nusselt number is illustrated in Figure 4.10 under the 

different effects of selected parameters such as Darcy number (a) and the thermal 

conductivity ratio (b). The left column represents the local Nusselt number on the left-

hand heated wall (𝑁𝑢𝑙) in Figure 4.10 (i), while the right column represents the local 

Nusselt number on the right-hand cooled wall (𝑁𝑢𝑟) in Figure 4.10 (ii),. The upper and 

lower panels represent case 1 and case 2, respectively. 

The upper panel plots of Figure 4.10(a) show the local Nusselt number as a function of 

distance along the left and right walls for case 1 when 𝑅𝑎 = 106, 𝜙 = 0.1, 𝐾𝑟 = 1 and 𝑆 = 

0.3 for different values of 𝐷𝑎. Figure 4.10(a)(i) shows that the maximum value of the 

local Nusselt number 𝑁𝑢𝑙 on the left heated wall (left column) is located at the bottom 

portion of the left heated wall that is having a maximum temperature of the enclosure due 

to the linearly heated left sidewall. At 𝑌 = 0, the positive value of the local Nusselt number 

(heat transport from the wall towards the nanofluid) increases with increasing 𝐷𝑎 due to  
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           (i)       (ii) 

Figure 4.10: Variation of the local Nusselt number along the left hot wall (i) and the right cold 

wall (ii) with different dimensionless parameters (a) 𝐷𝑎 effect and (b) Kr effect. 

an increase in the porous layer’s permeability with high streamline strength due to the 

convective heat transfer mode within the enclosure. At 𝑌 ≥ 0.4, 𝑁𝑢𝑙 is negative (heat is 

transported from the nanofluid towards the wall) signifying a reverse heat flux with a 

minimum 𝑁𝑢𝑙 at the top portion of the hot left-hand sidewall of the enclosure. The 

minimum change in 𝑁𝑢𝑙 is obtained with low Darcy number (𝐷𝑎 = 10−5) due to the high 

flow resistance offered by the porous matrix. A comparison of the effects of changing 𝐷𝑎 

on the local Nusselt number under the same conditions between case 1 and case 2 can be 

seen in the left-hand column and lower panel plot in Figure 4.10(a) (i), which represents 

case 2; and it seems a similar trend in 𝑁𝑢𝑙 is observed as for case 1. However, the 

maximum value of 𝑁𝑢𝑙 for 𝐷𝑎 =  10−1 when 𝑌 = 0 in case 2 is relatively greater than the 

equivalent value for case 1 under the same conditions. This is because the stream function 

value in case 2 is higher than in case 1. Another significant point that can be determined 

from this figure is higher values of 𝑁𝑢𝑙 along the vertical left sidewall at 𝐷𝑎 = 10−5 over 

the range 0 ≤ 𝑌 ≤ 0.5 which is observed receiving more heat from the heat source in 

case 2 compared to case 1. Figure 4.10(a) (ii) shows that increasing 𝐷𝑎 from 𝐷𝑎 = 10−5-

10−1 causes the right-hand cold sidewall to receive more heat flux from the nanofluid, 
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which leads to the local Nusselt number taking a more negative value. The maximum 

heat flux received by the right- hand side wall is at 𝑌 = 0 in the case1 while it is maximum 

at 𝑌 = 1 in case 2. This difference is due to different delivery of the hot nanofluid by the 

received whole cell to the right-hand side wall. At 𝐷𝑎 = 10-5, 𝑁𝑢𝑟 appears as a different 

behaviour as shown in the right column of Figure 4.10(a). In case 2, 𝑁𝑢𝑟 is almost 

constant values up to 𝑌 = 0.3 due to the dominance of the conductive heat transfer mode 

at the porous layer. 𝑁𝑢𝑟 values smoothly increase when 𝑌 > 0.3 with maximum values 

at the top portion of the right-hand cold wall due to the high convective heat transfer 

inside the enclosure. 

Figure 4.10(b) shows the effect of 𝐾𝑟 on the local Nusselt number along the left and right 

walls of the enclosure for case 1 and 2, as shown respectively in the left (i) and the right 

(ii) columns of the figure at 𝑅𝑎 = 106, 𝐷𝑎 = 10−3, 𝜙 = 0.1 and 𝑆 = 0.3. The upper panel 

plot of left column of Figure 4.10(b) (i) depicts the effect of 𝐾𝑟 on 𝑁𝑢𝑙 along the left-

hand hot wall. The trend for 𝑁𝑢𝑙 is similar in behaviour to that of the effects of 𝐷𝑎 due 

to the linearly heated left-hand wall. Increasing 𝐾𝑟 value results in a decrease in the heat 

transfer rate that results from the dominance of the conductive heat transfer along the left-

hand heated wall up to the upper part of the heated wall with a negative value of 𝑁𝑢𝑙. 

The negative value of 𝑁𝑢𝑙 implies the heat transfer to the left wall that results from the 

presence of the secondary cell. In case 2, 𝑁𝑢𝑙 behaves in a similar manner to the variation 

for case 1 except at the top of the left wall due to the higher density of the isotherm lines 

for case 2 compared to case 1 (see the lower panels of Figure 4.5(d)-(f) and Figure 4.7(d)-

(f)). The upper panel plot of Figure 4.10(b) (ii) in the right column represents the variation 

of 𝑁𝑢𝑟 for case 1 along the right-hand cold wall at 𝑅𝑎 = 106, 𝐷𝑎 = 10−3, 𝜙 = 0.1 and 𝑆 

= 0.3 for different 𝐾𝑟. The largest negative values for 𝑁𝑢𝑟 are located at the bottom 

section of the right wall especially at the high value of 𝐾𝑟. This is due to the moving of 

the main cell centre location at the lower part of the right-hand side wall. 𝑁𝑢𝑟 increases 

at the high values of 𝐾𝑟, in negative values, while 𝑁𝑢𝑙 increases in positive values at the 

low values of 𝐾𝑟. This is because, at the high value of 𝐾𝑟, the density of the isotherms is 

higher along the right-hand cold wall, while  the density of isotherms along the left heated 

side wall is higher at the low value of 𝐾𝑟 as shown in Figure 4.5(d) and Figure 4.5 (f). 

The oscillatory behaviour of 𝑁𝑢𝑟 at 𝐾𝑟 = 100 may stem from the effect of the plume of 

nanofluid at 𝑌 = 0.5 towards the right wall affecting thermal boundary layer along the 
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right-hand cold wall (see Figure 4.5(f)). In case 2 (lower panel of the right column of 

Figure 4.10(b)), under the same conditions and compared with case 1, the maximum 

values of 𝑁𝑢𝑟 appear at the top portion of the right-hand side wall, while there is a 

relatively constant 𝑁𝑢𝑟 at 𝑌 < 0.3 for different 𝐾𝑟 values. This is due to the porous layer 

effects on the isotherm distribution along the wall which stems from the dominance of 

the conductive heat transfer (see Figure 4.7(d)-(f)). However, it is interesting to note that, 

𝑁𝑢𝑟 in case 2 has a greater value with a significant increase at the upper of the right wall 

compared to case 1. This may be attributed to the main cell in case 2 having a greater 

elongation along the right-hand cold wall and greater penetration into the porous layer 

than for case 1. In addition, due to the horizontal arrangement of the porous layer under 

the nanofluid layer, convective heat transfer is still dominat in the nanofluid layer, with 

greater penetration through the porous layer for different 𝐾𝑟 values compared to case 1. 

This is due to the greater amount of heat received from the heat source for case 2 than 

that in case 1.  

 

The average Nusselt number is computed by the following equation  

𝑁𝑢𝑎𝑣  = ∫ 𝑁𝑢𝑙𝑜𝑐𝑎𝑙
1

0
 𝑑𝑌 (4.9) 

Figure 4.11 shows the variation of the average Nusselt number 𝑁𝑢𝑎𝑣 versus 𝑅𝑎 in (a) 

case 1 and (b) case 2 for different values of (i) 𝑆 and (ii) 𝐾𝑟. It seems that 𝑁𝑢𝑎𝑣 increases 

with 𝑅𝑎 for both case 1 and case 2, regardless of other parameters. Figure 4.11(a) (i) 

shows the relationship between 𝑁𝑢𝑎𝑣 and 𝑅𝑎 for various 𝑆 values in case 1as 𝐷𝑎 =  10−5, 

𝜙 = 0.1 and 𝐾𝑟 = 1. Increasing 𝑆 reduces 𝑁𝑢𝑎𝑣 for the same 𝑅𝑎. This is because at higher 

values of 𝑆, the resistance area of the porous matrix increases, which leads to a reduction 

of convective heat transport within the porous layer compared to the nanofluid layer. The 

𝑁𝑢𝑎𝑣 is almost constant at 𝑅𝑎 ≤  104 due to dominant effect of the conductive heat 

transfer regardless of the porous layer thickness, implying there is no effect on the  global 

𝑁𝑢𝑎𝑣 for values of 𝑅𝑎 up to 104 for both case 1 and case 2 as shown in Figure 4.11(b) 

(i). At a constant value of 𝑆, it is interesting to note that, 𝑁𝑢𝑎𝑣 is higher for case 2 than 

case 1, indicating that the heat transfer rate for case 2 is greater than for case 1. This stems 

from the fact that the higher intensity of the streamlines and denser isotherms along the 
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vertical walls with more widely spaced horizontally- running isotherm lines at the upper 

region of the enclosure, as shown in Figure 4.6(a)-(c) and Figure 4.4(a)-(c), respectively. 

(a) 

 

 

 

  

(b) 

                               (i)                               (ii) 

Figure 4.11: Variation of the average Nusselt number versus 𝑅𝑎, (a) 𝑆 effect and (b) Kr effect. In 

each plot, the upper panel corresponds to case 1, and the lower panel corresponds to case 2. 

Figure 4.11(a) (ii) shows the variation of heat transfer rates versus 𝑅𝑎 along the left-hand 

heated wall in case 1as 𝐷𝑎 = 10−5, 𝑆 = 0.2, and 𝜙 = 0.1 for different 𝐾𝑟 values. Increasing 

𝐾𝑟 increases the convective heat transfer monotonically with 𝑅𝑎. At 𝑅𝑎 = 107, a 

significant increase in 𝑁𝑢𝑎𝑣 for all values of 𝐾𝑟 was found in case 2 compared to case 1 

as shown in Figure 4.11(b) (ii), indicating the importance of the porous-nanofluid layer 

arrangement in the vertical or horizontal direction to heat transfer enhancement inside the 

enclosure. 

Figure 4.12 shows the average Nusselt number versus (i) the Darcy number and (ii) the 

porous layer thickness for different parameter values for (a) case 1and (b) case 2. Figure 

4.12(i) shows the average Nusselt number versus 𝐷𝑎 as 𝜙 = 0.1 and 𝐾𝑟  = 1 for 𝑆 = 0.1, 

0.3 and 0.5. For case 1shown in Figure 4.12(i) (a), at the highest value of 𝑅𝑎 used in the 

present study (𝑅𝑎= 107), the effect of the porous layer thickness becomes not significant 

at 𝐷𝑎 >  10−3, indicating that the porous layer behaves as a nanofluid layer and that the 

porous matrix essentially has no effect on the flow circulation. 𝑁𝑢𝑎𝑣 decreases suddenly 

with decreasing 𝐷𝑎 values from 𝐷𝑎 =  10−3 to  10−5 due to the decrease in permeability 

of the porous layer, though this decline is lower at lower 𝑆 values. This is because 

increasing the porous layer thickness increases the flow resistance area produced by the 

porous layer itself. At values of <  10−5, 𝐷𝑎 has no effect on heat transfer rate for each  
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(a) 

 

 

 

  

(b) 

         (i)        (ii) 

Figure 4.12: Variation of the average Nusselt number with (a) 𝐷𝑎 number for different 𝑆 and with 

(b) porous layer thickness 𝑆 for different 𝑅𝑎. In each plot, the upper panel corresponds to case 1, 

and the lower panel corresponds to case 2. 

value of 𝑆. For case 2 shown in Figure 4.12(i) (b), it is interesting to observe that, 𝑁𝑢𝑎𝑣 

at 𝐷𝑎 =  10−3 for case 1 is higher than that for case 2 for all values of 𝑆. At 𝐷𝑎 <  10−3, 

there is a differential decrease of 𝑁𝑢𝑎𝑣 with more effect of changing 𝑆 values compared 

to case 1 at  10−5 ≤ 𝐷𝑎 ≤  10−3. This pattern causes 𝑁𝑢𝑎𝑣 to show a lower drop of heat 

transfer for case 2 than case 1, especially at low Darcy numbers, 𝐷𝑎 <  10−3, for each 

value of 𝑆, indicating the effect of the porous-nanofluid layer direction. 

Plots of the average Nusselt number versus 𝑆 are used to illustrate the effect of 𝑆 on the 

heat transfer rate at various values of 𝑅𝑎, as shown in Figure 4.12(ii) in (a) case.1 and (b) 

case 2. Figure 4.12(ii) (a) illustrates the effect of 𝑅𝑎 for 𝐷𝑎 = 10−5, 𝜙 = 0.1 and 𝐾𝑟 = 1 

for case 1. A higher value of 𝑅𝑎 results in a higher rate of heat transfer. For a given 𝑅𝑎, 

the fluid flow resistance increases with increasing 𝑆, which leads to reducing the 

convection and results in a lower value of 𝑁𝑢𝑎𝑣. For 𝑅𝑎 = 105, the convective heat 

transfer mode was almost entirely suppressed when 𝑆 ≥ 0.6, while there is no effect of 𝑆 

at 𝑅𝑎 = 104. In case 2 shown in Figure 4.12(ii) (b), the enhancement in heat transfer rate 

is more pronounced for case 2 compared to case 1, especially at 𝑆 = 0.1 for different 

values of 𝑅𝑎. 

Figure 4.13 illustrates the variation of the average Nusselt number with logarithmic 

values of (a) the Rayleigh number and (b) the Darcy number for case 1 and case 2 when 

𝐷𝑎 = 10−3, 𝑆 = 0.3, 𝜙 = 0.1, and 𝐾𝑟 = 0.1. 𝑁𝑢𝑎𝑣 increases with increasing 𝑅𝑎 in both  
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   (a)      (b) 
Figure 4.13: Variation of the average Nusselt number with (a) 𝑅𝑎, and (b) 𝐷𝑎, for case 1 and case 

2 with linear heating on the left vertical sidewall. 

cases, as shown in Figure 4.13(a). At 𝑅𝑎 >  106 and 𝑅𝑎 <  104, 𝑁𝑢𝑎𝑣values for case 1 

are greater than in case 2, while the opposite behaviour is seen for  104 ≤ 𝑅𝑎 ≤  106. 

Figure 4.13(b) illustrates the variation of the average Nusselt number with 𝐷𝑎 as 𝑅𝑎 

= 106, 𝑆 = 0.3, 𝜙 = 0.1, and 𝐾𝑟 = 1 for case 1 and case 2. At 𝐷𝑎 >  10−3, 𝑁𝑢𝑎𝑣 for case 

1 is greater than for case 2, whereas the opposite pattern, with relatively higher changes 

to the Nusselt number, is shows when 𝐷𝑎 <  10−3. In general, at low values of 𝐷𝑎, 𝑁𝑢𝑎𝑣 

for case 2 is greater than for case 1, while the opposite is seen at higher values of 𝐷𝑎. 

 Conclusions 

This study analysed the flow and heat transfer due to natural convection within square 

enclosures with either a vertical or a horizontal porous slab. The nanofluid is composed 

of water-based fluid containing Cu nanoparticles. Case 1 corresponds to a vertical slab, 

while case 2 corresponds to a horizontal slab. In case 1, the porous layer is positioned on 

the left of the enclosure while it is located at the bottom of the enclosure for case 2. In 

both cases, a linearly decreasing temperature is applied to the left vertical wall of the 

enclosure while the right vertical wall is isothermally cooled; the horizontal walls are 

kept insulated. The results have been obtained in terms of streamlines, isotherms and heat 

transfer rate. Some of the important conclusions can be summarised as follows:  

 Due to the linearly heated left-hand wall and the cold right-hand wall of the 

enclosure, two regions of flow circulation were observed, made by a main cell 

rotating in the clockwise direction, covering most of the enclosure area, and by a 
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secondary cell rotating in the anticlockwise direction in the upper left corner of 

the enclosure. 

 Higher values of 𝑆 are predicted to provide lower Nusselt number in case 1 

compared to case 2 for different 𝑅𝑎 and 𝐾𝑟 values and at 𝐷𝑎 < 10-3. 

 Increasing 𝑅𝑎 caused the intensity of the streamlines in case 2 to be stronger than 

in case 1. 

 Lower values of the thermal conductivity ratio, 𝐾𝑟 imply greater heat transfer 

enhancement than for high thermal conductivity ratios. 

 The variation of the rate of heat transfer with 𝑅𝑎 showed that when 𝐷𝑎 =10−3, 𝑆 

= 0.2, 𝜙 = 0.1, and 𝐾𝑟 = 0.1 at 𝑅𝑎 >  106 and 𝑅𝑎 < 104, 𝑁𝑢𝑎𝑣values for case 1 

were greater than for case 2, though the opposite behaviour was observed for 104 

≤ 𝑅𝑎 ≤ 106, indicative of the importance of the alignment of the porous-

nanofluid layers in either the vertical or horizontal direction. 

 At the low values of 𝐾𝑟 , 𝑁𝑢𝑎𝑣 was more enhanced for case 2 compared to case 1 

at the low values of Darcy number 𝐷𝑎 < 10−3 whereas the opposite behaviour of 

𝑁𝑢𝑎𝑣 was observed for high values of 𝐷𝑎. This indicates the importance of the 

alignment of the porous-nanofluid layers in either the vertical or the horizontal 

direction. 

In general, the effects of the porous slab direction, the Rayleigh number, the Darcy 

number, the thermal conductivity ratio (porous/ nanofluid), the porous slab thickness, and 

the nanoparticles volume fraction with the linear thermal boundary condition played an 

important role in the flow and heat transfer inside the enclosure that filled partly by a 

porous slab saturated with a nanofluid in a vertical and a horizontal direction. At low 

values of the thermal conductivity ratio (porous to nanofluid), 𝐾𝑟 < 1, the heat transfer 

inside the enclosure increased at high values of Darcy number for the vertical direction 

of the porous slab, while it increased at the low values of the Darcy number for the 

horizontal direction of the porous slab. The results presented a new trend of the fluid flow 

and heat transfer inside the enclosure under the effect of the linearly thermal boundary 

condition on the left sidewall of the enclosure. The porous slab in a vertical or a horizontal 

direction played a vital role in the heat transfer. It may be interesting for the designer in 

the modern technology of the industrial engineering applications. 
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 Effects of a Sinusoidally Heated Left Wall on 

Natural Convection within an Enclosure Filled with 

Composite Nanofluid-Porous Layers 

 Motivation and introduction 

The sinusoidal thermal boundary condition may cause a problem in the thermal 

management in the system. The governing equations are coupled together linked to the 

buoyancy force effect. In addition, the alignment of the porous slab in a vertical or 

horizontal direction with the selected boundary condition may play an important role on 

the convective heat transfer. Therefore, it is necessary to investigate the effects of the 

sinusoidal thermal boundary condition and the porous medium alignment to predict the 

thermal control inside the enclosure. The sinusoidal thermal boundary condition produces 

a different trend of the flow and heat transfer inside an enclosure partly filled by a porous 

slab compared to the enclosures that were used in the previous literature. A new 

simulation results are presented to develop the convective heat transfer inside an 

enclosure partly filled by a porous slab rather than that of using a porous enclosure under 

the sinusoidal thermal boundary condition on one side of the enclosure. To the best of the 

author’s knowledge, there was no investigation focused on the natural convection in a 

square enclosure filled by a vertical or horizontal orientation of the nanofluid-superposed 

porous layers with sinusoidal heating on the left-hand vertical sidewall. This investigation 

of the present study may be interested to the designer to predict the convective heat 

transfer in the next modern industry technology. 

Accordingly, this chapter explores by Computational Fluid Dynamics (CFD) the effects 

of the sinusoidal heating of the left-hand vertical sidewall on the natural convection 

within a two-dimensional enclosure partially filled by either a vertical or a horizontal 

porous slab saturated by nanofluid. Two slab orientations are considered, a vertical (case 

1) and a horizontal (case 2) configuration. Sinusoidal heating is applied to the left-hand 

vertical sidewall of the enclosure while a uniform cold temperature is imposed at the 

right-hand vertical sidewall; the horizontal walls are adiabatic. The range of the heat 

transfer controlling parameters tested in the present study are: For the Rayleigh number 

(𝑅𝑎), 103 ≤ 𝑅𝑎 ≤ 107, the Darcy number (𝐷𝑎),10−7 ≤  𝐷𝑎 ≤ 1, the porous layer 

thickness (𝑆), 0.1 ≤ 𝑆 ≤ 0.9, the thermal conductivity ratio of the porous medium and 
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nanofluid (𝐾𝑟), 0.1 ≤  𝐾𝑟 ≤ 100, the thermal wave number (𝑁𝑡ℎ), 1 ≤  𝑁𝑡ℎ ≤ 7, the 

thermal amplitude (𝐴𝑡ℎ), 0.2 ≤  𝐴𝑡ℎ ≤ 1 and the nanoparticle volume fraction (𝜙), 𝜙 =

0.2. 

 A model problem 

 

The study of the effects of non-uniform heating on the natural convection inside a two-

dimensional square enclosure, two cases are defined, as shown schematically in Figure 

5.1. Vertical and horizontal alignments of the porous slab were considered for case 1 and 

case 2, respectively. In case 1, the porous layer is towards the left, and the nanofluid layer 

is towards the right enclosure. In case 2, the porous layer is under the nanofluid layer. 

The thicknesses of the porous and nanofluid layers are 𝑆 and 𝐿 − 𝑆, respectively. The 

differentially heated on the vertical walls causes to develop the fluid flow inside the 

enclosure due to the horizontal temperature difference. This causes to occur that the 

density gradient (due to temperature gradient) is horizontal and the gravity vector acts 

perpendicularly, where the circulation inside the enclosure depends on theses vector 

orientation. The dimensionless governing equations describing the fluid flow and heat 

transfer inside the nanofluid, and porous layers as shown in Appendix B.1 (equations 

B1.1-B1.8). The nanofluid consists of water as a base fluid (𝑃𝑟 = 6.26) and Cu 

nanoparticles with 𝜙 = 0.2 with thermal properties are given in Table 3.1. 

 

Figure 5.1: Physical domain of vertical (case 1) and horizontal (case 2) directions of the 

composite nanofluid-porous medium layers.  
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The dimensionless governing equations are applied in these cases and the boundary 

conditions for each case (vertical and horizontal orientation of the porous medium –

nanofluid layers) are: 

At the left hot wall 𝑈 = 𝑉 = 0, 𝜃 = 𝐴𝑡ℎ . 𝑠𝑖𝑛(𝑁𝑡ℎ. 𝜋. 𝑌) (5.1) 

At the right cold wall   𝑈 = 𝑉 = 0, 𝜃 = 0 (5.2) 

At the top and bottom insulated walls  𝑈 = 𝑉 = 0,  
𝜕𝜃

𝜕𝑌
 = 0 (5.3) 

where 

𝑋 =
𝑥

𝐿
, 𝑌 =

𝑦

𝐿
 , 𝑈 =

𝑢𝐿

(𝛼)𝑏𝑓
 , 𝑉 =

𝑣𝐿

(𝛼)𝑏𝑓
 , 𝜃 =

𝑇−𝑇𝑐

𝑇ℎ−𝑇𝑐
   

(5.4) 

These boundary conditions may be occurred in a significant number of engineering 

applications, such as solar collector systems and the cooling of electronic components 

(Sivasankaran and Bhuvaneswari, 2013). 

 

Figure 5.2 shows the meshes of (a) case 1 and (b) case 2. The domain walls and the 

interface line between the porous and fluid layers were refined to capture the flow state 

with greater spatial resolution as shown in Figure 5.2(c). The dependence of the 

prediction on the spatial resolution was tested on 6400, 10,000, 14,400, 16,900, 19,600  

                
(a) (b) 

 

      
          (c) 

Figure 5.2: Computational mesh of the physical domain for (a) Case 1, (b) Case 2, and (c) Refined 

mesh.  
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Figure 5.3: Grid testing for the average Nusselt number at different mesh numbers. 

and 25,600 grid sizes. The average Nusselt number for cases 1 and 2 at 𝑅𝑎 = 107, 𝐷𝑎 = 

10-3, 𝐾𝑟 = 𝑁𝑡ℎ  = 𝐴𝑡ℎ= 1, 𝜙 = 0.2 and 𝑆 = 0.2 on these meshes is shown in Figure 5.3. A 

grid size of 16,900 was adopted in all cases reported here because this mesh produced an 

almost identical result for the average Nusselt number as that from the largest two mesh 

numbers.  

 Results and discussion 

 

5.3.1.1 Vertical porous - nanofluid layers (case 1) 

The streamlines and isotherms for the vertically porous slabs at different values of  𝑆, 𝑅𝑎, 

𝐷𝑎, 𝐾𝑟, 𝐴𝑡ℎ, and 𝑁𝑡ℎ are presented in Figure 5.4 – 5.7. Water (solid lines) and nanofluid 

(dashed lines) convective heat transfer was simulated under the sinusoidal temperature 

distribution on the left sidewall and the isothermal cold temperature on the right sidewall 

of the enclosure of section 5.2.2. Figure 5.4(a)-(c) shows the predictions for 𝑆 = 0.1, 0.2 

and 0.5 at Ra = 106, Da = 10-3 and 𝐾𝑟 = 𝐴𝑡ℎ= 𝑁𝑡ℎ= 1. The streamlines (upper row) show, 

two regions of circulation inside the enclosure due to the applied boundary conditions. 

The flow inside the porous layer rises along the left hand heated vertical sidewall due to 

buoyancy, whilst the flow descends along the right cooled wall in the fluid layer. This 

generates a strong main vortex with a clockwise flow direction that covers most of the 

enclosure and a weak secondary cell with an anticlockwise flow direction located in the 
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upper left-hand corner. At 𝑆 = 0.1 and 0.2, the main flow circulation cell has two poles 

with both the base fluid and the nanofluid. These poles are located in the fluid layer. One 

pole is close to the interface line and the other pole is close to the right cold wall. As 𝑆 

increased to 𝑆 = 0.5, the main cell loses the left pole and only one pole is detected close 

to the right cold wall. In addition, the clustering of streamlines for both the base fluid and 

the nanofluid decreases with increasing porous layer thickness. Adding 20% of copper 

nanoparticles by volume to the base fluid for 𝑆 = 0.1, 0.2 and 0.5 at increases the stream 

function strength of the primary cell, as shown by changes in 𝛹𝑚𝑖𝑛of almost 26.5%, 

21.25% and 17.45%, respectively. This is attributed to a greater thermal conductivity of 

the nanofluid compared to the single-phase fluid. The gain reduces with increasing porous 

layer thickness, due to the flow resistance of the porous layer. The predicted isotherms 

(lower row of Figure 5.4(a)-(c)), with the single-phase fluid and nanofluid run parallel to 

the right cold wall, while they turn away from the left-hand heated sidewall at 0.4 ≤ Y ≤ 

0.6 due to the non-uniform left wall temperature. The isotherms close along the vertical 

walls due to the strength of the main circulation cell. The horizontal pattern of the 

isotherms in the enclosure centre indicates horizontal heat convection within the fluid 

layer, while the diagonal pattern in the porous layer indicates a buoyancy current 

dominated heat convection. 

Figure 5.4(d)-(f) shows the predicted streamlines and isotherms for the configuration with 

a vertical porous slab (case 1) at 𝑅𝑎 = 104, 105, and 107, 𝐷𝑎 = 10−3, 𝑆 = 0.2 and 𝐾𝑟 =

𝐴𝑡ℎ = 𝑁𝑡ℎ = 1. It may be seen from this figure that fluid circulation is strongly 

dependent on the Rayleigh number. In Figure 5.4(d) at 𝑅𝑎 = 104, the centre of the 

convective cells (with a semi-circular shape) for both the single-phase fluid and nanofluid 

is almost at the centre of the nanofluid layer, both the same cells size, and having 

essentially circulation pattern. The circulation strength of the single-phase fluid is 

stronger than the nanofluid. This is attributed to the low value of the Rayleigh number, 

where the addition of nanoparticles made the fluid more viscous, resulting in a reduction 

in the circulation intensity. As the Rayleigh number increases, the strength of the 

streamlines significantly increases due to the large buoyancy force that causes the main 

cells to stretch along the enclosure walls. A strengthened primary cell covers the majority 

of the enclosure area while a comparatively weakness secondary cell is located at the 

upper left corner of the enclosure. The addition of 20% nanoparticles by volume to the   
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(d) 𝑅𝑎 = 104 (e) 𝑅𝑎 = 105 (f) 𝑅𝑎 = 107 

Figure 5.4: Streamlines (upper row) and isotherms (lower row) for case 1 with 𝜙 = 0 (solid lines) 

and 𝜙 = 0.2 (dashed lines) at different dimensionless parameters, (a-c)  𝑆 effect when 𝑅𝑎 = 106, 

𝐷𝑎 =10-3, and Kr = Nth = Ath = 1, (d-f) 𝑅𝑎 effect when 𝐷𝑎 =10-3, 𝑆 = 0.2 and Kr = Nth = Ath = 1.  
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single-phase fluid led to an improvement in the circulation cell strength at 𝑅𝑎 105 and 

107, with gains of almost 27% and 20.7%, respectively, in the magnitude of 𝛹𝑚𝑖𝑛. The 

difference in the gain with increasing 𝑅𝑎 is due to the lower buoyancy force acting on 

the single-phase fluid and the nanofluid at 𝑅𝑎 = 105 as compared with 𝑅𝑎 = 107. The 

increasing intensity of the circulation with increasing Rayleigh number causes the 

compression of the isotherms close to the vertical walls and the transition from a diagonal 

orientation of the isotherms at low 𝑅𝑎 to a horizontal orientation of the isotherms at 

higher 𝑅𝑎. The horizontal isotherms occurred at the centre zone of the enclosure. The 

isotherms close to the left wall have greater variation in orientation compared to those 

near the right wall due to the sinusoidal heating applied at the left wall. The thickness of 

the thermal boundary layer close to the vertical walls is shown to reduce with increasing 

𝑅𝑎. This gives an indication that the heat transfer by convection strengthens with 

increasing 𝑅𝑎.  

The effect of the dimensionless permeability parameter (Darcy number) on the 

streamlines and isotherms for case 1 at 𝑅𝑎 = 106, 𝑆 = 0.2 and 𝐾𝑟 = 𝐴𝑡ℎ = 𝑁𝑡ℎ = 1 is 

illustrated in Figure 5.5(a) and (b) for Darcy numbers 𝐷𝑎 = 10−5 and 𝐷𝑎 = 10−1, 

respectively. With both the single-phase fluid and the nanofluid, the strength of the stream 

function increases, as 𝐷𝑎 increases. The flow inside the porous layer is driven by the hot 

portion of the left wall, which heats up the flow along the vertical left sidewall and 

induces an upwards natural convection stream. There is a comparably lower penetration 

of the fluid within the porous layer at the low 𝐷𝑎 value. The flow then turns downwards 

along the cooled right sidewall in the nanofluid layer, generating a strong clockwise main 

vortex covering most of the enclosure area. The fluid at the upper and lower left corners 

stagnate. There is a change in the main cell centre between the single-phase fluid and the 

nanofluid as this is lower with the nanofluid. At 𝐷𝑎 = 10−3, as shown in Figure 5.4(b), 

the main vortex extends towards the vertical walls with greater intensity in its stream 

function. A second pole forms near the left wall. In addition, a weak secondary cell 

appears at the upper left corner of the enclosure in which the stream function magnitude 

with the base fluid is greater than that with the nanofluid. Using the nanofluid, the 

maximum value of the stream function Ψ𝑚𝑖𝑛 was 24.5 while Ψ𝑚𝑖𝑛 was 19.2 with pure 

water. The isotherms show that at the low value of 𝐷𝑎, the clustering of the isotherms 

along the left hand heated vertical sidewall is lower than that at the right hand cold vertical 
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sidewall. This is due to the flow resistance in the porous layer from the low 𝐷𝑎 value. In 

addition, the difference in the isotherm lines between the nanofluid and base fluid is more 

pronounced around the centre zone of the enclosure for the low 𝐷𝑎 value compared to 

the high 𝐷𝑎 value. A significant augmentation of the convective heat transfer is predicted 

for the higher 𝐷𝑎 value, which is steeper indicated by isotherms close to the vertical 

sidewalls and by more horizontal isotherm lines at the enclosure centre. 

Figure 5.5(c)-(e) illustrates the influence of the thermal conductivity ratio on the flow and 

heat transfer within the enclosure for case 1 with non-uniform heating at the left sidewall 

at 𝑅𝑎 = 106, 𝐷𝑎 = 10−3, 𝑆 = 0.2 and 𝐴𝑡ℎ = 𝑁𝑡ℎ = 1. At 𝐾𝑟 = 0.1, a large clockwise 

circulating cell is centred in the fluid layer. This covers the majority of the enclosure area 

with a comparatively high penetration within the porous layer. A relatively weaker 

secondary cell, with an anticlockwise flow direction, is confined to the upper left corner 

of the enclosure. As 𝐾𝑟 is increased, the weak secondary cell extends horizontally and 

compresses the main cell. This effect is more pronounced with the base fluid than with 

the nanofluid. This effect reduces the contact area of the main cell with the left heated 

sidewall. The secondary cell receives heat from the heated fluid and returns it to the upper 

portion of the heated wall, causing the upper part of the heated wall to act as a heat sink 

and thus potentially decreasing the rate of heat transfer across the whole wall. Increasing 

𝐾𝑟 causes the stream function intensity to increase, as shown by Ψ𝑚𝑖𝑛, however the 

streamlines are leis packed on the left heated wall. Therefore, increasing the fluid flow 

inside the porous enclosure can be controlled by decreasing 𝐾𝑟. The vertical isotherm 

pattern on the left wall shows that the convective heat transfer takes place in the porous 

layer for 𝐾𝑟 = 0.1, while at 𝐾𝑟 = 5 and 100, the more concentric streamlines at 𝑌 = 0 and 

𝑌 = 1 at 𝑋 = 0 indicates conductive heat transfer in the porous layer. The isotherms located 

near the vertical walls are denser towards the left wall and parallel in the centre zone of 

the enclosure at 𝐾𝑟 = 0.1. At higher values of 𝐾𝑟, the isotherms tended to be vertical in 

the fluid layer with considerable reverse heating towards the upper and lower parts of the 

left heated wall. 

The streamlines (upper row) and isotherms (lower row) for different temperature 

amplitudes 𝐴𝑡ℎ are presented in Figure 5.6(a)-(c). This figure shows the changes in the 

streamlines over the range 0.1 ≤ 𝐴𝑡ℎ ≤ 1 for case 1 at 𝑅𝑎 = 106, 𝐷𝑎 = 10−3, 𝑆 = 0.2  
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(c) 𝐾𝑟 = 0.1  (d) 𝐾𝑟 = 5  (e) 𝐾𝑟 = 100 

Figure 5.5: Streamlines (upper row) and isotherms (lower row) for case 1 with 𝜙 = 0 (solid lines) 

and 𝜙 = 0.2 (dashed lines) at different dimensionless parameters, (a-b) 𝐷𝑎 effect when 𝑅𝑎 = 106, 

𝑆 = 0.2 and Kr = Nth = Ath = 1, and (c-e) Kr effect when 𝑅𝑎 =106, 𝐷𝑎= 10-3, 𝑆 = 0.2 and Nth = Ath = 

1  
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(a) 𝐴𝑡ℎ = 0.2 (b) 𝐴𝑡ℎ = 0.6 (c) 𝐴𝑡ℎ = 1 
Figure 5.6: Streamlines (upper row) and isotherms (lower row) for case 1 as 𝑅𝑎 = 106, 𝐷𝑎= 10-3, 

𝑆 = 0.2, Kr = Nth = 1, 𝜙 = 0 (solid lines), and 𝜙 = 0.2 (dashed lines) for different thermal amplitude 

Ath  values. 

and 𝑁𝑡ℎ = 𝐾𝑟 = 1. At 𝐴𝑡ℎ = 0.2, the core centre of the nanofluid main cell with the 

clockwise direction is located in the fluid layer. The more negative Ψ𝑚𝑖𝑛 predicted with 

the nanofluid indicates a higher recirculation strength than that of the base fluid due to 

the higher thermal conductivity of the nanofluid, which increases the buoyancy force 

which drives natural convection. The heat removal by the main cell from the mid-height 

portion of the left sidewall is constrained by a secondary circulation cell at the upper left 

corner of the enclosure towards the left wall. The spacing between isotherms lines near 

the vertical walls decreased with increasing temperature amplitude 𝐴𝑡ℎ, due to the higher 

heat transport by the main circulation cell. The convective heat transfer for the nanofluid 

was more pronounced than that for the base fluid at the centre zone of the enclosure, as 

indicated by the more parallel isotherms with the nanofluid. Increasing the temperature 

amplitude 𝐴𝑡ℎ = 0.2-1 increases the heat dissipated from the heat source. This led to an 

increase in the fluid temperature inside the enclosure. 

Figure 5.7(a)-(d) show the streamlines (upper row) and isotherms (lower row) for case 1 

for different wave numbers, 𝑁𝑡ℎ at 𝑅𝑎 = 106, 𝐷𝑎 = 10−3, 𝑆 = 0.2 and 𝐴𝑡ℎ = 𝐾𝑟 = 1. 
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At 𝑁𝑡ℎ = 2, two symmetric cells are formed in the upper and lower halves of the 

enclosure. The cells are approximately equal strength for both the base fluid and the 

nanofluid, as shown in Figure 5.7(a). The lower cell worked to remove heat from the wall 

while the upper cell returned the heat into the left wall. Different locations of the 

streamlines core centres of the base fluid and nanofluid cells appeared in the nanofluid 

layer. The core centres of the nanofluid cells are located at around (0.5, 0.3) and (0.5, 0.7) 

for the lower and upper cells, respectively, while the core centre of the base fluid is 

located at around (0.7, 0.3) and (0.7, 0.7) for the same cells. The circulation of the 

nanofluid cells was marginally more intense than that of the base fluid cells, as indicated 

by the more negative Ψ𝑚𝑖𝑛. At 𝑁𝑡ℎ= 3 and 4, the strength of the circulatory flow of the 

nanofluid decreases, while it increases for the base fluid. This implies that the non-

uniform heating affects the base fluid differently than the nanofluid. At 𝑁𝑡ℎ = 3, a non-

symmetrical tri-cellular flow structure appears, as shown in Figure 5.7(b). The upper cell 

stretches into the upper part of the enclosure, while almost symmetrical-looking cells 

appears in the bottom and middle of the enclosure. In agreement with previous situations 

regarding the odd and even numbers of the periodicity parameter (Deng and Chang, 

2008), 𝑁𝑡ℎ produces symmetrical cells for even integer values of 𝑁𝑡ℎ and asymmetric 

cells for odd integer values of 𝑁𝑡ℎ. An irregular pattern within the fluid inside the 

enclosure is generated at 𝑁𝑡ℎ = 7. At 𝑁𝑡ℎ = 7, Figure 5.7(d) shows a multi-cellular flow 

along the left heated wall within the porous layer. Elsewhere, two cells of clockwise and 

anti-clockwise flow directions, respectively, are predicted in the base fluid, while one 

large clockwise cell is predicted in the nanofluid within the fluid layer. Generally, 

increasing 𝑁𝑡ℎ causes the stream function strength to decrease. The isotherms are shown 

in the lower row of Figure 5.7(a)-(d). The common behaviour of the isotherms depends 

on the value of the periodicity parameter, which turn determines the number of circulation 

cells inside the enclosure. The temperature distribution is broadly symmetric when the 

periodicity parameter is an even number, while the temperature distribution is 

asymmetric for odd values of 𝑁𝑡ℎ. The temperature distribution on the right vertical 

sidewall for the even values of 𝑁𝑡ℎ is uniform and equal to zero, while the left wall has 

a symmetric temperature distribution with multiple temperature maxima, due to the non- 

uniform heating. In contrast, when 𝑁𝑡ℎ is odd, an asymmetric distribution of the   
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(d) 𝑁𝑡ℎ= 7   

Figure 5.7: Streamlines (upper row) and isotherms (lower row) for case 1 as 𝑅𝑎 = 106, 𝐷𝑎 =10-3, 

𝑆 = 0.2, Kr = Ath = 1, 𝜙 = 0 (solid lines), and 𝜙 = 0.2 (dashed lines) for different thermal frequency 

Nth values.  
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isotherms is predicted towards the left wall, while a cluster of vertically aligned isotherm 

lines are located around the upper section of the right wall. This cluster weakens between 

𝑁𝑡ℎ = 5 and 𝑁𝑡ℎ = 7. Heat is exchanged between the heated and cooled portions of the 

heated wall at the even values of 𝑁𝑡ℎ. The heat received from the hot portion was equal 

to the heat returned to the cold portion of the active wall of the enclosure. This was 

because the heat received by the cold fluid from the hot portion of the wall will return via 

the hot fluid towards the cold portion of the same wall. The asymmetric distribution of 

isotherms at odd numbers of 𝑁𝑡ℎ indicates a positive net heat output to the right wall. 

5.3.1.2 Horizontal porous - nanofluid layers (case 2) 

The streamlines and isotherms for the horizontally aligned nanofluid-porous layers for 

different combinations of 𝑆, 𝑅𝑎, 𝐷𝑎, 𝐾𝑟, 𝐴𝑡ℎ and 𝑁𝑡ℎ are presented in Figure 5.8 – 5.11. 

Figure 5.8(a)-(c) shows streamline (upper row) and isotherm (lower row) contours as 

𝑅𝑎 = 106, 𝐷𝑎 = 10−3 and 𝐾𝑟 = 𝐴𝑡ℎ = 𝑁𝑡ℎ = 1 for different porous layer thicknesses, 

𝑆, when the porous layer is horizontal and underneath the nanofluid layer (case 2). The 

non-uniform heating on the left sidewall resulted in a clockwise and in an anti-clockwise 

circulation cell. As shown in Figure 5.8(a) at 𝑆 = 0.1, the primary cell, rotating in a 

clockwise direction, has a high stream function intensity which is driven by the buoyancy 

of the flow being heated along the left wall, and flowing down along the cooled right 

sidewall. This results in a large cell with two poles, which are located near each vertical 

sidewall. This cell covers the majority of the enclosure area with high clustering of the 

streamlines close to the vertical walls and very low penetration into the porous layer. The 

secondary cell, rotating in an anticlockwise direction, is located close to the upper left 

corner of the enclosure. At 𝑆 = 0.2 and 𝑆 = 0.5, the nanofluid cell tends to form a single 

core centre close to the left heated wall. At 𝑆 = 0.2, the strength of the circulation 

increases as compared to 𝑆 = 0.1, and thereafter decreases at 𝑆 = 0.5, as indicated by 

Ψ𝑚𝑖𝑛. The intensity of the stream function for case 2 was greater than for case 1 for 

different porous layer thicknesses. The addition of 20% by volume nanoparticles 

increased the stream function intensity in the main cell of the nanofluid more compared 

to that for the single-phase fluid. This was due to the thermal conductivity effect of the 

nanoparticles, which results in an increase in the buoyancy of the nanofluid.   
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(d) 𝑅𝑎 =104 (e) 𝑅𝑎 =105 (f) 𝑅𝑎 =107 

Figure 5.8: Streamlines (upper row) and isotherms (lower row) for case 2 with 𝜙 = 0 (solid lines) 

and 𝜙 = 0.2 (dashed lines) at different dimensionless parameters, (a-c) 𝑆 effect when 𝑅𝑎 = 106, 

𝐷𝑎 = 10-3 and Kr = Nth = Ath = 1, (d-f) 𝑅𝑎 effect when 𝐷𝑎 = 10-3, 𝑆 = 0.2 and Kr = Nth = Ath = 1. 

The percentage gains due to the addition of nanoparticles are 29%, 28.7% and 16% for 𝑆 

0.1, 0.2, and 0.5, respectively. The percentage gain due to this addition is greater for case 
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2 compared to case 1, except at 𝑆 = 0.5, where the gain for case 1 is larger. This may due 

to the lower contact region of the denser streamlines attached to the heated wall with 

lower penetration of the flow into the porous layer. The predicted isotherms of the lower 

row of Figure 5.8(a)-(c) shows more clustered isotherms along the left heated wall for 

case 2 than for case 1. Convective heat transfer is substantial because the two-pole 

circulation cells lead to mainly horizontal isotherms within the fluid layer. The difference 

in the isotherms between the base fluid and the nanofluid is more pronounced at 𝑆 = 0.5, 

where the isotherms of the nanofluid run more diagonally than for the base fluid. It is 

interesting to note that, changing the porous layer thickness has a greater effect on the 

isotherms for case 1 than for case 2, as the isotherms in case 1 cluster less tightly with 

increasing 𝑆 inside the vertical porous slab than inside the horizontal porous slab in case 

2. 

Figure 5.8(d)-(f) shows the effect of increasing the Rayleigh number on the stream 

function (upper row) and temperature distributions (lower row) for case 2 with 𝐷𝑎 =

10−3, 𝑆 = 0.2 and 𝐾𝑟 = 𝐴𝑡ℎ = 𝑁𝑡ℎ = 1. Figure 5.8(d) shows the streamlines at 𝑅𝑎 =

104. A primary cell forms with an elliptical core parallel to the horizontal walls. This cell 

covers the majority of the enclosure area with a low penetration through the porous layer. 

A much weaker secondary cell forms at the upper left corner of the enclosure. At 𝑅𝑎 =

105, the core of the primary cell elongates horizontally, forming two poles, as shown in 

Figure 5.8(e), similarly to Figure 5.8(b) when 𝑅𝑎 = 106. At the highest Rayleigh 

number, 𝑅𝑎 = 107, the primary cell, with its two poles, stretches horizontally so that the 

streamlines cluster along the vertical walls in the nanofluid layer. In addition, increasing 

𝑅𝑎 increases the strength of the secondary cell, more so for a nanofluid more than for the 

base fluid. Adding 20% by volume of copper nanoparticles increases the main cell 

strength of the nanofluid compared to that of the base fluid at the lower Rayleigh number, 

as indicated by the changes in Ψ𝑚𝑖𝑛. Increasing the Rayleigh number caused the intensity 

of the nanofluid main cell to increase compared to the single-phase fluid. This is indicated 

by a reduction in Ψ𝑚𝑖𝑛 of about 14.8%, compared to 26.8% as 𝑅𝑎 increases from 105 to 

107, respectively. The percentage gain in Ψ𝑚𝑖𝑛for case 2 due to addition the nanoparticles 

at 𝑅𝑎 = 105 is lower than that in case 1. This may be because of the porous-nanofluid 

layers’ direction. As a comparison, the intensity of the circulation cells in case 2 was 

greater than in case 1. This indicates that the direction of porous-nanofluid layers plays 
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an important role in heat transfer enhancement. The lower row of Figure 5.8(d)-(f) shows 

the isotherms for different values of the Rayleigh number. The difference between the 

base fluid and the nanofluid is more pronounced at the lower value of the Rayleigh 

number, for which the layer thickness of isotherm lines of the nanofluid near the top right 

wall is greater than for the base fluid and the isotherm lines are more vertically oriented. 

This was because the viscous force has a greater effect on the fluid flow than the 

buoyancy force at the lowest Rayleigh number, which reduces the intensity of the 

circulation cell of the nanofluid compared to the base fluid. The layer thickness of the 

isotherm lines over the right wall for case 2 appears to be less than that for case 1, 

indicating higher convective heat transfer in case 2 compared to case 1. Increasing 𝑅𝑎 

produces the heat transfer rate is more enhanced for case 2 than case 1.  

The effect of the Darcy number on the streamlines and isotherms for case 2 at 𝑅𝑎 = 106, 

𝑆 = 0.2 and 𝐾𝑟 = 𝐴𝑡ℎ = 𝑁𝑡ℎ = 1 is shown in Figure 5.9(a) and (b) for Darcy numbers 

𝐷𝑎 = 10-5 and 𝐷𝑎 = 10-1, respectively. At both 𝐷𝑎 = 10−5 and 10−1, the top row of 

Figure 5.9(a) show that the core centre of the main cell has two poles located close to the 

vertical walls. At 𝐷𝑎 = 10-1, the strength of the main circulation, as indicated by Ψ𝑚𝑖𝑛, 

for both the base fluid and nanofluid was almost identical at 𝐷𝑎 =10-5 and 10-1. At both 

Darcy numbers, the circulation for the base fluid main cell was lower compared to the 

nanofluid main cell. The coordinates of the core centres were the same at 𝐷𝑎 = 10−5 

and 10−3 (as shown in Figure 5.8(b)) and 10−1. It may be noted that the pattern of flow 

circulation inside the enclosure at 𝐷𝑎 = 10−5 differs from the circulation flow pattern of 

case 1. In case 1, the packing density of the streamlines is higher along the right cooled 

wall. The strength of the main cell recirculation for case 2 is stronger than that in case 1 

at 𝐷𝑎 = 10-5, 10-3, and at 𝐷𝑎 = 10-1, based on Ψ𝑚𝑖𝑛. This difference stems from the 

different directions of the porous and nanofluid layers, which indicates a greater heat 

transport for case 2 than for case 1. The isotherms show that the thickness of the thermal 

layer in case 2 is smaller than case 1, while these were almost identical at higher values 

of the Darcy number. The convective heat transfer was more pronounced in the nanofluid 

layer with different Darcy number values. It may be noted that convective heat transfer 

was more dominant at the left heated wall within the nanofluid layer for all values of 

Darcy number in case 2 compared to case 1, as indicated by the more vertical isotherms 

on the left heated wall.  
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(c) 𝐾𝑟 = 0.1 (d) 𝐾𝑟 = 5 (e) 𝐾𝑟 = 100 
Figure 5.9: Streamlines (upper row) and isotherms (lower row) for case 2 with 𝜙 = 0 (solid lines) 

and 𝜙 = 0.2 (dashed lines) at different dimensionless parameters, (a-b) 𝐷𝑎 effect when 𝑅𝑎 = 106, 

𝑆 = 0.2 and Kr = Nth = Ath = 1, and (c-e) Kr effect when 𝑅𝑎 = 106, 𝐷𝑎 = 10-3 , 𝑆 = 0.2 and Nth = Ath 

= 1.  
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Figure 5.9(c)-(e) shows the streamlines and isotherms for case 2 at 𝑅𝑎 = 106,𝐷𝑎 =

10−3 𝑆 = 0.2 and 𝐴𝑡ℎ = 𝑁𝑡ℎ = 1 for 𝐾𝑟 = 0.1, 5, and 100. At all 𝐾𝑟 values, the main cell 

has two poles for both the base fluid and for the nanofluid. The cell size is almost identical 

with and without copper nanoparticles. It may be noted that there was no difference in 

the flow circulation pattern inside the enclosure for all values of 𝐾𝑟 compared to case 1. 

In case 1, the packing density of the streamlines is higher along the right cooled vertical 

sidewall with increasing 𝐾𝑟. The convective heat transfer was dominant at the left heated 

wall within the nanofluid layer for all values of 𝐾𝑟 for case 2, while in case 1 convective 

heat transfer was dominant for lower values of 𝐾𝑟 and conductive heat transfer at higher 

values. At 𝐾𝑟 = 0.1, the stream function for case 2 was of greater strength than case 1, 

indicated by a lower Ψ𝑚𝑖𝑛, although the penetration into the porous layer was greater for 

case 1. Conversely, increasing 𝐾𝑟 caused a stronger recirculation for case 1 than for case 

2, as indicated by Ψ𝑚𝑖𝑛.  

The effect of the temperature amplitude of the sinusoidal heating on the streamlines 

(upper row) and isotherms (lower row) in case 2 at 𝑅𝑎 = 106, 𝐷𝑎 = 10−3, 𝑆 = 0.2 and 

𝐾𝑟 = 𝑁𝑡ℎ = 1 is shown in Figure 5.10(a)-(c). At 𝐴𝑡ℎ = 0.2 (see Figure 5.10(a)), the core 

centre of the nanofluid main cell is located near the left heated wall, while the base fluid 

main cell has two poles located near each the vertical wall of the enclosure. At 𝐴𝑡ℎ= 0.6, 

the primary cell of the nanofluid has two poles and the streamlines run more diagonally 

compared to the base fluid main cell. The penetration of the streamlines into the porous 

layer increases with increasing 𝐴𝑡ℎ value, though this effect is clearer for case 1 than case 

2. Although case 1 has this feature, the strength of the stream function is higher for case 

2 than for case 1, as determined by a lower minimum in Ψ𝑚𝑖𝑛. This may be because of 

the flow resistance that is offered by the porous layer near the heated vertical sidewall, 

which is greater for case 1 than case 2. The streamlines are steeper towards the left 

vertical wall for case 2 for all values of 𝐴𝑡ℎ , whereas in case 1 the clustering of these 

lines is more pronounced along the right cooled wall with increasing 𝐴𝑡ℎvalues. The 

isotherms of Figure 5.10(a)-(c) (lower row) show that the packing density of the isotherm 

lines in case 2 near the left wall is lower than in case 1, due to the higher intensity of the 

stream function in case 2. The difference in the isotherm lines between the nanofluid and 

base fluid is more pronounced in case2. Within the porous layer, where there is a   
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(a) 𝐴𝑡ℎ = 0.2 (b) 𝐴𝑡ℎ = 0.6 (c) 𝐴𝑡ℎ = 1 

Figure 5.10: Streamlines (upper row) and isotherms (lower row) for case 2 as 𝑅𝑎 =106, 𝐷𝑎=10-3, 

𝑆 = 0.2, Kr = Nth = 1, 𝜙 = 0 (solid lines), and 𝜙 = 0.2 (dashed lines) for different thermal amplitude 

Ath values. 

retardation of the nanofluid’s motion in the porous layer due to the addition of 

nanoparticles, viscous forces may overcome the buoyancy force. 

Figure 5.11(a)-(d) illustrates the streamlines (upper row) and the isotherms (lower row)  

for case 2 with different values of the periodicity parameter 𝑁𝑡ℎ at 𝑅𝑎 = 106, 𝐷𝑎 =

10−3, 𝑆 = 0.2 and 𝐴𝑡ℎ = 𝐾𝑟 = 1. The strength of the stream function decreases with 

increasing 𝑁𝑡ℎ values, as indicated by higher negative Ψ𝑚𝑖𝑛 values. The odd and even 

numbers of the periodicity parameter affect the flow behaviour inside the enclosure. 

Changing 𝑁𝑡ℎ results in symmetric cells for even integers of 𝑁𝑡ℎand asymmetric cells 

for odd 𝑁𝑡ℎ integers. At 𝑁𝑡ℎ = 2, two almost symmetric cells form, respectively, in the 

upper and lower halves of the enclosure, with approximately equal values of the peak 

circulation, as indicated byΨ𝑚𝑖𝑛, for the base fluid and the nanofluid, as shown in Figure 

5.11(a). The peak circulation of the nanofluid cells is marginally more intense than for 

the base fluid cells. The lower cells rotate in a clockwise direction with Ψ𝑚𝑖𝑛 = 19.9 for 

the nanofluid and Ψ𝑚𝑖𝑛 = 19.2 for the base fluid, while the upper cells rotate in an 

anticlockwise direction withΨ𝑚𝑎𝑥   = 25.1 for the nanofluid and Ψ𝑚𝑎𝑥 = 22.5 for the base  
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(d) 𝑁𝑡ℎ = 7   

Figure 5.11: Streamlines (upper row) and isotherms (lower row) for case 2 as 𝑅𝑎=106, 𝐷𝑎 =10-3, 

𝑆 = 0.2, Kr = Ath = 1, 𝜙 = 0 (solid lines), and 𝜙 = 0.2 (dashed lines) for different thermal frequency 

Nth  values.  
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fluid. The upper cells are larger and stronger than the lower cells, because of the flow 

resistance offered by the porous layer. At 𝑁𝑡ℎ = 3, the nanofluid rotates in a clockwise 

direction in a middle cell between a top and a bottom anti-clockwise cell. This middle 

cell is less extended than the base fluid cell within the enclosure but has a stronger 

circulation, as indicated by Ψ𝑚𝑖𝑛 . The peak anti-clockwise recirculation, Ψ𝑚𝑖𝑛 in case 2 

is higher than for case 1. The isotherms for this test case one shown in the lower row of 

Figure 5.11(a)-(d). The common behaviour of the isotherms depends on the periodicity 

parameter and thus in turn on the number of circulation cells inside the enclosure. The 

temperature distribution is approximately symmetric when the periodicity parameter is 

an even integer, while it is asymmetric for odd 𝑁𝑡ℎ. There is less heat transfer to the right 

wall when 𝑁𝑡ℎ is even. This was because the heat received from the hot portion of the 

left heated wall is approximately equal to the heat that returns to the cold portion of the 

left heated wall. Conversely, the asymmetry of the isotherms for odd 𝑁𝑡ℎ that may 

provide heat transfer to the right cold wall for case 2 as for case 1. 

 

The dimensionless velocity magnitude is plotted at the interface between the porous-

nanofluid layers along the 𝑌-axis and 𝑋-axis for (a) case 1 and (b) case 2, respectively, at 

𝑆 = 0.2, 𝜙 = 0.2, and 𝐾𝑟 = 𝐴𝑡ℎ = 𝑁𝑡ℎ = 1 with 𝑅𝑎 = 104 and 𝑅𝑎 = 107 for different 𝐷𝑎 

values, in Figure 5.12. Figure 5.12(a) shows the effect of increasing 𝑅𝑎 on the velocity 

magnitude for case 1 at different values of 𝐷𝑎. The effect of increasing the Darcy number 

is more pronounced at the low Rayleigh number of 104, with a maximum value of the 

velocity magnitude at 𝑌 = 0.5. At the higher 𝑅𝑎 = 107, two velocity magnitude maxima 

occurred at around 𝑌 = 0.1 and 0.9, respectively, at high values of 𝐷𝑎, while a velocity 

minimum occurred between 𝑌 = 0.6 and 0.8. This decrease in velocity magnitude is due 

to the movement of the main cell centre towards this height inside the enclosure. 

 Figure 5.12(b) shows the variation of the velocity magnitude with 𝑅𝑎 along the 

horizontal interface for case 2 for three different 𝐷𝑎 values. At 𝑅𝑎=104, the profile of 

the velocity magnitude shows a similar trend at all three Darcy number values as case 1. 

The velocity magnitude changes at the high number of 𝑅𝑎 = 107, specifically, velocity 

magnitude distribution is approximately uniform between 𝑋 = 0.1 and 𝑋 = 0.8, while 
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positive higher values of the velocity magnitude appear near the vertical walls of the 

enclosure. Generally, at the high value of the Rayleigh number, the velocity magnitude 

for case 2 is higher along the vertical walls than for case 1. Consequently, as it might be 

expected that, the rate of heat transfer in case 2 is higher than in case 1. 
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Figure 5.12: Variation of resultant velocity component, 𝑅 at the interface line of (a) case 1 and 

(b) case 2 for different Darcy numbers as 𝑆 = 0.2 , 𝜙 = 0.2 and Kr = Nth = Ath = 1 at 𝑅𝑎 = 104 and  

𝑅𝑎 =107. 

 

The variation of the normalized temperature distribution along the interface line at 𝑋 = 

0.2 for (i) case 1 and 𝑌= 0.2 for (ii) case 2 when 𝑅𝑎 = 106, 𝐷𝑎 = 10−3, 𝑆 = 0.2, and 𝜙 = 

0.2 is shown in Figure 5.13, for different values of (a) 𝑁𝑡ℎ and (b) 𝐴𝑡ℎ. Figure 5.13(i) (a) 

shows the dimensionless temperature distribution along the vertical interface line at 𝑋 = 

0.2 for case 1 at different wave numbers, 𝑁𝑡ℎ at 𝐾𝑟 = 𝐴𝑡ℎ = 1. The temperature profile is 

non-monotonic. This is due to the non-uniform temperature imposed on the left heated 

wall at different 𝑁𝑡ℎ values. The maximum temperature along the interface occurs at 𝑁𝑡ℎ 

= 1. This gave an indication that the maximum heat removal from the heat source occurs 

at 𝑁𝑡ℎ = 1. This is evidenced by higher density of the isotherms along most of the left 
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heated wall produced by the main clockwise circulation shown in Figure 5.4(b). There 

appears to be no substantial reversal of the heat flux from the nanofluid towards the left 

heated wall, due to the weak anti-clockwise secondary cell at the upper left corner of the 

enclosure.  

Figure 5.13(i) (b) shows the non-dimensional temperature distribution along the porous 

- nanofluid interface for case 1with 𝐴𝑡ℎ as 𝐾𝑟 = 𝑁𝑡ℎ = 1. The variation in temperature 

distribution increases with increasing 𝐴𝑡ℎ. This is due to the extension of the main 

circulation cell from the fluid layer towards the porous-fluid interface and 

increasing the streamlines strength for both the main and secondary cells, as shown 

in Figure 5.6(a)-(c). This causes to increase the clustering of the isotherms along 

the vertical walls with increasing 𝐴𝑡ℎ values. In addition, at all values of 𝐴𝑡ℎ, the 

temperature approximately reached its maximum value at about 𝑌 = 0.8. This is due to 

the right going heat transport by the main circulation cell at this height along the porous 

– nanofluid interface, after which the temperature gradually decreases up to 𝑌 = 1.  

Figure 5.13(ii) (a) shows the effect of the thermal wave number 𝑁𝑡ℎ on the non-

dimensional temperature distribution along the interface line at 𝑌 = 0.2 for case 2 as 𝐾𝑟 

= 𝐴𝑡ℎ = 1. At 𝑋 = 0, the dimensionless temperature at the left heated sidewall, is 

determined by 𝑁𝑡ℎ as an imposed boundary condition. This changes the ensuing 

temperature distribution at 𝑋 ≥ 0. In addition, the maximum temperature occurs at 

𝑁𝑡ℎ = 3. At 𝑁𝑡ℎ = 5, the decreasing 𝜃 trends at 𝑋 > 1indicates heat transfer towards the 

left wall of the enclosure. This effect is greater at 𝑁𝑡ℎ  = 7 than at 𝑁𝑡ℎ = 5. This was 

because, as the thermal wave number 𝑁𝑡ℎ increases, the temperature at the left heated 

wall oscillates more rapidly with 𝑌, which ultimately causes the decrease of heat transfer 

towards the right wall. It is interesting to note that at 𝑁𝑡ℎ = 3 and 𝑁𝑡ℎ = 7, the normalized 

temperature distributions sharply decrease near the left heated wall and approach zero 

along the interface until 𝜃 = 0 at 𝑋 = 1. At 𝑁𝑡ℎ= 1, the dimensionless temperature 

gradually decreases from 𝑋 = 0 up to 𝑋 = 1, starting from a lower wall temperature at 𝑋 

= 0 than for 𝑁𝑡ℎ = 3. This is due to 𝜃 at 𝑋 = 0 being about 0.6, therefore being more 

intermediate (lower) than the temperature extrema (+1, -1) at 𝑁𝑡ℎ = 3 and 𝑁𝑡ℎ = 7. The 

influence of the amplitude parameter on the normalized temperature distribution along 
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the interface line at 𝑌 = 0.2 for case 2 as 𝐾𝑟 = 𝑁𝑡ℎ = 1 is reported in Figure 5.13(ii) (b). 

This figure shows that the temperature profile rapidly decreased as 𝑋 increases from 0 to 

0.2 for all values of 𝐴𝑡ℎ, and then steadily decreases along the interface line. The 

temperature along the interface increases with increasing amplitude because of the higher 

value of the temperature imposed as boundary condition at 𝑋 = 0, as 𝐴𝑡ℎ  increases. 
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Figure 5.13: Local distribution of the dimensionless temperature along the interface line for (i) 

case 1 and (ii) case 2 with different dimensionless parameters (a) Nth effect, and (b) Ath effect. 

 

Figure 5.14 shows the predictions of the local Nusselt number on the left (𝑁𝑢𝑙) and right 

(𝑁𝑢𝑟) walls of the enclosure in the left and right columns, respectively, at five increasing 

values of thermal conductivity ratio, 𝐾𝑟 for (i) case 1 and (ii) case 2 at 𝑅𝑎 = 106, 𝐷𝑎 =

10−3, 𝑆 = 0.2, 𝐴𝑡ℎ = 𝑁𝑡ℎ = 1 and 𝜙 = 0.2. Figure 5.14(a)(i) shows common trend of a 

single 𝑁𝑢𝑙 for case 1 due to the maximum temperature imposed at about 𝑌 0.4 on the left 

heated sidewall. The local Nusselt number is sensitive to 𝐾𝑟, and 𝑁𝑢𝑙 is maximum for 

the lowest value of 𝐾𝑟  = 0.1. This is due to the high thermal conductivity of the nanofluid 

enhancing the convective heat transfer inside the porous layer for this thermal 
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conductivity ratio. The negative distribution in the upper and lower portions of the left 

heated wall stems from the effect of imposing the left wall boundary conditions 𝜃 = 0 at 

𝑌 = 0 and 𝑌 = 1, leading to heat transfer towards the left wall at there locations. For case 

2 as shown in Figure 5.14(a) (ii), when under the same conditions as case 1, an overall 

similar trend in the local Nusselt number on the left heated wall can be seen as case 1. 

However, there is essentially no sensitivity of 𝑁𝑢𝑙 to variations in 𝐾𝑟 at 𝑌 > 0.2. 

Increasing 𝐾𝑟 reduces the local Nusselt number along the left heated wall at 𝑌 < 0.2. This 

was because the effect of increasing 𝐾𝑟 is more pronounced in the porous layer at 𝑌 <

 0.2 where the heat transport by the nanofluid is more important for the sloer moving flow 

at lower 𝐾𝑟 values. The variation of 𝑁𝑢𝑙 along with the left wall for case 1 is greater than 

for case 2. At 𝐾𝑟 = 0.1, 𝑁𝑢𝑙 for case 1 is greater than for case 2. This was because the 

higher conductivity of the nanofluid particles has more important on the retarded fluid 

through the vertical porous slab next to the heated wall, which reaches a higher 

temperature in case 1 than in case 2. The high value of 𝑁𝑢𝑙 in case 2 at the porous layer 

attributed to increasing of the thermal conductivity of the nanofluid more than the porous 

slab which causes a packing of the isotherms close to the left wall compared to the other 

𝐾𝑟 values as shown in Figure 5.9(c)-(e). At 𝐾𝑟 ≥ 1, 𝑁𝑢𝑙 for case 2 is higher than for case 

1. This is attributed to that in case 2, the dominance of the main circulation cell inside the 

fluid layer with two poles located near the vertical walls and leads to packing the 

isotherms along the left vertical wall compared to case 1.  

The effect of increasing 𝐾𝑟 on the local Nusselt number along the right wall of the 

enclosure for (i) case 1 and (ii) case 2 shown in Figure 5.14(b). The local Nusselt number 

along the right cold wall (𝑁𝑢𝑟) has negative values for all 𝐾𝑟 values. 𝑁𝑢𝑟 is more 

negative over the lower portion of the right cold sidewall in case 1 while it is more 

negative over the upper portion in case 2. This was due to the differences in the main cell 

near the right cold sidewall between the two cases. There is no appreciable effect of 

changing the magnitude of 𝐾𝑟 on the local Nusselt number along the right wall for case 

2. 
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    (a)      (b) 
Figure 5.14: Variation of the local Nusselt number along the left hot wall (a) and the right cold 

wall (b) with different dimensionless thermal conductivity ratio Kr. In each plot, the upper panel 

corresponds to case 1, and the lower panel corresponds to case 2. 

 

The average Nusselt number, 𝑁𝑢𝑎𝑣 is presented in Figure 5.15 as an aggregate measure 

of the overall rate of heat transfer. The variation in the average Nusselt number is plotted 

versus the logarithm of Rayleigh number, 𝑅𝑎, the logarithm of the Darcy number, and 

the porous layer thickness for both cases 1 and 2, in Figure 5.15(a)-(c), respectively. In 

each plot, the upper panel corresponds to case 1 and the lower panel corresponds to case 

2. The upper panel of Figure 5.15(a) shows the relationship between 𝑁𝑢𝑎𝑣 and 𝑅𝑎 for 

different values of the thermal amplitude for case 1 at 𝐷𝑎 = 10−5,  𝑆 = 0.2, 𝐾𝑟 = 𝑁𝑡ℎ  = 1 

and 𝜙 = 0.2. This figure shows that 𝑁𝑢𝑎𝑣 increases as the temperature amplitude 

increases from 0.2 to 1. The average Nusselt number increases with increasing 𝑅𝑎 for a 

given temperature amplitude, especially for high values of 𝐴𝑡ℎ. For case 2 (the lower 

panel of Figure 5.15(a)), it is interesting to note that 𝑁𝑢𝑎𝑣 for case 2 was higher than for 

case 1 for all values of 𝐴𝑡ℎ, especially at higher values of 𝑅𝑎. This was because the layer 

thickness of the isotherm lines in case 2 was smaller than that for case 1 due to the higher 

intensity of the stream function in case 2.  

The upper panel of Figure 5.15(b) shows the variation of 𝑁𝑢𝑎𝑣 with the logarithm of 𝐷𝑎 

for case 1 with different values of periodicity parameter 𝑁𝑡ℎ at 𝑅𝑎 = 107,  𝐾𝑟 = 𝐴𝑡ℎ = 1, 

𝑆 = 0.2 and 𝜙 = 0.2. Common to the 𝑁𝑢𝑎𝑣 distribution with 𝐷𝑎 for all values of 𝑁𝑡ℎ,  
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    (a)    (b) 

 

      (c) 
Figure 5.15: Variation of the average Nusselt number with (a) 𝑅𝑎 effect, (b) 𝐷𝑎 effect and (c) 𝑆 

effect. In each plot, the upper panel corresponds to case 1, and the lower panel corresponds to 

case 2. 

𝑁𝑢𝑎𝑣 decreases with increasing 𝑁𝑡ℎ for all 𝐷𝑎 values. A higher 𝑁𝑢𝑎𝑣 value is predicted 

for 𝐷𝑎 ≥ 10−3, while a low 𝑁𝑢𝑎𝑣 is predicted for 𝐷𝑎 ≤ 10−5, for all 𝑁𝑡ℎ values. A rapid 

decrease of 𝑁𝑢𝑎𝑣 with increasing 𝑁𝑡ℎ is predicted over the Darcy number for the range 

10−5 ≤ 𝐷𝑎 ≤ 10−3. This is because the porous layer affects the circulation of the main 

cell. In case 2 (the lower panel of Figure 5.15(b)), 𝑁𝑢𝑎𝑣  shows a lower sensitivity with 

the variation in the Darcy number, especially at 𝑁𝑡ℎ = 1. This was because the porous 

layer only affects the lower portion of the left heated wall (𝑆 = 0.2) and most of the 

recirculation cell occupies the nanofluid layer. At 𝑁𝑡ℎ= 1, 𝑁𝑢𝑎𝑣 is greater in case 2 

compared to that for case 1 at the lower values of 𝐷𝑎  
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Figure 5.15(c) shows the effects of the porous layer thickness ratio, 𝑆 on 𝑁𝑢𝑎𝑣 for 

different 𝑅𝑎 at 𝐷𝑎 = 10−5,  𝐾𝑟= 𝐴𝑡ℎ = 𝑁𝑡ℎ = 1, 𝑆 = 0.2 and 𝜙 = 0.2. For case 1, this 

Figure shows that 𝑁𝑢𝑎𝑣 increases with 𝑅𝑎 due to the augmentation of the buoyancy 

forces. For a given 𝑅𝑎, the heat transfer rate decreases as 𝑆 increases due to the flow 

resistance produced by the porous layer. In addition, there was no significant effect of 𝑆 

on 𝑁𝑢𝑎𝑣 at 𝑅𝑎= 104. It is interesting to note that the maximum 𝑁𝑢𝑎𝑣 occurs at 𝑆 = 0.1 

due to the high circulation strength of the main cell. In case 2 (lower panel of Figure 

5.15(c)), a significant increase in 𝑁𝑢𝑎𝑣 is observed for all Rayleigh numbers compared 

to case 1, indicating the effect of the nanofluid-porous layers’ direction. Specifically, the 

porous layer has less effect on the streamlines of the main cell in case 2 compared to case 

1. 

Figure 5.16 shows the variation in 𝑁𝑢𝑎𝑣 with the logarithm of 𝑅𝑎 for case 1 (solid line) 

and case 2 (dashed line) at 𝐾𝑟 = 1 and 𝐾𝑟 = 0.1 with sinusoidal temperature boundary 

conditions at the left vertical sidewall, as 𝐷𝑎 = 10-3, 𝑆 = 0.2, 𝜙 = 0.2 and 𝐴𝑡ℎ  = 𝑁𝑡ℎ = 1. 

𝑁𝑢𝑎𝑣 increases with increasing 𝑅𝑎 for all 𝐾𝑟 in both cases. This is due to the greater 

buoyancy force produced at higher 𝑅𝑎, especially at 𝑅𝑎 = 107. 𝑁𝑢𝑎𝑣 at 𝐾𝑟 = 0.1 is higher 

than at 𝐾𝑟 = 1. In addition, at 𝐾𝑟 = 1, 𝑁𝑢𝑎𝑣 in case 2 is slightly higher than for case 1. As 

𝐾𝑟 decreases (𝐾𝑟 = 0.1), 𝑁𝑢𝑎𝑣 for case 1 becomes significantly higher than for case 2,  

 

 

Figure 5.16: Variation of the average Nusselt number with Kr = 1and Kr = 0.1, for case 1 (solid 

lines) and case 2 (dashed lines) with sinusoidal heating on the left vertical sidewall as 𝐷𝑎 = 10-3, 

𝑆 = 0.2, 𝜙 = 0.2 and Nth = Ath = 1.  
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where the convection heat transfer at this value of 𝐾𝑟 in case 1 is more dominant than in 

case 2. This is because that at 𝐾𝑟 = 0.1, the isotherms for case 1 were denser along the 

left heated wall than that for case 2, as shown in Figure 5.5(c) and Figure 5.9(c), 

respectively. Generally, the lower value of 𝐾𝑟 produced higher rates of heat transfer in 

case 1 than in case 2 for different Rayleigh numbers. 

 Conclusions 

Natural convection inside an enclosure filled with composite nanofluid-porous layers 

with a sinusoidal thermal boundary condition on the left-hand sidewall of the enclosure 

has been studied. Case 1 and case 2 were considered to illustrate the effects of the vertical 

and horizontal orientations of the nanofluid-porous layers, respectively. The left wall of 

the enclosure was sinusoidally heated while the right wall was isothermally cooled. The 

upper and lower walls of the enclosure were thermally isolated. Cu-water nanofluid was 

used in a homogenous mixture. The results of this study indicate the following 

conclusions: 

 The intensity of the stream function for case 2 was greater than for case 1 for 

different porous layer thicknesses. The layer thickness of the isotherm lines for 

case 2 was less than case 1, indicating higher convective heat transfer in case 2 

compared to case 1.  

 At the high values of the Rayleigh number and Darcy number, the velocity 

magnitude for case 2 showed was higher the vertical walls than for case 1. This 

indicated higher convective heat transfer for case 2 than case 1. 

 The penetration of the streamlines into the porous layer increased with increasing 

𝐴𝑡ℎvalue and this was clearer for case 1 than for case 2. Although case 1 has this 

feature, the strength of the stream function was higher for case 2 than for case 1. 

 The temperature distribution along the porous-fluid interface increased with 

increasing the temperature amplitude 𝐴𝑡ℎ, driven by a stronger temperature 

transport by the main circulation cell at higher 𝐴𝑡ℎ  values. Furthermore, the 

rate of heat transfer for case 2 was higher than for case 1 for all values of 𝐴𝑡ℎ, 

especially at higher values of 𝑅𝑎. 
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 There was an irregular distribution of the isotherms for odd values of 𝑁𝑡ℎ. At low 

𝐷𝑎 values, 𝑁𝑢𝑎𝑣 was higher for case 2 than that for case 1, especially at 𝑁𝑡ℎ =1. 

 𝑁𝑢𝑎𝑣 increased with increasing 𝑅𝑎 value, especially at 𝑅𝑎 = 107 for all 𝐾𝑟. At 

𝐾𝑟 ≥ 1, 𝑁𝑢𝑎𝑣 for case 2 was higher than for case 1, while at 𝐾𝑟 = 0.1, 𝑁𝑢𝑎𝑣 for 

case 1 was higher than for case 2. The lower value of 𝐾𝑟 produced a higher 𝑁𝑢𝑎𝑣 

in case 1 compared to case 2 for different Rayleigh numbers. 

In general, the effect of the porous slab direction, the Rayleigh number, the Darcy 

number, the thermal conductivity ratio (porous/ nanofluid), the temperature amplitude, 

the temperature wave number, and the nanoparticles volume fraction with the sinusoidal 

thermal boundary condition played an important role in the trend of the flow and heat 

transfer inside an enclosure partly filled by a porous slab saturated with a nanofluid in a 

vertical and a horizontal porous slab. At low values of the thermal conductivity ratio 

(porous to nanofluid), 𝐾𝑟 < 1, the heat transfer inside the enclosure was higher for all 

values of Rayleigh number when the porous slab in the vertical direction compared to the 

horizontal porous slab. The heat transfer was higher for the horizontal porous slab 

compared to the vertical porous slab with increasing the temperature amplitude of the 

heated wall and at higher values of the Rayleigh number. A significant increase of the 

heat transfer at lower values of the Darcy number for the horizontal porous slab compared 

to the vertical porous slab when the temperature wave number of the heated wall was 

equal to one. The results predicted a new trend of the flow and heat transfer inside the 

enclosure under the effect of the sinusoidal thermal boundary condition on the left 

sidewall of the enclosure. The porous slab in a vertical or a horizontal direction played a 

vital role in the heat transfer. It may be interesting for the designer in the modern 

technology of the industrial engineering applications. 
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 Natural Convection of a Hybrid Nanofluid in a 

Square Enclosure Partially Filled with a Porous Medium 

Using a Thermal Non-Equilibrium Model  

 Motivation and introduction 

The aim of this chapter is to investigate the effects of an isoflux bottom-heating wall on 

the convective heat transfer inside an enclosure partly filled by a vertical porous slab 

saturated with a hybrid nanofluid using a local thermal non-equilibrium model LTNE 

model. A new simulation results is presented to develop the convective heat transfer 

inside an enclosure partly filled by a porous slab rather than that of using enclosures that 

were used in the previous literature under an isoflux bottom-heating wall of the enclosure. 

To the best of author’s knowledge, no such an investigation has yet been reported in the 

literature. Therefore, this study makes an original contribution to this scientific field. This 

investigation of the present study may be interested to the designer to predict the 

convective heat transfer in the next modern industry technology. 

Accordingly, this chapter deals with the investigation of natural convection inside an 

enclosure partly filled with a porous medium saturated with a hybrid nanofluid using the 

LTNE model under the effect of bottom isoflux heating. The bottom wall of the enclosure 

is partly heated to provide a heat flux, while the other parts of the wall are adiabatic. The 

top and vertical walls of the enclosure are maintained at constant cold temperatures. 

Simulations are obtained at the Rayleigh number (𝑅𝑎), 103 ≤ 𝑅𝑎 ≤ 107, the Darcy 

number (𝐷𝑎), 10−7 ≤ 𝐷𝑎 ≤ 1, the porous layer thickness (𝑆), 0 ≤ 𝑆 ≤ 1, the modified 

conductivity ratio (𝛾), 10−1 ≤ 𝛾 ≤ 104, the interphase heat transfer coefficient (𝐻), 

10−1 ≤ 𝐻 ≤ 1000, the heat source length (𝐵), 0.2, 0.4, 0.6, 0.8 and 1, and the 

nanoparticle volume fraction (𝜙), 0 ≤ 𝜙 ≤ 0.2. 

 A model problem 

 

The domain of this study is illustrated in Figure 6.1 as that of a two-dimensional square 

enclosure partly filled by a porous slab saturated by a nanofluid with side length 𝐿. The 

bottom wall is partly heated using a heat flux of length 𝑏 with a fixed centre location at a 

distance 𝑑 from the vertical wall. The inactive portions of the bottom wall are adiabatic, 
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while the upper and vertical walls are maintained a constant cooling temperature, 𝑇𝑐. 

Theses boundary conditions cause to generate a temperature difference in the vertical 

direction. Accordingly, the density and gravity vectors are parallel and opposite to each 

other and this may play a significant role on the convective heat transfer. The Darcy-

Brinkman model is used to model the flow in the porous medium layer. The 

dimensionless governing equations are applied to represent the flow and heat transfer 

inside the porous medium and nanofluid layers can be found in Appendix B2 (equations 

B2.1-B2.9). The hybrid nanofluid consists of Cu − Al2O3/ water that saturates the vertical 

porous slab on the left portion of the enclosure, while it filled the rest portion of the 

enclosure. It is assumed a homogenous mixture, laminar and incompressible. The single-

phase fluid and the nanoparticles are in thermal equilibrium. The thermophysical 

properties of the hybrid nanofluid are given in Table 3.1. 

 
 

Figure 6.1: Physical domain of composite hybrid nanofluid-porous medium layers. 

 

The dimensionless governing equations are applied in this case study and the boundary 

conditions are: 

𝑈( 𝑋, 0) = 𝑈(𝑋, 1) = 𝑈(0, 𝑌) =  𝑈(1, 𝑌) = 0  (6.1) 

𝑉( 𝑋, 0) = 𝑉(𝑋, 1) = 𝑉(0, 𝑌) =  𝑉(1, 𝑌) = 0,  (6.2) 

𝜃(𝑋, 1) = 𝜃(0, 𝑌) = 𝜃(1, 𝑌) = 0,  (6.3) 
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𝜕𝜃

𝜕𝑌
 (𝑋, 0) =  − 

(𝑘)𝑏𝑓

(𝑘)ℎ𝑛𝑓
,     (𝐷 − 0.5𝐵) ≤ 𝑋 ≤ (𝐷 + 0.5𝐵) (6.4) 

𝜕𝜃

𝜕𝑌
 (𝑋, 0) = 0,        0 ≤ 𝑋 < (𝐷 − 0.5𝐵) and (𝐷 + 0.5𝐵) < 𝑋 ≤ 1                    (6.5) 

where 

𝑋 =
𝑥

𝐿
, 𝑌 =

𝑦

𝐿
 , 𝑈 =

𝑢𝐿

(𝛼)𝑏𝑓
 , 𝑉 =

𝑣𝐿

(𝛼)𝑏𝑓
 , 𝜃 =

𝑇−𝑇𝑐

𝑇ℎ−𝑇𝑐
   

(6.6) 

 

The physical domain discretisation is realised by using the bilinear quadrilateral element 

type as shown in Figure 6.2(a). Figure 6.2(b) shows the meshes of the present study close 

to the domain walls and the interface line between the porous and fluid layers are refined 

to capture the flow state with greater spatial resolution. The dependence of the predictions 

on the spatial resolution was tested on 30 × 30, 40 ×40, 60 × 60, 80 × 80, 100 × 100, 

110 × 110, 120 × 120, 130 × 130, 140 × 140 and 160 × 160 to determine the proper 

grid size of this study. Figure 6.3 shows the average Nusselt numbers is predicted at 

different grid sizes for an enclosure partly filled by a porous slab saturated with the 

nanofluid at 𝑅𝑎 = 107, 𝐷𝑎 = 10−3, 𝜙 = 0.2, 𝐵 = 0.4. 𝐷 = 𝑆 = 0.5, 𝛾 = 10 and 𝐻 = 50.  

(a) 

 

 

(b) 

  
 

Figure 6.2: Computational mesh of (a) the physical domain and (b) Refined mesh close to the 

walls and the interface line between the porous and nanofluid layers.  

 



  

108 

 

 

Figure 6.3: Grid testing for the average Nusselt number at different element numbers 

A grid size of 130 × 130 was adopted in all cases to assess the accuracy of the numerical 

procedure because and this mesh produced an almost identical result for the average 

Nusselt number as that from the largest two mesh numbers. 

 Results and discussion 

 

Figure 6.4 shows the effect of Rayleigh number (𝑅𝑎) on (a) the streamlines, (b) the fluid 

phase isotherms, and (c) the solid phase isotherms at 𝐷𝑎 = 10−3, 𝐵 = 0.4, 𝑆 = 𝐷 = 0.5, 𝛾 

= 10 and 𝐻 = 1. At low values of the Rayleigh number (𝑅𝑎 = 104and 105) as shown in 

Figure 6.4(a), the fluid near the heat source rises along the porous-fluid interface due to 

the density variation. The fluid moves towards the upper cold wall at different velocities 

due to the flow resistance produced by the porous layer. Thereafter, the flow descends 

along the left and right cooled walls in the porous and fluid layers. This is found to 

generate a relatively strong main vortex with a clockwise flow direction, which 

effectively covers the fluid layer, and a weak secondary vortex with an anticlockwise 

flow direction occupies the porous layer. The pole centres of the vortices are located near 

the bottom-heated wall. At 𝑅𝑎 = 106, the circulation cell of the fluid layer tends to 

compress the vortex in the porous layer and force it away from the porous-fluid interface, 

with substantial changes in the circulation strength compared to the lower Rayleigh 

numbers. Adding 20% of nanoparticles volume fraction results in a decrease in the 

strength of the flow (see Ψ𝑚𝑖𝑛 values). This is attributed to that the viscous force effect   
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 (a) (b) (c) 

Figure 6.4: Contour maps of (a) the streamlines, (b) the fluid phase isotherms (𝜃max)f  and (c) the 

solid phase isotherms (𝜃max)p for different Rayleigh numbers, using 𝐷𝑎 = 10-3, 𝑆 = 0.5, 𝐵 = 0.4, 

𝐷 = 0.5, 𝛾 = 10, 𝐻 = 1, 𝜙 = 0 (solid lines) and 𝜙 = 0.2 (dashed lines).  
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is greater than that of the inertial force. At 𝑅𝑎 = 107, the circulation cell of the hybrid 

nanofluid in the porous layer tries to compress the circulation cell in the fluid layer, while 

for the single-phase fluid, the circulation cell in the fluid layer tries to compress the 

circulation cell in the porous layer. The streamlines strength of the nanofluid in the porous 

layer is greater than that of the single-phase fluid compared to other 𝑅𝑎 values, where the 

inertial force overcame the viscous force. The circulation centre of the hybrid nanofluid 

in the fluid layer is closer to the bottom heat source than the circulation centre of the 

single-phase fluid, which results in a greater increase in the streamlines strength of the 

hybrid nanofluid than that for the single-phase fluid. Figure 6.4(b) shows a uniform 

distribution of the isotherm lines in the fluid phase is observed with lines parallel to the 

heat source. At 𝑅𝑎 = 104, a symmetrical trend of the isotherms is predicted. This trend is 

changed with a greater deformation of the isotherm lines with increasing 𝑅𝑎 from 105 to 

107. The plume of isotherm lines extends from the porous layer towards the fluid layer 

with a significant reduction in the thickness of the thermal boundary layer at the heat 

source line and the vertical cooled walls. This indicates of increasing the heat transfer at 

higher Rayleigh numbers. The isotherm pattern for the solid phase (porous medium) has 

a uniform distribution, with an increased isotherm lines density at the heat source with 

increasing Rayleigh number as shown in Figure 6.4(c). The difference in the temperature 

distributions between the single-phase fluid and the hybrid nanofluid decreases with 

increasing Rayleigh number, where the isotherm lines of the single-phase fluid tends to 

match those of the hybrid nanofluid. It is interesting to note that the presence of the 

nanoparticles reduces the maximum temperature inside the enclosure, as seen from the 

𝜃𝑚𝑎𝑥 values for the fluid and solid phases. This is due to the significant increase in the 

streamline strength and the thermal conductivity effects of the nanoflud. 

Figure 6.5 shows the effect of the dimensionless permeability parameter (Darcy number, 

𝐷𝑎) on (a) the streamlines, (b) the fluid phase isotherms, and (c) the solid phase isotherms 

at 𝑅𝑎 = 106, 𝐵 = 0.4, 𝑆 = 𝐷 = 0.5, 𝛾 = 10 and 𝐻 = 1. Figure 6.5(a) shows that at 𝐷𝑎 = 

10−5, two vortices in the single-phase fluid and one in the hybrid nanofluid are predicted 

in the fluid layers. The primary vortex for both the single-phase fluid and hybrid 

nanofluid occupies most of the fluid layer and have a clockwise direction of motion. 

These vortices have a greater strength than the secondary (anticlockwise) vortex for the 

single-phase fluid that locates in the upper left corner of the fluid layer. There is a very   
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 (a) (b) (c) 
Figure 6.5: Contour maps of (a) the streamlines, (b) the fluid phase isotherms (𝜃max)f  , and (c) the 

solid phase isotherms (𝜃max)p  for different Darcy numbers, using 𝑅𝑎 =106, 𝑆 = 0.5, 𝐵 = 0.4, 𝐷 =
0.5, 𝛾 = 10, 𝐻 = 1, 𝜙 = 0 (solid lines) and 𝜙 = 0.2 (dashed lines). 

low penetration of the flow at 𝐷𝑎 = 10−5 for both the single-phase fluid and hybrid 

nanofluid into the porous layer due to the low permeability of the porous medium. 

Increasing the Darcy number to 𝐷𝑎 = 10-3  results in two larger vortices in both the porous 

and fluid layers compared to 𝐷𝑎 = 10-5, as shown in Figure 6.4(a) at 𝑅𝑎 = 106. The anti-

clockwise circulation cell strength of the fluid has a relatively significant increase in the 

porous layer as indicated by Ψ𝑚𝑎𝑥, while there is a relatively small increase of the 

clockwise circulation cell strength of the fluid in the fluid layer as indicated by Ψ𝑚𝑖𝑛. 

This is due to the lower flow resistance by the porous layer at 𝐷𝑎 = 10-3. The thermal 
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distribution plumes for both the single-phase fluid and hybrid nanofluid in the fluid phase 

moves from the inclined direction in the fluid layer towards the vertical direction along 

the interface line, shown in Figure 6.5(b). This leads to a reduction in the thermal 

boundary layer thickness along the bottom-heated wall with a symmetrical distribution 

in the isotherm lines. This indicates an enhancing in the convective heat transfer. Figure 

6.5(c) shows the isotherms of the solid phase shows a thinner thermal boundary layer as 

Darcy number increases with an increasing correspondence in the isotherms found in the 

single-phase fluid and nanofluid cases. The addition of a 20% nanoparticle sample 

reduces the temperature inside the enclosure, as indicated by a reduction in 𝜃𝑚𝑎𝑥 values. 

Figure 6.6 shows the effects of the porous layer thickness on (a) the streamlines, (b) the 

fluid phase isotherms, and (c) the solid phases isotherms at 𝑅𝑎 = 106, 𝐷𝑎 = 10−3, 𝐵 = 

0.4, 𝐷 = 0.5, 𝛾 = 10 and 𝐻 = 1. Two symmetrical vortices with elliptical shapes appear 

inside the enclosure with equal strengths in both the clockwise and anticlockwise flow 

directions for both the single-phase fluid and the hybrid nanofluid at 𝑆 = 0, as shown in 

Figure 6.6(a). This Figure also shows that at 𝑆 = 0.3, asymmetric vortices appear inside 

the enclosure for both the single-phase fluid and the hybrid nanofluid cases because of 

the flow resistance of the porous layer. The primary vortex occupies most of the fluid 

layer and is semi-circular in shape with its centre located almost in the middle of the fluid 

layer. The secondary vortex centre is located close to the porous-fluid interface at the 

upper part of the porous layer. A relative increase in the streamline’s strengths for this 

thickness of the porous slab is predicted compared to 𝑆 = 0. This is because the main 

vortex of the fluid layer effectively attached most of the heated source size, which 

accelerates the flow. Increasing the porous layer thickness to 𝑆 = 1 leads to a significant 

reduction in the streamlines strength and produces symmetrical vortices. This is because 

of the equivalent effects of the porous medium on both vortices, which results in an 

increase in the temperature inside the enclosure. Figure 6.6(b) shows the isotherms of the 

fluid phase are symmetrical at 𝑆 = 0, where the plume of the isotherm lines is located at 

the vertical centreline of the enclosure. Greater deformation of the isotherm lines for the 

fluid phase occurs with increasing 𝑆. At 𝑆 = 1, symmetric trend of the isotherm lines 

occurs with a reduction in the thickness of the thermal boundary layer. This leads to a 

significant increase in the dimensionless temperature inside the enclosure. The isotherms 

for the solid phase (porous medium) seem to have a uniform distribution with a lower   



  

113 

 

 (Ψmin = −12.8, Ψmax = 12.8)𝑏𝑓 
(Ψmin = −10.7, Ψmax = 10.7)ℎ𝑛𝑓 

( 𝜃max = 0.12)𝑏𝑓 
( 𝜃max = 0.1)ℎ𝑛𝑓 

 

 𝑆
=

 0
 

 

  

 

 (Ψmin = −15.7, Ψmax = 3.1)𝑏𝑓 
(Ψmin = −13.9, Ψmax = 1.52)ℎ𝑛𝑓 

( 𝜃max = 0.129)𝑏𝑓 
( 𝜃max = 0.107)ℎ𝑛𝑓 

( 𝜃max = 9.26 × 10−3)𝑏𝑓 
( 𝜃max = 0.01)ℎ𝑛𝑓 

𝑆
=

 0
.3

 

 

   

 (Ψmin = −6.81, Ψmax = 2.43)𝑏𝑓 

(Ψmin = −5.09, Ψmax = 1.64)ℎ𝑛𝑓 

( 𝜃max = 0.161)𝑏𝑓 

( 𝜃max = 0.145)ℎ𝑛𝑓 

( 𝜃max = 0.301)𝑏𝑓 

( 𝜃max = 0.307)ℎ𝑛𝑓 

 𝑆
=

 0
.7

 

 

   

 (Ψmin = −3.56, Ψmax = 3.56)𝑏𝑓 

(Ψmin = −2.24, Ψmax = 2.24)ℎ𝑛𝑓 

( 𝜃max = 0.17)𝑏𝑓 

( 𝜃max = 0.156)ℎ𝑛𝑓 

( 𝜃max = 0.238)𝑏𝑓 

( 𝜃max = 0.241)ℎ𝑛𝑓 

 𝑆
=

 1
 

 

   

 (a) (b) (c) 

Figure 6.6: Contour maps of (a) the streamlines, (b) the fluid phase isotherms (𝜃max)f , and (c) the 

solid phase isotherms (𝜃max)p for different porous layer thicknesses, using 𝑅𝑎 =106, 𝐷𝑎 = 10-3 , 

𝐵 = 0.4, 𝐷 = 0.5, 𝛾 = 10, 𝐻 = 1, 𝜙 = 0 (solid lines) and 𝜙 = 0.2 (dashed lines).  
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temperature at 𝑆 = 0.3, while the temperature reaches a maximum at 𝑆 = 0.7, as shown in 

Figure 6.6(c). The addition of a 20% sample of nanoparticles to the single-phase fluid 

results in a reduction in temperature inside the enclosure for the fluid phase. This is 

because of the increased thermal conductivity of the fluid, which results in greater cooling 

with the nanofluid than the single-phase fluid. Conversely, this addition increases the 

temperature of the solid phase due to an increase in the heat received by the porous 

medium from the heat source compared to the single-phase fluid. This leads to enhancing 

the heat transfer. When the porous layer is not attached to any part of the heat source, this 

leads to the temperature of the fluid being greater than the solid phase, while if the porous 

layer is attached to either a part or the entirety of the heat source this leads to an increased 

temperature in the solid phase compared to the fluid phase. Generally, the convective 

heat transfer enhances at 𝑆 = 0.3 compared to other porous layer thicknesses. 

Figure 6.7 shows the effects of increasing the modified conductivity ratio from 𝛾 = 0.1 to 

𝛾 = 1000 on (a) the streamlines, (b) the fluid phase isotherms, and (c) the solid phase  
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 (a) (b) (c) 

Figure 6.7: Contour maps of (a) the streamlines, (b) the fluid phase isotherms (𝜃max)f  , and (c) the 

solid phase isotherms (𝜃max)p for various modified conductivity ratios, using 𝑅𝑎 = 104, 𝐷𝑎 =10-3 

 , 𝑆 = 0.5, 𝐵 = 0.4, 𝐷 = 0.5, 𝐻 = 50, 𝜙 = 0 (solid lines) and 𝜙 = 0.2 (dashed lines).  
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Figure 6.8: Contour maps of (a) the streamlines, (b) the fluid phase isotherms (𝜃max)f , and (c) the 

solid phase isotherms (𝜃max)p  for different bottom-heated wall lengths, using 𝑅𝑎 =106, 𝐷𝑎 =10-3 

, 𝑆 = 0.5, 𝐷 = 0.5, 𝛾 = 10, 𝐻 = 1, 𝜙 = 0 (solid lines) and 𝜙 = 0.2 (dashed lines).  



  

116 

 

isotherms, at 𝑅𝑎 = 104, 𝐷𝑎 = 10−3, 𝐵 = 0.4, 𝑆 = 𝐷 = 0.5 and 𝐻 = 1. At 𝛾 = 0.1, Figure 

6.7(a) shows the flow tend within the enclosure is evident from the two circulatory 

vortices produced. There is a significant difference of the streamlines trend of the 

secondary vortices in the porous layer between the hybrid nanofluid and the single-phase 

fluid, which are of lower intensities compared to the vortices that locate in the fluid layer. 

Increasing the modified thermal conductivity ratio to 1000 leads to that the streamlines 

strength of the hybrid nanofluid increase with increasing the thermal conductivity ratio 

compared to the single-phase fluid, while there are no effects on the streamline’s strength 

in the instance of the single-phase fluid. The hybrid nanofluid vortex moves towards the 

left cooled wall. This results in a difference in the isotherm lines between the hybrid 

nanofluid and the single-phase fluid in the porous layer higher than that of the difference 

in the fluid layer, as shown in Figure 6.7. Figure 6.7(c) shows the isotherm lines within 

the solid phase. The isotherm lines appear essentially identical for both the single-phase 

fluid and hybrid nanofluid. A convergence of the temperature distributions occurs in the 

fluid and solid phases to near identity. This leads to thermal equilibria with similar 

isotherm patterns and magnitudes in the fluid and porous phases, which is representative 

of the ideal heat exchange between the fluid and porous phases with greater enhancement 

of the heat transfer. 

Figure 6.8 shows the effects of increasing the length of the heat source, 𝐵 on (a) the 

streamlines, (b) the fluid phase isotherms, and (c) the solid phase isotherms at 𝑅𝑎 = 106, 

𝐷𝑎 = 10−3, 𝑆 = 𝐷 = 0.5, 𝛾 = 10 and 𝐻 = 1. At = 0.2 , two asymmetrical counter-rotating 

vortices predict inside the enclosure. Increasing 𝐵 leads to increase the temperature for 

the fluid and porous phases as shown in Figure 6.8(b) and (c), respectively. This is due 

to the large amount of heat generated, which increases the buoyancy force. It is interesting 

to note that, increasing 𝐵 increases the isotherms packing close to the hot and cold walls, 

especially in the fluid layer. 

 

To gain a better understanding of the flow and thermal trend in this situation, the 

dimensionless velocity magnitude with various parameters, such as (a) Rayleigh numbers 

and (b) modified thermal conductivities along the porous-fluid interface at 𝑋 = 0.5 is 

reported in Figure 6.9(a) and Figure 6.9(b), respectively. Figure 6.9(a) shows the non-



  

117 

 

dimensional velocity magnitudes for different Rayleigh numbers at 𝐷𝑎 = 10−3, 𝐵 = 0.4, 

𝑆 = 𝐷 = 0.5, 𝛾 = 10 and 𝐻 = 50. Increasing the Rayleigh number increases the non-

dimensional velocity magnitude value because of the increased buoyancy force. 

Oscillation of non-dimensional velocity magnitude pattern occurs inside the cavity, and 

this oscillation increases with increasing Rayleigh number. This is due to the interaction 

of the two counter-rotating vortices that occurs in the hybrid nanofluid within the 

enclosure. Figure 6.9(b) shows the effects of the modified thermal conductivity ratio on 

the non-dimensional velocity magnitude at 𝑅𝑎 =106, 𝐷𝑎 = 10−3, 𝐵 = 0.4, 𝑆 = 𝐷 = 0.5 

and 𝐻 = 50. Decreasing the modified thermal conductivity ratio leads to an increase in 

the velocity magnitude due to the ability of the porous slab to receive heat from the heat 

source. 

 

 

        (a)       (b) 
Figure 6.9: Variation of velocity resultant at the interface vertical mid-plane of the domain (𝑋 = 

0.5) for different values of (a) Rayleigh number (b) thermal conductivity ratio. 

 

Figure 6.10 shows the non-dimensional temperature difference between the solid and 

hybrid nanofluid phases with different parameters, such as (a) Rayleigh numbers and (b) 

modified thermal conductivities along the porous-fluid interface at 𝑋 = 0.5, as shown in 

Figure 6.10(a) and Figure 6.10(b), respectively. The maximum non-dimensional 

temperature difference between the solid and the hybrid nanofluid phases occurs at 𝑌 = 

0, while the minimum difference occurs at the upper wall of the enclosure with different 

Rayleigh numbers, as shown in Figure 6.10(a). The non-dimensional temperature 

difference decreases with decreasing the Rayleigh number. This means at the lower 

values of Rayleigh number (𝑅𝑎 ≤  105), the non-dimensional temperature distribution 
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of the solid phase (porous medium) is similar to that for the hybrid nanofluid phase. This 

leads to the thermal equilibrium between the solid and the nanofluid phases, indicating 

of a high heat transfer between them. Increasing 𝑅𝑎 results in an increase in the 

temperature difference between the solid and the hybrid nanofluid phases. Increasing the 

modified thermal conductivity leads to a reduction in the temperature difference between 

the solid and the nanofluid phases and that ultimately reaches to zero. This indicates of 

the thermal equilibrium between the solid and the nanofluid phases with a high heat 

transfer between them, as shown in Figure 6.10(b). Generally, at the high Rayleigh 

numbers and the low modified thermal conductivity ratios, especially at 𝑅𝑎 > 105and 

𝛾 < 1, the non-dimensional temperature difference between the solid and hybrid 

nanofluid phases is negative and positive values in the upper and lower parts of the 

enclosure, respectively. 

  

        (a)        (b) 
Figure 6.10: Variation of solid-to-fluid temperature difference at the interface vertical mid-plane 

of the domain (𝑋 = 0.5) for different values of (a) Rayleigh number (b) thermal conductivity ratio. 

Figure 6.11 shows the non-dimensional temperature distribution along the heat source 

with increasing the thickness of the porous slab for two different Rayleigh numbers, (a) 

𝑅𝑎 = 104 and (b) 𝑅𝑎 = 107 at 𝐷𝑎 = 10−3, 𝐵 = 0.4, 𝐷 = 0.5, 𝛾 = 10 and 𝐻 = 50. Figure 

6.11(a) shows that the temperature distribution seems to be symmetric along the heat 

source with a maximum value at its centre. Increasing the thickness of the porous slab 

from 0.0 to 0.3 leads to a reduction in the heat source temperature. However, it is found 

that increasing the thickness of the porous slab to a higher value than 0.3 increases the 

non-dimensional temperature of the heat source. This is attributed to the flow resistance 
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by the porous slab and the reduced strength of the vortices inside the enclosure. This 

pattern did not appear when increasing the Rayleigh number to 107, as shown in Figure 

6.11(b), where there is an asymmetric temperature distribution along the heat source 

when 0.1 ≤ 𝑆 ≤ 0.9, while there is a symmetrical distribution when 𝑆 = 0 and 1 due to 

the symmetrical vortices’ trend within the enclosure. The non-dimensional heat source 

temperature at 𝑅𝑎 = 104 is higher than that at 𝑅𝑎 = 107. 

  

   (a)       (b) 
Figure 6.11: Variation of dimensionless temperature along the heat source with different porous 

layer thickness values when (a) 𝑅𝑎 = 104 and (b) 𝑅𝑎 = 107. 

 

The heat conduction is equal to the heat convection and to satisfy the dimensionless heat 

flux parameter, 
𝜕(𝑇)

𝜕(𝑦)
 should be equal to 

(𝑘)𝑏𝑓

(𝑘)ℎ𝑛𝑓
 as follows(Aminossadati and Ghasemi, 

2009) 

𝑞" =
(𝑘)ℎ𝑛𝑓

(𝑘)𝑏𝑓
×

𝜕(𝑇)

𝜕(𝑦)
= ℎ × (𝑇𝑤 −  𝑇𝑐)  (6.7) 

𝑁𝑢𝑙𝑜𝑐𝑎𝑙 =  
ℎ.𝐿

(𝑘)𝑏𝑓
  (6.8) 

The local heat transfer coefficient ℎ is expressed as   

𝑁𝑢𝑙𝑜𝑐𝑎𝑙 =  
ℎ.𝐿

(𝑘)𝑏𝑓
  (6.9) 

 

(𝑘)𝑛𝑓 =  
− (𝑞)𝑤

𝜕𝑇

𝜕𝑦

  (6.10) 
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𝑁𝑢𝑙𝑜𝑐𝑎𝑙 =  
1

(𝑇𝑤− 𝑇𝑐)

(𝑘)𝑛𝑓.

(𝑘)𝑏𝑓
.

𝜕(𝑇)

𝜕(𝑦)
   (6.11) 

The local heat transfer coefficient ℎ is expressed as   

ℎ =
1

(𝜃)𝑤
  (6.12) 

Using the dimensionless quantities in equation (B2.10), The local Nusselt number 

expressions along the heat source length thus become 

(6.13) 

𝑁𝑢𝑙𝑜𝑐𝑎𝑙 =  
1

(𝜃)𝑤
  (6.14) 

Figure 6.12 shows the variation of the local Nusselt number along the heat source with 

different heat source lengths at 𝑅𝑎 = 106, 𝐷𝑎 = 10−3, 𝑆 = 𝐷 = 0.5, 𝛾 = 50 and 𝐻 = 50. 

This figure shows asymmetric profiles for the local Nusselt number along the heat source 

for all lengths of the heat source, 𝐵. The results trend a different pattern to the previous 

numerical results for the local Nusselt number presented by Bourantas et al. (2014).due 

to the effects of partially filling to the enclosure by the porous medium in the present 

study. The new results show that the heat transfer along the heat source is found to take 

an asymmetric pattern and the highest and lowest local Nusselt numbers are obtained at 

the ends and at the porous layer near the interface line, respectively. This is attributed to 

the flow resistance by the porous slab with lower heat transfer rates compared to the fluid 

layer, where the vortices in the fluid layer have a higher strength of the streamlines 

compared to the porous layer. Increasing the length of heat source leads to decreasing the 

local Nusselt number due to the increased heat generation along the heat source. 

 

Figure 6.12: Variation of local Nusselt number with different heat source length values.  



  

121 

 

 

The average Nusselt number is computed by the following equation  

𝑁𝑢𝑎𝑣  =
1

𝐵
∫ 𝑁𝑢𝑙𝑜𝑐𝑎𝑙(𝑋) 𝑑𝑋

𝐷+0.5𝐵

𝐷−0.5𝐵
   (6.15) 

It is known that increasing the thickness of the porous medium reduces the heat transfer 

rate (𝑁𝑢𝑎𝑣); however, in this study, with the selected boundary conditions at the lower 

value of 𝑅𝑎 using different volume fractions, increasing the porous layer thickness to 𝑆 = 

0.3 enhances the heat transfer rate, as shown in Figure 6.13(a). This is attributed to the 

significant increase in streamline strength of the main vortex inside the fluid layer, which 

increases the ability of the porous medium to receive the heat from the heat source due 

to the higher heat exchange between the porous and the hybrid nanofluid. Thus, this leads 

to a reduction in the temperature of the heat source. This pattern of 𝑁𝑢𝑎𝑣with porous 

layer thickness disappears at a higher Rayleigh number of 𝑅𝑎 = 107, as shown in Figure 

6.13(b). Further increases in 𝑆 resultes in a steady decrease in 𝑁𝑢𝑎𝑣. This is because of 

the reduction in the magnitude of the main vortex stemming from the flow resistance by 

the increased thickness of the porous slab. The reduction in heat transfer rates due to the 

increased thickness of the porous layer overcomes by increasing the nanoparticle volume 

fraction, leading to the improved thermal conductivity of the hybrid nanofluid.  

  

     (a)      (b) 
Figure 6.13: Variation of average Nusselt number with porous layer thickness for different values 

of nanoparticles volume fraction at (a) 𝑅𝑎 = 104, and (b) 𝑅𝑎 = 107.  
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Table 6.1 shows the heat gain with increasing nanoparticle volume fraction for different 

values of 𝑆 at 𝑅𝑎 = 104. At a constant volume fraction, a relative increase in the heat gain 

with 𝑆 up to 𝑆 = 0.3 is noted; thereafter, with increasing 𝑆 up to 𝑆 = 1, the heat gains 

steadily reduce to a minimum at 𝑆 = 0.7. For all values of 𝑆, a significant increase in heat 

gain occurs with increasing nanoparticle volume fraction (𝜙) especially at 𝑆 = 0.3. At 𝑆 

= 0.3, the maximum percentage of the heat gain is 39.69%, and is 62.88% when 𝜙 

increases to 0.1 and 0.2, respectively, which shows that the improvement in the heat gain 

by using the nanofluid is greater than that for the single-phase fluid. 

Table 6.1: Heat gain of average Nusselt number with different 𝜙 and 𝑆 values at 𝑅𝑎 =104 

                        𝑆 
𝜙 

0 0.3 0.7 1 

0 

𝑁𝑢𝑎𝑣 increase % 

4.206 

0 

4.243 

0 

4.0178 

0 

4.1096 

0 

0.1 

𝑁𝑢𝑎𝑣 increase % 

6.933 

39.33 

7.036 

39.69 

6.597 

39.09 

6.7536 

39.15 

0.2 

𝑁𝑢𝑎𝑣 increase % 
 

11.243 

62.59 

11.432 

62.88 

10.503 

61.74 

10.757 

61.8 

Figure 6.14 shows the relationship between 𝑁𝑢𝑎𝑣 and Darcy number for different values 

of 𝛾. Significant increases in the heat transfer rates appears as 𝛾 increases from 0.1 to 10, 

especially at the higher and lower Darcy numbers. The figure shows that the convective 

heat transfer starts when 𝐷𝑎 ≥ 10−5and rapidly increases up to 𝐷𝑎 ≥ 10−1. There is no 

apparent benefit by reducing 𝐷𝑎 to less than 10−5, where there is no enhancement in the  

 

Figure 6.14: Variation of average Nusselt number versus the Darcy number for different thermal 

conductivity ratio values.  
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heat transfer rate. However, increasing the value of 𝛾 improves the heat transfer rate, 

which produces a greater enhancement at lower and higher Darcy numbers than in the 

range 10−4 ≤ 𝐷𝑎 ≤ 10−2. The enhancement in 𝑁𝑢𝑎𝑣 at high 𝐷𝑎 is clearer with 

increasing 𝛾. This is because a larger 𝐷𝑎 allows the flow to be freely accelerated within 

the porous layer compared to the lower 𝐷𝑎. 

Figure 6.15 shows the variation of average Nusselt number with Rayleigh number for 

different isoflux source lengths in both the pure and hybrid nanofluids. At constant 𝐵, the 

heat transfer rate increases with increasing the Rayleigh number. In the presence of the 

hybrid nanofluid, 𝑁𝑢𝑎𝑣 is greater than that for the single-phase fluid. At 𝐵 = 0.2 and 1, 

𝑁𝑢𝑎𝑣 is higher than that at 𝐵 = 0.4 and 0.8 for both the single-phase fluid and the hybrid 

nanofluid. The increases in 𝑁𝑢𝑎𝑣 at 𝐵 = 0.2 and 𝐵 = 1 compared to the other lengths is 

also predicted in Figure 6.16. A significant reduction in the heat transfer rate occurs when 

𝐵 increases from 0.2 to 0.8. A steep increase in 𝑁𝑢𝑎𝑣 at 𝐵 > 0.8 for both the hybrid 

nanofluid and solid phases. 𝑁𝑢𝑎𝑣  is inversely proportional to the heat source temperature. 

Increasing the length of the heat source leads to an increase in the temperature of the fluid 

and solid phases, as shown in Figure 6.8. However, the maximum 𝑁𝑢𝑎𝑣 is at 𝐵 = 0.2 and 

𝐵 =1. This is because that at 𝐵 = 0.2, the fluid inside the enclosure could cool the heated 

source due to its low temperature, despite the lower streamline strength than at 𝐵 = 1, and 

despite the higher temperature of the heat source. This figure also shows that 𝑁𝑢𝑎𝑣 for 

the hybrid nanofluid phase are higher than those of the solid phase. This is indicative of  

 

Figure 6.15: Variation of average Nusselt number versus the Rayleigh number for different heat 

source length values with single-phase fluid (solid line) and Hybrid nanofluid (dashed line).  



  

124 

 

 

Figure 6.16: Variation of average Nusselt number versus the heat source length with the solid 

phase of the porous medium (solid line) and Hybrid nanofluid (dashed line). 

thermal non-equilibrium between the hybrid nanofluid and solid phases. 

In this study, to illustrate the ideal case of heat exchange between the solid and hybrid 

nanofluid phases, and to satisfy the thermal equilibrium case between them, Figure 6.17 

shows the variation of 𝑁𝑢𝑎𝑣 with 𝐻 for different 𝛾. 𝐻 is a measure of the solid/hybrid 

nanofluid scaled heat transfer coefficient, which shows that the substantial difference in 

the results for 𝑁𝑢𝑎𝑣 between the solid and hybrid nanofluid phases occurs at lower 𝐻. 

This is indicative of thermal non-equilibrium between the phases. This means that at 

small 𝐻, the thermal non-equilibrium case is satisfied. At constant 𝛾, as 𝐻 increases the 

thermal equilibrium case occurs and the hybrid nanofluid and solid phases are almost 

identical, being almost convergent in 𝑁𝑢𝑎𝑣. 

The variation in heat transfer rate for the hybrid nanofluid and solid phases with 𝛾 is 

shown in Figure 6.18 for different 𝐻 (0.1 - 500). This figure illustrates a large 𝛾 results 

in the equilibrium case between the hybrid nanofluid and the solid phases. This figure 

also shows that due to the convection process, increasing 𝐻 leads to increasing 𝑁𝑢𝑎𝑣 in 

the solid phase due to the decrease in the temperature of the solid, while the heat 

transfer𝑁𝑢𝑎𝑣 decreases in the hybrid nanofluid phase due to the increased hybrid 

nanofluid temperature. The 𝑁𝑢𝑎𝑣 values are much higher for the hybrid nanofluid than 

those for the solid phase due to the surface contact between the porous medium material 

and the bottom heated source. 
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Figure 6.17: Variation of average Nusselt number versus the interface heat transfer coefficient 

for different thermal conductivity ratio values with the solid phase of the porous medium (solid 

line) and Hybrid nanofluid (dashed line). 

 

 

Figure 6.18: Variation of average Nusselt number versus the thermal conductivity ratio values for 

different interface heat transfer coefficient with the solid phase of the porous medium (solid line) 

and Hybrid nanofluid (dashed line). 

 Conclusions 

Steady-state natural convection inside an enclosure that has been partly filled with a 

porous medium saturated with a hybrid nanofluid has been numerically investigated using 

the thermal non-equilibrium model under the influence of discrete isoflux bottom heating. 

The nanofluid is composed of water-based fluid containing Cu − Al2O3 nanoparticles. 

The results obtained in terms of streamlines, isotherms and heat transfer rate. Some of 

the important conclusions of this study can be summarised as follows: 
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 Due to the thermal boundary conditions applied, two vortices with asymmetric 

distributions along the heat source were generated at the porous and the fluid layers; 

the primary clockwise vortex was located the fluid layer while the secondary anti-

clockwise vortex was located in the porous layer. In addition, the stream function 

strength increased with increasing Rayleigh and Darcy numbers. 

 Increasing the Rayleigh number and reducing the modified thermal conductivity 

ratio led to an increase in the non-dimensional velocity magnitude and temperature 

difference between the solid and hybrid nanofluid phases (non-equilibrium case), 

especially when 𝑅𝑎 > 105 and 𝛾 < 1.  

 Increasing the length of the heat source reduced the local Nusselt number with an 

asymmetric distribution along the heat source itself due to the flow resistance from 

the porous layer compared to the fluid layer. 

 Increasing the thickness of the porous medium from 0 to 0.3 increased the strength 

of the stream function, resulting in greater heat removal from the heat source while 

a reduced intensity was observed for the stream function with for the increase in the 

thickness of the porous medium. 𝑁𝑢𝑎𝑣 at 𝑆 = 0.3 and 𝑅𝑎 = 104 increased with 

increasing the volume fraction 𝜙 = 0, 0.1 and 0.2, reaching 0, 39.69% and 62.88%, 

respectively, which was a higher gain than those recorded for 𝑆 = 0. 

 Increasing the Darcy number, 𝐷𝑎 > 10-5 enhanced the 𝑁𝑢𝑎𝑣 resulting from the 

higher permeability of the porous medium, while at 𝐷𝑎 ≤10-5, the 𝑁𝑢𝑎𝑣 could be 

improved by increasing the modified thermal conductivity ratio, 𝛾. 

 At small values of 𝛾, increasing 𝐻 led to an increased 𝑁𝑢𝑎𝑣 for the solid phase but a 

decrease for the hybrid nanofluid phase due to the heat received by the hybrid 

nanofluid from the solid phase. Increasing 𝛾 and 𝐻 enhanced the 𝑁𝑢𝑎𝑣 and satisfied 

the thermal equilibrium case. 

Generally, the enclosure partly filled by a vertical porous slab saturated with a hybrid 

nanofluid under the effect of the isoflux heating on the bottom wall of the enclosure 

produced a significant and different trend of the flow and heat transfer compared to other 

studies. The use of the nanofluid enhanced the heat transfer more than the single-phase 

fluid (water). The lower thickness of the porous slab produced a higher heat transfer 

compared to the porous enclosure. The results may be interesting for the designer in the 

modern technology of the industrial engineering applications. 
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 Turbulent Natural Convection inside a 3-D 

Corrugated Sidewall Enclosure Partially Filled with a Porous 

Medium Saturated by a Hybrid Nanofluid Using 𝛋 − 𝝐 Model 

 Motivation and introduction 

Considering investigations in using the thermo-physical and geometrical heat transfer 

controlling techniques, it can be concluded that these techniques play a vital role in 

optimising the convective heat transfer inside enclosures. In this study, the suggested 

enclosure using the combination of the three types of the heat transfer controlling 

techniques can produces a different heat transfer prediction than using only two types of 

these techinques as investigated by the previous litterature. The corrugated wall produces 

a significant and different trend of the flow and heat transfer inside an enclosure partly 

filled by a porous slab compared to the enclosures that were used as a flat walls of the 

enclosure in the previous literature. A new simulation results are presented to develop the 

convective heat transfer inside an enclosure partly filled by a porous slab rather than that 

of using a porous enclosure under the effect of the corrugated wall on one side of the 

enclosure. The present study for the first time explores the turbulent natural convection 

within an enclosure partially filled with a porous slab saturated with a hybrid nanofluid 

under the effect of a right corrugated sidewall of the enclosure. This investigation of the 

present study may be interesting to the designer to predict the convective heat transfer in 

the next modern industry technology. 

Accordingly, in this chapter, this configuration is modelled for the ranges of the Rayleigh 

number (𝑅𝑎), 108 ≤ 𝑅𝑎 ≤ 1011, the Darcy number (𝐷𝑎), 10−5 ≤ 𝐷𝑎 ≤ 1, the porous 

layer thickness (𝑆), 0 ≤ 𝑆 ≤ 1, the corrugated wall frequency (𝑁𝑐𝑟), 1 ≤ 𝑁𝑐𝑟 ≤ 4, the 

corrugated wall amplitude (𝐴𝑐𝑟), 0.05 ≤ 𝐴𝑐𝑟 ≤ 0.2, the thermal conductivity ratio 𝐾𝑟 = 

1, and the nanoparticle volume fraction (𝜙), 0 ≤ 𝜙 ≤ 0.2. 

 A model problem 

 

The problem considered is showed schematically in Figure 7.1. The three-dimensional 

enclosure that has a corrugated right wall and the rest of the walls are flat. The enclosure 

is partly filled with a porous medium saturated with an incompressible hybrid nanofluid. 
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The enclosure is heated with a constant temperature, 𝑇ℎ at the left flat surface and cooled 

from the opposing corrugated vertical side-wall uniform temperature, 𝑇𝑐. The other walls 

are adiabatic. The differentially heated on the vertical walls causes to develop the fluid 

flow inside the enclosure due to the horizontal temperature difference. This produces a 

density gradient (due to temperature gradient) in a horizontal direction and the gravity 

vector acts perpendicularly inside the enclosure, where the circulation inside the 

enclosure depends on theses vector orientation. The thickness of the porous medium and 

that of the hybrid nanofluid layers are 𝑆 and 𝐿 − 𝑆, respectively. The right surface of the 

enclosure was assumed as a sinusoidal wavy wall with the following relation:  

𝑋 =  ∬ 𝐴𝑐𝑟 × 𝑠𝑖𝑛(𝑁𝑐𝑟 × 𝜋 × 𝑌) 𝑑𝑌𝑑𝑍
1

0
                                    (7.1) 

Three-dimensional Reynolds-Averaged Navier-Stokes (RANS) governing equations can 

be found in Appendix C. The hybrid nanofluid, composed of Cu − Al2O3/ water, saturates 

the porous layer on the left and fill the fluid layer on the right. The flow is assumed a 

homogenous mixture, steady, turbulent, and incompressible. The single-phase fluid and 

the nanoparticles are modelled as in thermal equilibrium. The thermo-physical properties 

of the hybrid nanofluid are given in Table 3.1. 

 

Figure 7.1: Three-Dimensional physical domain of the corrugated enclosure. 

 

The dimensionless flow and heat governing equations in Appendix C are applied in this 

case study and the boundary conditions are: 

𝑇ℎ 𝑇𝑐 
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At the left hot plane wall 𝑈 = 𝑉 = 𝑊 = 0, 𝜃 = 1 (7.2) 

At the right cold plane wall 𝑈 = 𝑉 = 𝑊 = 0, 𝜃 = 0   (7.3) 

Other plane walls 𝑈 = 𝑉 = 𝑊 = 0  and  
𝑑𝜃

𝑑𝑛
. = 0 (adiabatic) 

where 𝑛 is the wall normal unit vectors and 

(7.4) 

𝑋 =
𝑥

𝐿
, 𝑌 =

𝑦

𝐿
 , 𝑍 =

𝑧

𝐿
 , 𝑈 =

𝑢𝐿

(𝛼)𝑏𝑓
 , 𝑉 =

𝑣𝐿

(𝛼)𝑏𝑓
 , 𝑊 =

𝑤𝐿

(𝛼)𝑏𝑓
 and 𝜃 =

𝑇−𝑇𝑐

𝑇ℎ−𝑇𝑐
   (7.5) 

 

Figure 7.2 illustrates the grid of the three-dimensional domain using unstructured 

tetrahedral cells where the mesh nearby the walls and the interface plane between the 

porous and fluid layers is refined using the wall function characteristic to capture the 

variables. The grid refinement of the domain is performed for the three-dimensional 

enclosure partly filled with a porous medium saturated with a Cu − AL2O3 hybrid 

nanofluid with the following parameter values: 𝑅𝑎 = 1011, 𝐷𝑎 = 10-3, 𝑆 = 0.3, Ncr = 3, Acr 

= 0.1, Kr = 1 and 𝜙 = 0.1. The grid independence test for three-dimensional computational  

(a) 

 

(b) 

 

Figure 7.2: Non-dimensional computational mesh of (a) the physical domain and (b) refined mesh 

close to the walls.  
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Figure 7.3: Mesh dependence of the average Nusselt number for different mesh sizes. 

domain with the grid size of 130107, 341232, 510402, 790076, 973432, 1042,655, 

1341723 versus the average Nusselt number is performed to satisfy the suitable mesh 

number in the present study as shown in Figure 7.3. A grid size of 973432 shows 

satisfactory mesh convergence for the average Nusselt number. This value is used for the 

remainder of this chapter. 

 Results and discussion 

 

Figure 7.4 shows the slice of stream function and temperature distribution inside the 

three-dimensional enclosure when the Rayleigh number increases from 108 to 1011. At 

𝑅𝑎 = 108, the fluid near the left vertical sidewall inside the porous layer rises towards 

the upper cold wall due to the density variation. Thereafter, the flow descends along the 

right cooled corrugated wall in the fluid layer. This is found to generate vortices with a 

clockwise flow direction, which effectively covers the fluid and porous layers at 𝑋𝑌 plane 

along the Z-axis. It is interesting to note that the pole centre of the vortex is located near 

the corrugated wall with higher strength at 𝑍 = 0.5 compared to other vortices along the 

Z-axis. Increasing the Rayleigh number to 1011 leads to generating two vortices, one of 

them locates at the porous layer while another confines at the fluid layer with higher 

intensity of the streamlines compared to the low value of Rayleigh number. The predicted 

temperature distribution shows the fluid temperature increases with increasing the  
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Stream function 

 
 

Temperature distribution 

(a) 𝑅𝑎 = 108 (b) 𝑅𝑎 = 1011 

Figure 7.4: Iso-colour levels of the stream function, Ψ and of temperature normalized in the 𝑋𝑌-

planes along 𝑍-axis as 𝐷𝑎 = 10-3, Ncr = 2, Acr = 0.1, 𝑆 = 0.3, 𝜙 = 0.1 and Kr = 1 at (a) 𝑅𝑎 = 108 

and (b) 𝑅𝑎 = 1011 . 

Rayleigh number with a high diffusion inside the enclosure due to increasing the 

buoyancy force. 

Figure 7.5 and Figure 7.6 show the prediction of the streamlines and the isotherms for 

different values of Rayleigh number (𝑅𝑎) and Darcy number (𝐷𝑎). In Figure 7.5, the 

strength of the convective flow has a direct relationship with the maximum value of the 

stream function. Increasing the Rayleigh number leads to increasing the maximum value 

of the stream function, hence the convective flow strength increases with the Rayleigh 

number. At 𝑅𝑎 = 108 and 𝐷𝑎 = 10−5, the core centre of the vortex locates and confines 

at the fluid layer close to the porous-fluid interface. A low stratification of the streamlines 

of the vortex appears within the porous layer due to the flow resistance by the porous slab 

due to the low value of the Darcy number.  
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 (a) 𝐷𝑎 = 10−5 (b) 𝐷𝑎 = 10−3 (c) 𝐷𝑎 = 10−1 

Figure 7.5: Streamlines at different values of Rayleigh numbers in the 𝑋𝑌- plane and 𝑍 = 0.5 as 

Ncr = 2, Acr = 0.1, 𝑆 = 0.3, 𝜙 = 0.1 and Kr = 1 at (a) 𝐷𝑎 =10-5,(b) 𝐷𝑎 = 10-3 and (c) 𝐷𝑎 =10-1. 
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 (a) 𝐷𝑎 = 10−5 (b) 𝐷𝑎 = 10−3 (c) 𝐷𝑎 = 10−1 

Figure 7.6: Isotherms at different values of Rayleigh numbers in the 𝑋𝑌- plane and 𝑍 = 0.5 as Ncr 

= 2, Acr = 0.1, 𝑆 = 0.3, 𝜙 = 0.1 and Kr = 1 at (a) ) 𝐷𝑎 = 10-5,(b) 𝐷𝑎 = 10-3 and (c) 𝐷𝑎 = 10-1. 

At 𝐷𝑎 = 10-3, the centre of the vortex moves towards the right corrugated cooled wall 

with a high penetration of the flow that increases the density of the streamlines within the 

porous layer. The maximum strength of the streamlines is lower value compared to 𝐷𝑎 = 

10-5, while increasing the Darcy number to 10−1 leads to stretching the vortex towards 

the porous layer and increasing the penetration and the strength of the streamlines. Higher 

𝑅𝑎 and increasing 𝐷𝑎 from 10-5 to 10-1 generates two clockwise circulations close to the 

left and right vertical walls with more penetration, strength and density of the streamlines   
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compared to 𝑅𝑎 = 108. This act leads to form the stratification of temperature with a lower 

packing density of the isotherms close to the vertical walls especially at the higher 𝑅𝑎 

and the 𝐷𝑎 numbers that indicates to the convective heat transfer as shown in Figure 7.6. 

This is due to the dominance of the convective heat transfer mode compared to the lower 

values of 𝑅𝑎 and 𝐷𝑎 numbers that satisfies the conductive heat transfer mode.  

The effect of the wave number and the amplitude of the corrugated wall on the 

streamlines and isotherms shown in Figure 7.7 and Figure 7.8. Figure 7.7 shows that 

increasing 𝐴𝑐𝑟 leads to increasing the streamlines strength for all values of 𝑁𝑐𝑟. This is 

due to extending the vortex at the fluid layer towards the porous-fluid interface and closer 

to the vortex at the porous layer. However, increasing the wave number of the corrugated 

wall from 𝑁𝑐𝑟 = 1 to 𝑁𝑐𝑟 = 2, the streamlines strength abates for all values of corrugated 

amplitude. This is due to the cell centre in the fluid layer moving away from the porous-

fluid interface that decelerates the flow inside the enclosure. Increasing 𝑁𝑐𝑟 from 𝑁𝑐𝑟 = 

2 to 𝑁𝑐𝑟 = 3 leads to increasing the streamlines strength. The vortex moves in the fluid 

layer towards the porous-fluid interface. It is important to observe that, increasing 𝐴𝑐𝑟 

significantly separates the streamlines from the bottom part of the corrugated wall, 

especially at 𝑁𝑐𝑟 = 3. In addition, these separated streamlines contribute to accelerate the 

vortex inside the porous layer. The maximum temperature distribution of the fluid occurs 

at 𝐴𝑐𝑟= 0.05, especially at 𝑁𝑐𝑟 = 2 as shown in Figure 7.8. This is due to the cell centre 

in the fluid layer moving towards the corrugated wall. Increasing the corrugated wall 

amplitude from 𝐴𝑐𝑟 = 0.05 to 𝐴𝑐𝑟 = 2 reduces the fluid temperature due to the cell centre 

in the fluid layer moving towards the porous-fluid interface, especially at 𝑁𝑐𝑟 = 3. This 

is due to the augmentation of the streamline’s strength and the convection flow at these 

values of the parameters. It is interesting to note that, at 𝐴𝑐𝑟= 0.2, higher fluid temperature 

occurs at 𝑁𝑐𝑟 = 1. This is due to the lower effect of the separated streamlines at the bottom 

part of the corrugated wall inside the fluid layer compared to the other wave number 

values of the corrugated wall. 
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 (a) 𝑁𝑐𝑟 = 1 (b) 𝑁𝑐𝑟 = 2 (c) 𝑁𝑐𝑟 = 3 

Figure 7.7: Streamlines at different corrugated wall amplitudes in the 𝑋𝑌- plane and 𝑍 = 0.5 as 

𝑅𝑎 = 1010, 𝐷𝑎 = 10-3, 𝑆 = 0.3, 𝜙 = 0.1 and Kr = 1 at (a) Ncr = 1, (b) Ncr = 2 and (c) Ncr = 3. 
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 (a) 𝑁𝑐𝑟 = 1 (b) 𝑁𝑐𝑟 = 2 (c) 𝑁𝑐𝑟 = 3 

Figure 7.8: Isotherms at different corrugated wall amplitudes in the 𝑋𝑌- plane and 𝑍 = 0.5 as 𝑅𝑎 

= 1010, 𝐷𝑎 = 10-3, 𝑆 = 0.3, 𝜙 = 0.1 and Kr = 1 at (a) Ncr =1, (b) Ncr =2 and (c) Ncr = 3. 

 

 

The effect of increasing the amplitude and the wave number of the corrugated wall on the 

average normalized turbulent kinetic energy in the 𝑌𝑍-plane and 𝑋 = 0.3 (interface plane) 

at (a) 𝑅𝑎 = 108, and (b) 𝑅𝑎 = 1010 shown in Figure 7.9. At 𝑅𝑎 = 108 and low values of 

𝐴𝑐𝑟, the average kinetic energy reduces with increasing 𝑁𝑐𝑟 as indicated in (Figure 7.9 

(a)). Conversely, this trend satisfies as 𝐴𝑐𝑟 increases. As 𝑅𝑎 = 1010, Κ gradually increases 

with increasing 𝐴𝑐𝑟 for all values of 𝑁𝑐𝑟, especially, at 𝐴𝑐𝑟 = 0.2 and 𝑁𝑐𝑟 = 3. This is due 
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to increasing the buoyancy force inside the enclosure as 𝑅𝑎 increases. A minimum value 

of the streamline’s strength is recorded at 𝑁𝑐𝑟 = 2 compared to 𝑁𝑐𝑟 =1 and 3 for all values 

of 𝐴𝑐𝑟 shown in Figure 7.7. This is due to the cell centre in the fluid layer moving towards 

the corrugated wall away from the porous-fluid interface and from the vortex that is 

confined in the porous layer.  

  

        (a)  (b) 

Figure 7.9: Variation of average turbulent kinetic energy versus the corrugated wall amplitude 

for different wave number of the corrugated wall on the 𝑋 = 0.3 (interface plane) at (a) 𝑅𝑎 = 108, 

and (b) 𝑅𝑎 = 1010. 

 

Figure 7.10 shows the dimensionless average fluid temperature distribution versus the 

corrugated wall amplitude for different wave number corrugated wall in the 𝑌𝑍-plane and 

𝑋 = 0.3 (interface plane) at (a) 𝑅𝑎 =  108, and (b) 𝑅𝑎 =  1010. At 𝑅𝑎 = 108 as shown 

Figure 7.10 (a), the average temperature of the fluid gradually reduces with increasing 

𝐴𝑐𝑟 and 𝑁𝑐𝑟 values, especially, at 𝐴𝑐𝑟 = 0.2. At 𝑅𝑎 = 1010 as shown in Figure 7.10 (b), 

the average temperature increases due to increasing the buoyancy force. A significant 

increase in the average fluid temperature is recorded at 𝑁𝑐𝑟 = 2 compared to 𝑁𝑐𝑟 = 1 and 

3 for low values of 𝐴𝑐𝑟, while at 𝐴𝑐𝑟 = 0.2, increasing 𝑁𝑐𝑟 leads to a significant reducing 

in the average temperature of the fluid. This is attributed to that, increasing 𝐴𝑐𝑟 leads to 

moving the vortex inside the fluid layer towards the porous-fluid interface and the vortex 

inside the porous layer , especially at 𝑁𝑐𝑟 = 1 and 3. Generally, at low values of 𝑅𝑎, a 

significant decrease in the average fluid temperature is predicted, especially, at 𝐴𝑐𝑟 = 0.2 

compared to the 𝑅𝑎 = 1010.  
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    (a)       (b) 

Figure 7.10: Variation of average dimensionless temperature versus the corrugated wall 

amplitude for different wave number corrugated wall on the 𝑋 = 0.3 (interface plane) at 

(a) 𝑅𝑎 =108, and (b) 𝑅𝑎 =1010. 

 

The local and average Nusselt number can be calculated using the equations (4.5), (4.6) 

and (4.7) with the effective thermal conductivity shown in the following relation, where, 

the effective thermal conductivity which is equal to the summation of the laminar and 

turbulent thermal conductivity of the hybrid nanofluid (Mebrouk et al., 2016). 

𝑘𝑒𝑓𝑓 =  𝑘𝐿𝑎𝑚𝑖𝑛𝑎𝑟 + 𝑘𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡  (7.6) 

𝑘𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 =  𝑘𝑓𝑙𝑢𝑥,𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 + 𝑘𝑑𝑖𝑠,𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 =  
(𝜇𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡)ℎ𝑛𝑓

×(𝐶𝑝)ℎ𝑛𝑓

𝑃𝑟𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡
  

(7.7) 

𝑘𝑓𝑙𝑢𝑥,𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 is the turbulent heat flux. 

𝑘𝑑𝑖𝑠,𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 is the turbulent thermal dispersion. 

(7.8) 

𝑁𝑢𝑙𝑜𝑐𝑎𝑙= - 𝐾𝑒𝑓𝑓 (
𝜕𝜃

𝜕𝑋
)

𝑋=0
 (7.9) 

𝑁𝑢𝑎𝑣 =
1

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎
∬ 𝑁𝑢𝑙𝑜𝑐𝑎𝑙

1

0
 𝑑𝑌𝑑𝑍  (7.10) 

Figure 7.11 shows the variation of the average Nusselt number, 𝑁𝑢𝑎𝑣 versus the Rayleigh 

number, 𝑅𝑎 for different nanoparticles volume fraction (𝜙) at (a) 𝐷𝑎 = 10-5 and (b) 𝐷𝑎 = 

10-3. Figure 7.11 (a) shows that 𝑁𝑢𝑎𝑣 gradually increases with increasing the value of 

𝑅𝑎. Increasing the nanoparticles volume fraction enhances the 𝑁𝑢𝑎𝑣 more than the 

single-phase fluid. This enhancement is more pronounced at the high 𝑅𝑎. It is interesting 
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to observe that; the 𝑁𝑢𝑎𝑣 enhances by increasing 𝜙 despite the low value of 𝐷𝑎. At 𝐷𝑎 

= 10−3 (Figure 7.11 (b)), the 𝑁𝑢𝑎𝑣 improves due to increasing the permeability of the 

porous layer, especially at high values of 𝑅𝑎.  

  

     (a)     (b) 

Figure 7.11: Variation of the average Nusselt number versus the Rayleigh number for different 

values of the nanoparticles volume fraction at (a) 𝐷𝑎 = 10-5, and (b) 𝐷𝑎 = 10-3. 

The variation of the average Nusselt number versus the Darcy number for different wave 

number corrugated wall of the enclosure at (a) 𝑅𝑎 = 108 and (b) 𝑅𝑎 = 1011 shown in 

Figure 7.12. Figure 7.12 (a) shows at 𝑅𝑎 = 108, increasing 𝑁𝑐𝑟 leads to increasing the 

𝑁𝑢𝑎𝑣 due to the increase in the surface area that subjected to the convection especially at 

the high values of Darcy number. It is interesting to note that, at 𝑎 ≤ 10−4, the 𝑁𝑢𝑎𝑣 is 

almost constant and when 𝐷𝑎 > 10−4, it increases gradually up to 𝐷𝑎 = 10−2 and 

  

    (a)        (b) 

Figure 7.12: Variation of the average Nusselt number versus the Darcy number for different 

values of the wave number of the corrugated wall at (a) 𝑅𝑎 =108 and (b) 𝑅𝑎 =1011.  
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thereafter, 𝑁𝑢𝑎𝑣 steadily increases at 𝐷𝑎 = 1. A significant increase in the 𝑁𝑢𝑎𝑣 occurs 

at 𝑅𝑎 = 1011 due to the increase in the buoyancy force. The heat transfer rate at 𝑅𝑎 = 

1011 and 𝐷𝑎 = 10−4 is higher than that at 𝐷𝑎 = 10−5 compared to the 𝑅𝑎 = 108 shown 

in Figure 7.12 (b). It is interesting to observe that, a significant difference in the values 

of 𝑁𝑢𝑎𝑣 between the 𝑅𝑎 = 108 and the 𝑅𝑎 = 1011 when 𝑁𝑐𝑟 increases from 2 to 3 and 4. 

This is due to increasing the surface area that subjected to the flow convection.   

Figure 7.13 shows the variation of 𝑁𝑢𝑎𝑣 versus the Darcy number for different corrugated 

wall amplitude of the enclosure at (a) 𝑅𝑎 = 108 and (b) 𝑅𝑎 = 1011. The trend of the 𝑁𝑢𝑎𝑣 

with increasing 𝐴𝑐𝑟 and 𝐷𝑎 is similar trend to that in Figure 7.12. Increasing 𝐴𝑐𝑟 enhances 

𝑁𝑢𝑎𝑣. This is due to moving the vortex at the fluid layer towards the porous-fluid 

interface as well as increasing the surface area that subjected to the flow convection. In 

addition, increasing 𝑅𝑎 from 108 to 1011 leads to a significant increase in the 𝑁𝑢𝑎𝑣.  

  

      (a)       (b) 

Figure 7.13: Variation of the average Nusselt number versus the Darcy number for different 

values of the corrugated wall amplitude at (a) 𝑅𝑎 =108 and (b) 𝑅𝑎 =1011. 

The variation of 𝑁𝑢𝑎𝑣 versus the corrugated wall amplitude for different values of the 

wave number corrugated wall at (a) 𝑅𝑎 = 108 and (b) 𝑅𝑎 = 1010 shown in Figure 7.14. 

The common behaviour of the 𝑁𝑢𝑎𝑣with 𝐴𝑐𝑟 shows a significant increase in the heat 

transfer with increasing the corrugated wall amplitude for all 𝑁𝑐𝑟 values. Figure 7.14 (a) 

shows at 𝑅𝑎 = 108 and 𝐴𝑐𝑟 = 0.05, a maximum 𝑁𝑢𝑎𝑣 occurs at 𝑁𝑐𝑟 =1, while a minimum 

𝑁𝑢𝑎𝑣 satisfies at 𝑁𝑐𝑟 = 2. Increasing 𝐴𝑐𝑟 leads to a steady increase in the 𝑁𝑢𝑎𝑣for 𝑁𝑐𝑟 = 

1, while a sharp increase in the 𝑁𝑢𝑎𝑣 occurs at 𝑁𝑐𝑟 = 2 and 𝑁𝑐𝑟 = 3. At 𝐴𝑐𝑟 = 0.2, 

increasing the wave number corrugated wall leads to a significant improvement in the 
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𝑁𝑎𝑣. At 𝑅𝑎 = 1010 (Figure 7.14 (b)), 𝑁𝑢𝑎𝑣 enhances due to increasing the buoyancy force 

inside the enclosure. At the lower values of 𝐴𝑐𝑟, the maximum 𝑁𝑢𝑎𝑣 occurs at 𝑁𝑐𝑟 = 3, 

while the minimum 𝑁𝑢𝑎𝑣 occurs at 𝑁𝑐𝑟 = 2. This is due to moving the centre of the vortex 

inside the fluid layer at 𝑁𝑐𝑟 = 2 away from the porous-fluid interface towards the right 

corrugated wall. At 𝐴𝑐𝑟 = 0.2, 𝑁𝑢𝑎𝑣 enhances with increasing the wave number of the 

corrugated wall, especially at 𝑁𝑐𝑟 = 3.  

In general, increasing 𝑁𝑐𝑟 and 𝐴𝑐𝑟 contributes to cool the working fluid inside the 

enclosure and thus, enhances the convective heat transfer. 

  

        (a)      (b) 

Figure 7.14: Variation of the average Nusselt number versus the corrugated wall amplitude for 

different values of the wave number of the corrugated wall at (a) 𝑅𝑎 =108 and (b) 𝑅𝑎 =1010. 

The variation of the 𝑁𝑢𝑎𝑣 versus the porous layer thickness (𝑆) for different values of 

the nanoparticles volume fraction shown in Figure 7.15. Using the hybrid nanofluid, 

increasing the nanoparticles volume fraction improves the 𝑁𝑢𝑎𝑣 compared to the single-

phase fluid. Adding these nanoparticles leads to enhancing the thermal conductivity of 

the single-phase fluid. Increasing the porous layer thickness from 𝑆 = 0 to 𝑆 = 0.3 

enhances 𝑁𝑢𝑎𝑣. This is attributed to the significant increase in streamlines strength of the 

main vortex inside the porous and fluid layers (not shown here) up to this value of 𝑆 and 

thereafter, higher porous thickness reduces the streamlines strength due to increasing the 

flow resistance by the porous layer. 
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Figure 7.15: Variation of the average Nusselt number versus the porous layer thickness for 

different values of the nanoparticles volume fraction. 

 Conclusions 

Reynolds averaged turbulent natural convection inside a three-dimensional enclosure 

with a right-hand side corrugated wall partly filled with a porous slab saturated with a 

hybrid nanofluid has been numerically investigated. The enclosure is uniformly heated 

with a constant temperature, 𝑇ℎ at the left flat surface and cooled from the opposing 

corrugated vertical side wall at constant temperature, 𝑇𝑐. The other walls are thermally 

insulated. The porous layer is located on the left close to the heat source while the fluid 

layer is located on the right close to the right corrugated wall. The nanofluid was 

composed of water-based fluid containing Cu − Al2O3 nanoparticles. The results 

obtained in terms of streamlines, isotherms and average Nusselt number. The results of 

this study indicate the following conclusions: 

 At high values of 𝑅𝑎 and 𝐷𝑎, one circulation cell was generated inside the 

enclosure. The circulation increased with increasing 𝑅𝑎 and 𝐷𝑎 and the 

circulation is greater at 𝑍 = 0.5 on the 𝑋𝑌- plane.  

 Increasing 𝐴𝑐𝑟 led to a higher circulation, as determined from Ψ𝑚𝑖𝑛., for all values 

of 𝑁𝑐𝑟. Increasing 𝑁𝑐𝑟from 1 to 2, reduced the circulation for all values of 𝐴𝑐𝑟, 

while it increased when 𝑁𝑐𝑟 increased from 2 to 3. 

 Increasing 𝐴𝑐𝑟 from 0.05 to 0.2 reduced the fluid temperature in the enclosure due 

to the cell centre in the fluid layer moving towards the porous-fluid interface, 

especially when 𝑁𝑐𝑟 = 3. 
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 At 𝑅𝑎 = 108, and low values of 𝐴𝑐𝑟, as 𝑁𝑐𝑟 values increase, the average kinetic 

energy reduces. Conversely, Κ increases with 𝑁𝑐𝑟, at 𝐴𝑐𝑟 = 0.2 and 𝑅𝑎 = 108. At 

the higher Rayleigh number of 1010, Κ gradually increases with increasing 𝐴𝑐𝑟 for 

all values of 𝑁𝑐𝑟, especially, for 𝐴𝑐𝑟 = 0.2 and 𝑁𝑐𝑟 = 3. 

 A small increase in the average fluid temperature on the porous-fluid interface 

plane was recorded at 𝑁𝑐𝑟 = 2 compared to 𝑁𝑐𝑟 = 1 and 3 for 𝐴𝑐𝑟 = 0.05, while 

increasing 𝐴𝑐𝑟 to 0.2 caused to a significant reduction in the average temperature 

of the fluid. Generally, increasing 𝑁𝑐𝑟, 𝐴𝑐𝑟 resulted in cooler working fluid inside 

the enclosure and thus, enhancing the heat transfer performance. 

 The lower thickness of the porous layer improved the average Nusselt number. In 

addition, the average Nusselt number is enhanced by using the hybrid nanofluid 

compared to the base fluid.  

Generally, the results predicted a new trend of the flow and heat transfer using the 

vertical porous slab saturated with a hybrid nanofluid inside the enclosure compared 

to other studies. It may be interesting for the designer in the modern technology of 

the industrial engineering applications. 
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 Conclusions and Recommendations 

 Conclusions 

In this thesis, steady-state laminar and turbulent convection flows inside enclosures partly 

filled with a porous medium saturated with a nanofluid with various thermal boundary 

conditions have been studied. The CFD simulations used the Galerkin finite element 

method to solve the governing equations implemented with the SIMPLE algorithm in 

COMSOL Multiphasic 5.1a and 5.3a. The Darcy-Brinkmann model was adopted to 

model the porous layer. Two main enclosure geometries are used with various thermal 

boundary conditions. First geometry shape is a two-dimensional enclosure with flat walls 

for the laminar flow investigation. Second geometry shape is a three-dimensional 

enclosure with a wavy right surface while the rest surfaces are flat for the turbulent flow 

investigation. A single-phase fluid and two types of nanofluids have been studied in this 

project. From the present studies, the following conclusions are drawn: 

 

The selected boundary conditions generate two vortices inside the enclosure. A stronger 

clockwise vortex covered most of the enclosure area and a second weaker anticlockwise 

vortex confined in the upper left corner of the enclosure. The nanofluid produced a higher 

average Nusselt number compared to the base fluid. The use of an enclosure partly filled 

by a porous slab provided a higher average Nusselt number than that for an enclosure 

filled by a porous slab. Increasing 𝑅𝑎 caused the intensity of the streamlines in case 2 to 

be stronger than that in case 1. Lower values of 𝐾𝑟 are predicted to provide higher Nusselt 

numbers. At the low values of thermal conductivity ratio 𝐾𝑟 < 1, and 𝐷𝑎 < 10-3, the 

average Nusselt number was higher for case 2 compared to case 1 while a higher Darcy 

number gave the converse. Higher values of 𝑆 are predicted to provide lower Nusselt 

number in case 1 compared to case 2 for different 𝑅𝑎 and 𝐾𝑟 values and at 𝐷𝑎 < 10-3. 

The linear thermal boundary condition and the alignment of the porous slab in a vertical 

or a horizontal direction played an important role in the trend of the convective heat 

transfer inside an enclosure partly filled by a porous slab saturated with a nanofluid. 
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The results show that the thinner porous layers strongly enhanced the average Nusselt 

number. The average Nusselt number increased with increasing 𝑅𝑎 and 𝐴𝑡ℎ, while it 

decreased with increasing odd values of 𝑁𝑡ℎ. The use of an enclosure partly filled by a 

porous slab provided a higher average Nusselt number than that for an enclosure filled 

by a porous slab. At the low values of the Darcy number, the average Nusselt number 

was increased in case 2 compared to case 1 when 𝐾𝑟 ≥ 1 for different values of 𝐴𝑡ℎ, 𝑁𝑡ℎ, 

and 𝑅𝑎. The low values of 𝐾𝑟 produced higher average Nusselt number predictions in 

case 1 compared to case 2 for different values of the Rayleigh numbers. The sinusoidal 

thermal boundary condition and the alignment of the porous slab in a vertical or a 

horizontal direction played an important role in the trend of the convective heat transfer 

inside an enclosure partly filled by a porous slab saturated with a nanofluid. 

 

Two vortices with asymmetric distributions along the heat source were generated at the 

porous and the fluid layers; the primary clockwise vortex was located the fluid layer while 

the secondary anti-clockwise vortex was located in the porous layer. In addition, the 

stream function strength increased with increasing Rayleigh and Darcy numbers. It has 

been concluded that the average Nusselt number using a hybrid nanofluid (𝐶𝑢 − 𝐴𝑙2𝑂3/ 

water) was higher than that with the single-phase fluid. Further, at 𝑅𝑎 ≤ 105 the average 

Nusselt number maintained its maximum value when 𝑆 reached the critical value (𝑆 =

0.3). Therefore, the use of an enclosure partly filled by a porous slab provided a higher 

average Nusselt number than that for an enclosure filled by a porous slab. The values of 

𝑆, 𝐷𝑎, and 𝐵 were found to have a significant effect on the heat removal from the heat 

source. At small values of 𝛾, increasing 𝐻 led to an increased 𝑁𝑢𝑎𝑣 for the solid phase 

but a decrease for the hybrid nanofluid phase due to the heat received by the hybrid 

nanofluid from the solid phase. Increasing the values of 𝛾 and 𝐻 can strongly enhance 

the average Nusselt number. 
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At high values of 𝑅𝑎 and 𝐷𝑎, the selected boundary conditions generated two vortices 

inside the enclosure. One of vortices’ core centre was located at the porous layer and 

another vortex’s core centre was located at the fluid layer. The high value of circulation 

was highest on the 𝑍 = 0.5 plane. The lowest circulation was at 𝑁𝑐𝑟= 2 for all 𝐴𝑐𝑟values, 

while the circulation strength increased with increasing 𝐴𝑐𝑟 for all 𝑁𝑐𝑟values. Increasing 

𝑁𝑐𝑟 and 𝐴𝑐𝑟values caused to cool the fluid temperature inside the enclosure due to 

increasing the cooled surface area except when 𝑁𝑐𝑟 = 2. The hybrid nanofluid was 

produced more enhancement of Nusselt number compared to the base fluid. The use of 

an enclosure partly filled by a porous slab provided a higher average Nusselt number than 

that for an enclosure filled by a porous slab. 

 Recommended future work 

Natural convection inside enclosures is one of the most highly investigated subjects 

because of its wide applications, as mentioned earlier in the literature review. 

Accordingly, the literature review observed that numerous researchers have been 

continually investigating and developing on the idea of using the heat transfer controlling 

techniques. Based on this project, the following recommendation could be made for a 

future study: 

 An experimental study can be contracted to validate the results of the present 

study. 

 A comparison of various types of nanoparticles used in the nanofluid as an 

extension for the selected geometries in the present study could be made. 

 The study of non-uniform thermal boundary condition on the laminar natural 

convection inside a two-dimensional corrugated enclosure partly filled by a 

porous medium saturated with a hybrid nanofluid  

 The effects of non-uniform thermal boundary condition on the unsteady laminar 

natural convection inside a three-dimensional corrugated enclosure partly filled 

with a porous medium using a local thermal non-equilibrium model can be 

investigated. 
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 The study of local thermal non-equilibrium model for laminar or turbulent natural 

convection inside other shapes of enclosure partly filled with a porous medium 

saturated with a nanofluid using other ranges of physical and geometrical 

parameters could be conducted. 

 A numerical study of a three-dimensional unsteady turbulent natural convection 

inside an enclosure partly filled with a porous medium saturated with a nanofluid 

with non-uniform thermal boundary conditions and other ranges of physical and 

geometrical parameters could also be undertaken. 
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Appendices 

Appendix A: Equations discretization and shape function 

A1: Non-linear discretization equations 

A1.1 Equations discretization of the nanofluid layer  

The weighted form of the nanofluid governing equations at nodes of internal domain 𝛀 

becomes 

Momentum equation                 

In the 𝑿-direction 

𝑅𝑒𝑠𝑠𝑛
(1)

= ∑ ((𝑈)𝑛𝑓)
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𝑆𝑁
𝑠𝑛=1 )

𝜕(𝐹)𝑠𝑛

𝜕𝑋
+

𝛺
𝑆𝑁
𝑠𝑛=1

(∑ ((𝑉)𝑛𝑓)
𝑠𝑛

. (𝐹)𝑠𝑛
𝑆𝑁
𝑠𝑛=1 )

𝜕(𝐹)𝑠𝑛

𝜕𝑌
+

(∑ ((𝑊)𝑛𝑓)
𝑠𝑛

. (𝐹)𝑠𝑛
𝑆𝑁
𝑠𝑛=1 )

𝜕(𝐹)𝑠𝑛

𝜕𝑍
] (Φ)𝑠𝑛. 𝑑𝑋 𝑑𝑌 𝑑𝑍 +

(𝜌)𝑏𝑓

(𝜌)𝑛𝑓
∑ ∫ (𝑃)𝑠𝑛.

𝜕(𝐹)𝑠𝑛 

𝜕𝑋𝛺
.𝑆𝑁

𝑠𝑛=1 (Φ)𝑠𝑛. 𝑑𝑋 +

(𝜌)𝑏𝑓

(𝜌)𝑛𝑓.(1−𝜙)2.5
. 𝑃𝑟. ∑ ((𝑈)𝑛𝑓)

𝑠𝑛
. ∫ [

𝜕Φ𝑠𝑛

𝜕𝑋

𝜕𝐹𝑠𝑛

𝜕𝑋
+

𝜕Φ𝑠𝑛

𝜕𝑌

𝜕𝐹𝑠𝑛

𝜕𝑌
+

Ω
𝑆𝑁
𝑠𝑛=1

𝜕Φ𝑠𝑛

𝜕𝑍

𝜕𝐹𝑠𝑛

𝜕𝑍
] . 𝑑𝑋 𝑑𝑌 𝑑𝑍 = 0                                                                                  (A1.1) 

In the 𝒀-direction 

𝑅𝑒𝑠𝑠𝑛
(2)

=  ∑ ((𝑉)𝑛𝑓)
𝑠𝑛

∫ [(∑ ((𝑈)𝑛𝑓)
𝑠𝑛

 (𝐹)𝑠𝑛
𝑆𝑁
𝑠𝑛=1 )

𝜕(𝐹)𝑠𝑛

𝜕𝑋
+

𝛺
𝑆𝑁
𝑠𝑛=1

(∑ ((𝑉)𝑛𝑓)
𝑠𝑛

 (𝐹)𝑠𝑛
𝑆𝑁
𝑠𝑛=1 )

𝜕(𝐹)𝑠𝑛

𝜕𝑌
+

(∑ ((𝑊)𝑛𝑓)
𝑠𝑛

 (𝐹)𝑠𝑛
𝑆𝑁
𝑠𝑛=1 )

𝜕(𝐹)𝑠𝑛

𝜕𝑍
] (Φ)𝑠𝑛. 𝑑𝑋 𝑑𝑌 𝑑𝑍 +

𝜌𝑏𝑓

𝜌𝑛𝑓
∑ ∫ (𝑃)𝑠𝑛

𝜕(𝐹)𝑠𝑛 

𝜕𝑌𝛺
𝑆𝑁
𝑠𝑛=1 (Φ)𝑠𝑛𝑑𝑌 +



  

163 

 

(𝜌)𝑏𝑓

(𝜌)𝑛𝑓.(1−𝜙)2.5
. 𝑃𝑟. ∑ ((𝑉)𝑛𝑓)

𝑠𝑛
. ∫ [

𝜕Φ𝑠𝑛

𝜕𝑋

𝜕𝐹𝑠𝑛

𝜕𝑋
+

𝜕Φ𝑠𝑛

𝜕𝑌

𝜕𝐹𝑠𝑛

𝜕𝑌
+

Ω
𝑆𝑁
𝑠𝑛=1

𝜕Φ𝑠𝑛

𝜕𝑍

𝜕𝐹𝑠𝑛

𝜕𝑍
] . 𝑑𝑋 𝑑𝑌 𝑑𝑍 = 0                                                                                   (A1.2) 

In the 𝒁-direction 

𝑅𝑒𝑠𝑠𝑛
(3)

=  ∑ (𝑊𝑛𝑓)
𝑠𝑛

∫ [(∑ (𝑈𝑛𝑓)
𝑠𝑛

 𝐹𝑠𝑛
𝑆𝑁
𝑠𝑛=1 )

𝜕𝐹𝑠𝑛

𝜕𝑋
+

Ω
𝑆𝑁
𝑠𝑛=1

(∑ (𝑉𝑛𝑓)
𝑠𝑛

 𝐹𝑠𝑛
𝑆𝑁
𝑠𝑛=1 )

𝜕𝐹𝑠𝑛

𝜕𝑌
+ (∑ (𝑊𝑛𝑓)

𝑠𝑛
 𝐹𝑠𝑛

𝑆𝑁
𝑠𝑛=1 )

𝜕𝐹𝑠𝑛

𝜕𝑍
] Φ𝑠𝑛. 𝑑𝑋 𝑑𝑌 𝑑𝑍 +

𝜌𝑏𝑓

𝜌𝑛𝑓
∑ ∫ 𝑃𝑠𝑛

𝜕𝐹𝑠𝑛 

𝜕𝑍Ω
𝑆𝑁
𝑠𝑛=1 Φ𝑠𝑛. 𝑑𝑍 +

(𝜌)𝑏𝑓

(𝜌)𝑛𝑓.(1−𝜙)2.5
. 𝑃𝑟. ∑ ((𝑊)𝑛𝑓)

𝑠𝑛
. ∫ [

𝜕Φ𝑠𝑛

𝜕𝑋

𝜕𝐹𝑠𝑛

𝜕𝑋
+

𝜕Φ𝑠𝑛

𝜕𝑌

𝜕𝐹𝑠𝑛

𝜕𝑌
+

Ω
𝑆𝑁
𝑠𝑛=1

𝜕Φ𝑠𝑛

𝜕𝑍

𝜕𝐹𝑠𝑛

𝜕𝑍
] . 𝑑𝑋 𝑑𝑌 𝑑𝑍 = 0                                                                                                               (A1.3) 

Energy equation 

𝑅𝑒𝑠𝑠𝑛
(4)

= ∑ (𝜃𝑛𝑓)
𝑠𝑛

∫ [(∑ (𝑈𝑛𝑓)
𝑠𝑛

 𝐹𝑠𝑛
𝑆𝑁
𝑠𝑛=1 )

𝜕𝐹𝑠𝑛

𝜕𝑋
+

Ω
𝑆𝑁
𝑠𝑛=1

(∑ (𝑉𝑛𝑓)
𝑠𝑛

 𝐹𝑠𝑛
𝑆𝑁
𝑠𝑛=1 )

𝜕𝐹𝑠𝑛

𝜕𝑌
+ (∑ (𝑊𝑛𝑓)

𝑠𝑛
 𝐹𝑠𝑛

𝑆𝑁
𝑠𝑛=1 )

𝜕𝐹𝑠𝑛

𝜕𝑍
] Φ𝑠𝑛. 𝑑𝑋 𝑑𝑌 𝑑𝑍 +

𝛼𝑛𝑓

𝛼𝑏𝑓
∑ (𝜃𝑛𝑓)

𝑠𝑛
∫ (

𝜕Φ𝑠𝑛

𝜕𝑋

𝜕𝐹𝑠𝑛

𝜕𝑋
+

𝜕Φ𝑠𝑛

𝜕𝑌

𝜕𝐹𝑠𝑛

𝜕𝑌
+

𝜕Φ𝑠𝑛

𝜕𝑍

𝜕𝐹𝑠𝑛

𝜕𝑍
)

Ω
𝑆𝑁
𝑠𝑛=1 𝑑𝑋 𝑑𝑌 𝑑𝑍 = 0    (A1.4) 

A.1.2 Equations discretization of the porous medium layer  

Momentum equations     

In the 𝑿-direction             

𝑅𝑒𝑠𝑠𝑛
(5)

= ∑ (𝑈𝑛𝑓)
𝑠𝑛

∫ [(∑ (𝑈𝑛𝑓)
𝑠𝑛

𝐹𝑠𝑛
𝑆𝑁
𝑠𝑛=1 )

𝜕𝐹𝑠𝑛

𝜕𝑋
+ (∑ (𝑉𝑛𝑓)

𝑠𝑛
 𝐹𝑠𝑛

𝑆𝑁
𝑠𝑛=1 )

𝜕𝐹𝑠𝑛

𝜕𝑌
+

Ω
𝑆𝑁
𝑠𝑛=1

(∑ (𝑊𝑛𝑓)
𝑠𝑛

 𝐹𝑠𝑛
𝑆𝑁
𝑠𝑛=1 )

𝜕𝐹𝑠𝑛

𝜕𝑍
] Φ𝑠𝑛. 𝑑𝑋 𝑑𝑌 𝑑𝑍 +

𝜌𝑏𝑓

𝜌𝑛𝑓
∑ ∫ 𝑃𝑠𝑛

𝜕𝐹𝑠𝑛 

𝜕𝑋Ω
𝑆𝑁𝑆
𝑠𝑛=1 Φ𝑠𝑛. 𝑑𝑋 +

 
(𝜌)𝑏𝑓

(𝜌)𝑛𝑓.(1−𝜙)2.5 𝑃𝑟 ∑ ((𝑈)𝑛𝑓)
𝑠𝑛

. ∫ [
𝜕Φ𝑠𝑛

𝜕𝑋

𝜕𝐹𝑠𝑛

𝜕𝑋
+

𝜕Φ𝑠𝑛

𝜕𝑌

𝜕𝐹𝑠𝑛

𝜕𝑌
+

𝜕Φ𝑠𝑛

𝜕𝑍

𝜕𝐹𝑠𝑛

𝜕𝑍
] .

Ω
𝑑𝑋 𝑑𝑌 𝑑𝑍 =𝑆𝑁

𝑠𝑛=1

+
𝜗𝑛𝑓

𝜗𝑏𝑓

𝑃𝑟

𝐷𝑎
∫ (∑ (𝑈𝑛𝑓)

𝑠𝑛
 𝐹𝑠𝑛

𝑆𝑁
𝑠𝑛=1 )

Ω
Φ𝑠𝑛. 𝑑𝑋 𝑑𝑌 𝑑𝑍 = 0.                                            (A1.5) 
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In the 𝒀-direction 

𝑅𝑒𝑠𝑠𝑛
(6)

= ∑ (𝑉𝑛𝑓)
𝑠𝑛

∫ [(∑ (𝑈𝑛𝑓)
𝑠𝑛

 𝐹𝑠𝑛
𝑆𝑁
𝑠𝑛=1 )

𝜕𝐹𝑠𝑛

𝜕𝑋
+

Ω
𝑆𝑁
𝑠𝑛=1

(∑ (𝑉𝑛𝑓)
𝑠𝑛

 𝐹𝑠𝑛
𝑆𝑁
𝑠𝑛=1 )

𝜕𝐹𝑠𝑛

𝜕𝑌
+ (∑ (𝑊𝑛𝑓)

𝑠𝑛
 𝐹𝑠𝑛

𝑆𝑁
𝑠𝑛=1 )

𝜕𝐹𝑠𝑛

𝜕𝑍
] Φ𝑠𝑛. 𝑑𝑋 𝑑𝑌 𝑑𝑍 +

𝜌𝑏𝑓

𝜌𝑛𝑓
∑ ∫ 𝑃𝑠𝑛

𝜕𝐹𝑠𝑛 

𝜕𝑋Ω
𝑆𝑁
𝑠𝑛=1 Φ𝑠𝑛. 𝑑𝑋 +

(𝜌)𝑏𝑓

(𝜌)𝑛𝑓.(1−𝜙)2.5
. 𝑃𝑟 ∑ ((𝑉)𝑛𝑓)

𝑠𝑛
. ∫ [

𝜕Φ𝑠𝑛

𝜕𝑋

𝜕𝐹𝑠𝑛

𝜕𝑋
+

𝜕Φ𝑠𝑛

𝜕𝑌

𝜕𝐹𝑠𝑛

𝜕𝑌
+

Ω
𝑆𝑁
𝑠𝑛=1

𝜕Φ𝑠𝑛

𝜕𝑍

𝜕𝐹𝑠𝑛

𝜕𝑍
] . 𝑑𝑋 𝑑𝑌 𝑑𝑍 +

𝜗𝑛𝑓

𝜗𝑏𝑓

𝑃𝑟

𝐷𝑎
∫ (∑ (𝑉𝑛𝑓)

𝑠𝑛
𝐹𝑠𝑛

𝑆𝑁
𝑠𝑛=1 )

Ω
Φ𝑠𝑛. 𝑑𝑋 𝑑𝑌 𝑑𝑍 +

(𝜌𝛽)𝑛𝑓

𝜌𝑛𝑓𝛽𝑏𝑓
𝑅𝑎. 𝑃𝑟 ∫ (∑ (𝜃𝑃)𝑠𝑛𝐹𝑠𝑛

𝑆𝑁
𝑠𝑛=1 )

Ω
Φ𝑠𝑛. 𝑑𝑋 𝑑𝑌 𝑑𝑍 = 0                               (A1.6) 

In the 𝒁-direction 

𝑅𝑒𝑠𝑠𝑛
(7)

= ∑ (𝑊𝑛𝑓)
𝑠𝑛

∫ [(∑ (𝑈𝑛𝑓)
𝑠𝑛

 𝐹𝑠𝑛
𝑆𝑁
𝑠𝑛=1 )

𝜕𝐹𝑠𝑛

𝜕𝑋
+

Ω
𝑆𝑁
𝑠𝑛=1

(∑ (𝑉𝑛𝑓)
𝑠𝑛

𝐹𝑠𝑛
𝑆𝑁
𝑠𝑛=1 )

𝜕𝐹𝑠𝑛

𝜕𝑌
+ (∑ (𝑊𝑛𝑓)

𝑠𝑛
𝐹𝑠𝑛

𝑆𝑁
𝑠𝑛=1 )

𝜕𝐹𝑠𝑛

𝜕𝑍
] Φ𝑠𝑛. 𝑑𝑋 𝑑𝑌 𝑑𝑍 +

𝜌𝑏𝑓

𝜌𝑛𝑓
∑ ∫ 𝑃𝑠𝑛

𝜕𝐹𝑠𝑛 

𝜕𝑋Ω
𝑆𝑁
𝑠𝑛=1 Φ𝑠𝑛𝑑𝑋 +

(𝜌)𝑏𝑓

(𝜌)𝑛𝑓.(1−𝜙)2.5
. 𝑃𝑟 ∑ ((𝑊)𝑛𝑓)

𝑠𝑛
. ∫ [

𝜕Φ𝑠𝑛

𝜕𝑋

𝜕𝐹𝑠𝑛

𝜕𝑋
+

𝜕Φ𝑠𝑛

𝜕𝑌

𝜕𝐹𝑠𝑛

𝜕𝑌
+

Ω
𝑆𝑁
𝑠𝑛=1

𝜕Φ𝑠𝑛

𝜕𝑍

𝜕𝐹𝑠𝑛

𝜕𝑍
] . 𝑑𝑋 𝑑𝑌 𝑑𝑍 + 

𝜗𝑛𝑓

𝜗𝑏𝑓

𝑃𝑟

𝐷𝑎
∫ (∑ (𝑊𝑛𝑓)

𝑠𝑛
𝐹𝑠𝑛

𝑆𝑁
𝑠𝑛=1 )

Ω
Φ𝑠𝑛. 𝑑𝑋 𝑑𝑌 𝑑𝑍 = 0                                                                                                                                  

                                                                                                                            (A1.7) 

Energy equation  

𝑅𝑒𝑠𝑠𝑛
(8)

= ∑ (𝜃𝑝)
𝑠𝑛

∫ [(∑ (𝑈𝑛𝑓)
𝑠𝑛

 𝐹𝑠𝑛
𝑆𝑁
𝑠𝑛=1 )

𝜕𝐹𝑠𝑛

𝜕𝑋
+

Ω
𝑆𝑁
𝑠𝑛=1

(∑ (𝑉𝑛𝑓)
𝑠𝑛

 𝐹𝑠𝑛
𝑆𝑁
𝑠𝑛=1 )

𝜕𝐹𝑠𝑛

𝜕𝑌
+ (∑ (𝑊𝑛𝑓)

𝑠𝑛
 𝐹𝑠𝑛

𝑆𝑁
𝑠𝑛=1 )

𝜕𝐹𝑠𝑛

𝜕𝑍
] Φ𝑠𝑛. 𝑑𝑋 𝑑𝑌 𝑑𝑍 +

𝛼𝑛𝑓

𝛼𝑏𝑓
. 𝑑𝑋 𝑑𝑌 𝑑𝑍 = 0                                                                            (A1.8) 

A2: Shape function: 

A two-dimensional square element for four nodes has been supposed to describe how to 

find the unknown variables by using the shape function as shown in Figure A2.1. The 

linear unknown variables are represented by fourth order polynomials function 
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Φ(𝑋, 𝑌) =  𝑐1 +  𝑐2𝑋 + 𝑐3𝑌 + 𝑐4𝑋𝑌                                                                     (A2.1) 

The gradient varies of the unknown variables may be written as 

𝜕Φ

𝜕𝑋
= 𝑐2+𝑐4𝑌                                                                                            (A2.2) 

𝜕Φ

𝜕𝑌
= 𝑐3+𝑐4𝑋                                                                                            (A2.3) 

where Φ is the unknown variable at any location (𝑋, 𝑌) and the parameters 𝑐1,𝑐2, 𝑐3 and 

𝑐4 are constant. Since there are four arbitrary constants in the linear representation, it 

requires only four nodes to determine the values of 𝑐1, 𝑐2, 𝑐3and 𝑐4. In the simplest form 

of the element, a rectangular element is shown in Figure A2.1. Solving these equations 

will obtain the values of 𝑐1, 𝑐2, 𝑐3and 𝑐4.by substituting the values of the unknown 

variables Φ1, Φ2, Φ3 𝑎𝑛𝑑 Φ4 into equation (A2.1) for the nodes(𝑋1, 𝑌1),….. (𝑋4, 𝑌4), and 

replacing these relationships into equation (A2.1) and collating the coefficients of 

Φ1, Φ2, Φ3 𝑎𝑛𝑑 Φ4, to get:  

Φ(𝑋, 𝑌) = ∑ Φ𝑠𝑛 𝐹𝑠𝑛(𝑋, 𝑌) 𝑆𝑁
𝑠𝑛=1                                                                     (A2.4) 

Φ (𝑋, 𝑌) =  𝐹1(𝑋1, 𝑌1)Φ1(𝑋1, 𝑌1) + 𝐹2(𝑋2, 𝑌2)Φ2(𝑋2, 𝑌2) +

                      𝐹3(𝑋3, 𝑌3)Φ3(𝑋3, 𝑌3) + 𝐹4(𝑋4, 𝑌4)Φ4(𝑋4, 𝑌4)                             (A2.5) 

or    Φ = [𝐹1   𝐹2   𝐹3  𝐹4 ] {

Φ1

Φ2

Φ3

Φ4

}                                                                  (A2.6) 

In the final matrix form  

Φ = [𝐹][Φ]                                                                                               (A2.7) 
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Figure A2.1: A simple rectangular element (Roland et al., 2004) 

 

Figure A2.2: A simple rectangular element (Roland et al., 2004) 

The summation of the shape functions within domain is equal to unity 

∑ 𝐹𝑠𝑛 = 14
𝑠𝑛=1                                                                                             (A2.8) 

Lagrangian polynomial interpolation function is used to determine the shape function 

which is the ratio of two products  

𝐹𝑎𝑝
𝑒 (𝑋) =  ∏

𝑋−𝑋𝑜𝑝

𝑋𝑎𝑝−𝑋𝑜𝑝

𝑠𝑛
𝑜𝑝=1                                                                              (A2.9) 

Where 𝑒  is the element contains 𝑠𝑛 nodes, 𝑎𝑝 ≠ 𝑜𝑝. 𝑎𝑝 is the applied point and 𝑜𝑝 is 

the other selected point close to the applied point. 𝑋 =  
𝑥

𝐿
 and 𝑌 =  

𝑦

𝐿
. 
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These shape functions can be expressed in terms of length ratios 
𝑋

𝑏
= 𝜉 and 

𝑌

𝑎
= 𝜂 where, 

–1≤ 𝜉 ≤ 1 and –1≤ 𝜂 ≤ 1 are the non-dimensional coordinate of an element shown in 

Figure A2.3 for the simple rectangular element Figure A2.2. 

  

Figure A2.3: Non-dimensional coordinates of a rectangular(Roland et al., 2004) 

The linear Lagrangian multipliers are given for the four nodal shape functions as follows: 

𝐹1 =
(𝑋−𝑏)(𝑌−𝑎)

(−𝑏−𝑏)(−𝑎−𝑎)
=

1

4𝑎𝑏
(𝑏 − 𝑋)(𝑎 − 𝑌)= 

1

4
(1 − 𝜉)(1 − 𝜂) 

𝐹2 =
(𝑋−(−𝑏))(𝑌−𝑎)

(−𝑏−(−𝑏))(−𝑎−𝑎)
=

1

4𝑎𝑏
(𝑏 + 𝑋)(𝑎 − 𝑌) =

1

4
(1 + 𝜉)(1 − 𝜂)  

𝐹3 =
(𝑋−(−𝑏))(𝑌−(−𝑎))

(𝑏−(−𝑏))(−𝑎−𝑎)
=

1

4𝑎𝑏
(𝑏 + 𝑋)(𝑎 + 𝑌) =

1

4
(1 + 𝜉)(1 + 𝜂)  

𝐹4 =
(𝑋−𝑏)(𝑌−(−𝑎))

(−𝑏−𝑏)(𝑎−(−𝑎))
=

1

4𝑎𝑏
(𝑏 − 𝑋)(𝑎 + 𝑌) =

1

4
(1 − 𝜉)(1 + 𝜂)                  (A2.10) 

The general form of the shape functions can be written as  

𝐹𝑠𝑛 = (1 + 𝜉𝜉𝑠𝑛)(1 + 𝜂𝜂𝑠𝑛)                                                                     (A2.11) 

Where (𝜉𝑠𝑛, 𝜂𝑠𝑛) reperesent the coordinate of the node ‘𝑠𝑛’. 

The variation of the unknown variables and shape functions of the typical rectangular 

element is 
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𝑑Φ

𝑑𝑋
=  

𝑑𝐹1

𝑑𝑋
Φ1 +

𝑑𝐹2

𝑑𝑋
Φ2 +

𝑑𝐹3

𝑑𝑋
Φ3 +

𝑑𝐹4

𝑑𝑋
Φ4 =

1

4𝑎𝑏 [−(𝑎 − 𝑌)Φ1 + (𝑎 − 𝑌)Φ2 +

(𝑎 + 𝑌)Φ3 − (𝑎 + 𝑌)Φ4]                                                                          (A2.12) 

Similarly, 

𝑑Φ

𝑑𝑌
=  

𝑑𝐹1

𝑑𝑌
Φ1 +

𝑑𝐹2

𝑑𝑌
Φ2 +

𝑑𝐹3

𝑑𝑌
Φ3 +

𝑑𝐹4

𝑑𝑌
Φ4 =

1

4𝑎𝑏
[−(𝑏 − 𝑋)Φ1 − (𝑏 + 𝑋)Φ2 +

(𝑏 + 𝑋)Φ3 + (𝑏 − 𝑋)Φ4]                                                                         (A2.13) 

In matrix form  

𝐷 = {

𝑑Φ

𝑑𝑥
𝑑Φ

𝑑𝑦

} =
1

4𝑏
[
−(𝑎 − 𝑌)         (𝑎 − 𝑌)        (𝑎 + 𝑌)       − (𝑎 + 𝑌)

−(𝑏 − 𝑋)    − (𝑏 + 𝑋)         (𝑏 + 𝑋)          (𝑏 − 𝑋)
] {

Φ1

Φ2

Φ3

Φ4

}  

                                                                                                              (A2.14) 

𝐷 = [𝐵]{Φ}                                                                                                           (A2.15) 

The [𝐵] matrix is given as  

[𝐵] =
1

4
[
−(1 − 𝜂)         (1 − 𝜂)        (1 + 𝜂)      − (1 + 𝜂)

−(1 − 𝜉)     − (1 + 𝜉)        (1 + 𝜉)           (1 − 𝜉)
]                          (A2.16) 
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Appendix B: Laminar flow governing equations 

B1: Two-dimensional laminar flow governing dimensionless 

equations using a local thermal equilibrium model (LTE) 

The dimensionless governing equations for the nanofluid layer are (Hussain and 

Rahomey, 2018): 

Continuity equation 

𝜕(𝑈)𝑛𝑓

𝜕𝑋
+

𝜕(𝑉)𝑛𝑓

𝜕𝑌
= 0                                                                                   (B1.1)  

Momentum equations            

In the 𝑿-direction             

(𝑈)𝑛𝑓

𝜕(𝑈)𝑛𝑓

𝜕𝑋
+ (𝑉)𝑛𝑓

𝜕(𝑈)𝑛𝑓

𝜕𝑌
= −

𝜕𝑃

𝜕𝑋
+

(𝜌)𝑏𝑓

(𝜌)𝑛𝑓×(1−𝜙)2.5
× 𝑃𝑟 × (

𝜕2(𝑈)𝑛𝑓

𝜕𝑋2
+

𝜕2(𝑈)𝑛𝑓

𝜕𝑌2
)   

                                                                                                                                                           (B1.2) 

In the 𝒀-direction             

(𝑈)𝑛𝑓

𝜕(𝑉)𝑛𝑓

𝜕𝑋
+ (𝑉)𝑛𝑓

𝜕(𝑉)𝑛𝑓

𝜕𝑌
= −

𝜕𝑃

𝜕𝑌
+

(𝜌)𝑏𝑓

(𝜌)𝑛𝑓×(1−𝜙)2.5
× 𝑃𝑟 × (

𝜕2(𝑉)𝑛𝑓

𝜕𝑋2
+

𝜕2(𝑉)𝑛𝑓

𝜕𝑌2
) +

(𝜌𝛽)𝑛𝑓

(𝜌)𝑛𝑓 ×(𝛽)𝑏𝑓
× 𝑃𝑟. 𝑅𝑎. (𝜃)𝑛𝑓                                                                  (B1.3)  

Energy Equation 

(𝑈)𝑛𝑓

𝜕(𝜃)𝑛𝑓

𝜕𝑋
+ (𝑉)𝑛𝑓

𝜕(𝜃)𝑛𝑓

𝜕𝑌
= (

(𝛼)𝑛𝑓

(𝛼)𝑏𝑓
) × [(

𝜕2(𝜃)𝑛𝑓

𝜕𝑋2
+

𝜕2(𝜃)𝑛𝑓

𝜕𝑌2
)]                              (B1.4) 

On the other hand, the dimensionless governing equations for the porous layer are: 

Quantity Equation 

𝜕(𝑈)𝑛𝑓

𝜕𝑋
+

𝜕(𝑉)𝑛𝑓

𝜕𝑌
= 0                                                                                                (B1.5)  

Momentum equations 

In the 𝑿-direction  
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(𝑈)𝑛𝑓

𝜕(𝑈)𝑛𝑓

𝜕𝑋
+ 𝑉

𝜕(𝑈)𝑛𝑓

𝜕𝑌
= −

𝜕𝑃

𝜕𝑋
+

(𝜌)𝑏𝑓

(𝜌)𝑛𝑓×(1−𝜙)2.5
. 𝑃𝑟 (

𝜕2(𝑈)𝑛𝑓

𝜕𝑋2
+

𝜕2(𝑈)𝑛𝑓

𝜕𝑌2
) −

(𝜌)𝑏𝑓

(𝜌)𝑛𝑓×(1−𝜙)2.5
.

𝑃𝑟

𝐷𝑎
 . (𝑈)𝑛𝑓                                                                                           (B1.6) 

In the 𝒀-direction 

(𝑈)𝑛𝑓

𝜕(𝑉)𝑛𝑓

𝜕𝑋
+ (𝑉)𝑛𝑓

∂(𝑉)𝑛𝑓

𝜕𝑌
= −

𝜕𝑃

𝜕𝑌
+

(𝜌)𝑏𝑓

(𝜌)𝑛𝑓×(1−𝜙)2.5
× 𝑃𝑟 (

𝜕2(𝑉)𝑛𝑓

𝜕𝑋2
+

𝜕2(𝑉)𝑛𝑓

𝜕𝑌2
) +

(𝜌×𝛽)𝑛𝑓

(𝜌)𝑛𝑓× (𝛽)𝑏𝑓
× 𝑃𝑟. 𝑅𝑎. (𝜃)𝑛𝑓 −

(𝜌)𝑏𝑓

(𝜌)𝑛𝑓×(1−𝜙)2.5
×

𝑃𝑟

𝐷𝑎
 (𝑉)𝑛𝑓                                   (B1.7) 

Energy equation  

(𝑈)𝑛𝑓
𝜕(𝜃)𝑝

𝜕𝑋
+ (𝑉)𝑛𝑓

𝜕(𝜃)𝑝

𝜕𝑌
= (

(𝛼)𝑛𝑓

(𝛼)𝑏𝑓
) ∗ [(

𝜕2(𝜃)𝑝

𝜕𝑋2
+

𝜕2(𝜃)𝑝

𝜕𝑌2
)]                                (B1.8) 

The temperature of the nanofluid and porous medium are assumed equal and thermally 

equilibrium. The stream function intensity and the direction of the streamlines can be 

simulated using the following equation, where the positive sign of Ψ refers to an 

anticlockwise flow direction, and a negative sign indicates a clockwise flow direction. 

𝜕2Ψ

𝜕𝑋2
+

𝜕2Ψ

𝜕𝑌2
=

𝜕𝑈

𝜕𝑌
−

𝜕𝑉

𝜕𝑋
                                                                                                  (B1.9) 

The dimensionless dependent and independent variables and parameters are as follows: 

 𝑋 =
𝑥

𝐿
, 𝑌 =

𝑦

𝐿
 , 𝑈 =

𝑢𝐿

(𝛼)𝑏𝑓
 , 𝑉 =

𝑣𝐿

(𝛼)𝑏𝑓
 , 𝑃 =

𝑃𝐿

(𝜌)𝑏𝑓×(𝛼)𝑏𝑓
2  , Ψ = 

𝛹

(𝛼)𝑏𝑓
, (𝜃)𝑛𝑓 =

𝑇𝑛𝑓−𝑇𝑐

𝑇ℎ−𝑇𝑐
 

, (𝜃)𝑝 =
𝑇𝑝−𝑇𝑐

𝑇ℎ−𝑇𝑐
 , 𝑅𝑎 =

(𝛽)𝑏𝑓×𝑔×∆𝑇×𝐿3

(𝜗)𝑏𝑓×(𝛼)𝑏𝑓
 , 𝑃𝑟 =  

(𝜗)𝑏𝑓

(𝛼)𝑏𝑓
, and 𝐷𝑎 =

𝜆

𝐿2
               (B1.10) 
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Thermo-physical properties of the nanofluid 

(𝜌)𝑛𝑓 = (1 − 𝜙)(𝜌)𝑏𝑓 + 𝜙(𝜌)𝑛𝑝                                                                                            (B1.11) 

(𝜇)𝑛𝑓 =
(𝜇)𝑏𝑓

(1−𝜙)2.5
                                                                                                                    (B1.12) 

(𝜌𝐶𝑝)𝑛𝑓 = (1 − 𝜙)(𝜌𝐶𝑝)𝑏𝑓 + 𝜙(𝜌𝐶𝑝)𝑛𝑝                                                                 (B1.13) 

(𝛽)𝑛𝑓 = (1 − 𝜙)(𝜌𝛽)𝑛𝑓 + 𝜙(𝜌𝛽)𝑛𝑝                                                                              (B1.14) 

(𝜌𝛽)𝑛𝑓 = (1 − 𝜙)𝜌𝑏𝑓 + 𝜙𝜌𝑛𝑝                                                                                      (B1.15) 

(𝑘)𝑛𝑓 =
((𝑘)𝑛𝑝+2(𝑘)𝑏𝑓)−2𝜙((𝑘)𝑏𝑓−(𝑘)𝑛𝑝)

((𝑘)𝑛𝑝+2(𝑘)𝑏𝑓)+𝜙((𝑘)𝑏𝑓−(𝑘)𝑛𝑝)
(𝑘)𝑏𝑓                                                                     (B1.16) 

(𝐾)𝑒𝑓𝑓 = (𝐾)𝑟 ∗
(𝑘)𝑛𝑓

(𝑘)𝑏𝑓
                                                                                                                (B1.17) 

where (𝐾)𝑟  is the porous/nanofluid thermal conductivity ratio, (𝐾)
𝑒𝑓𝑓

 is the effective 

thermal conductivity, and 

(𝛼)𝑛𝑓 =
(𝑘)𝑛𝑓

(𝜌𝐶𝑝)𝑛𝑓
                                                                                                                     (B1.18) 

(𝛼)𝑒𝑓𝑓 =
(𝑘)𝑒𝑓𝑓

(𝜌𝐶𝑝)𝑛𝑓
                                                                                                                    (B1.19) 

B2: Two-dimensional laminar flow governing dimensionless 

equations using a local thermal non-equilibrium model (LTNE) 

Hybrid nanofluid layer  

Continuity equation 

𝜕(𝑈)ℎ𝑛𝑓

𝜕𝑋
+

𝜕(𝑉)ℎ𝑛𝑓

𝜕𝑌
= 0                                                                                              (B2.1) 

Momentum equation   

In the 𝑿-direction             

(𝑈)ℎ𝑛𝑓

𝜕(𝑈)ℎ𝑛𝑓

𝜕𝑋
+ (𝑉)ℎ𝑛𝑓

𝜕(𝑈)ℎ𝑛𝑓

𝜕𝑌
= −

𝜕𝑃

𝜕𝑋
+

(𝜌)𝑏𝑓

(𝜌)ℎ𝑛𝑓×(1−𝜙)2.5
× 𝑃𝑟 × (

𝜕2(𝑈)ℎ𝑛𝑓

𝜕𝑋2
+

𝜕2(𝑈)ℎ𝑛𝑓

𝜕𝑌2
)                                                                                                              (B2.2) 
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In the 𝒀-direction    

(𝑈)ℎ𝑛𝑓

𝜕(𝑉)ℎ𝑛𝑓

𝜕𝑋
+ (𝑉)ℎ𝑛𝑓

𝜕(𝑉)ℎ𝑛𝑓

𝜕𝑌
= −

𝜕𝑃

𝜕𝑌
+

(𝜌)𝑏𝑓

(𝜌)ℎ𝑛𝑓×(1−𝜙)2.5
× 𝑃𝑟 × (

𝜕2(𝑉)ℎ𝑛𝑓

𝜕𝑋2
+

𝜕2(𝑉)ℎ𝑛𝑓

𝜕𝑌2
) +

(𝜌𝛽)ℎ𝑛𝑓

(𝜌)ℎ𝑛𝑓 ×(𝛽)𝑏𝑓
× 𝑃𝑟. 𝑅𝑎. (𝜃)ℎ𝑛𝑓                                                        (B2.3) 

Energy equation 

(𝑈)ℎ𝑛𝑓

𝜕(𝜃)ℎ𝑛𝑓

𝜕𝑋
+ (𝑉)ℎ𝑛𝑓

𝜕(𝜃)ℎ𝑛𝑓

𝜕𝑌
= (

(𝛼)ℎ𝑛𝑓

(𝛼)𝑏𝑓
) × [(

𝜕2𝜃ℎ𝑛𝑓

𝜕𝑋2
+

𝜕2𝜃ℎ𝑛𝑓

𝜕𝑌2
) + 𝐻 ∗

((𝜃)𝑝 − (𝜃)ℎ𝑛𝑓)]                                                                                                (B2.4) 

Porous medium layer 
 

Continuity equation 
𝜕(𝑈)ℎ𝑛𝑓

𝜕𝑋
+

𝜕(𝑉)ℎ𝑛𝑓

𝜕𝑌
= 0                                                                                             (B2.5) 

Momentum equations 

In the 𝑿-direction             

(𝑈)ℎ𝑛𝑓

𝜕(𝑈)ℎ𝑛𝑓

𝜕𝑋
+ (𝑉)ℎ𝑛𝑓

𝜕(𝑈)ℎ𝑛𝑓

𝜕𝑌
= −

𝜕𝑃

𝜕𝑋
+

(𝜌)𝑏𝑓

(𝜌)ℎ𝑛𝑓×(1−𝜙)2.5
× 𝑃𝑟 (

𝜕2(𝑈)ℎ𝑛𝑓

𝜕𝑋2
+

𝜕2(𝑈)ℎ𝑛𝑓

𝜕𝑌2
) −

(𝜌)𝑏𝑓

(𝜌)ℎ𝑛𝑓×(1−𝜙)2.5
×

𝑃𝑟

𝐷𝑎
 × (𝑈)ℎ𝑛𝑓                                                       (B2.6) 

In the 𝒀-direction         

(𝑈)ℎ𝑛𝑓

𝜕(𝑉)ℎ𝑛𝑓

𝜕𝑋
+ (𝑉)ℎ𝑛𝑓

∂(𝑉)ℎ𝑛𝑓

𝜕𝑌
= −

𝜕𝑃

𝜕𝑌
+

(𝜌)𝑏𝑓

(𝜌)ℎ𝑛𝑓×(1−𝜙)2.5
× 𝑃𝑟 (

𝜕2(𝑉)ℎ𝑛𝑓

𝜕𝑋2
+

𝜕2(𝑉)ℎ𝑛𝑓

𝜕𝑌2
) +

(𝜌×𝛽)ℎ𝑛𝑓

(𝜌)ℎ𝑛𝑓× (𝛽)𝑏𝑓
× 𝑃𝑟. 𝑅𝑎. (𝜃)ℎ𝑛𝑓 −

(𝜌)𝑏𝑓

(𝜌)ℎ𝑛𝑓×(1−𝜙)2.5
×

𝑃𝑟

𝐷𝑎
 (𝑉)ℎ𝑛𝑓     (B2.7) 

Energy equation 

(𝑈)ℎ𝑛𝑓

𝜕(𝜃)ℎ𝑛𝑓

𝜕𝑋
+ (𝑉)ℎ𝑛𝑓

𝜕(𝜃)ℎ𝑛𝑓

𝜕𝑌
= (

(𝛼)ℎ𝑛𝑓

(𝛼)𝑏𝑓
) ∗ [(

𝜕2(𝜃)ℎ𝑛𝑓

𝜕𝑋2
+

𝜕2(𝜃)ℎ𝑛𝑓

𝜕𝑌2
) + 𝐻 ∗

((𝜃)ℎ𝑛𝑓 − (𝜃)𝑝)]                                                                                              (B2.8) 

 
𝜕(𝜃)𝑝

𝜕𝑋
+

𝜕(𝜃)𝑝

𝜕𝑌
= 𝛾 ∗ 𝐻 ∗ [(𝜃)𝑝 − (𝜃)ℎ𝑛𝑓]                                                        (B2.9) 
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Theses governing equations are performed based on the dimensionless transform 

parameters as follows 

𝑋 =
𝑥

𝐿
, 𝑌 =

𝑦

𝐿
 , 𝑈 =

𝑢×𝐿

(𝛼)𝑏𝑓
 , 𝑉 =

𝑣×𝐿

(𝛼)𝑏𝑓
 , 𝑃 =

𝑃×𝐿

(𝜌)ℎ𝑛𝑓(𝛼)𝑏𝑓
2  , Ψ = 

𝛹

(𝛼)𝑏𝑓
, , ∆𝑇= 

𝑞"×𝐿

(𝑘)𝑏𝑓
  ,  

 (𝜃)ℎ𝑛𝑓 =
(𝑇)ℎ𝑛𝑓−(𝑇)𝑐

(𝑇)𝑤−(𝑇)𝑐
 , (𝜃)𝑝 =

(𝑇)𝑝−(𝑇)𝑐

(𝑇)𝑤−(𝑇)𝑐
 , 𝑅𝑎 =

(𝛽)𝑏𝑓×𝑔×∆𝑇×𝐿3

(𝜗)𝑏𝑓×(𝛼)𝑏𝑓
 , 𝑃𝑟 =

(𝜗)𝑏𝑓

(𝛼)𝑏𝑓
 , 𝐷𝑎 =

𝐾

𝐿2
,  𝛾 = 

(𝑘)ℎ𝑛𝑓

(𝑘)𝑝
, 𝐻 = 

ℎ×𝐿2

(𝑘)ℎ𝑛𝑓
                                                                             (B2.10) 

The stream function intensity and the direction of the streamlines can be simulated 

using the following equation, where the positive sign of Ψ refers to an anticlockwise 

flow direction, and a negative sign indicates a clockwise flow direction. 

𝜕2Ψ

𝜕𝑋2
+

𝜕2Ψ

𝜕𝑌2
=

𝜕𝑈

𝜕𝑌
−

𝜕𝑉

𝜕𝑋
                                                                              (B2.11) 

Thermo-physical properties of the hybrid nanofluid 

The physical property equations for the Cu − Al2O3/water hybrid nanofluid are 

simulated with a nanoparticle volume fraction, 𝜙, depending on the physical properties 

of the nanofluid equations presented in the reference (Gorla et al., 2017). 

(𝜌)ℎ𝑛𝑓 = [(𝜙)𝐶𝑢 × (𝜌)𝐶𝑢 + (𝜙)𝐴𝑙2𝑂3
× (𝜌)𝐴𝑙2𝑂3

] + (1 − 𝜙) × (𝜌)𝑏𝑓       (B2.12) 

(𝜇)ℎ𝑛𝑓 =
(𝜇)𝑏𝑓

[1−((𝜙)𝐶𝑢+(𝜙)𝐴𝑙2𝑂3)]
2.5                                                                      (B2.13) 

(𝜌 × 𝐶𝑝)ℎ𝑛𝑓 = [(𝜙)𝐶𝑢 × (𝜌 × 𝐶𝑝)𝐶𝑢 + (𝜙)𝐴𝑙2𝑂3
× (𝜌 × 𝐶𝑝)𝐴𝑙2𝑂3

] + (1 −

𝜙) × (𝜌 × 𝐶𝑝)𝑏𝑓                                                                                            (B2.14) 

(𝜌 × 𝛽)ℎ𝑛𝑓 = [(𝜙)𝐶𝑢 × (𝜌 × 𝛽)𝐶𝑢 + (𝜙)𝐴𝑙2𝑂3
× (𝜌 × 𝛽)𝐴𝑙2𝑂3

] + (1 −

                            𝜙)(𝜌 × 𝛽)𝑏𝑓                                                                          (B2.15) 

(𝑘)ℎ𝑛𝑓 = {[
[(𝜙)𝐶𝑢×(𝑘)𝐶𝑢+(𝜙)𝐴𝑙2𝑂3×(𝑘)𝐴𝑙2𝑂3]

𝜙
+ 2 × (𝑘)𝑏𝑓 + 2 × [(𝜙)𝐶𝑢 ×

(𝑘)𝐶𝑢 + (𝜙)𝐴𝑙2𝑂3
× (𝑘)𝐴𝑙2𝑂3

] − 2 × 𝜙 × (𝑘)𝑏𝑓] ×
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                  [
[(𝜙)𝐶𝑢×(𝑘)𝐶𝑢+(𝜙)𝐴𝑙2𝑂3×(𝑘)𝐴𝑙2𝑂3]

𝜙
+ 2 × (𝑘)𝑏𝑓 − [(𝜙)𝐶𝑢 ×

                 (𝑘)𝐶𝑢 + (𝜙)𝐴𝑙2𝑂3
× (𝑘)𝐴𝑙2𝑂3

] + (𝜙) × (𝑘)𝑏𝑓]
−1

} × (𝑘)𝑏𝑓.         (B2.16) 

(𝛼)ℎ𝑛𝑓 =
(𝑘)ℎ𝑛𝑓

(𝜌×𝐶𝑝)ℎ𝑛𝑓
                                                                                                                 (B2.17) 
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Appendix C: Three-dimensional turbulent flow governing 

equations 

Nanofluid layer 

Continuity equation 

𝜕(𝑈)ℎ𝑛𝑓

𝜕𝑋
+

𝜕(𝑉)ℎ𝑛𝑓

𝜕𝑌
+

𝜕(𝑊)ℎ𝑛𝑓

𝜕𝑍
= 0                                                                                      (C.1) 

Momentum equations 

In the 𝑿-direction  

(𝑈)ℎ𝑛𝑓 ×
𝜕(𝑈)ℎ𝑛𝑓

𝜕𝑋
+ (𝑉)𝑛𝑓 ×

𝜕(𝑈)ℎ𝑛𝑓

𝜕𝑌
+ (𝑊)𝑛𝑓 ×

𝜕(𝑈)ℎ𝑛𝑓

𝜕𝑍
= −

𝜕

𝜕𝑋
(𝑃 +

2

3
× 𝑃𝑟2 ×

Κ) + 𝑃𝑟 × (𝐼 + (𝜇)𝑡𝑑) × [2 ×
𝜕

𝜕𝑋
× (

𝜕(𝑈)ℎ𝑛𝑓

𝜕𝑋
) +

𝜕

𝜕𝑌
× ((

𝜕(𝑈)ℎ𝑛𝑓

𝜕𝑌
+

𝜕(𝑉)ℎ𝑛𝑓

𝜕𝑋
)) +

𝜕

𝜕𝑍
(

𝜕(𝑈)ℎ𝑛𝑓

𝜕𝑍
+

𝜕(𝑊)ℎ𝑛𝑓

𝜕𝑋
)]                                                                                             (C.2) 

In the 𝒀-direction   

(𝑈)ℎ𝑛𝑓 ×
𝜕(𝑉)ℎ𝑛𝑓

𝜕𝑋
+ (𝑉)𝑛𝑓 ×

𝜕(𝑉)ℎ𝑛𝑓

𝜕𝑌
+ (𝑊)𝑛𝑓 ×

𝜕(𝑉)ℎ𝑛𝑓

𝜕𝑍
= −

𝜕

𝜕𝑦
(𝑃 +

2

3
× 𝑃𝑟2 ×

Κ) + 𝑃𝑟 × (𝐼 + (𝜇)𝑡𝑑) × [
𝜕

𝜕𝑋
× (

𝜕(𝑈)ℎ𝑛𝑓

𝜕𝑌
+

𝜕(𝑉)ℎ𝑛𝑓

𝜕𝑋
) + 2 ×

𝜕

𝜕𝑌
× (

𝜕(𝑉)ℎ𝑛𝑓

𝜕𝑌
) +

𝜕

𝜕𝑍
(

𝜕(𝑉)ℎ𝑛𝑓

𝜕𝑍
+

𝜕(𝑊)ℎ𝑛𝑓

𝜕𝑌
)] +

(𝜌𝛽)ℎ𝑛𝑓

𝜌ℎ𝑛𝑓×𝛽𝑏𝑓
× 𝑃𝑟 × 𝑅𝑎 × (𝜃)ℎ𝑛𝑓                                   (C.3) 

In the 𝒁-direction    

(𝑈)ℎ𝑛𝑓 ×
𝜕(𝑊)ℎ𝑛𝑓

𝜕𝑋
+ (𝑉)ℎ𝑛𝑓 ×

𝜕(𝑊)ℎ𝑛𝑓

𝜕𝑌
+ (𝑊)ℎ𝑛𝑓 ×

𝜕(𝑊)ℎ𝑛𝑓

𝜕𝑍
= −

𝜕

𝜕𝑍
(𝑃 +

2

3
×

𝑃𝑟2 × Κ) + 𝑃𝑟 × (𝐼 + (𝜇)𝑡𝑑) × [
𝜕

𝜕𝑋
× (

𝜕(𝑊)ℎ𝑛𝑓

𝜕𝑋
+

𝜕(𝑈)ℎ𝑛𝑓

𝜕𝑍
) +

𝜕

𝜕𝑌
(

𝜕(𝑊)ℎ𝑛𝑓

𝜕𝑌
+

𝜕(𝑉)ℎ𝑛𝑓

𝜕𝑍
) + 2 ×

𝜕

𝜕𝑍
× (

𝜕(𝑊)ℎ𝑛𝑓

𝜕𝑍
)]                                                                                (C.4) 
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Porous layer 

Continuity equation 

𝜕(𝑈)ℎ𝑛𝑓

𝜕𝑋
+

𝜕(𝑉)ℎ𝑛𝑓

𝜕𝑌
+

𝜕(𝑊)ℎ𝑛𝑓

𝜕𝑍
= 0                                                                               (C.5) 

Momentum equations 

In the 𝑿-direction            

(𝑈)ℎ𝑛𝑓 ×
𝜕(𝑈)ℎ𝑛𝑓

𝜕𝑋
+ 𝑉 ×

𝜕(𝑈)ℎ𝑛𝑓

𝜕𝑌
+ 𝑊 ×

𝜕(𝑈)ℎ𝑛𝑓

𝜕𝑍
= −

𝜕

𝜕𝑋
(𝑃 +

2

3
× 𝑃𝑟2 × Κ) +

𝑃𝑟 × (𝐼 + (𝜇)𝑡𝑑) × [2 ×
𝜕

𝜕𝑋
× (

𝜕(𝑈)ℎ𝑛𝑓

𝜕𝑋
) +

𝜕

𝜕𝑌
× ((

𝜕(𝑈)ℎ𝑛𝑓

𝜕𝑌
+

𝜕(𝑉)ℎ𝑛𝑓

𝜕𝑋
)) +

𝜕

𝜕𝑍
(

𝜕(𝑈)ℎ𝑛𝑓

𝜕𝑍
+

𝜕(𝑊)ℎ𝑛𝑓

𝜕𝑋
)] − 𝐼 ×

𝑃𝑟

𝐷𝑎
× (𝑈)ℎ𝑛𝑓                                                                 (C.6)  

In the 𝒀-direction     

(𝑈)ℎ𝑛𝑓 ×
𝜕(𝑉)ℎ𝑛𝑓

𝜕𝑋
+ (𝑉)𝑛𝑓 ×

𝜕(𝑉)ℎ𝑛𝑓

𝜕𝑌
+ (𝑊)ℎ𝑛𝑓 ×

𝜕(𝑉)ℎ𝑛𝑓

𝜕𝑍
= −

𝜕

𝜕𝑦
(𝑃 +

2

3
× 𝑃𝑟2 ×

Κ) + 𝑃𝑟 × (𝐼 + (𝜇)𝑡𝑑) × [
𝜕

𝜕𝑋
× (

𝜕(𝑈)ℎ𝑛𝑓

𝜕𝑌
+

𝜕(𝑉)ℎ𝑛𝑓

𝜕𝑋
) + 2 ×

𝜕

𝜕𝑌
× (

𝜕(𝑉)ℎ𝑛𝑓

𝜕𝑌
) +

𝜕

𝜕𝑍
(

𝜕(𝑉)ℎ𝑛𝑓

𝜕𝑍
+

𝜕(𝑊)ℎ𝑛𝑓

𝜕𝑌
)] +

(𝜌𝛽)ℎ𝑛𝑓

𝜌ℎ𝑛𝑓×𝛽𝑏𝑓
× 𝑃𝑟 × 𝑅𝑎 × 𝜃ℎ𝑛𝑓 − 𝐼 ×

𝑃𝑟

𝐷𝑎
× (𝑉)ℎ𝑛𝑓       (C.7) 

In the 𝒁-direction         

(𝑈)ℎ𝑛𝑓 ×
𝜕(𝑊)ℎ𝑛𝑓

𝜕𝑋
+ (𝑉)ℎ𝑛𝑓 ×

𝜕(𝑊)ℎ𝑛𝑓

𝜕𝑌
+ (𝑊)ℎ𝑛𝑓 ×

𝜕(𝑊)ℎ𝑛𝑓

𝜕𝑍
= −

𝜕

𝜕𝑍
(𝑃 +

2

3
×

𝑃𝑟2 × Κ) + 𝑃𝑟 × (𝐼 + (𝜇)𝑡𝑑) × [
𝜕

𝜕𝑋
× (

𝜕(𝑊)ℎ𝑛𝑓

𝜕𝑋
+

𝜕(𝑈)ℎ𝑛𝑓

𝜕𝑍
) +

𝜕

𝜕𝑌
(

𝜕(𝑊)ℎ𝑛𝑓

𝜕𝑌
+

𝜕(𝑉)ℎ𝑛𝑓

𝜕𝑍
) + 2 ×

𝜕

𝜕𝑍
× (

𝜕(𝑊)ℎ𝑛𝑓

𝜕𝑍
)] – 𝐼 ×

𝑃𝑟

𝐷𝑎
× (𝑊)ℎ𝑛𝑓                                             (C.8) 

where,   

𝐼 =

1

(1−𝜙)2.5

(𝜌)ℎ𝑛𝑓

(𝜌)𝑏𝑓

                                                                                                                             (C.9)  

(𝜇)𝑡𝑑 = (𝜌)𝑏𝑓 × 𝐶𝜇 × (
Κ2

𝐸
)                                                                                                (C.10) 

Energy equation 
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(𝑈)ℎ𝑛𝑓 ×
𝜕(𝜃)ℎ𝑛𝑓

𝜕𝑋
+ (𝑉)ℎ𝑛𝑓 ×

𝜕(𝜃)ℎ𝑛𝑓

𝜕𝑌
+ (𝑊)ℎ𝑛𝑓 ×

𝜕(𝜃)ℎ𝑛𝑓

𝜕𝑍
= (𝑘𝑒𝑓𝑓) × [

𝜕2(𝜃)ℎ𝑛𝑓

𝜕𝑋2
×

𝜕2(𝜃)ℎ𝑛𝑓

𝜕𝑌2
×

𝜕2(𝜃)ℎ𝑛𝑓

𝜕𝑍2
]                                                                                             (C.11) 

(𝑈)𝑛𝑓 ×
𝜕𝜃

𝜕𝑋
+ (𝑉)𝑛𝑓 ×

𝜕𝜃

𝜕𝑌
+ (𝑊)𝑛𝑓 ×

𝜕𝜃

𝜕𝑍
= (𝐼 + (𝜇)𝑡𝑑 ×

𝑃𝑟

𝑃𝑟𝑡
) × [

𝜕2𝜃

𝜕𝑋2
×

𝜕2𝜃

𝜕𝑌2
×

𝜕2𝜃

𝜕𝑍2
]                                                                                                                               (C.12) 

Turbulent kinetic energy: 

(𝑈)ℎ𝑛𝑓 ×
𝜕Κ

𝜕𝑋
+ (𝑉)ℎ𝑛𝑓 ×

𝜕Κ

𝜕𝑌
+ (𝑊)ℎ𝑛𝑓 ×

𝜕Κ

𝜕𝑍
= 𝑃𝑟 × (𝐼 +

(𝜇)𝑡𝑑

𝑃𝑟𝑡
) × [

𝜕2Κ

𝜕𝑋2
×

𝜕2Κ

𝜕𝑌2
×

𝜕2Κ

𝜕𝑍2
] +

(𝜇)𝑡𝑑

𝑃𝑟
× {2 × [(

𝜕(𝑈)ℎ𝑛𝑓

𝜕𝑋
)

2

+ (
𝜕(𝑉)ℎ𝑛𝑓

𝜕𝑌
)

2

+ (
𝜕(𝑊)ℎ𝑛𝑓

𝜕𝑍
)

2

] + [(
𝜕(𝑈)ℎ𝑛𝑓

𝜕𝑌
+

𝜕(𝑉)ℎ𝑛𝑓

𝜕𝑋
)

2

+ (
𝜕(𝑉)ℎ𝑛𝑓

𝜕𝑍
+

𝜕(𝑊)ℎ𝑛𝑓

𝜕𝑌
)

2

+ (
𝜕(𝑊)ℎ𝑛𝑓

𝜕𝑋
+

𝜕(𝑈)ℎ𝑛𝑓

𝜕𝑍
)

2

]} − 𝑃𝑟 × 𝐸            (C.13) 

Dissipation rate of turbulence kinetic energy: 

(𝑈)ℎ𝑛𝑓 ×
𝜕𝐸

𝜕𝑋
+ (𝑉)ℎ𝑛𝑓 ×

𝜕𝐸

𝜕𝑌
+ (𝑊)ℎ𝑛𝑓 ×

𝜕𝐸

𝜕𝑍
= 𝑃𝑟 × (𝐼 +

(𝜇)𝑡𝑑

𝑃𝑟𝑡
) × [

𝜕2𝐸

𝜕𝑋2
×

𝜕2𝐸

𝜕𝑌2
×

𝜕2𝐸

𝜕𝑍2
] − 𝐶2 ×

𝑃𝑟
(𝜌)ℎ𝑛𝑓

(𝜌)𝑏𝑓

×
𝐸2

𝑘
−  𝐶3 × (

(𝜇)𝑡𝑑

𝑃𝑟
) × (

(𝛽)ℎ𝑛𝑓

(𝛽)𝑏𝑓
) + 𝐶1 × (

(𝜇)𝑡𝑑

𝑃𝑟
) × {2 ×

[(
𝜕(𝑈)ℎ𝑛𝑓

𝜕𝑋
)

2

+ (
𝜕(𝑉)ℎ𝑛𝑓

𝜕𝑌
)

2

+ (
𝜕(𝑊)ℎ𝑛𝑓

𝜕𝑍
)

2

] + [(
𝜕(𝑈)ℎ𝑛𝑓

𝜕𝑌
+

𝜕(𝑉)ℎ𝑛𝑓

𝜕𝑋
)

2

+ (
𝜕(𝑉)ℎ𝑛𝑓

𝜕𝑍
+

𝜕(𝑊)ℎ𝑛𝑓

𝜕𝑌
)

2

+ (
𝜕(𝑊)ℎ𝑛𝑓

𝜕𝑋
+

𝜕(𝑈)ℎ𝑛𝑓

𝜕𝑍
)

2

]}                                                                       (C.14) 

where the coefficients of the κ-ε model have the following standard values (Braga and de 

Lemos, 2004):  

𝐶𝜇 = 0.09,𝐶1 = 1.44, 𝐶2 = 1.92, 𝐶3 = 0.7, 𝜎𝑘 = 1, 𝜎𝜀 = 1.3, and 𝑃𝑟𝑇 = 1           (C.15) 

The stream function intensity and the direction of the streamlines can be simulated using 

the following equation, where the positive sign of Ψ refers to an anticlockwise flow 

direction, and a negative sign indicates a clockwise flow direction. 

𝑈 =  
𝜕Ψ𝑍

𝜕𝑌
- 

𝜕Ψ𝑌

𝜕𝑍
 , 𝑉 =  

𝜕Ψ𝑋

𝜕𝑍
- 

𝜕Ψ𝑍

𝜕𝑋
 , and 𝑊 =  

𝜕Ψ𝑌

𝜕𝑋
- 

𝜕Ψ𝑋

𝜕𝑌
                                    (C.16) 
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The dimensionless parameters of the dependent and independent variables as follows:  

𝑋 =
𝑥

𝐿
, 𝑌 =

𝑦

𝐿
 , 𝑈 =

𝑢𝐿

𝛼𝑏𝑓
 , 𝑉 =

𝑣𝐿

𝛼𝑏𝑓
 , 𝑃 =

𝑃𝐿

(𝜌)𝑏𝑓.  (𝛼)𝑏𝑓
2  , Ψ = 

𝛹

(𝛼)𝑏𝑓
, 𝜃𝑛𝑓 =

𝑇𝑛𝑓−𝑇𝑐

𝑇ℎ−𝑇𝑐
 , 𝜃𝑝 =

𝑇𝑝−𝑇𝑐

𝑇ℎ−𝑇𝑐
 ,𝑅𝑎 =

𝛽𝑏𝑓.𝑔.∆𝑇.𝐿3

𝜗𝑏𝑓.𝛼𝑏𝑓
 , 𝑃𝑟 =

𝜗𝑏𝑓

𝛼𝑏𝑓
 , 𝐷𝑎 =

𝜆

𝐿2
 . 𝜇𝑛𝑓𝑑 =

𝜇𝑛𝑓

𝜇𝑏𝑓
, 𝜇𝑡𝑑 =

𝜇𝑡𝑛𝑓

𝜇𝑏𝑓
, K = 

κ

(
(𝛼𝑏𝑓)

2

𝐿2 )

 , 

and 𝐸 = 
𝜖

(
(𝛼𝑏𝑓)

3

𝐿4 )

.                                                                                                                    (C.17) 
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