
Online Interval Scheduling: Randomized and

Multiprocessor Cases

Stanley P. Y. Fung1, Chung Keung Poon2, and Feifeng Zheng3

1 Department of Computer Science, University of Leicester, United Kingdom.
pyfung@mcs.le.ac.uk

2 Department of Computer Science, City University of Hong Kong, China.
ckpoon@cs.cityu.edu.hk

3 School of Management, Xi’an JiaoTong University, China.
zhengff@mail.xjtu.edu.cn

Abstract. We consider the problem of scheduling a set of equal-length
intervals arriving online, where each interval is associated with a weight
and the objective is to maximize the total weight of completed intervals.
An optimal 4-competitive algorithm has long been known in the deter-
ministic case, but the randomized case remains open. We give the first
randomized algorithm for this problem, achieving a competitive ratio
of 3.618. We also prove a randomized lower bound of 4/3, which is an
improvement over the previous 5/4 result, and a lower bound of 2 for
a class of barely random algorithms which include our new algorithm.
We also show that the techniques can be carried to the deterministic
multiprocessor case, giving a 3.618-competitive 2-processor algorithm, a
5/4 lower bound for any number of processors, and a 2 lower bound for
2 processors.

1 Introduction

We study the problem of scheduling a set of intervals which arrive online. Each
interval has a weight and all intervals are of the same length. The objective is to
schedule a set of non-overlapping intervals such that the total weight of all these
intervals are maximized. Intervals being processed can be interrupted, but the
value will be lost. This can also be viewed as a job scheduling problem where each
job must be served immediately or else it is lost. This is a fundamental problem
in scheduling and has been widely studied, and is also related to a number of
online problems such as call control and bandwidth allocation (see e.g. [15, 4,
1]).

Related Work. For the basic problem where intervals are of the same length
and with arbitrary weights, Woeginger [15] gave an optimal deterministic 4-
competitive algorithm and a matching lower bound. In the paper, the open
question of whether randomization can help give better algorithms was raised.
Miyazawa and Erlebach [12] gave a 3-competitive randomized algorithm for the

special case where the weights of the intervals form a non-decreasing sequence.
They also gave the first randomized lower bound of 1.25.

Many other variations exist for the problem. One is to allow variable interval
lengths: Canetti and Irani [4] gave a randomized lower bound of Ω(

√
log Δ/ log log Δ)

and a randomized upper bound of O(log Δ) where Δ is the ratio of the longest
to shortest interval length. The deterministic case (with variable lengths) seems
not studied before on its own. However, more general models have been studied.
The problem of online scheduling of broadcasts with restarts is considered in [8,
5, 7, 16, 14]. In this broadcast scheduling problem, a set of pages is stored in a
server, and requests for pages arrive online. Each request has a deadline by which
the request has to be completed or else no profit is obtained. Different requests
for the same page can be served together in one single broadcast. Requests be-
ing served can be interrupted but will need to restart from the beginning if it
is to be broadcasted again. It can be seen that the interval scheduling problem
is a special case of the broadcast scheduling problem (where all requests have
tight deadlines and each request asks for a different page). In particular, there
are matching upper and lower bounds Θ(Δ/ log Δ) [14, 16] for the deterministic
case. These bounds also apply to the interval scheduling problem.

Another related problem, the real-time job scheduling problem, gives a bound
on the interval scheduling problem w.r.t. a different parameter. In this problem,
jobs have release times, deadlines and execution times. Preemption is allowed
and preempted jobs can be resumed at the point where they were preempted.
When all jobs have no laxity (i.e., execution time equals the difference between
deadline and release time), this problem reduces to the interval scheduling prob-
lem. Matching upper and lower bounds of (1 +

√
k)2 are established in [2, 9],

where k is the importance ratio, defined as the ratio of maximum to minimum
weight of the jobs. (Here jobs have different lengths and the weight of a job is the
value per unit length of the job.) Both bounds apply to the interval scheduling
case.

Yet another case is where intervals can have different lengths and their
weights are some function of their lengths. Seiden [13] gave a randomized 3.732-
competitive algorithm for the case of benevolent instances, where (roughly speak-
ing) the weight of an interval is either a convex or monotonic decreasing function
of its length. If the weight of an interval is equal to its length, the nonpreemptive
case was considered in [11]. They gave a randomized O((log Δ)1+ε)-competitive
algorithm and a Ω(log Δ) lower bound.

Multiprocessor scheduling of intervals were studied in [6], giving an optimal
(1-competitive) algorithm when all intervals have unit weight (and not necessar-
ily equal length). Multiprocessor scheduling of jobs with different lengths and
weights were studied in [10], with competitive ratio roughly Θ(log k) where k is
the importance ratio. If the profit is equal to the length, a tight bound of 2 is
known for 2 processors [2].

Our Results. In this paper we consider the case where all intervals are of the same
length. In fact our algorithm applies to the more general case where intervals
may not have equal lengths but have agreeable deadlines, i.e. no interval being

strictly contained in another interval. This is because of the result that the class
of interval graphs for agreeable-deadlines intervals is equal to the class of interval
graphs for equal-length intervals (see e.g. [3]). In Section 3 we give a randomized
online algorithm which is 3.618-competitive, which is lower than the optimal
deterministic bound. The algorithm only uses a constant number of random
bits as it only makes a single random choice when it starts. In Section 4 we
consider lower bounds, giving an improved randomized lower bound of 4/3 on
the competitive ratio. For barely random algorithms that chooses between two
algorithms of equal probabilities (which includes our proposed algorithm), we
show a lower bound of 2.

There is a close relation between the randomized single-processor case and
the deterministic multiprocessor case. We show in Section 5 that (with some
modifications) our 3.618-competitive algorithm can be applied in the 2-processor
case. The lower bounds also apply: we give a 4/3 lower bound for the competitive
ratio of any deterministic or randomized algorithms for any number of processors,
and a deterministic 2 lower bound for 2 processors.

Due to space limitations some proofs are omitted and can be found in the
full version of the paper.

2 Preliminaries

An interval I is specified by s(I), its arrival time; �(I), its length; and |I|, its
weight. Since we only consider the case where all intervals are of the same length,
we can, without loss of generality, assume �(I) = 1 for all I.

Intervals arrive online and the scheduling algorithm has to make decisions
without knowledge of future intervals. When a scheduling algorithm completes
an interval, it receives a profit equal to the weight of the interval. An interval
being scheduled can be aborted (e.g. when an interval of larger weight arrives)
but the value of the aborted interval will be lost. The objective of the algorithm
is to maximize the total profit obtained by completing the intervals.

Let A(S) denote the profit obtained by algorithm A on input instance S. An
online algorithm A is c-competitive if for all input instances S, OPT (S)/A(S) ≤ c
where OPT is the offline optimal algorithm which has knowlege of all future
intervals and hence can schedule optimally. When A is a randomized algorithm,
the definition of competitive ratio becomes OPT (S)/E[A(S)] ≤ c where the
expectation is taken over the random choices of A. A randomized algorithm
that only uses a constant number of random bits is called barely random.

3 A Randomized Algorithm

The Algorithm. Consider the simple deterministic algorithm Greedyr: when an
interval I arrives and the algorithm is currently executing another interval I ′,
it aborts I ′ and start I if |I| ≥ r|I ′|. If the machine is idle at that time then
|I ′| = 0, meaning that I will always get started. We call r the abortion ratio. This

algorithm is 4-competitive when r = 2 and is the best possible for deterministic
algorithms [15].

Fix constants α, β, p where 1 < α < β and 0 < p < 1. The randomized
algorithm RGreedyα,β,p chooses to run one of the two deterministic algorithms
Greedyα and Greedyβ with probability p and 1 − p respectively. It is barely
random since the choice is only made in the beginning. Below we will analyze
the competitive ratio of this algorithm.

Basic subschedules. Let A and B denote the schedules produced by Greedyα

and Greedyβ respectively on a particular input instance. We define a basic sub-
schedule to be a sequence of execution of intervals (I1, . . . , Ik), for k ≥ 1, where
Ii is aborted by Ii+1 for 1 ≤ i ≤ k − 1 and Ik is completed. That is, each basic
subschedule consists of zero or more aborted intervals followed by a completed
interval. Each of the two online schedules A and B can then be partitioned into a
sequence of basic subschedules. In a basic subschedule (I1, . . . , Ik) with abortion
ratio r, we have |Ii| ≤ |Ii+1|/r because this is the condition for Ii+1 to abort Ii.

Profit amortization. Consider a basic subschedule (I1, . . . , Ik) with abortion ra-
tio r. Only Ik is completed. Therefore the profit received for the whole basic
subschedule is |Ik|. For the purpose of analysis, we will ‘amortize’ the profit of
a basic subschedule to the individual intervals (not just the completed one) as
follows. Ik transfers a profit of |Ik−1| to Ik−1 and keep the rest of |Ik| − |Ik−1|
profit to itself. Inductively, for i = k − 1, . . . , 2, Ii receives an amortized profit
of |Ii| from Ii+1; it then transfers a profit of |Ii−1| to Ii−1 and keep the rest of
|Ii| − |Ii−1| to itself. For I1 it keeps all its received profit |I1|. Obviously, the
total profit remains the same. From now on, unless explicitly stated otherwise,
we will refer to the amortized profits.

Schedule segments. Consider a basic subschedule, (X1, . . . , Xk), of A. Let x1, x2,
. . . , xk be the weights of these intervals. Let ti be the time when Xi is started,
and define tk+1 = tk + 1. During [ti, ti+1), OPT can start at most one interval,
Zi, with weight zi. If there is no interval started by OPT during that time
period, we simply skip this interval Xi from our consideration; thus Xi and
ti only refer to those intervals in A which have corresponding Zi’s. This will
only underestimate the profit of the online algorithm. By the property of basic
subschedules we have xi ≥ αxi−1 for all 1 < i ≤ k. (Note that Xi and Xi−1 may
not be consecutive intervals in the basic subschedule because of the skipping just
mentioned. Nevertheless the inequality remains true.)

Let ui be the time when Zi starts. At time ui, Greedyα must be serving
some intervals with weight at least zi/α or else Greedyα would abort what it is
serving and start Zi instead. Thus xi > zi/α for all i. Similarly, at time ui, the
other algorithm Greedyβ (if it is chosen instead) must be serving some interval,
Yi, of weight at least zi/β, or else it will abort what it is serving and start Zi

instead. Denote by yi the weight of this interval that Greedyβ is serving at time
ui. We have yi > zi/β.

We make two observations about these yi’s. First, any two Zi’s must corre-
spond to different Yi’s. This is because each interval in OPT is completed and
thus takes 1 unit of time, so ui+1 ≥ ui + 1 and hence Yi and Yi+1 cannot be
the same interval. Second, two consecutive Yi−1 and Yi may or may not belong
to the same basic subschedule in B. If they do, then we have yi ≥ βyi−1. Note
that even if they are in the same basic subschedule, they may not be consecu-
tive intervals (there may be a number of abortions in-between), but even so the
previous inequality remains true. If they are not in the same basic subschedule,
we cannot say anything about yi and yi+1.

Therefore, we further split the basic subschedules in A and B into segments
as follows. Let X1 and Y1 be the first interval in A and B respectively after the
previous segment (initially they are simply the first intervals). A segment is then
the set of intervals (X1, . . . , Xn) from A and (Y1, . . . , Yn) from B such that at
least one of Xn or Yn is completed, and all other Xi and Yi is aborted (directly or
indirectly) by Xi+1 and Yi+1 respectively. For a pair of corresponding segments,
at least one of the two ending intervals is completed. In effect, intervals in a
segment satisfy xi ≤ xi+1/α (for those in A) and yi ≤ yi+1/β (for those in B).

Note that Xi’s and Yi’s may not be consecutive intervals in a basic subsched-
ule, as explained before. In the analysis we will ignore all those skipped abortions,
e.g. in the profit amortization we treat Yi and Yi+1 as if they are consecutive
without giving any profit to any aborted intervals in-between, if any.

Bounding the expected profit. We now consider each such segment, where (X1, . . . , Xn)
is a segment from A, (Y1, . . . , Yn) is a segment from B, and (Z1, . . . , Zn) is the
corresponding sequence of intervals in OPT .

The total profit of OPT in this segment is
∑n

i=1 zi. As for the online algo-
rithm, A has an amortized profit of at least xn − x1/α for this segment: the last
interval has profit xn and subsequently transferred to other intervals in this seg-
ment, except x1 may transfer profit to a previously aborted interval, which has
weight at most x1/α. Similarly B receives an amortized profit of yn − y1/β for
this segment. The expected profit is thus at least p(xn−x1/α)+(1−p)(yn−y1/β).
Note that the terms x1/α and y1/β would not be there if they are the first interval
in a basic subschedule. But at least one of x1 and y1 must be such a first interval,
since otherwise the segment would be extended to the front. Therefore, we can
remove the smaller of these two terms from the expression. Thus the expected
profit of the online algorithm is at least pxn+(1−p)yn−max(px1/α, (1−p)y1/β).
We call the max(px1/α, (1 − p)y1/β) term the amortized term. The ratio R of
optimal profit to the expected online profit in this segment is at most

∑n
i=1 zi

pxn + (1 − p)yn − max(px1/α, (1 − p)y1/β)
(1)

We want to upper bound the above ratio, under the following constraints:
zi < min(αxi, βyi), xi ≤ xi+1/α, yi ≤ yi+1/β
Each interval served by OPT must belong to exactly one segment. Therefore,

if we can upper bound the ratio of the total OPT profit to the expected online

profit, for all such segments, this gives a bound on the competitive ratio of the
randomized algorithm.

For the rest of the paper, we fix α = φ ≈ 1.618, β = φ2 ≈ 2.618 and p = 1/2,
where φ = (1+

√
5)/2 is the golden ratio. We first state a technical lemma which

will be required later.

Lemma 1. Suppose xi = 1/αn−i and yi = y/βn−i for all i. Then the function

F (y) =
∑n

i=1 min(αxi, βyi)
1 + y − 1/αn

is increasing in y for 0 ≤ y < α/β, and decreasing in y for y > α/β.

Theorem 1. The competitive ratio of RGreedyα,β,p is φ + 2 ≈ 3.618 when α =
φ, β = φ2 and p = 1/2.

Proof. Consider a segment with (X1, . . . , Xn), (Y1, . . . , Yn), and (Z1, . . . , Zn).
Without loss of generality, assume xn = 1 and denote yn simply as y. To maxi-
mize (1), observe that (for a fixed y) we should make xi and yi as large as possible,
so that zi’s are large and also x1 and y1 are large. This means xi = 1/αn−i and
yi = y/βn−i. Together with p = 1/2, (1) becomes at most

2
∑n

i=1 min(αxi, βyi)
1 + y − max(1/αn, y/βn)

(2)

We consider these cases:
Case 1: y ≤ (β/α)n. In this case the amortized term is 1/αn. The ratio (2)

is equal to 2F (y) in Lemma 1, which we know is maximum when y = α/β. At
this value of y, all min terms in the numerator are βyi terms and the ratio has
maximum value

2βy(1 + 1/β + · · · + 1/βn−1)
1 + y − 1/αn

=
2βy(1 − 1/βn)/(1 − 1/β)

1 + y − 1/αn

=
2αβ
β−1 (1 − 1/βn)

1 − 1/αn + α/β
=

2φ2(1 − 1/φ2n)
1 + 1/φ − 1/φn

.

This is at most φ + 2 ≈ 3.618 for any value of n (maximum occurs when n = 2).
Case 2: y > (β/α)n. In this case all min terms are the αxi terms and the

amortizing term is y/βn. So the ratio is

2(α + 1 + · · · + 1/αn−2)
1 + y − y/βn

=
2α(1 − 1/αn)/(1 − 1/α)

1 + y(1 − 1/βn)

≤ 2α(1 − 1/αn)/(1 − 1/α)
1 + (β/α)n − 1/αn

=
2φ3(1 − 1/φn)
1 + φn − 1/φn

.

This is at most φ2 for any value of n.
Therefore in either case the ratio is at most φ + 2. ��
We can show that there is an instance which actually attains the competitive

ratio of 3.618 using our algorithm (with these chosen parameters), so that the
analysis is tight.

4 Lower Bounds

4.1 Randomized algorithms

Theorem 2. No randomized algorithm for interval scheduling has competitive
ratio better than 4/3.

Proof. We will use Yao’s principle which states that the randomized lower bound
can be obtained by bounding E[OPT]/E[A] for any deterministic algorithm A
over a probability distribution of input instances. (See for example, [12].) Thus
we define an input distribution as follows. Let (r, w) denote the release time
and weight respectively of an interval. Fix a large even integer n. Define n + 1
intervals, I0, I1, . . . , In, such that for 0 ≤ i ≤ n − 1, Ii = (i/2, vi) where vi = 2i,
and In = (n/2, vn) where vn = 2n−1. Define n sets of intervals, S1, S2, . . . , Sn,
such that Si = {I0, I1, . . . , Ii} for 1 ≤ i ≤ n. Finally, we define our distribution of
inputs to be one such that Si occurs with probability pi = 1/2i for 1 ≤ i ≤ n−1
and Sn occurs with probability pn = 1/2n−1.

Since any Ii does not overlap with Ii+2, we have OPT (Si) = 1 + 4 + · · ·+ 2i

= 4i/2+1−1
3 if i is even, and OPT (Si) = 2 + 8 + · · ·+ 2i = 2(4(i+1)/2−1)

3 if i is odd,
and OPT (Sn) = 1 + 4 + · · · + 2n−2 + 2n−1 = 4n/2−1

3 + 2n−1. Hence

E[OPT] =
n−2∑

i=2,i even

4i/2+1 − 1
3 · 2i

+
n−1∑

i=1,i odd

2(4(i+1)/2 − 1)
3 · 2i

+
4n/2 − 1
3 · 2n−1

+ 1

= 4n/3− o(n).

We now derive an upper bound on the expected profit of an arbitrary deter-
ministic algorithm A on our input distribution. More specifically, for i = 1, . . . , n,
we let Qi be the contribution to the expected profit of A on Ii−1, . . . , In when
the input is one of Si, . . . , Sn.

Consider the case when the input is Sn. This happens with probability pn.
When In arrives at time n/2, A may or may not be serving another interval. If
it does, it must be serving In−1. Since we choose vn−1 = vn, A will obtain at
most a profit of vn whether it aborts In−1 or not. Thus, Qn ≤ pnvn.

Now, suppose the input is either Sn−1 or Sn. When In−1 arrives at time
(n − 1)/2, A may or may not be serving In−2. There are two cases.

Case 1: A is serving In−2 and it continues until its completion. Then A gains
a profit of vn−2 on In−2 whether the input is Sn−1 or Sn. Further, it can gain
an expected profit of at most Qn on In−1 and In when the input is Sn. Hence,
Qn−1 ≤ (pn−1 + pn)vn−2 + Qn.

Case 2: A is not serving In−2 or if it aborts In−2. Then A may have an
expected profit of pn−1vn−1 on In−1 when the input is Sn−1 and an expected
profit of Qn on In−1 and In when the input is Sn. Note that the input being
Sn−1 and being Sn are two disjoint events. Thus, Qn−1 ≤ pn−1vn−1 + Qn.

Setting (pn−1+pn)vn−2+Qn = pn−1vn−1+Qn (which is satisfied by requiring
vn−2 = pn−1

pn−1+pn
vn−1), we have Qn−1 ≤ pn−1vn−1 + Qn no matter what A does.

In general, consider the case when the input is one of Si, . . . , Sn. When Ii

arrives at time i/2, A may or may not be serving Ii−1 and we consider the
following cases.

Case 1: A is serving Ii−1 and it continues with it until completion. Then
A gains an expected profit of (pi + · · · + pn)vi−1 on Ii−1 (no matter what the
true input is) and an expected profit of Qi+1 on Ii, . . . , In when the input is
Si+1, . . . , Sn. Thus, Qi ≤ (pi + · · · + pn)vi−1 + Qi+1.

Case 2: A is not serving Ii−1 or if it aborts Ii−1. Then A gains an expected
profit of pivi on Ii when the input is Si, and an expected profit of Qi+1 on
Ii, . . . , In when the input is one of Si+1, . . . , Sn. Hence Qi ≤ pivi + Qi+1.

Setting vi−1 = pi

pi+···+pn
vi, we have (pi + · · ·+ pn)vi−1 + Qi+1 = pivi + Qi+1.

So Qi ≤ pivi + Qi+1.
One can easily check that setting pi and vi as mentioned earlier, the condi-

tions vi−1 = pi

pi+···+pn
vi for 1 ≤ i ≤ n, are satisfied and the total expected profit

of A is Q1 ≤ p1v1 + · · · + pnvn = n.
Therefore, E[OPT]/E[A] → 4/3 for n → ∞. ��
Remarks on benevolent instances. The lower bound construction does

not rely on the exact lengths of the intervals. The only requirement on the
lengths is that Ii and Ii+1 intersect while Ii and Ii+2 do not. Therefore, the
lower bound also holds for benevolent instances; we just create the instances
with the specified weights and adjust the lengths accordingly.

4.2 Barely random algorithms

Our randomized algorithm in Section 3 chooses between two deterministic algo-
rithms with equal probabilities. We next show a lower bound on such algorithms.

Theorem 3. No barely random algorithms that choose between two determinis-
tic algorithms with equal probabilities can be better than 2-competitive.

Proof. Suppose on the contrary there exists such a randomized algorithm which
is (2 − ε)-competitive for some constant ε > 0. Let D1 and D2 be the two
deterministic algorithms. We construct an adversarial request sequence to show
that this results in a contradiction.

Consider a set of a large number of intervals where each interval differs from
the previous one by arriving slightly later and having a slightly larger weight
(difference in weight being δ). The minimum weight of intervals in this set is 1
and the maximum weight is α. Here δ is a sufficiently small and α a sufficiently
large constant to be chosen later. The last interval arrives before the deadline
of the first interval, and hence any algorithm can serve at most one interval in
this set. (This is the set of intervals used in [15].) Given this set of intervals, let
x and y be the weights of intervals chosen by D1 and D2, where without loss of
generality, assume x ≤ y. We emphasize that the adversary knows the values of
x and y. We consider the following cases.

Case 1: x = y = 1. Both D1 and D2 obtains a profit of 1 while OPT schedules
the heaviest interval giving a profit of α. So the competitive ratio is α.

Case 2: x = y
= 1. One more interval of weight y is released just before the
deadline of the y in the set. Both D1 and D2 either continue with the x or y,
or abort and switch to the new y. In either case their profit is at most y. The
adversary schedules the interval in the set just before y, together with the new
y, giving a profit of (y − δ) + y. Hence the competitive ratio is 2 − δ/y > 2 − δ.

Case 3: 1 = x < y. D1 and D2 gets a profit of 1 and y respectively while OPT
gets α. Thus the competitive ratio is α/((1+y)/2) ≥ 2α/(1+α) = 2−2/(1+α).

Case 4: 1 < x < y. The adversary releases another interval with weight y
just before the deadline of x in the set. We distinguish two subcases.

If D1 does not abort x in favour of the new y, no more intervals are released.
(We remark that the adversary knows the response of D1 and can make requests
accordingly.) In this case D1 and D2 get a profit of x and y respectively, while
OPT gets x − δ + y. Then the competitive ratio = (x + y − δ)/((x + y)/2) =
2 − 2δ/(x + y) > 2 − 2δ/(1 + 1) = 2 − δ.

If D1 aborts x and serves y, then one more interval of weight y arrives just
before the deadline of y in the original set. Then both D1 and D2 gets a profit of
y no matter what they do, and OPT gets a profit of y − δ + y. The competitive
ratio is (2y − δ)/y = 2 − δ/y > 2 − δ.

Considering all cases, the competitive ratio is at least min{α, 2−δ, 2−2/(1+
α)}. By choosing δ < ε and α > max(2 − ε, 2/ε − 1) = 2/ε − 1, we have the
competitive ratio being at least 2 − ε. ��

5 The Multiprocessor Case

In this section we consider the case of using more than one processor to schedule
the intervals. We will see that the cases of randomization and multiple processors
are closely related. We first show that the idea of the barely random algorithm in
Section 3 can be used to give a deterministic 2-processor algorithm with the same
competitive ratio. Then we show that the lower bounds in Section 4 can also be
carried to the multiprocessor case; namely, that no deterministic or randomized
algorithm can be better than 4/3-competitive for any number of processors m,
and no 2-processor deterministic algorithm can be better than 2-competitive.

5.1 A 2-processor Algorithm

We consider the following deterministic 2-processor algorithm. Call the two pro-
cessors P1 and P2. In simple terms, P1 runs Greedyα whereas P2 runs Greedyβ.
Specifically, suppose the two processors are running intervals I1 and I2 respec-
tively. When a new interval I arrives, if |I| < α|I1| and |I| < β|I2| then I is
rejected. If one of |I| ≥ α|I1| and |I| ≥ β|I2| is true, the corresponding I1 or I2 is
aborted and I is started on that processor. If I is at least as large as both α|I1|
and β|I2|, it aborts I2 and start I on P2. (This is the only difference from the
randomization case: since the two processors cannot be doing the same interval,
we need some way of tie-breaking.) A processor which has completed its interval
will become idle. Note that an idle processor is regarded as executing a weight-0

interval. Therefore if P1 is idle and |I| ≥ β|I2|, it will still abort I2 (and P1
remains idle). Again we set α = φ and β = φ2.

We will separately bound the value of the two optimal offline schedules pro-
duced by the two processors, OPT1 and OPT2. As before, we divide the sched-
ule into basic subschedules and segments. With the same notation as in Sec-
tion 3, consider a segment where OPT1 schedules (Z1, . . . , Zn), P1 schedules
(X1, . . . , Xn), and P2 schedules (Y1, . . . , Yn). We will show the same bound on
the competitive ratio, i.e. 2

∑
zi/(xn +yn−max(x1/α, y1/β)) ≤ φ+2. Therefore

over the whole OPT1, OPT 1/((P1+P2)/2) ≤ φ+2 where P1 and P2 are the two
schedules. Here OPT 1, P1 and P2 represent both the schedules and their profits.
Since OPT2 can be analyzed similarly, we have OPT 2/((P1 + P2)/2) ≤ φ + 2.
Adding these two together, OPT 1+OPT 2 ≤ (φ+2)(P1+P2) and therefore the
algorithm is (φ + 2)-competitive. In the analysis below we only consider OPT1.

We call (zk, xk, yk) in a segment a triplet. We first make an observation:

Lemma 2. For any triplet (zk, xk, yk), one of the following two cases holds: (i)
xi > zi/α and yi > zi/β, (ii) zi = yi and xi ≤ zi/α.

We call triplets of case (i) normal triplets and those of case (ii) violating
triplets. The main idea of the competitiveness proof is as follows: if there are
no violating triplets in a segment, then we are done by the same proof as in
the randomized algorithm. If there are violating triplets, we further divide the
segment into subsegments so that each subsegment has at most one violating
triplet at the beginning of the subsegment. We then perform a similar analysis
to the randomized algorithm on each subsegment. There is a small difference in
the amortized terms: both the x1/α and y1/β terms may be subtracted, since
the last pair of intervals in the previous subsegment may not be completed, and
hence do not have any real profit. So the amortized term may sometimes become
x1/α + y1/β instead of max(x1/α, y1/β). We omit the proof to this theorem:

Theorem 4. The algorithm is φ + 2 ≈ 3.618-competitive for 2 processors.

5.2 Lower Bounds

The proofs of the following theorems use almost identical constructions to that
in Theorems 2 and 3, so we omit the proofs.

Theorem 5. No deterministic or randomized algorithm for online interval schedul-
ing on m processors is better than 4/3-competitive, for any m.

Theorem 6. No deterministic algorithm for online interval scheduling on 2 pro-
cessors is better than 2-competitive.

6 Conclusion

In this paper we give the first randomized algorithm and improved lower bounds
for the online interval scheduling problem. The gap between the upper and lower

bounds remains wide, however. It may be possible to generalize the barely ran-
dom algorithm to use 3 or more deterministic algorithms but we encounter some
technical difficulties in extending the technique here. Algorithms for three or
more processors will also yield randomized algorithms for the single processor
case.

References

1. B. Awerbuch, Y. Bartal, A. Fiat, and A. Rosen. Competitive non-preemptive call
control. In Proc. 5th SODA, pages 312–320, 1994.

2. S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier, D. Shasha,
and F. Wang. On the competitiveness of on-line real-time task scheduling. Real-
Time Systems, 4:125–144, 1992.

3. K. P. Bogart and D. B. West. A short proof that proper = unit. Discrete Mathe-
matics, 201:21–23, 1999.

4. R. Canetti and S. Irani. Bounding the power of preemption in randomized schedul-
ing. SIAM Journal on Computing, 27(4):993–1015, 1998.

5. W.-T. Chan, T.-W. Lam, H.-F. Ting, and P. W. H. Wong. New results on on-
demand broadcasting with deadline via job scheduling with cancellation. In Proc.
10th COCOON, LNCS 3106, pages 210–218, 2004.

6. U. Faigle and W. M. Nawijn. Greedy k-coverings of interval orders. Technical
Report 979, University of Twente, 1991.

7. S. P. Y. Fung, F. Y. L. Chin, and C. K. Poon. Laxity helps in broadcast scheduling.
In Proc. 9th Italian Conference on Theoretical Computer Science, LNCS 3701,
pages 251–264, 2005.

8. J.-H. Kim and K.-Y. Chwa. Scheduling broadcasts with deadlines. Theoretical
Computer Science, 325(3):479–488, 2004.

9. G. Koren and D. Shasha. Dover: An optimal on-line scheduling algorithm for
overloaded uniprocessor real-time systems. SIAM Journal on Computing, 24:318–
339, 1995.

10. G. Koren and D. Shasha. MOCA: A multiprocessor on-line competitive algorithm
for real-time system scheduling. Theoretical Computer Science, 128(1-2):75–97,
1994.

11. R. J. Lipton and A. Tomkins. Online interval scheduling. In Proc. 5th SODA,
pages 302–311, 1994.

12. H. Miyazawa and T. Erlebach. An improved randomized on-line algorithm for a
weighted interval selection problem. Journal of Scheduling, 7(4):293–311, 2004.

13. S. S. Seiden. Randomized online interval scheduling. Operations Research Letters,
22(4–5):171–177, 1998.

14. H.-F. Ting. A near optimal scheduler for on-demand data broadcasts. In Proc.
6th Italian Conference on Algorithms and Complexity, LNCS 3998, pages 163–174,
2006.

15. G. J. Woeginger. On-line scheduling of jobs with fixed start and end times. Theo-
retical Computer Science, 130(1):5–16, 1994.

16. F. Zheng, S. P. Y. Fung, W.-T. Chan, F. Y. L. Chin, C. K. Poon, and P. W. H.
Wong. Improved on-line broadcast scheduling with deadlines. In Proc. 12th CO-
COON, LNCS 4112, pages 320–329, 2006.

