Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review

Jing Zhu^a, Min Li^{a*}, Mick Whelan^b

^a College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
 ^b School of Geography, Geology and the Environment, University of Leicester, Leicester, UK

*Min Li Ph.D., Professor College of Environmental Science and Engineering Beijing Forestry University, 60# 35# Qinghua East Rd., Haidian District, Beijing 100083, P.R.China Tel: 86 10 62336615 Email: minli@bjfu.edu.cn; liminbjfu@126.com

1 Abstract

2 Phosphorus (P) is one of the most limiting macronutrients for crop productivity and P deficiency is a 3 common phenomenon in agricultural soils worldwide. Despite long-term application of phosphate 4 fertilizers to increase crop yields, P availability is often low, due to the high affinity of phosphate for the 5 soil solid phase. It has been suggested that the accumulated (surplus) P in agricultural soils is sufficient to 6 sustain crop yields worldwide for about 100 years. In this paper, we try to clear up the potential for making 7 use of legacy P in soils for crop growth potentially alleviating the global P resource shortage. Specifically, 8 we try to clear up the potential of soil "P activators" for releasing fixed P. P activators accelerate and 9 strengthen process which transform P into bio-available forms via a range of chemical reactions and 10 biological interactions. They include phosphate solubilizing microorganisms, phosphatase enzymes and 11 enzyme activators, low molecular weight organic acids, humic acids, lignin, crop residues, biochar and 12 zeolites. Although reported performance is variable, there is growing evidence that P activators can 13 promote the release of phosphate from soil and, hence, have potential for mitigating the impending global P 14 crisis. Further basic and applied research is required to better understand the mechanisms of interaction of P 15 activators with natural soils and to maximize activator efficacy.

16

17 Key words: Agricultural soils; Potential phosphorus pool; Legacy Phosphorus; Phosphorus activation;
18 Phosphorus bioavailability; Activator

19

20 1. Introduction

21 Phosphorus (P) is a major limiting nutrient for crop growth in many agroecosystems and is 22 indispensable in several physiological and biochemical processes (Simpson et al., 2011). Consequently, the 23 availability of P controls the growth and development of all crops (Wyngaard et al., 2016). Plants assimilate 24 P (predominantly as negatively charged primary and secondary orthophosphate ions) from the soil solution. 25 Although most soils contain considerable total P stocks, only a small fraction (<1%) of the total inorganic P 26 (P_i) and organic P (P_o) is dissolved at any given time (Bünemann, 2015). The concentration of P in soil 27 solution remains really low, about 0.05-0.30 ug P mL⁻¹ (Bolan, 1991). It is estimated that crop productivity 28 is limited by P deficiency on more than 40% of the world's arable land (Balemi and Negisho, 2012). P 29 limitations are also a major productivity constraint in many natural (Augustine et al., 2003) and managed 30 (Bünemann et al., 2011) grassland systems. Although other constraints may also limit productivity, soil P often needs to be replenished repeatedly to satisfy plant demand, in part because it is quickly removed from 31 32 the dissolved (plant available) form by sorption, precipitation and microbial immobilization (Roberts and Johnston, 2015) or is lost through surface runoff (in particulate and dissolved forms), subsurface flow 33 34 (leaching and throughflow via the soil matrix and macropores), drain flow and even groundwater which 35 may accelerate the eutrophication of P sensitive waters (Heathwaite and Dils, 2000; Hively et al., 2006; Holman et al., 2008; Sims et al., 1998). 36

Historically, chemical fertilizers, such as manufactured water-soluble phosphate have played a
significant role in replenishing this P pool. However, these fertilizers are derived from mined
rock-phosphate which has a finite (and rapidly diminishing) supply (Gilbert, 2009). Some studies claim that,
at current rates of extraction, global commercial phosphate reserves will be depleted in 50-100 years

41 (Abelson, 1999; Sattari et al., 2012). Opinions vary about the reliability of these data because they are 42 principally based on second and third hand information and the figures change all the time (Gilbert, 2009). 43 However, it is likely that remaining reserves will have increasingly lower quality and will be increasingly 44 more costly to extract, which means that the supply of high quality phosphate fertilizer will also become 45 progressively more restricted (Cordell et al., 2009). The rising demand for agricultural commodities in 46 developing countries has put increasing pressure on land resources for higher yields, with associated 47 growth in the demand for phosphate fertilizers (Weber et al., 2014). This realization (sometimes described 48 as a "potential phosphate crisis") is pushing global fertilizer prices up (Chowdhury et al., 2017).

49 The high P fixing capacity of most soils and the low P use efficiency (around 10-15%) of most crops 50 means that surplus P input from fertilizers tends to accumulate in soils (Withers et al., 2001). This 51 accumulation is known as "legacy P" which can be calculated as the difference between inputs (mineral P 52 fertilizer, atmospheric deposition and weathering) and outputs (lost through surface runoff, subsurface flow, 53 leaching, plus P in crop uptake etc.) (Havens and James, 2005; Sattari et al., 2012). In Oceania and Western 54 Europe, for example, cumulative inputs of P fertilizer to arable land (560 and 1115 kg P ha⁻¹, respectively, 55 for the period 1965-2007) were much greater than the cumulative uptake (100 and 350 kg P ha⁻¹, 56 respectively) (Sattari et al., 2012). In turn, this results in changes to the concentration of P in the soil 57 solution and its association with soil minerals and organic matter which can lead to enhanced phosphate 58 loss (Guppy et al., 2005; Heckrath et al., 1995) and subsequent degradation of freshwater and marine 59 resources where eutrophication can be triggered by additional P inputs (Tilman et al., 2001).

It is clear that legacy P stocks in soils have the potential to play a vital role in maintaining agricultural productivity with lower P requirements for inputs and reduced P transfers from land to water, if crops can efficiently access this P (Condron et al., 2013). It has even been suggested that the accumulated P in agricultural soils would be sufficient to sustain maximum crop yields worldwide for about 100 years if it were available (Khan et al., 2007).

Unfortunately, most legacy P is not available for plants to absorb easily. However, it may be possible to manipulate soils to increase the availability of this P for crops. The aims of this review are to clarify our current understanding of the cycling and transformation of legacy P in agricultural soils and to present findings from the published literature about so-called "P activators". Furthermore, we evaluate the contribution of P activators to soil legacy P availability, assess the advantages and disadvantages of different P activator classes and summarize the key mechanisms involved.

71

72 2. The forms and mobility of soil P

More than 80% of P applied as fertilizer can become unavailable for plant uptake shortly after application via sorption, precipitation (typically by reaction with Al³⁺ and Fe³⁺ in acidic soils and Ca²⁺ in calcareous soils: Table 1) or microbial immobilization (Gustafsson et al., 2012; Roberts and Johnston, 2015; Yadav and Verma, 2012). To take full advantage of legacy P, it is necessary to understand the long-term dynamics of this P in soil (Liu et al., 2014a).

78 Soil P occurs in a number of different forms (organic and inorganic) which vary greatly in their 79 bioavailability (Fig. 1). Those include constituents of rock minerals from the parent material, which are 80 completely inaccessible, various forms of organic matter (including the constituents of humus and the cells 81 of living organisms: Khan et al., 2014) and bioavailable phosphate in solution (Dollard and Billard, 2003). 82 The environmental behavior of P is also a function of its speciation, which is directly linked to P solubility, 83 reactivity, and bioavailability (Liu et al., 2014b). For example, P associated with Fe (hydr) oxides (Fe-P) is 84 sensitive to reducing conditions (Beauchemin et al., 2003). P sorbed to Al (hydr)oxides (Al-P) or calcium 85 phosphate precipitates is likely to be more sensitive to pH changes (Yan et al., 2014), and some species of 86 organic P tends to be more bioavailable (Li and Brett, 2013).

87 The total P in top soils (0-15 cm) typically ranges from 50 to 3,000 mg P kg⁻¹, depending on parent 88 material, soil texture, vegetation cover and soil management history (Sanyal and De Datta, 1991). 89 According to Stutter et al. (2015), based on 32 soils from the United Kingdom, arable soils tend to be 90 dominated by ortho-P_i with orthophosphate monoester species associated with strongly sorbing Al and Fe 91 soil surfaces. Intensive grasslands tend to be dominated by orthophosphate monoesters and as grazing 92 becomes more extensive labile orthophosphate diesters, associated with labile soil organic matter and 93 microbial turnover, dominate. The diversity of P species in less intensively managed soils can be viewed as 94 a positive indicator of ecosystem function and diversity.

P_i generally accounts for 60-80% of total P in agricultural soils (predominantly in minerals). The total P content is usually at least one order of magnitude larger than the amount of P that rapidly cycles through the soil-plant system and two to three orders of magnitude larger than the amount of P present as plant-available P_i in the soil solution (HPO₄²⁻ or H₂PO₄⁻) (Frossard et al., 1995). The dominant form of orthophosphate ion present in the soil is pH dependent. At pH 4-5, orthophosphate usually exists as H₂PO₄⁻ ions but as pH increases, first HPO₄²⁻ ions and then PO₄³⁻ ions become more dominant (Yadav and Verma, 2012).

102 Many abiotic and biotic reactions occur in the soil P cycle (Fig. 1), some occurring within a few 103 seconds, while others occurring slowly over several years (Bünemann and Condron, 2007; Fardeau, 1995; 104 Frossard et al., 2011). The initial breakdown can often be the rate-limiting step for P_0 mineralization (Das et 105 al., 2014). P availability is also greatly affected by a series of pH-dependent abiotic reactions that influence 106 the ratio of soluble-to-insoluble P pools in the soil (DeLuca et al., 2009). These include desorption and 107 solubilization of rapidly exchangeable P_i; uptake of P by soil microorganisms and plants (either through 108 their roots or through mycorrhizal hyphae); the release of P_i from the soil solid phase or from fertilizers, 109 induced by the exudation of phosphatases and organic acids from roots or microorganisms; the release of Pi 110 from plant residues or organic fertilizers to the soil solution; and the release of P_i from organic matter 111 mineralization by microorganisms (Frossard et al., 2011).

112 The conce

The concentration of P in the soil solution is primarily controlled by adsorption/desorption equilibria

113 between labile P_i in the solid phase (associated with positively charged minerals such as Fe and Al oxides) 114 defined by equilibrium concentration ratios (Haynes and Mokolobate, 2001; Hinsinger, 2001). Specific 115 adsorption (ligand exchange) occurs when P ions replace the hydroxyl groups on the surface of Al and Fe 116 oxides and hydrous oxides (Haynes and Mokolobate, 2001). P ions can also interact chemically with 117 minerals in combination with metals such as calcium phosphate, aluminum phosphate, iron phosphate and 118 the reductant-soluble phosphate extractable after removal of the first three forms (Chang and Jackson, 119 1957). For example, oxygen (O₂) can immobilize iron through Fe(II) oxidation which precipitates as Fe(III) 120 (hydr) oxides, resulting in the generation of H⁺ and a decrease in pH (Eq. (1)) (Begg et al., 1994). This 121 process may have some effects on the trapping of phosphate as $FePO_4$ (Eq. (2)) (Silva and Sampaio, 1998).

122

$$4Fe^{2+}+O_2+10H_2O \rightarrow 4Fe(OH)_3+8H^+$$
(1)

 $Fe(OH)_3 + H_2PO_4 \rightarrow FePO_4 + OH^2 + 2H_2O$ ⁽²⁾

126 P_0 may constitute 30-50% in most soils, although it can range from as low as 5% to as high as 95% 127 (Sharpley, 1985). P_0 is typically present as orthophosphate monoesters, including inositol phosphates, and 128 as orthophosphate diesters, organic polyphosphates and phosphonates (Bünemann, 2015). P_0 can be 129 classified into four main fractions: labile, moderately labile, moderately resistant (fulvic-acid P), and highly 130 resistant (humic-acid P) (Bowman and Cole, 1978; Randriamanantsoa et al., 2015). All fractions can be 131 transformed into phosphate that is available to plants via microbially mediated mineralization - but at 132 different rates. Labile P_0 is relatively easily mineralized whereas inositol phosphate (up to 50% of P_0) is 133 considered to be stable (Dalai, 1977). The microbial biomass acts as both a source and a sink of soil P and 134 is critical for P cycling (i.e. mineralizing P_0 via enzyme-catalyzed transformations and converting P_1 into 135 their living cells during P immobilization).

Different soil P fractions can also be separated into fractions characterized operationally by the used
extractants (Hedley et al., 1982): e.g. resin-P, NaHCO₃-P, microbial-P, NaOH-P, Sonicated/NaOH-P, HCl-P
and residual-P. In this kind of P fractionation, only resin-P and NaHCO₃-P are relatively available for crops
but these account for a small proportion of total P.

Both P_i and P_o are strongly bound (or fixed) to the solid phase under most soil conditions via a series of different reactions. Together with P sorption and net immobilization by the microbial biomass, this can result in low equilibrium P concentrations in the soil solution which can be manifested as P deficiency (e.g. reduced crop growth), even in moderately fertilized soils (Gerke, 2015). This can be reversed via dissolution/precipitation (mineral equilibria), sorption/desorption (interactions between P and mineral surfaces) and mineralization/immobilization (biological transformations between P_o and P_i).

146

147 **3.** Soil P activators and the application effect

P activators refer to a range of different methods intended to accelerate and strengthen soil P

transformations to plant-available forms in the soil solution. They can be classified into three types: (1) bio-inoculants and bio-fertilizers, including phosphate solubilizing microorganisms (PSMs) and phosphatase enzymes; (2) organic matter, including low molecular weight organic acids, humic acids, lignin, crop residue, manure and biochar and (3) zeolites and other materials, which have been relatively less well studied and applied.

154 Although activation processes are complex, several key factors have consistently been demonstrated to 155 govern the availability of fixed P. These main factors can be broadly grouped as sorption reactions and 156 changing the chemical and physical properties of the soil (e.g. pH, extractable Al and the net negative 157 charge on surfaces in soil) with the net effect of increased solubility and reduced sorption of P_i in soil. It is 158 complex to elucidate the effect of P activators based on changing of these factors. For a review of this 159 nature, it would be useful to define a common and clearly explained set of responses to P activation. Here, 160 we employ the P activation response based on an increase in plant-available P or on saved phosphate 161 fertilizer inputs - focusing on experimental data (field and glasshouse) that excluded the impacts of 162 management practices (e.g. grazing, intercropping).

163

164 3.1. Bio-inoculant and bio-fertilizer

165 *3.1.1. Phosphate solubilizing microorganisms*

166 Various organisms are involved in P cycling but microorganisms probably play the most important 167 role. Much of the global cycling of insoluble organic and inorganic soil P can be attributed to bacteria and 168 fungi. Phosphate solubilizing microorganisms are those which are capable of transforming insoluble P into 169 soluble (plant accessible) forms. They are probably the most eco-friendly and inexpensive option for 170 enhancing P availability for plants (Owen et al., 2015). Phosphate solubilizing bacteria (PSB: 171 Achromobacter, Aereobacter, Agrobacterium, Alcaligenes, Arthrobacter, Aspergillus, Azotobacter, Bacillus, 172 Bradyrhizobium, Burkholderia, Chromobacterium, Enterbacter, Erwinia, Escherichia, Flavobacterium, 173 Klebsiella, Micrococcus, Pantoea agglomerans, Pseudomonas, Rhizobium, Salmonella, Serratia, 174 Thiobacillus) and phosphate solubilizing fungi (PSF: Alternaria, Arbuscular mycorrhiza, Aspergillus, 175 Fusarium, Helminthosparium, Penicillium, Rhizopus, Sclerotium) make up 1-50% and 0.1-0.5% 176 respectively of the total PSMs in soil with an additional minor role played by phosphate solubilizing 177 actinomycetes (PSA: Streptomyces, Nocardia) (Khan et al., 2007). It has long been known that there is 178 significant variation in the ability of bacteria to solubilize P in soil. Bacteria which are known to enhance P 179 availability include species of Pseudomonas, Azotobacter, Burkholderia, Bacillus and Rhizobium (Jones 180 and Oburger, 2011). Generally, PSF produce more acids than bacteria and consequently exhibit greater 181 P-solubilizing activity. Filamentous fungi known to be able to solubilize phosphate include the genera 182 Aspergillus and Penicillium (Sharma et al., 2013). In recent years, the P-solubilizing ability of 183 actinomycetes has attracted interest because this group of soil organisms are not only capable of surviving 184 in extreme environments (e.g. drought, fire etc.) but also possess other potential features (e.g. production of antibiotics and phytohormone-like compounds etc.) that could simultaneously benefit plant growth(Hamdali et al., 2008).

187 The P solubilizing ability of different PSMs varies with species, strain, soil properties (inherent and 188 seasonal) and the plant species (Table 2). A maximum increase in available P of 208% has been reported 189 (Abdul Wahid and Mehana, 2000). However, de Freitas (1997) found that application of PSB (Bacillus 190 sphaericus, B. polymyxa and B. thuringiensis) significantly increased plant growth, but not P-uptake. Other 191 studies suggest that mixtures of different PSMs may be more effective than using single organisms (Yu et 192 al., 2011). Kim et al. (1997) reported that when vesicular-arbuscular mycorrhizae (VAM; Enterobacter 193 agglomerans) and PSB (Glomus etunicatum) were applied together, the soil microbial colonization and 194 phosphatase activity response was much higher than when they were used separately, suggesting a 195 synergistic interaction, although the exact mechanisms were not fully understood. It is likely that the 196 additional increase in P resulting from dual inoculation was due to enhanced P solubilization by PSB 197 through the production of organic acids, ion chelation and increasing root cell permeability, as well as 198 supporting the establishment and function of VAM (mycorrhizal colonization alters roots physiologically as 199 well as altering microbial populations: Suri et al., 2011).

200 Various "bio-fertilizers" have been developed which include bacteria (e.g. Pseudomonas spp, 201 Bacillus spp, Rhizobirum spp and Klebsiell spp), fungi (e.g. Penicillium spp, Aspergillus spp and Rhizopus 202 spp) and actinomycetes (e.g. *Streptomyces* spp). These organisms are intended to solubilize solid phosphate 203 in soils (Mahajan and Gupta, 2009). They are cost effective, have no known environmental issues and can 204 be used to supplement chemical fertilizers (Chesti et al., 2013). It has been estimated that inoculation with 205 arbuscular mycorrhizal fungi (AMF) might result in a reduction of approximately 80% of the recommended 206 phosphate fertilizer rate under certain conditions, with similar crop yields (Liu et al., 2016). The 207 effectiveness of mycorrhizal associations on P uptake from slow-release P compounds has been elucidated 208 in the review of Bolan et al. (1991). They noted that for plants the increase in P uptake associated with 209 mycorrhizal infection was found to vary with source of P. Greatest benefit from mycorrhizal inoculation 210 was obtained with the least soluble source of iron phosphate. Compared to normal phosphate fertilizers, 211 dissolved P microbial mixed fertilizers appear to have a significant effect on the utilization of P – enabling 212 a reduction in phosphate fertilizers by 25-467% (Mukherjee and Sen, 2015; Sundara et al., 2002). The effect 213 of PSMs varies at different phases of plant growth. Sundara et al. (2002) shows that the effect of PSB 214 fertilizer treatment on available P status varied with sugarcane growth stage. PSB fertilizers were more 215 effective in the tilling and growth phases than during the ripening phase.

Although it is widely known that PSMs can make P available, the mechanisms underlying this phenomenon are not fully understood. The potential mechanisms are illustrated in Fig. 2 and include the microbial synthesis of a range of exudates (e.g. organic acids and H^+ , metabolites and enzymes including phosphatase) (Behera et al., 2014) The insoluble forms of P_i, such as tricalcium phosphate (Ca₃(PO₄)₂), aluminium phosphate (AlPO₄), iron phosphate (FePO₄), may be converted to soluble P by low molecular weight organic acids as well as facilitated by microbially released H⁺ (Khan et al., 2014). Li et al. (2015)
studied mechanisms for solubilizing different types of P by an efficient *Aspergillus niger* strain An2. They
found An2 mainly secreted oxalic acid to solubilize Ca-P, Mg-P, Al-P and Fe-P and secreted tartaric acid to
solubilize rock phosphate.

- 225 PSMs can secrete enzymes (phosphatase, phosphohydrolase, phytase, phosphonatase and C-P lyase) which 226 catalyze P_{0} mineralization. The most commonly secreted enzymes are phosphatase (an enzyme which 227 eliminates P from its substrate by hydrolyzing phosphoric acid monoesters into a P ion and a molecule with 228 a free hydroxyl group.) and phytase because of the predominant presence of their substrates in soil (Othman 229 and Panhwar, 2014). Phosphatases or phosphohydrolases describe a broad group of enzymes that catalyze 230 the hydrolysis of both esters and anhydrides of H₃PO₄ (Jones and Oburger, 2011). Phytase (myoinositol 231 hexaphosphate phosphohydrolase) can hydrolyze sodium phytate, resulting in the production of P_i (Sharma 232 et al., 2013). Phosphonatase and C-P lyase cleave the C-P of organophosphonate. Wanner (1996) found that 233 many enzymes can function as organic phosphoester scavengers, releasing inorganic phosphates from 234 nucleotides and sugar phosphates. PSMs can also solubilize phosphate via the production of NH_4^+ , CO_2 and 235 H_2S , as well as releasing P during substrate degradation (Khan et al., 2010). The production of H_2S can act 236 with ferric phosphate to yield ferrous sulphate with concomitant release of phosphate. The presence of 237 $NH_{4^{+}}$ can result in pH depression via the formation of H^{+} during nitrification which contributes to P 238 solubilizing (Khan et al., 2014). Proton release also occurs from the dissociation carbonic acid (H₂CO₃) 239 which is formed from the dissolution of CO_2 generated by biological respiration. These protons can readily 240 solubilize Ca-apatite (Kim et al., 1997):
- 241

$$Ca_{5}(PO_{4})_{3}OH + 7H^{+} \rightarrow 5Ca^{2+} + 3H_{2}PO_{4}^{-} + H_{2}O$$
(3)

243

244 3.1.2. Phosphatase enzyme and enzyme activators

Phosphatase enzymes are widely distributed in natural environments and play a major role in P_o
regulation (Fig. 3) by hydrolyzing ester-phosphate bonds in P_o, leading to the release of phosphate (Burns
and Dick, 2002).

Phosphodiesterase and phosphomonoesterase may act sequentially in the mineralization of Po: 248 249 phosphomonoesterase can dissociate the phosphate group from phosphate monoester compounds and 250 phosphodiesterase can hydrolyze the phosphate diester bond in nucleic acids. Lipids and nucleic acids 251 typically make up about 7% of soil P_0 (Kalsi et al., 2016). The influence of phytase on P_0 mineralization is 252 less well understood but is thought to be important in the mineralization of inositol P (which makes up 253 approximately 50% of soil P₀ in the form of phytin and its derivatives). Phytase can release lower forms of 254 myo-inositol phosphates and inorganic phosphate by catalyzing the hydrolysis of phosphomonoester bonds 255 in phytate. Xiang et al. (2005) observed that soil phosphatase activity and available P content increased 256 significantly after applying exogenous phytase in potted *Malus hupehensis* experiments.

257 D- α -glycerophosphatase is a rare phosphatase in soil which has been purified and characterized from 258 *Bacillus licheniformisc* (Skraly and Cameron, 1998). The products of the reaction catalyzed by 259 D- α -glycerophosphatase were identified as glycerol and inorganic phosphate. In addition, a kind of 260 inorganic phosphatase (pyrophosphate phosphohydrolase) has been identified which can hydrolyze 261 pyrophosphate (used as a fertilizer) to P_i (Dick and Tabatabai, 1978).

It has been shown that the activities of phosphatase (like those of many hydrolases) depend on several
factors including soil properties, soil organism interactions, plant cover, leachate inputs and the presence of
other inhibitors and activators (Bünemann et al., 2011).

265 Phosphatase activity varies with pH (different phosphatases are classified as either alkaline (pH>7) or 266 acid (pH<6) phosphatase). Generally, enzyme activities of soils increase with increasing soil pH with the 267 exception of acid phosphatase which is predominant in acid soils. It is worth underlining that when the 268 effects of soil pH on enzyme activities are studied, the concentration of organic matter should remain 269 constant (Gianfreda and Ruggiero, 2006). For example, the significantly greater activities of alkaline 270 phosphomonoesterase, inorganic pyrophosphatase and phosphodiesterase reported in manure-treated soils 271 by Acosta-Martínez and Tabatabai (2000) are believed to be due to a combination of greater soil pH values 272 and enhanced microbial activity and diversity resulting from manure input over the years. Martens et al. 273 (1992) studied the activities of ten soil enzymes after the application of different organic amendments 274 (poultry manure, sewage sludge, barley straw and green alfalfa) over a 31-month period. They found that 275 the addition of amendments increased enzyme activity by an average of 2- to 4-fold during the first year of 276 the experiment. Similarly, phosphatase activities (acid phosphate, alkaline phosphatase, phosphodiesterase 277 and inorganic pyrophosphatase) were significantly correlated with the organic carbon content of the 40 soil 278 samples tested by Deng and Tabatabai (1997), confirming that organic matter plays an important role in 279 protecting and maintaining soil enzymes in their active forms.

280 It is well established that phosphatase activities generally decrease with soil depth (Gianfreda and 281 Ruggiero, 2006). Ji et al. (2014) describe a two-year field experiment on the effects of deep tillage on soil 282 microorganisms and phosphatase activity in clay and loam soils. The data showed that tillage and soil 283 texture had a significant influence over soil phosphatase activities and that deep tillage increased soil 284 phosphatase activities, which was affected by soil depth. This may be because deep tillage loosens the soil 285 and mixes organic matter into lower horizons, thereby increasing the abundance of soil 286 microorganisms. Activities of phosphatase in clay soil were higher than those of loam by 10.9%. This may 287 have been due to the fact that the finer particles in clay soils offer more surface area and more small pores 288 which can trap organic matter and offer habitat for soil microorganisms (which are the source of 289 phosphatases). Das et al. (2014) also found that soil phosphatase activity decreases with increasing depth. 290 Soil temperature also has a significant impact on soil phosphatase activity. Higher temperatures can 291 encourage microbial metabolism, increasing phosphatase activity and nutrient availability (Dalai, 1977). 292 However, previous studies have also shown a significant correlation between phosphodiesterase activity

and organic carbon content which complicates the explanation for this effect (i.e. the degradation of organic
carbon is also correlated with temperature) (Koch et al., 2007; Štursová and Baldrian, 2011).

Some stressors such as salinity and high heavy metal concentrations may have adverse effects on the phosphatase activities. Alkaline phosphatase was observed to decline exponentially with increasing salinity and linearly with increasing sodicity by Rietz and Haynes (2003). This was ascribed to the denaturation of enzyme proteins at high salt concentrations and a decrease in microbial biomass and activity. Heavy metals affect enzyme activity by modifying protein conformation, due to interaction with the protein active groups and by inhibiting enzyme synthesis (Karaca et al., 2010). Kandeler et al. (2000) found that phosphatase activities decreased after 10 years of contamination with different levels of Zn, Cu, Ni, V and Cd.

302 Although, in principle, some P activators can strengthen (accelerate) the activity of phosphatase and, 303 hence, activate P_0 (Fig. 3b), relatively few studies have been published on this topic. An exception is the 304 work of Fang et al. (2008) which showed that the addition of glutathione enhanced the affinity between 305 enzymes and substrates. Ascorbic acid had a similar effect to glutathioneon enzyme activity. They take part 306 in redox reactions and can combine with peroxide and free radicals to protect sulfhydryl from oxidation. As 307 a result, proteins and enzymes containing sulfhydryl in membranes will not deactivate (Wisnewski et al., 308 2005). Li et al. (2014) found that soil available P content could be increased by 10-91% under the influence 309 of glutathione in paddy soils. They also demonstrated that ascorbic acid promoted the activity of 310 phosphomonoesterase and accelerated the mineralization of P_0 . The available P content consequently 311 increased by 2-203%.

312

313 *3.2. Organic matter*

Organic matter applied to soil as an amendment is also reported to increase the availability of existing soil P. A comprehensive review of the competitive sorption reactions between phosphorus and organic matter in soil is given by Guppy et al. (2005). Details of how organic matter contributes to available P in soil is reviewed further in this Section.

318

319 *3.2.1. Low molecular weight organic acids*

320 Low molecular weight organic acids are organic compounds that contain at least one carboxyl group 321 and a molar mass less than 10,000 g mol⁻¹. They are thought to activate P since plants secrete them under 322 conditions of P deficiency and they are also derived from the decomposition of plant and animal residues 323 (Yuan et al., 2016). The most common low molecular weight organic acids identified in soils are oxalic, 324 malic, citric, fumaric, tartaric and succinic acids (Table 3). The most frequent agents used for mineral 325 phosphate solubilization seem to be gluconic acid and 2-ketogluconic acid (Earl et al., 1979; Moradi et al., 326 2012). The concentrations of low molecular weight organic acids tend to be low in soils, ranging from 327 10⁻³-10⁻⁵ mol L⁻¹.

328 Different concentrations of low molecular weight organic acids have been added to soil in an attempt

to increase P availability. Good P activation responses have been obtained using citric and oxalic acids (Table 4). Low molecular weight organic acids have also been added to soils with phosphatase enzymes in an attempt to activate P. For example, Guan et al. (2013) showed that the application of oxalic acid and phytase together significantly increased available P compared to controls. Amounts of H₂O-P, NaHCO₃-P_i, NaOH-P_i and NaOH-P_o increased by 37.8%, 21.1%, 15.5% and 24.4%, respectively, possibly as a consequence of the transformation of stable P fractions to labile fractions by phytase under the influence of exogenous oxalic acid. However, the detailed mechanisms remain speculative.

336 Low molecular weight organic acids may activate P_i via: (1) changing soil pH which can promote the 337 dissolution of sparingly soluble minerals containing P_i (Fox et al., 1990), including calcium phosphate, e.g., 338 octacalcium phosphate or apatite (Andersson et al., 2015); (2) forming complexes with Fe, Al and Ca and 339 releasing P combined with these ions (Ström et al., 2005). The release of phosphate occurs via ligand 340 exchange between the carboxylate anion and HPO₄²⁻ or H₂PO₄⁻; (3) organic acid ions compete with P₁ for 341 the same sorption sites in soils (Lan et al., 1995). When P and organic acid anions are present in the soil 342 solution, competition is expressed either through direct physical competition for sorption sites or through 343 electrostatic competition.

344 Low molecular weight organic acids may also promote the release of P_0 . Giles et al. (2014) found that 345 the addition of organic anions from bacterial sources can improve Ca myo-inositol hexakisphosphate 346 solubilization and, thus, P availability. Organic anion-driven solubilization of Ca myo-inositol 347 hexakisphosphate appears complementary to hydrolysis by plant and bacterial phytases. In vitro 348 experiments suggest that Ca myo-inositol hexakisphosphate hydrolysis is improved in the presence of 349 organic anions (e.g., gluconate, citrate, oxalate and acetate), due either to Ca^{2+} -mediated phytase activation 350 or solubilization via divalent metal chelation (Patel et al., 2010). However, the exact mechanism about 351 possible dissolution of P_0 by organic acids remains unclear. It is possible that low molecular weight organic 352 acids could influence the activity of PSMs and, hence, affect the activity of phosphatases secreted by these 353 organisms (Turner, 2008).

354

355 *3.2.2. Humic acids and lignin*

Humic acids and lignin are natural high molecular weight organic compounds derived from the decomposition of plant litter. Humic acids are composed of a range of aliphatic and aromatic structures with a variety of different functional (mainly oxygen-containing) groups. They can improve soil fertility and increase the availability of nutrient elements including P (Çimrin et al., 2010).

Humic acids can activate P via the following mechanisms: (1) Shifting soil pH; H⁺ is produced during the decomposition of humic acids in soil (Hue, 1991) which can increase soluble P concentrations in calcareous soil by decreasing precipitation rates of Ca-P minerals. H⁺ from humic acids can also inhibit the precipitation of hydroxyapatite, and favor the formation of dicalcium phosphate dihydrate over other, more thermodynamically stable and less soluble phosphates. The effects appear to be more effective than low 365 molecular weight acids (Grossl and Inskeep, 1991); (2) Formation of simple organic ligands; Humic acids 366 contain some active functional groups such as carboxyl and phenolic hydroxyl groups that can complex 367 metal ions, especially Fe and Al (which are often associated with phosphate fixing). P availability increases 368 when these metals are removed (Antelo et al., 2007; Gerke and Hermann, 1992). (3) Colloid interactions; 369 Humic acids are colloidal substances and can adsorb metal and metal oxides in soil and strengthen the 370 competitive ability of phosphate (Regelink et al., 2015). Competition between humic acids and P for 371 sorption onto soil colloids may result in higher P dissolved concentrations.

It is worth noting that humic acids may also act as P-sorbing surfaces in some circumstances. Othieno (1973) added humic acids and P to highly weathered soils and repeatedly observed wheat yield decreases and lower tissue P concentrations, suggesting that humic acids can have a detrimental effect on P availability for plants. Further elucidation of the relationships between humic acids and P in competitive sorption processes is necessary, because both the increase and decrease of P bioavailability may occur in the presence of humic acids.

378 Furthermore, the addition of humic acids can also increase the distance of P movement and the 379 concentration of extractable P in soil surrounding phosphate fertilizer placements (Du et al., 2013). A 380 similar conclusion was reached by Jones et al. (2007). They found that soluble P concentrations were nearly 381 identical between soils prior to fertilization (ranging from 0.1 to 0.2 mg L⁻¹). Soluble P concentrations 3.8 382 cm below the mono-ammonium phosphate band in the calcareous soil were significantly higher when 383 humic acids were applied than in the control after 16 and 32 days, suggesting that humic acids may have 384 increased P solubility and mobility. Fig. 4 demonstrates that P can move relatively far from a phosphate 385 fertilizer band in a neutral pH, non-calcareous soil after humic acids addition (Jones et al., 2007). Soluble P 386 concentrations were higher 3.8 cm below the band (Fig. 4c) than 3.8 cm to the side of the band (Fig. 4b), 387 indicating that there was some downward advection of P.

388 Lignin is an important precursor in the formation of humic substances and can form humic acids as a 389 result of microbial activity in soil (Bååth et al., 1995). The major chemical functional groups in lignin 390 include hydroxyl, methoxyl, carbonyl and carboxyl groups in various amounts and proportions. Lignin can 391 facilitate the activation of P via similar mechanisms to those described above for humic acids (Sun et al., 392 2011), as they share similar functional and structural properties (Tahir et al., 2011). Lignin has been 393 reported to increase available P in calcareous, red ferrallitic (rich in iron-aluminum oxides), yellow 394 ferralitic (rich in ferric oxide hydrate), sandy and humid-thermo ferralitic soils. Increases in available P of 395 35% in calcareous soil and 33% in red clay loam have been reported - probably from Al-P complexes 396 (Chen et al., 2003).

Lignin can be extracted, recycled and modified from black liquor (a waste product from paper pulp manufacture), bagasse by-products (fibrous sugar cane or sorghum residues) and crop straw. The lignin content in black liquor solids (which are now regularly applied to agricultural soils) can be up to 35% (Tian et al., 2015). Dotaniya et al. (2014) reported that organic residues such as press mud and bagasse by-products could release organic acids and enhance P availability in soil. About 600 million tonnes of crop
straw are produced every year in China (Zeng et al., 2007) which is often re-incorporated into soil –
increasing both the lignin and organic matter contents. As a result, the content of available P, total P and the
activity of phosphatase have been observed to increase (Ding et al., 2012).

405

406 *3.2.3. Crop residues, manure and biochar*

Like chemical phosphate fertilizer, crop residues, manure and biochar (charcoal produced from crop residues) can also act as P sources. Land application is the predominant method for disposing of agricultural residues, thereby recycling their nutrients Fig. 5) (Dai et al., 2016). The magnitude and direction of available P change after the application of these materials to soil depends on the properties of the P source and the receiving soil environment.

412 All of these materials contain highly soluble P_i (e.g. orthophosphate) which can act as a primary 413 source of nutrients. They also contain labile P_o which can be mineralized to release soluble P in the 414 short-term. This soluble orthophosphate can also be assimilated by microorganisms and subsequently 415 released back into soil when these organisms die and are subject to decomposition. Results from a 416 dual-labelling experiment suggest that, on average, 16% of the P contained in surface-applied residues 417 could be classed as labile P (Noack et al., 2014).

418 A review by Damon et al. (2014) concluded that several key factors govern the mineralization and 419 availability of crop residue-derived P including the quality of the crop residues, the activity of the soil 420 microbial biomass, and the subsequent sorption reactions of mineralized P in soil. The addition of organic 421 residues can also alter the chemical and physical properties of the soil and, hence, affect P availability 422 indirectly. For example, increased organic matter usually provides microbes with a more favorable habitat, 423 enhancing P cycling via mineralization (Lone et al., 2015). However, a general finding is that the transfer of 424 P from break crop residues incorporated into the soil is relatively low (2-20%) and is quite variable 425 (Espinosa et al., 2017). This could be due to variable P concentrations in the crop residues, which depend 426 on the soil P status, the physiological maturity of the residues, and on the extent of the translocation of 427 shoot-P to the developing grain in the break crops under considerations (Thibaud et al., 1988).

428 Manure P is a valuable resource, comparable to inorganic fertilizer P for crop production. Compared to 429 crop residues, manure can contain even more labile P. A large fraction of the phosphorus in manure is 430 considered to be plant-available immediately after application. Estimated values of phosphorus availability 431 ranged between 12% and 100% (Bahl and Toor, 2002). The total P content in manure varies depending on 432 the animal species, age, diet and how the manure has been stored. Jia et al. (2015) predicted that if manure 433 P inputs from 2012 to 2030 were assumed to continue in soil, Olsen-P could increase to values close to or exceeding the environmentally critical value of 60 mg kg⁻¹, the tipping point above which P leaching has 434 435 been shown to be significant (Heckrath et al., 1995). In addition to supplying labile P, manure can also help 436 in mobilizing native P. This mobilization occurs by conversion of insoluble Ca, Al and Fe forms of P to

437 soluble forms through the action of organic acids and chelates that are produced during manure 438 decomposition of manures (El-Baruni and Olsen, 1979). Hountin et al. (2000) found that labile (resin-Pi + 439 NaHCO₃-P + NaOH-P) in animal manure-amended soil increased from 61% to 79% and the amounts of P 440 generally increased in the following order: moderately labile NaOH-P_i and NaOH-P_o > labile P extracted by 441 resin and NaHCO₃ > stable P. However, the potential environmental P hazard of swine manure should be 442 considered, especially in agricultural systems in which soils receive high rates of manure application. 443 Although P is considered immobile in agricultural soils, a decrease in the P adsorption capacity of soil 444 following manure addition at rates greater than the nutritional requirements of plants for P may increase the 445 potential for leaching of soluble P (Sutton et al., 1982).

446 The effects of biochar on P availability are variable: in some soils, biochar application has been 447 observed to increase P availability, while in others, P availability was not affected or was observed to 448 decrease, mainly due to increased P sorption (Chathurika et al., 2016). Biochar can induce changes in the 449 soil ion exchange capacity. Fresh biochar in the acid pH range has a high anion exchange capacity, which 450 can initially be in excess of the total cation exchange capacity of the biochar (DeLuca et al., 2009). It is 451 possible that these positively charged exchange sites compete with Al and Fe oxides (e.g., gibbsite and 452 goethite) for sorption of soluble P, similar to that observed for humic acids and fulvic acids (Hunt et al., 453 2007). P associated with biochar can be more labile than that associated with Al or Fe oxides. To data, 454 however, there is noted lack of studies evaluating the effect of short-term anion exchange capacity on P 455 cycling and availability. Biochar may also alter P availability through sorption of chelating organic 456 molecules like phenolic acids, amino acids and complex proteins or carbohydrates (Joseph et al., 2010). 457 Sorption of organic molecules on biochar surfaces can directly adsorb cations such as Al³⁺, Fe³⁺ and Ca²⁺, 458 resulting in delayed P adsorption or precipitation in soil (Xu et al., 2014). A microcosm incubation study by 459 Jin et al. (2016) suggested that soil P availability was enhanced after the addition of manure biochar 460 (biochar from manure wastes) due to the fact that orthophosphate and pyrophosphate are the major P 461 species in manure biochar and due to enhanced decomposition of some P_0 (e.g. monoesters) by enhanced 462 alkaline phosphomonoesterase activities. Xu et al. (2016) reported that biochar application can decrease P 463 availability in saline sodic soil due to enhanced P sorption and precipitation.

464

465 *3. 3. Zeolites and other materials*

Zeolites are minerals of hydrated sodium, potassium, calcium and barium aluminosilicates which are often used as cation exchangers (the net negative structural charge of zeolites results in the favorable ion-exchange selectivity for many cations) (Pabalan and Bertetti, 2001). They can increase soil available P concentrations and plant uptake of P. Wei at al. (2001) found that zeolite application could increase soil available P by up to 183%. Some modified zeolites can increase the available P even more (Yang et al., 2015). Fig. 6 gives a summary of several methods for the modification of natural zeolites (Dai et al., 2011) to enhance cation exchange capacity (due to the favorable ion-exchange selectivity of natural zeolites for 473 certain cations, such as Cs^+ , Sr^{2+} , and NH^{4+}) and to the pH change induced by zeolites. Acid modified 474 zeolites can decrease the pH of soil and alkali modified zeolites can enhance cation exchange through alkali 475 metal ions. As a result, the release of P can be enhanced (Fadaeerayeni et al., 2015). Modification at high 476 temperatures can remove organic matter in zeolite crevices and increase adsorptive capacity, thereby 477 enhancing the capacity of zeolite to activate P (Quin et al., 1998). The combination of zeolite and NH_4^+ can 478 also increase the cation exchange effects of zeolite. The exchange-induced dissolution of rock phosphate 479 proposed can be summarized for an ammonium saturated zeolite as Eq. (4):

481 RP+NH₄⁺-zeolite
$$\Rightarrow$$
 Ca²⁺-zeolite+NH₄⁺+PO₄³⁻ (4)

482

483 where RP is rock phosphate (Allen et al., 1993). The zeolite/RP combination was intended to act as an 484 exchange-fertilizer, with Ca^{2+} exchanging onto the zeolite. It is proposed that the plant uptake of $NH_{4^{+}}$ or 485 K⁺ frees exchange sites which can then be occupied by Ca^{2+} , lowering the soil solution Ca^{2+} concentration 486 and inducing further dissolution of rock phosphate (Pickering et al., 2002).

487 Fly ash, a coal combustion product (Parab et al., 2015) and wood ash can also be used to activate P in 488 soil (Demeyer et al., 2001). One possible reason for the significant improvement of P availability by fly ash 489 in acid soil was that ash addition had a liming effect which can enhance bioavailable P concentrations 490 (Parab et al., 2015). However, fly ash may also be associated with high heavy metal loads. Compared to 491 coal ash, reported concentrations of Mn, Zn and Cd in wood ash are higher while As, Se and Cr contents 492 are lower (Someshwar, 1996). In addition to P, wood ash is a direct source of other major elements, notably 493 Ca, Mg and especially K in soils. The dissolution of wood ash in soil, and the rate at which P becomes 494 plant-available is complicated. The change in soil nutrient availability is a combination of three factors: (1) 495 P addition from the ash; (2) shifts in pH-dependent soil chemical equilibria; (3) changes (mostly increases) 496 in microbial activity (Demeyer et al., 2001). Furfural is an important organic compound produced from agro-industrial wastes and residues. When applied to soil, it can decrease pH and release Ca^{2+} - bound 497 498 phosphate (García-Domínguez et al., 2015).

499 Other P activators include water-dissolved organic polymeric compounds, bentonite, mugineic acid 500 and ABT rooting powder (ABT has the ability to promote rooting and to increase the survival rate of plants 501 under abiotic stress). Polyvinyl alcohol, polyacrylamide and polyethylene glycol have been shown to 502 increase P sorption and pH in red ferralitic soils (rich in ferric oxide hydrate). Polyvinyl alcohol is a 503 polymer containing hydroxyl groups, which has low permeability and high water adsorption capability 504 (Chai et al., 2012). Polyacrylamide is a polymer of acrylamide which is soluble in polar solvents and 505 nontoxic in nature. Polyethylene glycol has special solubility and chain-folding properties. Phosphate is 506 released as a consequence of the protonation of hydroxyl and amide groups in these water-dissolved 507 organic polymers and their interaction with Al^{3+} and Fe^{3+} phosphate (Hua et al., 2005). Bentonite can also 508 increase P₁ in soil (principally Ca₂-P followed by Ca₈-P, Al-P and Fe-P) (Liu and Sun, 2004). Mugineic acid has a high affinity for Fe and can activate Fe-P (Zhang et al., 1989). ABT rooting powder is an efficient plant growth promoter developed by the Chinese Academy of Forestry, which can promote root P absorption and plant growth. The active components of ABT rooting powder include indole-3-butytric acid and indole-3-acetic acid, which are regulators of plant growth (Zhang et al., 2010). Liu et al. (2002) found that the phosphate fertilizer utilization ratio of wheat increased by 12% when ABT rooting powder was used.

515

516 4. Discussion

517 *4.1. Practical applications*

A variety of different soil P activators have been reported to activate legacy P over the last few decades. These include PSMs, phosphatase enzymes, enzyme activators, low molecular weight organic acids, humic acids, lignin, crop residues, manure, biochar, zeolites, fly and wood ash, water-dissolved organic polymers, bentonite, mugineic acid and ABT rooting powder.

522 Each P activator can act in one or more ways to promote the solubilization of insoluble P_i and or the 523 mineralization of P_o. The range of mechanisms is illustrated in Fig. 7. The most common activation 524 pathways are: (1) Dissolution. P activators change the chemical structure of the sorbing components – 525 principally via metal complexation and removal; (2) Competitive inhibition of P sorption. P activators 526 compete with phosphate for sorption sites or compete with metal oxides for exchange sites in soil; (3) 527 Organic ligands. Functional groups such as carboxyl and phenolic hydroxyl can complex metal ions and 528 release P bound to these cations; (4) Enzymolysis. P activators catalyze the hydrolysis of ester-phosphate 529 bonds, leading to the release of phosphate; (5) P release. Bio-resource P activators contain both P_i and P_o 530 which can be released into the soil.

Each type of P activator has its own specific advantages and disadvantages (Table 5), so activator selection should be tailored to the specific context in which the activator is to be used. Key factors to be considered include: (1) Specific optimum conditions, including soil physico-chemical properties. This is particularly the case for PSMs; (2) the nature of the legacy P pool targeted (P_i or P_o or both); (3) the cost and access to the P activators under consideration; (4) the influence of the P activator on crops, the prevailing microbial community and soil physical and chemical characteristics.

537 All types of bio-resource P activator, such as crop residues, manure and biochar, have both primary 538 and secondary P supply functions. They can be usefully separated according to their form and principal 539 mode of action: i.e. direct inorganic nutrient supply for direct uptake and the input of organic nutrients 540 which are subsequently mineralized. They may also contain microbial populations (e.g. rhizobacteria) 541 which can affect secondary nutrient (P) supply and other plant growth promotion functions. 542 P-solubilization in the field tends to be much more difficult to demonstrate than solubilization of P in the 543 laboratory. Crops respond differently to P activator amendments and are dependent on several factors such 544 as soil temperature, moisture content, pH, salinity, organic matter content, microorganisms, the rhizosphere effect and soil fauna. The effects of these factors on the role of P activators need to be studied moreextensively at the field scale before P activators can be used reliably.

547

548 *4.2. Environmental considerations*

549 Making full use of legacy P in soil is an environmentally desirable and economically feasible strategy 550 for improving crop production, particularly in P-deficient soils. Agricultural P loss is a global concern due 551 to the effects of P in receiving water bodies (eutrophication). By reducing the need for P fertilizer addition 552 and enabling crops to efficiently access legacy P, the transfer of P from land to water can be reduced. There 553 is now increasing evidence that P availability can be controlled by P activators. However, increasing P 554 availability using P activators in soil can also increase the risk of P losses to surface and ground waters via 555 dissolved and colloid-facilitated transport (Hens and Merckx, 2001).

Some P activators can contain potential toxicants, such as heavy metals (As, Cr, Zn, Cd). For example,
ashes originating from co-firing of bark or wood with tyres can contain high levels of Zn (1%) (Someshwar,
Such sources should be avoided (or at least rates should be controlled) in order to avoid
contamination of both soil and receiving water bodies after P activator addition.

Although generally regarded as environmentally-friendly, P activators such as PSMs may also have some negative impacts such as triggering plant diseases or problems for native organisms (i.e. they can potentially act as biological invasions in soil: Amsellem et al., 2017). That said, they may also act to curb invasions of other invasive species (i.e. they can act as a biological control) (Santini et al., 2013).

564

565 *4.3. Future research directions*

Despite the fact that P activators have been shown to increase available P, precise mechanisms remain uncertain in most cases and additional insight is required. For example, further elucidation of the relationships between organic P activators and P in competitive sorption processes is necessary. Similarly, the available literature regarding the effects of biochar on P availability is inconsistent and mechanistic understanding of biochar-P interactions remains poor. Moreover, the response of plants to soil P activators in the field is often difficult to predict. Future research is, therefore, required to identify underlying biochemical and physical processes, which alter the bioavailability of legacy soil P.

Application of single activators may be insufficient to activate the broad range of P forms typically present in soil and the use of several activators together may produce better results. For instance, some studies have reported that the addition of citric acid and phosphatase together can be beneficial, although the exact mechanism by which additional P is released in this case is uncertain. Further research is required to uncover the mechanisms underpinning the compound effects of different P activators used in concert. Specifically, long-term field experiments should be conducted to address the interactions of P activators with natural soil and their impacts on crop yield.

580

Even though, various amendments have been reported for managing legacy P in different soils, some

of these can be costly and or practically difficult to implement. Although P-solubilizing microorganisms have yet to fulfill their promise as commercial bio-inoculants, scientists need to address certain issues, like how to improve the efficacy of bio-fertilizers, what the optimal delivery system should be, how to stabilize these microbes in soil systems, and how nutritional and root exudation aspects can be controlled in order to get maximum benefits from PSM application. Finally, research is also required to discover and enable efficient, feasible, cheap and environmentally-friendly solutions for improving access to legacy P stocks in soil.

588

589 5. Conclusion

590 P is a major macronutrient needed for plant growth and development. It has been historically oversupplied as phosphate fertilizers in many agricultural systems to increase crop yields. However, there 591 592 are a number of adverse environmental impacts associated with the use of inorganic P fertilizers. These 593 include increasing risk of P loss from soils with elevated P concentrations (so-called legacy P), which may 594 lead to eutrophication in water bodies receiving phosphate in agricultural runoff (diffuse-source pollution), 595 and the depletion of finite resources of high grade phosphate rocks with associated price increases in the 596 context of ever-increasing global demands for food and bioenergy. A more sustainable approach to 597 managing P availability in agriculture is, therefore, required.

Legacy P that has accumulated in soils represents a significant potential secondary P source that could substitute (at least in part) manufactured fertilizers, if ways can be found for unlocking it (P activation). A number of P activators have been proposed which have been reviewed here. However, soil P cycling is extremely complex and varies with soil morphogenesis, mineralogy, organic matter content, pH, water relations, etc. Taking full advantage of legacy P, therefore, remains a significant challenge. Complicating influences include tillage, residue management and fertilization practices, as well as the effects of interactions between soil microbes, soil structure and organic matter on operational soil P fractions.

- 605
- 606
- 607

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51279004). We gratefully acknowledge the reviewers for their constructive comments. Finally, we would like to thank Dr. Eldon R. Rene from UNESCO-IHE Institute for Water Education for his great help.

No color is needed for any figures in print.

References

- Abdul Wahid, O.A., Mehana, T.A., 2000. Impact of phosphate-solubilizing fungi on the yield and phosphorus-uptake by wheat and faba bean plants. Microbiol. Res. 155, 221-227.
- Abelson, P.H., 1999. A potential phosphate crisis. Science 283, 2015.
- Acosta-Martínez, V., Tabatabai, M.A., 2000. Enzyme activities in a limed agricultural soil. Biol. Fert. Soils 31, 85-91.
- Allen, E.R., Hossner, L.R., Ming, D.W., Henninger, D.L., 1993. Solubility and cation exchange in phosphate rock and saturated clinoptilolite mixtures. Soil Sci. Soc. Am. J. 57, 1368-1374.
- Amsellem, L., Brouat, C., Duron, O., Porter, S.S., Vilcinskas A., Facon B., 2017. Importance of microorganisms to macroorganisms invasions. Adv. Ecol. Res. 57, 99-146.
- Andersson, K.O., Tighe, M.K., Guppy, C.N., Milham, P.J., McLaren, T.I., 2015. Incremental acidification reveals phosphorus release dynamics in alkaline vertic soils. Geoderma 259, 35-44.
- Antelo, J., Arce, F., Avena, M., Fiol, S., López, R., Macías, F., 2007. Adsorption of a soil humic acid at the surface of goethite and its competitive interaction with phosphate. Geoderma 138, 12-19.
- Augustine, D.J., McNaughton, S.J., Frank, D.A. 2003. Feedbacks between soil nutrients and large herbivores in a managed savanna ecosystem. Ecol. Appl. 13(5), 1325-1337.
- Bååth, E., Frostegård, Å., Pennanen, T., Fritze, H., 1995. Microbial community structure and pH response in relation to soil organic matter quality in wood-ash fertilized, clear-cut or burned coniferous forest soils. Soil Biol. Biochem. 27, 229-240.
- Bünemann, E.K., 2015. Assessment of gross and net mineralization rates of soil organic phosphorus A review. Soil Biol. Biochem. 89, 82-98.
- Bünemann, E.K., Condron, L.M., 2007. Phosphorus and sulphur cycling in terrestrial ecosystems, In: Marschner, P., Rengel,Z. (Eds.), Nutrient Cycling in Terrestrial Ecosystems. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 65-92.
- Bünemann, E.K., Oberson, A., Frossard, E., 2011. Phosphorus in action. Springer Berlin Heidelberg, London New York.
- Bahl, G.S., Toor, G.S., 2002. Influence of poultry manure on phosphorus availability and the standard phosphate requirement of crop estimated from quantity-intensity relationships in different soils. Bioresour. Technol. 85, 317-322.
- Balemi, T., Negisho, K., 2012. Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: a review. J. Soil Sci. Plant Nutr. 12, 574-562.
- Beauchemin, S., Hesterberg, D., Chou J., Beauchemin, M., Simard, R.R., Sayers, D.E., 2003. Speciation of phosphorus in phosphorus-enriched agricultural soils using X-Ray absorption near-edge structure spectroscopy and chemical fractionation contribution. J. Environ. Qual. 32, 1809-1819.
- Begg, C.B.M., Kirk, G.J.D., Mackenzie, A.F., Neue, H.U., 1994. Root-induced iron oxidation and pH changes in the lowland rice rhizosphere. New Phytol. 128, 469-477.
- Behera, B.C., Singdevsachan, S.K., Mishra, R.R., Dutta, S.K., Thatoi, H.N., 2014. Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove A review. Biocatal. Agric. Biotechnol. 3, 97-110.
- Bolan, N.S., 1991. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134, 189-207.
- Bolan, N.S., Naidu, R., Mahimairaja, S., Baskaran, S., 1994. Influence of low-molecular-weight organic acids on the solubilization of phosphates. Biol. Fert. Soils 18, 311-319.
- Bowman, R., Cole, C., 1978. An exploratory method for fractionation of organic phosphorus from grassland soils. Soil Sci. 125, 95-101.
- Burns, R.G., Dick, R.P., 2002. Enzymes in the Environment: Activity, Ecology, and Applications. Marcel Dekker, Inc, New York, United States.
- Chai, W.L., Chow, J.D., Chen, C.C., 2012. Effects of modified starch and different molecular weight polyvinyl alcohols on biodegradable characteristics of polyvinyl alcohol/starch blends. J. Polym. Environ. 20, 550-564.

Chang, S., Jackson, M.L., 1957. Fractionation of soil phosphorus. Soil Sci. 84, 133-144.

- Chathurika, J.A.S., Kumaragamage, D., Zvomuya, F., Akinremi, O.O., Flaten, D.N., Indraratne, S.P., Dandeniya, W.S., 2016. Woodchip biochar with or without synthetic fertilizers affects soil properties and available phosphorus in two alkaline, chernozemic soils. Can. J. Soil Sci. 96, 472-484.
- Chen, Q., Mu, H., Huang, Y., Yang, W., 2003. Influence of lignin on transformation of phosphorus fractions and its validity. J. Agro-Environ. Sci. 22, 745-748.
- Chesti, M.U.H., Qadri, T.N., Hamid, A., Qadri, J., Azooz, M.M., Ahmad, P., 2013. Role of bio-fertilizers in crop improvement, In: Hakeem, K.R., Ahmad, P., Ozturk, M. (Eds.), Crop Improvement: New Approaches and Modern Techniques. Springer US, Boston, MA, pp. 189-208.
- Chowdhury, R.B., Moore, G.A., Weatherley, A.J., Arora, M., 2015. Key sustainability challenges for the global phosphorus resource, their implications for global food security, and options for mitigation. J. Clean. Prod. 140, 945-963
- Çimrin, K.M., Türkmen, Ö., Turan, M., Tuncer, B., 2010. Phosphorus and humic acid application alleviate salinity stress of pepper seedling. Afr. J. Biotechnol. 9, 5845-5851.
- Condron, L.M., Spears, B.M., Haygarth, P.M., Turner, B.L., Richardson, A.E., 2013. Role of legacy phosphorus in improving global phosphorus-use efficiency. Environ. Dev. 8, 147-148.
- Cordell, D., Drangert, J.O., White, S., 2009. The story of phosphorus: Global food security and food for thought. Global Environ. Chang. 19, 292-305.
- Dai, L., Li, H., Tan, F., Zhu, N., He, M., Hu, G., 2016. Biochar: a potential route for recycling of phosphorus in agricultural residues. GCB Bioenergy 8, 852-858.
- Dai, S.L., Wang, R.C., Zhao, J.F., 2011. Mechanism and application of modified zeolite for nitrogen and phosphorus removal in wastewater treatment. Water Purifi. Technol. 30, 53-57.
- Dalai, R.C., 1977. Soil Organic Phosphorus, In: Brady, N.C. (Eds.), Advances in Agronomy. Academic Press, pp. 83-117.
- Damon, P.M., Bowden, B., Rose, T., Rengel, Z., 2014. Crop residue contributions to phosphorus pools in agricultural soils: A review. Soil Biol. Biochem. 74, 127-137.
- Das, S., Jana, T.K., De, T.K., 2014. Vertical profile of phosphatase activity in the Sundarban mangrove forest, north east coast of bay of Bengal, India. Geomicrobiol. J. 31, 716-725.
- DeLuca, T.H., Gundale, M.J., MacKenzie, M.D., 2009. Biochar effects on soil nutrient transformations, In: Lehmann, J., S., J. (Eds.), Biochar for Environmental Management: Science and Technology. Earthscan, London, UK, pp. 251-270.
- de Freitas, J.R., Banerjee, M.R., Germida, J.J., 1997. Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (*Brassica napus* L.). Biol. Fert. Soils 24, 358-364.
- Demeyer, A., Voundi Nkana, J.C., Verloo, M.G., 2001. Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresour. Technol. 77, 287-295.
- Deng, S.P., Tabatabai, M.A., 1997. Effect of tillage and residue management on enzyme activities in soils: III. Phosphatases and arylsulfatase. Biol. Fert. Soils 24, 141-146.
- Dick, W.A., Tabatabai, M.A., 1978. Inorganic pyrophosphatase activity of soils. Soil Biol. Biochem. 10, 58-65.
- Ding, L., Wu, J., Xiao, H., Zhou, P., Syers, J.K., 2012. Mobilisation of inorganic phosphorus induced by rice straw in aggregates of a highly weathered upland soil. J. Sci. Food Agric. 92, 1073-1079.
- Dollard, M.A., Billard, P., 2003. Whole-cell bacterial sensors for the monitoring of phosphate bioavailability. J. Microbiol. Methods 55, 221-229.
- Dotaniya, M.L., Datta, S.C., Biswas, D.R., Meena, H.M., Kumar, K., 2014. Production of oxalic acid as influenced by the application of organic residue and its effect on phosphorus uptake by wheat (*Triticum aestivum* L.) in an inceptisol of North India. Natl. Acad. Sci. Lett. 37, 401-405.
- Du, Z.Y., Wang, Q.H., Liu, F.C., Ma, H.L., Ma, B.Y., Malhi, S.S., 2013. Movement of phosphorus in a calcareous soil as affected by humic acid. Pedosphere 23, 229-235.
- Earl, K.D., Syers, J.K., McLaughlin, J.R., 1979. Origin of the effects of citrate, tartrate, and acetate on phosphate sorption by

soils and synthetic gels. Soil Sci. Soc. Am. J. 43, 674-678.

- El-Baruni, B., Olsen, S.R., 1979. Effect of manure on solubility of phosphorus in calcareous soils. Soil Sci. 128, 219-225.
- Espinosa, D., Sale, P., Tang, C., 2017. Effect of soil phosphorus availability and residue quality on phosphorus transfer from crop residues to the following wheat. Plant Soil.
- Fadaeerayeni, S., Sohrabi, M., Royaee, S.J., 2015. Kinetic modeling of MTO process applying ZSM-5 zeolite modified with phosphorus as the reaction catalyst. Pet. Sci. Technol. 33, 1093-1100.
- Fardeau, J.C., 1995. Dynamics of phosphate in soils. An isotopic outlook. Fert. Res. 45, 91-100.
- Fang, N.N., Wu, Z.J., Chen, L.J., 2008. The kinetic characteristics of soil phosphatase as influenced by glutathione reduced. Chin. J. Soil Sci. 39, 840-844.
- Fox, T.R., Comerford, N.B., McFee, W.W., 1990. Kinetics of phosphorus release from spodosols: Effects of oxalate and formate. Soil Sci. Soc. Am. J. 54, 1441-1447.
- Frossard, E., Achat, D.L., Bernasconi, S.M., Bünemann, E.K., Fardeau, J.C., Jansa, J., Morel, C., Rabeharisoa, L., Randriamanantsoa, L., Sinaj, S., Tamburini, F., Oberson, A., 2011. The use of tracers to investigate phosphate cycling in soil-plant systems, In: Bünemann, E., Oberson, A., Frossard, E. (Eds.), Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 59-91.
- Frossard, E., Brossard, M., Hedley, M.J., Metherell, A., 1995. Reactions controlling the cycling of P in soils. In : Tiessen, H., (Eds.), Phosporus in the Global Environment: Transfers, Cycles and Management. Jones Wiley & Sons, Chichester, pp. 107-137.
- García-Domínguez, M.T., García-Domínguez, J.C., López, F., de Diego, C.M., Díaz, M.J., 2015. Maximizing furfural concentration from wheat straw and *Eucalyptus globulus* by nonisothermal autohydrolysis. Environ. Prog. Sustain. Energy 34, 1236-1242.
- García-López, A.M., Avilés, M., Delgado, A., 2016. Effect of various microorganisms on phosphorus uptake from insoluble Ca-phosphates by cucumber plants. J. Plant Nutr. Soil Sci. 179, 454-465.
- Gerke, J., 2015. The acquisition of phosphate by higher plants: Effect of carboxylate release by the roots. A critical review. J. Plant Nutr. Soil Sci. 178, 351-364.
- Gerke, J., Hermann, R., 1992. Adsorption of orthophosphate to humic-Fe-complexes and to amorphous Fe-oxide. Z. Pflanzenernahr. Bodenk. 155, 233-236.
- Gianfreda, L., Ruggiero, P., 2006. Enzyme Activities in Soil, In: Nannipieri, P., Smalla, K. (Eds.), Nucleic Acids and Proteins in Soil. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 257-311.
- Gilbert, N., 2009. Environment: The disappearing nutrient. Nature 461, 716.
- Giles, C.D., Hsu, P.C., Richardson, A.E., Hurst, M.R.H., Hill, J.E., 2014. Plant assimilation of phosphorus from an insoluble organic form is improved by addition of an organic anion producing *Pseudomonas* sp. Soil Biol. Biochem. 68, 263-269.
- Gomez, D.A., Carpena, R.O., 2014. Effect of 1-naphthaleneacetic acid on organic acid exudation by the roots of white lupin plants grown under phosphorus-deficient conditions. J. Plant Physiol. 171, 1354-1361.
- Grossl, P.R., Inskeep, W.P., 1991. Precipitation of dicalcium phosphate dihydrate in the presence of organic acids. Soil Sci. Soc. Am. J. 55, 670-675.
- Guan, L.Z., Yang, Z.H., Cao, H.L., Zhang, G.C., Zhang, Y., 2013. Effects of phytase on phosphorus release under the influence of exogenous oxalic acid. Soil Fert. Sci. in China 5, 19-23.
- Guppy, C.N., Menzies, N.W., Moody, P.W., Blamey, F.P.C., 2005. Competitive sorption reactions between phosphorus and organic matter in soil: a review. Soil Res. 43, 189-202.
- Gupta, M., Kiran, S., Gulati, A., Singh, B., Tewari, R., 2012. Isolation and identification of phosphate solubilizing bacteria able to enhance the growth and aloin – A biosynthesis of *Aloe barbadensis* Miller. Microbiol. Res. 167, 358-363.
- Gustafsson, J.P., Mwamila, L.B., Kergoat, K., 2012. The pH dependence of phosphate sorption and desorption in Swedish agricultural soils. Geoderma 189, 304-311.

- Hamdali, H., Hafidi, M., Virolle, M.J., Ouhdouch, Y., 2008. Rock phosphate-solubilizing Actinomycetes: screening for plant growth-promoting activities. World J. Microbiol. Biotechnol. 24, 2565-2575.
- Hariprasad, P., Niranjana, S.R., 2009. Isolation and characterization of phosphate solubilizing rhizobacteria to improve plant health of tomato. Plant Soil 316, 13-24.
- Havens, K.E., James, R.T., 2005. The phosphorus mass balance of Lake Okeechobee, Florida: Implications for eutrophication management. Lake Reserv. Manage. 21, 139-148.
- Haynes, R.J., Mokolobate, M.S., 2001. Amelioration of Al toxicity and P deficiency in acid soils by additions of organic residues: a critical review of the phenomenon and the mechanisms involved. Nutr. Cycl. Agroecosyst. 59, 47-63.
- Heathwaite, A.L., Dils, R.M., 2000. Characterising phosphorus loss in surface and subsurface hydrological pathways. Sci. Total Environ. 251, 523-538.
- Heckrath, G., Brookes, P.C., Poulton, P.R., Goulding, K.W.T., 1995. Phosphorus leaching from soils containing different phosphorus concentrations in the broadbalk experiment. J. Environ. Qual. 24, 904-910.
- Hedley, M.J., Stewart, J.W.B., Chauhan, B.S., 1982. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci. Soc. Am. J. 46, 970-976.
- Hens, M., Merckx, R., 2001. Functional characterization of colloidal phosphorus species in the soil solution of sandy soils. Environ. Sci. Technol. 35, 493-500.
- Hinsinger, P., 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237, 173-195.
- Hively, W.D., Gerard-Marchant, P., Steenhuis, T.S., 2006. Distributed hydrological modeling of total dissolved phosphorus transport in an agricultural landscape. II. Dissolved phosphorus transport. Hydrol. Earth Syst. Sci. 10, 263-276.
- Ho, B., Huang, E.h., Ho, T.K., Ho, T.W., 2013. Microorganisms, microbial phosphate fertilizers and methods for preparing such microbial phosphate fertilizers. Foshan Jinkuizi Plant Nutriment Co., Ltd., United States.
- Holman, I.P., Whelan, M.J., Howden, N.J.K., Bellamy, P.H., Willby, N.J., Rivas-Casado, M., McConvey, P., 2008. Phosphorus in groundwater – an overlooked contributor to eutrophication? Hydrol. Processes 22, 5121-5127.
- Hountin, J.A., Karam, A., Couillard, D., Cescas, M.P., 2000. Use of a fractionation procedure to assess the potential for P movement in a soil profile after 14 years of liquid pig manure fertilization. Agric. Ecosyst. Environ. 78, 77-84.
- Hua, Q.X., Zhou, J.M., Wang, H.Y., Chang wen, D.U., 2005. Effects of water-dissolved organic polymeric compounds application on P adsorption in red soils. J. Soil Water Conserv. 19, 5-8.
- Hue, N.V., 1991. Effects of organic acids/anions on P sorption and phytoavailability in soils with different mineralogies. Soil Sci. 152, 463-471.
- Hunt, J.F., Ohno, T., He, Z., Honeycutt, C.W., Dail, D.B., 2007. Inhibition of phosphorus sorption to goethite, gibbsite, and kaolin by fresh and decomposed organic matter. Biol. Fert. Soils 44, 277-288.
- Ji, B., Hu, H., Zhao, Y., Mu, X., Liu, K., Li, C., 2014. Effects of deep tillage and straw returning on soil microorganism and enzyme activities. The Scientific World J. 2014, 451-493.
- Jia, W., Yan, Z., Chadwick, D.R., Kang, L., Duan, Z., Bai, Z., Chen, Q., 2015. Integrating soil testing phosphorus into environmentally based manure management in peri-urban regions: A case study in the Beijing area. Agr. Ecosyst. Environ. 209, 47-59.
- Jin, Y., Liang, X., He, M., Liu, Y., Tian, G., Shi, J., 2016. Manure biochar influence upon soil properties, phosphorus distribution and phosphatase activities: A microcosm incubation study. Chemosphere 142, 128-135.
- Jones, C.A., Jacobsen, J.S., Mugaas, A., 2007. Effect of low-rate commercial humic acid on phosphorus availability, micronutrient uptake, and spring wheat yield. Commun. Soil Sci. Plant Anal. 38, 921-933.
- Jones, D.L., 1998. Organic acids in the rhizosphere a critical review. Plant Soil 205, 25-44.
- Jones, D.L., Oburger, E., 2011. Solubilization of Phosphorus by Soil Microorganisms, In: Bünemann, E., Oberson, A., Frossard, E. (Eds.), Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 169-198.

- Joseph, S.D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C.H., Hook, J., van Zwieten, L., Kimber, S., Cowie, A., Singh, B.P., Lehmann, J., Foidl, N., Smernik, R.J., Amonette, J.E., 2010. An investigation into the reactions of biochar in soil. Soil Res. 48, 501-515.
- Kalsi, H.K., Singh, R., Dhaliwal, H.S., Kumar, V., 2016. Phytases from *Enterobacter* and *Serratia* species with desirable characteristics for food and feed applications. 3 Biotech 6, 64.
- Kandeler, E., Tscherko, D., Bruce, K.D., Stemmer, M., Hobbs, P.J., Bardgett, R.D., Amelung, W., 2000. Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Biol. Fert. Soils 32, 390-400.
- Karaca, A., Cetin, S.C., Turgay, O.C., Kizilkaya, R., 2010. Effects of Heavy Metals on Soil Enzyme Activities, Soil Heavy Metals. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 237-262.
- Kaur, G., Reddy, M.S., 2015. Effects of phosphate-solubilizing bacteria, rock phosphate and chemical fertilizers on maize-wheat cropping cycle and economics. Pedosphere 25, 428-437.
- Khan, M.S., Zaidi, A., Ahemad, M., Oves, M., Wani, P.A., 2010. Plant growth promotion by phosphate solubilizing fungi current perspective. Arch. Agron. Soil Sci. 56, 73-98.
- Khan, M.S., Zaidi, A., Ahmad, E., 2014. Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms, In: Khan, M.S., Zaidi, A., Musarrat, J. (Eds.), Phosphate Solubilizing Microorganisms: Principles and Application of Microphos Technology. Springer International Publishing, Cham, pp. 31-62.
- Khan, M.S., Zaidi, A., Wani, P.A., 2007. Role of phosphate-solubilizing microorganisms in sustainable agriculture A review. Agron. Sustain. Dev. 27, 29-43.
- Kim, Y.K., Jordan, D., McDonald, A.G., 1997. Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol. Fert. Soils 26, 79-87.
- Koch, O., Tscherko, D., Kandeler, E., 2007. Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils. Global Biogeochem. Cy. 21, 497-507.
- Lan, M., Comerford, N.B., Fox, T.R., 1995. Organic anions' effect on phosphorus release from spodic horizons. Soil Sci. Soc. Am. J. 59, 1745-1749.
- Li, B., Brett, M.T., 2013. The influence of dissolved phosphorus molecular form on recalcitrance and bioavailability. Environ. Pollut. 182, 37-44.
- Li, N., Qiao, Z.W., Hong, J.P., Xie, Y.H., Zhang, P., 2014. Effect of soluble phosphorus microbial mixed fertilizers on phosphorus nutrient and phosphorus adsorption-desorption characteristics in calcareous cinnamon soil. Chin. J. Appl. Environ. Biol. 20, 662-668.
- Li X, Luo L, Yang J, Li B, Yuan H., 2015. Mechanisms for solubilization of various insoluble phosphates and activation of immobilized phosphates in different soils by an efficient and salinity-tolerant *Aspergillus niger* strain An2. Appl. Biochem. Biotech. 175, 2755-2768.
- Liu, J., Hu, Y., Yang, J., Abdi, D., Cade-Menun, B.J., 2014a. Investigation of soil legacy phosphorus transformation in long-term agricultural fields using sequential fractionation, P K-edge XANES and solution P NMR spectroscopy. Environ. Sci. Technol. 49, 168-176.
- Liu, J., Yang, J., Liang, X., Zhao, Y., Cade-Menun, B.J., Hu, Y., 2014b. Molecular speciation of phosphorus present in readily dispersible colloids from agricultural soils. Soil Sci. Soc. Am. J. 78, 47-53.
- Liu, W., Zhang, Y., Jiang, S., Deng, Y., Christie, P., Murray, P.J., Li, X., Zhang, J., 2016. Arbuscular mycorrhizal fungi in soil and roots respond differently to phosphorus inputs in an intensively managed calcareous agricultural soil. Sci. Rep. 6, 24902.
- Liu, X.Z., Sun, L.Y., 2004. Effect of bentonite and phosphorus fertilizer on inorganic phosphorus transformation and their availabilities in calcareous soil. Acta Agriculturae Nucleatae Sinica 18, 59-62.
- Lone, A.H., Najar, G.R., Ganie, M.A., Sofi, J.A., Ali, T., 2015. Biochar for Sustainable Soil Health: A Review of Prospects

and Concerns. Pedosphere 25, 639-653.

- Mahajan, A., Gupta, R.D., 2009. Bio-fertilizers: Their kinds and requirement in India, Integrated Nutrient Management (INM) in a Sustainable Rice Wheat Cropping System. Springer Netherlands, Dordrecht, pp. 75-100.
- Martens, D.A., Johanson, J.B., Frankenberger, W.T.J., 1992. Production and persistence of soil enzymes with repeated addition of organic residues. Soil Sci. 153, 53-61.
- Moradi, N., Sadaghiani, M.H.R., Sepehr, E., Mandoulakani, B.A., 2012. Effects of low-molecular-weight organic acids on phosphorus sorption characteristics in some calcareous soils. Turk. J. Agric. For. 36, 459-468.
- Mukherjee, S., Sen, S.K., 2015. Exploration of novel rhizospheric yeast isolate as fertilizing soil inoculant for improvement of maize cultivation. J. Sci. Food Agric. 95, 1491-1499.
- Noack, S.R., McBeath, T.M., McLaughlin, M.J., Smernik, R.J., Armstrong, R.D., 2014. Management of crop residues affects the transfer of phosphorus to plant and soil pools: Results from a dual-labelling experiment. Soil Biol. Biochem. 71, 31-39.
- Osorio, N.W., Habte, M., 2015. Effect of a phosphate-solubilizing fungus and an arbuscular mycorrhizal fungus on leucaena seedlings in tropical soils with contrasting phosphate sorption capacity. Plant Soil 389, 375-385.
- Othieno, C.O., 1973. The effect of organic mulches on yields and phosphorus utilization by plants in acid soils. Plant Soil 38, 17-32.
- Othman, R., Panhwar, Q.A., 2014. Phosphate-Solubilizing Bacteria Improves Nutrient Uptake in Aerobic Rice, In: Khan, M.S., Zaidi, A., Musarrat, J. (Eds.), Phosphate Solubilizing Microorganisms: Principles and Application of Microphos Technology. Springer International Publishing, Cham, pp. 207-224.
- Owen, D., Williams, A.P., Griffith, G.W., Withers, P.J.A., 2015. Use of commercial bio-inoculants to increase agricultural production through improved phosphrous acquisition. Appl. Soil Ecol. 86, 41-54.
- Pabalan, R.T., Bertetti, F.P., 2001. Cation-exchange properties of natural zeolites. Rev. Mineral. Geochem. 45, 453-518.
- Parab, N., Sinha, S., Mishra, S., 2015. Coal fly ash amendment in acidic field: Effect on soil microbial activity and onion yield. Appl. Soil Ecol. 96, 211-216.
- Patel, K.J., Singh, A.K., Nareshkumar, G., Archana, G., 2010. Organic-acid-producing, phytate-mineralizing rhizobacteria and their effect on growth of pigeon pea (*Cajanus cajan*). Appl. Soil Ecol. 44, 252-261.
- Pickering, H.W., Menzies, N.W., Hunter, M.N., 2002. Zeolite/rock phosphate a novel slow release phosphorus fertilizer for potted plant production. Sci. Hortic. 94, 333-343.
- Quin, L.D., Borbaruah, M., Quin, G.S., Dickinson, L.C., Jankowski, S., 1998. Reaction of the hydroxy groups of zeolites with phosphorylating agents. Heteroat. Chem 9, 691-698.
- Randriamanantsoa, L., Frossard, E., Oberson, A., Bünemann, E.K., 2015. Gross organic phosphorus mineralization rates can be assessed in a Ferralsol using an isotopic dilution method. Geoderma 257-258, 86-93.
- Regelink, I.C., Weng, L., Lair, G.J., Comans, R.N.J., 2015. Adsorption of phosphate and organic matter on metal (hydr)oxides in arable and forest soil: a mechanistic modelling study. Eur. J. Soil Sci. 66, 867-875.
- Rietz, D.N., Haynes, R.J., 2003. Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol. Biochem. 35, 845-854.
- Roberts, T.L., Johnston, A.E., 2015. Phosphorus use efficiency and management in agriculture. Resour. Conserv. Recycl. 105, Part B, 275-281.
- Sahay, R., Patra, D.D., 2014. Identification and performance of sodicity tolerant phosphate solubilizing bacterial isolates on *Ocimum basilicum* in sodic soil. Ecol. Eng. 71, 639-643.
- Salih, H.M., Yahya, A.I., Abdul-Rahem, A.M., Munam, B.H., 1989. Availability of phosphorus in a calcareous soil treated with rock phosphate or superphosphate as affected by phosphate-dissolving fungi. Plant Soil 120, 181-185.
- Santini, A., Ghelardini, L., De Pace, C., Desprez-Loustau, M.L., Capretti, P., Chandelier, A., Cech, T., Chira, D., Diamandis,
 S., Gaitniekis, T., Hantula, J., Holdenrieder, O., Jankovsky, L., Jung, T., Jurc, D., Kirisits, T., Kunca, A., Lygis, V.,
 Malecka, M., Marcais, B., Schmitz, S., Schumacher, J., Solheim, H., Solla, A., Szabò, I., Tsopelas, P., Vannini, A.,

Vettraino, A.M., Webber, J., Woodward, S., Stenlid, J., 2013. Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol. 197, 238-250.

- Sanyal, S.K., De Datta, S.K., 1991. Chemistry of Phosphorus Transformations in Soil, In: Stewart, B.A. (Eds.), Advances in Soil Science. Springer New York, New York, NY, pp. 1-120.
- Sattari, S.Z., Bouwman, A.F., Giller, K.E., van Ittersum, M.K., 2012. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. P. Natl. Acad. of Sci. 109, 6348-6353.
- Sharma, S.B., Sayyed, R.Z., Trivedi, M.H., Gobi, T.A., 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2, 587.
- Sharpley, A.N., 1985. Phosphorus cycling in unfertilized and fertilized agricultural soils. Soil Sci. Soc. Am. J. 49, 905-911.
- Silva, C.A.R., Sampaio, L.S., 1998. Speciation of phosphorus in a tidal floodplain forest in the Amazon estuary. Mangroves Salt Marshes 2, 51-57.
- Simpson, R.J., Oberson, A., Culvenor, R.A., Ryan, M.H., Veneklaas, E.J., Lambers, H., Lynch, J.P., Ryan, P.R., Delhaize, E., Smith, F.A., Smith, S.E., Harvey, P.R., Richardson, A.E., 2011. Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant Soil 349, 89-120.
- Sims, J.T., Simard, R.R., Joern, B.C., 1998. Phosphorus loss in agricultural drainage: Historical perspective and current research. J. Environ. Qual. 27, 277-293.
- Singh, H., Reddy, M.S., 2011. Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils. Eur. J. Soil Biol. 47, 30-34.
- Skraly, F.A., Cameron, D.C., 1998. Purification and characterization of a *Bacillus licheniformis* phosphatase specific for D-α-Glycerophosphate. Arch. Biochem. Biophys. 349, 27-35.
- Someshwar, A.V., 1996. Wood and combination wood-fired boiler ash characterization. J. Environ. Qual. 25, 962-972.
- Song, J.F., Cui, X.Y., 2003. Analysis of organic acids in seleted forest litters of Northeast China. Int. Rev. Cytol. 14, 285-289.
- Ström, L., Owen, A.G., Godbold, D.L., Jones, D.L., 2005. Organic acid behaviour in a calcareous soil implications for rhizosphere nutrient cycling. Soil Biol. Biochem. 37, 2046-2054.
- Strobel, B.W., 2001. Influence of vegetation on low-molecular-weight carboxylic acids in soil solution a review. Geoderma 99, 169-198.
- Štursová, M., Baldrian, P., 2011. Effects of soil properties and management on the activity of soil organic matter transforming enzymes and the quantification of soil-bound and free activity. Plant Soil 338, 99-110.
- Stutter, M.I., Shand, C.A., George, T.S., Blackwell, M.S.A., Dixon, L., Bol, R., MacKay, R.L., Richardson, A.E., Condron, L.M., Haygarth, P.M., 2015. Land use and soil factors affecting accumulation of phosphorus species in temperate soils. Geoderma 257, 29-39.
- Sun, G.F., Jin, J.Y., Shi, Y.L., 2011. Advances in the effect of humic acid and modified lignin on availability to crops. Chin. J. Soil Sci. 42, 1003-1009.
- Sundara, B., Natarajan, V., Hari, K., 2002. Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Res. 77, 43-49.
- Suri, V.K., Choudhary, A.K., Chander, G., Verma, T.S., Gupta, M.K., Dutt, N., 2011. Improving phosphorus use through co-inoculation of vesicular arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria in maize in an acidic alfisol. Commun. Soil Sci. Plant Anal. 42, 2265-2273.
- Sutton, A.L., Nelson, D.W., Hoff, J.D., Mayrose, V.B., 1982. Effects of injection and surface applications of liquid swine manure on corn yield and soil composition. J. Environ. Qual. 11, 468-472.
- Taghipour, M., Jalali, M., 2013. Effect of low-molecular-weight organic acids on kinetics release and fractionation of phosphorus in some calcareous soils of western Iran. Environ. Monit. Assess. 185, 5471-5482.
- Tahir, M.M., Khurshid, M., Khan, M.Z., Abbasi, M.K., Kazmi, M.H., 2011. Lignite-derived humic acid effect on growth of wheat plants in different soils. Pedosphere 21, 124-131.
- Thibaud, M.C., Morel, C., Fardeau, J.C., 1988. Contribution of phosphorus issued from crop residues to plant nutrition. Soil

Sci. Plant Nutr. 34, 481-491.

- Thingstrup, I., Kahiluoto, H., Jakobsen, I., 2000. Phosphate transport by hyphae of field communities of arbuscular mycorrhizal fungi at two levels of P fertilization. Plant Soil 221, 181-187.
- Tian, Z., Zong, L., Niu, R., Wang, X., Li, Y., Ai, S., 2015. Recovery and characterization of lignin from alkaline straw pulping black liquor: As feedstock for bio-oil research. J. Appl. Polym. Sci. 132, 1-9.
- Tilman, D., Fargione, J., Wolff, B., D'Antonio, C., Dobson, A., Howarth, R., Schindler, D., Schlesinger, W.H., Simberloff, D., Swackhamer, D., 2001. Forecasting agriculturally driven global environmental change. Science (New York, N.Y.) 292, 281-284.
- Tripathi, K.P., 2005. Effect of organic acid on phosphorus-use efficiency by clusterbean (*Cyamopsis tetragonoloba*) in arid soil of Rajasthan. Indian J. Agric. Sci. 75, 651-653.
- Turner, B.L., 2008. Resource partitioning for soil phosphorus: a hypothesis. J. Ecol. 96, 698-702.
- van Hees, P.A.W., Dahlén, J., Lundström, U.S., Borén, H., Allard, B., 1999. Determination of low molecular weight organic acids in soil solution by HPLC. Talanta 48, 173-179.
- Wang, Y., Chen, X., Whalen, J.K., Cao, Y., Quan, Z., Lu, C., Shi, Y., 2015. Kinetics of inorganic and organic phosphorus release influenced by low molecular weight organic acids in calcareous, neutral and acidic soils. J. Plant Nutr. Soil Sci. 178, 555-566.
- Wanner, B.L., 1996. Phosphorus assimilation and control of the phosphate regulon. Escherichia coli and Salmonella 41, 1357-1381.
- Weber, O., Delince, J., Duan, Y., Maene, L., McDaniels, T., Mew, M., Schneidewind, U., Steiner, G., 2014. Trade and Finance as Cross-Cutting Issues in the Global Phosphate and Fertilizer Market, In: Scholz, R.W., Roy, A.H., Brand, F.S., Hellums, D.T., Ulrich, A.E. (Eds.), Sustainable Phosphorus Management: A Global Transdisciplinary Roadmap. Springer Netherlands, Dordrecht, pp. 275-299.
- Wei, L.L., Chen, C.R., Xu, Z.H., 2010. Citric acid enhances the mobilization of organic phosphorus in subtropical and tropical forest soils. Biol. Fert. Soils 46, 765-769.
- Wisnewski, A.V., Liu, Q., Liu, J., Redlich, C.A., 2005. Glutathione protects human airway proteins and epithelial cells from isocyanates. Clin. Exp. Allergy 35, 352-357.
- Withers, P.J.A., Edwards, A.C., Foy, R.H., 2001. Phosphorus cycling in UK agriculture and implications for phosphorus loss from soil. Soil Use and Manage. 17, 139-149.
- Wyngaard, N., Cabrera, M.L., Jarosch, K.A., Bunemann, E.K., 2016. Phosphorus in the coarse soil fraction is related to soil organic phosphorus mineralization measured by isotopic dilution. Soil Biol. Biochem. 96, 107-118.
- Xiang, C.Y., Ma,Y.M., Tian, X.P., 2005. Effects of long-term culture and fertilization on the contents of forms of phosphorus and their availability in albic soil. Acta Agronomica Sinica 31, 48-52.
- Xu, G., Sun, J., Shao, H., Chang, S.X., 2014. Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity. Ecol. Eng. 62, 54-60.
- Xu, G., Zhang, Y., Sun, J., Shao, H., 2016. Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil. Sci. Total Environ. 568, 910-915.
- Yadav, B., Verma, A., 2012. Phosphate solubilization and mobilization in soil through microorganisms under arid ecosystems, In: Alí, M. (Eds.), The functioning of ecosystems. Intech, Rijeka, Croatia, pp. 93-108.
- Yan, Y.P., Liu, F., Li, W., Liu, F., Feng, X.H., Sparks, D.L., 2014. Sorption and desorption characteristics of organic phosphates of different structures on aluminium (oxyhydr)oxides. Eur. J. Soil Sci. 65, 308-317.
- Yang, M., Lin, J., Zhan, Y., Zhu, Z., Zhang, H., 2015. Immobilization of phosphorus from water and sediment using zirconium-modified zeolites. Environ. Sci. Pollut. Res. Int. 22, 3606-3619.
- Yu, X., Liu, X., Zhu, T.H., Liu, G.H., Mao, C., 2011. Isolation and characterization of phosphate-solubilizing bacteria from walnut and their effect on growth and phosphorus mobilization. Biol. Fert. Soils 47, 437-446.
- Yuan, H.M., Blackwell, M., McGrath, S., George, T.S., Granger, S.J., Hawkins, J.M.B., Dunham, S., Shen, J.B., 2016.

Morphological responses of wheat (*Triticum aestivum* L.) roots to phosphorus supply in two contrasting soils. J. Agric. Sci. 154, 98-108.

- Zeng, X., Ma, Y., Ma, L., 2007. Utilization of straw in biomass energy in China. Renew. Sust. Energ. Rev. 11, 976-987.
- Zhang, F., Römheld, V., Marschner, H., 1989. Effect of zinc deficiency in wheat on the release of zinc and iron mobilizing root exudates. Z. Pflanzenernahr. Bodenk. 152, 205-210.
- Zhang, Z.Y., Fu, F.L., Gou, L., Wang, H.G., Li, W.C., 2010. RNA interference-based transgenic maize resistant to maize dwarf mosaic virus. J. Plant Biol. 53, 297-305.
- Zhou, X.B., Hong, J.P., Xie, Y.H., 2005. Effects of phosphorous bacteria fertilizer on phosphorus validity of calcareous soil. J. Soil Water Conserv. 19, 70-73.

2 Table 1

3 Common phosphorus minerals found in acid, neutral and calcareous soils and their equilibrium dissolution reactions. Modified from Gustafsson et al. (2012) and Yadav and Verma (2012).

4

Soil type	Minerals	Chemical formula	Equilibrium dissolution reaction
Acid soils	Strengite	FePO ₄ ·2 H ₂ O	$FePO_4 \cdot 2 H_2O(s) \leftrightarrow Fe^{3+} + PO_4^{3-} + 2H_2O$
	Vivianite	Fe ₃ (PO ₄) ₂ ·8H ₂ O	$\mathrm{Fe}_{3}(\mathrm{PO4})_{2} \cdot 8 \mathrm{~H_{2}O}(s) \leftrightarrow 3\mathrm{Fe}^{2+} + 2\mathrm{PO4}^{3-} + 8\mathrm{H_{2}O}$
	Variscite	AlPO ₄ ·2 H ₂ O	$AlPO_4{\cdot}2\ H_2O(s) \leftrightarrow Al^{3+} + PO_4^{3-} + 2H_2O$
Neutral	B-tricalcium phosphate	$Ca_3(PO_4)_2$	$Ca_3(PO_4)_2(s) \leftrightarrow 3Ca^{2+} + 2PO_4^{3-}$
and	Dicalcium phosphate	CaHPO ₄	$CaHPO_4(s) \leftrightarrow Ca^{2+} + PO_4^{3-} + H^+$
calcareous	Dicalcium phosphate dihydrate	CaHPO ₄ ·2 H ₂ O	$CaHPO_4 \cdot 2 H_2O(s) \leftrightarrow Ca^{2+} + PO_4^{3-} + H^+ + 2H_2O_4^{3-} + H^+ +$
soils	Fluorapatite	Ca5(PO4)3 F	$Ca_5(PO_4)_3F(s) \leftrightarrow 5Ca^{2+} + 3PO_4^{3-} + F^-$
	Hydroxyapatite	Ca5(PO4)3 OH	$\mathrm{Ca}_{5}(\mathrm{PO4})_{3}\mathrm{OH} \leftrightarrow 5\mathrm{Ca}^{2+} + 3\mathrm{PO4}^{3-} + \mathrm{OH}^{-}$
	Octacalcium phosphate	Ca ₈ H ₂ (PO ₄) ₆ ·5 H ₂ O	$Ca_8H_2(PO_4)_6 \cdot 5 H_2O \leftrightarrow 8Ca^{2+} + 6PO_4^{3-} + 6H_2O$

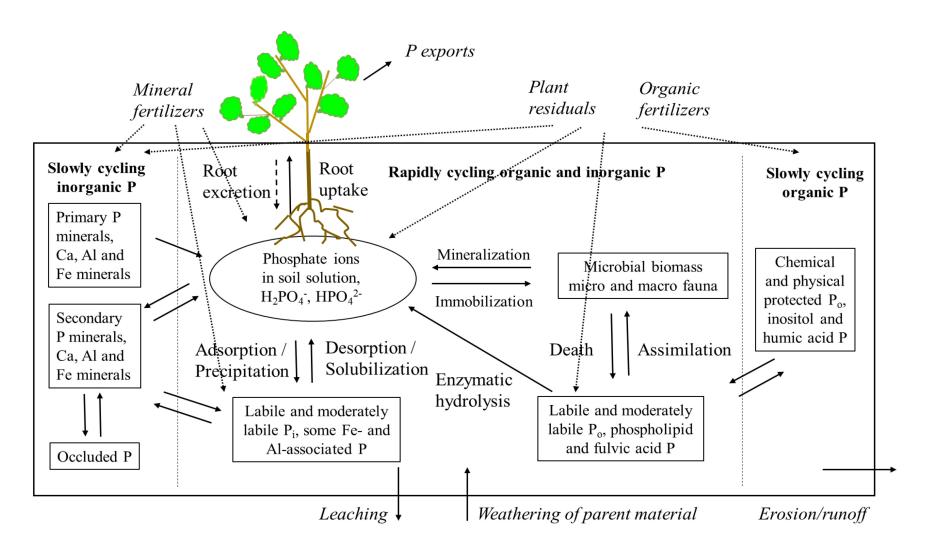
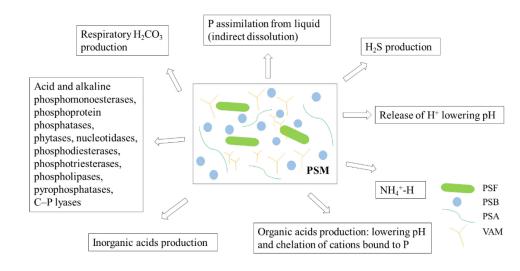


Fig. 1. The physicochemical and biological transformations of P in soil-plant and soil-solution systems (modified after Frossard et al., 2011). Po: orgaine P; Pi: inorganic P. The dotted arrow
 indicates external phosphorus input and the solid arrow shows the internal phosphorus transformations.

10 Table 2

11 Examples of common phosphate solubilizing microorganisms in agricultural soils (Behera et al., 2014; Bolan, 1991;


12 Thingstrup et al., 2000).

licroorganism	Biological taxa					
PSB	Achromobacter, Aereobacter, Agrobacterium, Alcaligenes, Arthrobacter, Aspergillus,					
	Azotobacter, Bacillus, Bradyrhizobium, Burkholderia, Chromobacterium, Enterbacter, Erwinia,					
	Escherichia, Flavobacterium, Klebsiella, Micrococcus, Pantoea agglomerans, Pseudomonas,					
	Rhizobium, Salmonella, Serratia, Thiobacillus,					
PSF	Alternaria, Arbuscular mycorrhiza, Aspergillus, Fusarium, Helminthosparium, Penicillium,					
	Rhizopus, Sclerotium					
PSA	Streptomyces, Nocardia					

13 PSF: phosphate solubilizing fungi; PSB: phosphate solubilizing bacteria; PSA: phosphate solubilizing actinomycetes.

14

15

16 17

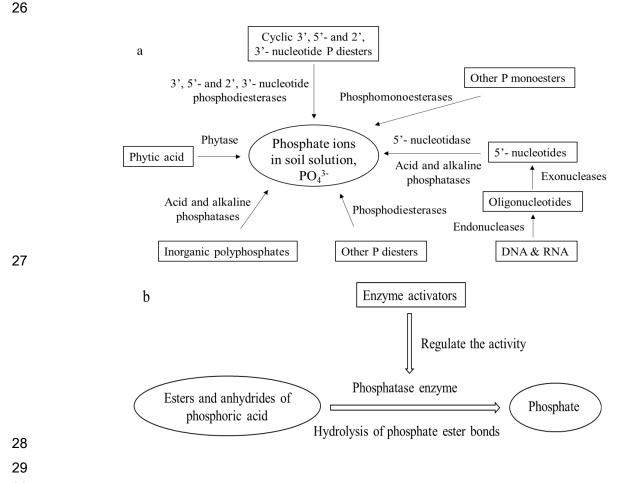
18 Fig. 2 Potential mechanisms for the solubilization of insoluble P by phosphate solubilizing microorganisms (PSMs). PSF:

phosphate solubilizing fungi; PSB: phosphate solubilizing bacteria; PSA: phosphate solubilizing actinomycete; VAM:
vesicular-arbuscular mycorrhizae (modified after Khan et al., 2010).

21 Table 3

22 PSM isolated from different soils and their effects on soil available phosphorus (AP) and the equivalent application rate of phosphate fertilizers (PF) when PSM and PSM fertilizers are applied.

23 PSMF: phosphate solubilizing microbial mixed fertilizers; RP: rock phosphate; PBF: phosphate solubilizing bacteria fertilizers; VAM: vesicular arbuscular mycorrhizae; PSB: phosphate


24 solubilizing bacteria; PSF: phosphate solubilizing fungi; AMF: arbuscular mycorrhizal fungi; CGMCC: hina General Microbiological Culture Collection Center of China Administration

25 Committee for Culture Collection of Microorganisms.

Microorganism	Strains	Isolated area	Experiment soil	Crop	P activation response on soil	References
PSB	Enterobacter agglomerans	Purchased	Silt loam	Tomato	P concentration increased by	(Kim et al., 1997)
	Glomus etunicatum		(pH=5.6),		10.5-31.6%; mixed higher	
			Mexico			
	Fusarium oxysporum	Obtained from the	Sandy loam soil	Tomato	AP increased by 26.7-183.3%	(Hariprasad and Niranjana,
	Alternaria solani	culture collection of	(pH=6.9), India			2009)
		University of Mysore,				
		India				
	Pseudomonas chlororaphis	Walnut production	Sandy loam soil	Walnut	AP increased by 9.7-50.7%;	(Yu et al., 2011)
	Bacillus cereus	areas from Sichuan,	(pH=7.1), China		mixed higher;	
	Pseudomonas fluorescens	China			B. cereus had no effect	
	Pseudomonas synxantha	Rhizosphere of Aloe	Unsterile loamy	Aloe barbadensis	AP increased by 230-403%	(Gupta et al., 2012)
	Burkholderia gladioli	barbadensis from	soil (pH=7.8),			
	Enterobacter hormaechei	Indian	India			
	Serratia marcescens					
	Ocimum basilicum	Sodic soil sites from	Sodic soils	Sweet basil	Residual fertility P conversion	(Sahay and Patra, 2014)
		Sultanpur, India	(pH=9.3), India	(O. basilicum)	rate increased by 17.2-32.1%	
PSF	Penicillium oxalicum	Mine landfills of RP	Sandy loam soil	Wheat and maize	AP increased by 35.1-85.3% for	(Singh and Reddy, 2011)
		from Udaipur, India	(pH=8.1), India		wheat and 106.3-127.7% for	
					maize	
	Candida tropicalis	Crops rhizospheric	Silty clay soil	Maize	PF application rate reduced by	(Mukherjee and Sen, 2015)
		soil in Birbhum, West	(pH=5.2), India		34.9-467.4%	
		Bengal, India.				

PSB & VAM	Aspergillus niger	Plant rhizosphere in	Sandy soil	Wheat and faba bean	AP increased by 12.1-194.2% for	(Abdul Wahid and Mehana,
	A. fumigatus	soils from Ismailia	(pH=8.4), Egypt		wheat and 15.9-208.3% for faba	2000)
	Penicillium pinophilum	and South Sinai			bean	
		Governorates				
PSB & PSF	Pantoea cypripedii	Rhizospheric soil of	Sandy loam	Maize-wheat	P absorption increased by	(Kaur and Reddy, 2015)
	Pseudomonas plecoglossicida	Stevia rebaudiana	(pH=8.3), India	Cropping	41.2-117.6% for maize and	
		from Pojewa, India			41.05-41.8% for wheat	
PSB & PSF	Bacillus subtilis QST713	Purchased	Siliceous and	Cucumber	AP increased by 16.8% (Fungi	(García-López et al., 2016)
	Trichoderma asperellum T34		calcareous		T34) and 39.85 (Bacteria	
			growing media		QST713) in siliceous soil; 6.6%	
			(pH=7.8)		(T34) and 60.7% (QST713) in	
					calcareous soil	
PSB & AMF	Mortierella sp.	Andisol from	Sandy loam	Leucaena	Varied from soil type;	(Osorio and Habte, 2015)
	Claroideoglomus claroideum	Hawai'i, America	(pH=5.4), Clay	leucocephala	Mixed higher	
			loam (pH=4.9),			
			America			
PBF	Penicillium sp.	Rhizospheric soil of	Silt clay soil	Typical torrifluvent	AP increased by 24.2-138.6%	(Salih et al., 1989)
	Aspergillus foetidus	tomato, eggplant and	(pH=8.2), Iraq			
		cucumber, Iraq				
	AB-233	Purchased	Loamy soil,	Soybean	AP increased by 11.8-57.1%	(Zhou et al., 2005)
			(pH=7.4),			
			China			
PSMF	Pseudomonas	Purchased	Clay soil	Rape	AP increased by 1.84-15.44%;	(Li et al., 2014)
	Rahnella		(pH=8.1), China		Mix PSB > mixed PSF, both	
	Aspergillus niger				higher than mixed PSB with PSF	
	Penicillium					
PSB & PSMF	Bacillus subtilis	Depository in	Silt clay soil	Corn	P absorption increased by	(Ho et al., 2013)
	Bacillus licheniformis	CGMCC	(pH was not	Rice	25.93-50.56% for corn and	

	Streptomyces cellulosae		mentioned),		18.58-44.09% for rice	
	Aspergillus versicolor		India			
PSF & PSMF	Bacillus megatheriumvar	Purchased	Clay soil (pH	Sugarcane	PF application rate reduced by	(Sundara et al., 2002)
	Phosphaticum		was not		25%	
			mentioned),			
			India			

30 Fig. 3. (a) Phosphate regeneration through enzymatic decomposition of various P compounds in soil (modified after Burns &

31 Dick, 2002); (b) The role of phosphatase enzymes in mineralizing Po to phosphate and enzyme activators activating

- 32 phosphatase enzymes.
- 33
- 34

36 Table 4

37 The main low molecular weight organic acids identified in agricultural soils (Gerke, 2015; Jones, 1998; Song and Cui, 2003;

38 Strobel, 2001; van Hees et al., 1999).

39

Classification	Carboxylate	Organic acid	Molecular formula	Molecular	Organic	Molecular	Molecula
				mass	acid	formula	mass
Aliphatic	Monobasic	Formic	НСООН	46.03	Lauric	C ₁₁ H ₂₅ COOH	200.32
		Acetic	СН3СООН	60.05	Palmitic	C ₁₅ H ₃₁ COOH	256.42
		Propionic	C ₂ H ₅ COOH	74.08	Linolenic	C17H29COOH	278.44
		Butyric	C ₃ H ₇ COOH	88.11	Linoleic	C ₁₇ H ₃₃ COOH	282.47
		Valeric	C4H9COOH	102.14	Oleic	C ₁₇ H ₃₃ COOH	282.47
		Pyruvate	CH ₃ COCOOH	88.06	Arachidic	C19H39COOH	312.53
		Glycolic	CH2OHCOOH	76.05	Carnaubic	C ₂₃ H ₄₇ COOH	368.62
		Lactic	CH ₃ CH(OH)COOH	90.08			
	Dicarboxylic	Oxalic	НООССООН	90.04	Maleic	C4H4O4	116.08
		Malonic	HOOCCH ₂ COOH	104.06	Fumaric	C4H4O4	116.08
		Succinic	HOOC(CH2)2COOH	118.09	Ketoglutaric	C5H6O5	146.11
		Tartaric	HOOC(CHOH) ₂ COOH	150.09	Aconitic	C ₆ H ₆ O ₆	174.11
		Malic	HOOCCHOHCH2COOH	134.09			
	Tribasic	Oxalacetic	C4H4O5	132.07	Citric	$C_6H_8O_7$	192.43
Aromatic	Monobasic	Benzoic	C ₆ H ₅ -COOH	122.12	Sinapic	$C_{11}H_{12}O_5$	224.22
		Phenylacetic	C ₆ H ₅ -CH ₃ COOH	136.15	Phthalic	C ₈ H ₆ O ₄	166.13
		Cinnamic	С6Н5-СН=СН-СООН	148.16	P-coumaric	C9H8O3	164.16
		Ferulic	$C_{10}H_{10}O_4$	194.19	Salicylic	C7H6O3	138.12
		2-Naphthoic	$C_{11}H_8O_2$	172.18	Gallic	C7H6O5	170.10
		Indole-3-acetic	C10H9NO2	175.18	Vanillic	$C_8H_8O_4$	168.15
		P-phenylcinnamic	C15H12O2	224.25	Syringic	C9H10O5	198.18
		P-hydroxybenzoic	C7H6O3	138.12	Shikimic	C7H10O5	174.16
		3-Phenylpropanoic	C9H10O2	150.17			
Amino acid			NH2-CH(R)-COOH*				

Amino aci 40 *R

*R indicates R-groups in amino acids. The R-groups give the amino acids their physical-chemical characteristics such as

41 polarity (hydrophobic or hydrophilic) and charge (acidic or positive versus basic or negative).

44 Table 5

45 The type and concentration of low molecular weight organic acids added to different types of agricultural soil and their effects on P transformation.

LMWOAs	Concentration	Soil type	Soil area	Effects	References
Citrate and Tartrate	0.1-0.5 mmol L ⁻¹	Black loam and gravelly clay	Egmont, Okaihau in New	Fe and Al sorb P_i : citrate (50% reduction), tartrate (20%	(Earl et al., 1979)
acid		soil	Zealand	reduction).	
Acetic, formic,	10 mmol kg ⁻¹	Silt loam derived from volcanic	Patua, Italy;	Decrease the adsorption of P by soils: tricarboxylic acid >	(Bolan et al., 1994)
lactic, citric,malic,		ash and clay loam from loess	Tokomaru, New Zealand	dicarboxylic acid > monocarboxylic acid.	
oxalic ,					
tartaric acid					
Acetic acid	0.2, 2 mmol kg ⁻¹	Arid soil	Rajasthan, India	No effect of acetic acid application alone on the Olsen-P.	(Tripathi, 2005)
				Having an effect when applied along with fertilizers P.	
Oxalic, citric acid	10 mmol kg ⁻¹	Plantation and natural forest	Subtropical and tropical	Solubilizing of Pi: citric acid, 34.7%,	(Wei et al., 2010)
Malic acid		soils	areas in Australia	malic and oxalic, no significant differences.	
		Vegetable, garlic, and potato	Hamedan , Iran	Malic and citric acids had no effect on Fe-Al oxide	(Taghipour and
		land use calcareous soils		fraction, but oxalic acid significantly reduced this fraction.	Jalali, 2013)
		Calcareous clay soil, neutral	Luancheng (wheat),	Po release induced by low molecular weight organic acids	(Wang et al., 2015)
		silty clay loam, and acidic silty	Shenyang (corn), and	is ascribed to their ability to mobilize NaHCO3-Po rather	
		clay soil	Taoyuan (rice), China	than to chelate cations (i.e., Fe^{3+} , Al^{3+}) bound to P_0 in soil.	
α-naphthaleneacetic	10-4,10-5,10-6	Nutrient solution	Spain	The secretion of common organic acid increased by	(Gomez and
acid	mmol L ⁻¹			proteoid roots of white lupin.	Carpena, 2014)

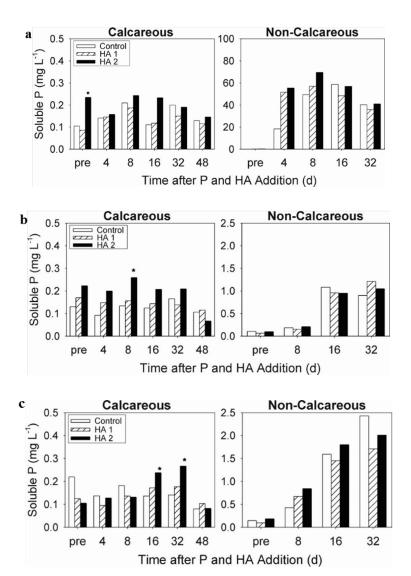


Fig. 4. (a) Water-soluble P concentrations 1.9 cm to the side of a mono-ammonium phosphate (MAP) fertilizer band,
uncoated (control) or coated with a humic acid (HA) product (HA 1 or HA 2). The pre-fertilization sample (pre) was collected
less than 1 h prior to fertilization; (b) Water-soluble P concentrations 3.8 cm to the side of a MAP band; (c) Water-soluble P
concentrations 3.8 cm below a MAP band. *Significant difference from control p< 0.05) (Jones et al., 2007, original images
with permission from Taylor & Francis Group).

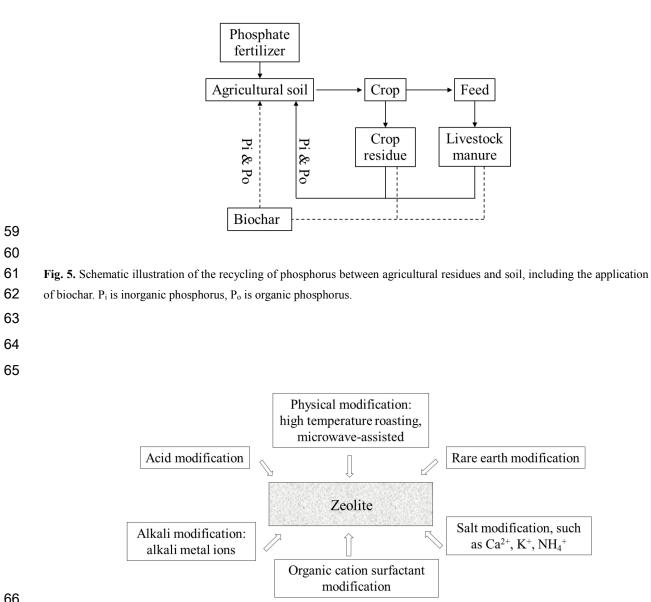


Fig. 6 Schematic summary of different approaches to modify zeolite.

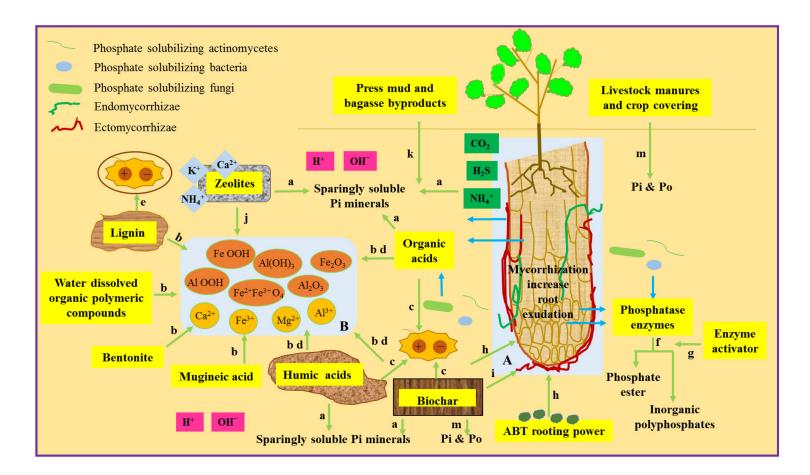


Fig. 7. Illustration of different mechanisms involved in the solubilization and mineralization of insoluble P by P activators in soils. (A) Enlarged drawing of root; (B) Metal ions and metal oxides
 which easily form P-O-M compounds in soil. (a) Effect of soil pH on sparingly soluble P_i (inorganic phosphorus) minerals; (b) Formation of complexes with (B) to release phosphate; (c)
 Competition for sorption sites with phosphate in soil; (d) Adsorption of metal and metal oxides to release phosphate; (e) Sheltering sorption sites in soil; (f) Hydrolysis of P_o (organic phosphorus)
 and P_i; (g) Strengthening of phosphatase enzyme activity; (h) Promotion of root growth; (i) Biochar increasing mycorrhizal-plant associations; (j) Exchange-induced dissolution; (k) Production of organic acids by microbial processes; (m) P_o & P_i retention and release. ABT rooting powder: have the ability to promote rooting and to increase the survival rate of plants under abiotic stress.

Table 6

Summary of the advantages and disadvantages of the P activators described in this review.

P activators	Advantages	Disadvantages
Phosphate solubilizing	Economically feasible;Activate	Complex screening and domesticating
microorganisms	both P _o and P _i ;	process;
	High activation effect	Easily affected by environment;
		Time consuming;
		Potential invasions
Phosphatase enzyme and enzyme	Mineralize complex Po	High specificity;
activators	compounds	Easy to be inactive
Low molecular weight organic acid	Fast responding speed;	Cause soil acidification
	High activation effect;	
	Amend soil salinization	
Humic acid and lignin	Increase soil organic matter;	May sorb phosphate itself
	Improve soil conditions	
Crop residue and manure	Biodegradable, abundant	Bring soil pests;
	resources found in nature;	Contain microbial populations; Easily
	Low processing costs;	lost in runoff
	Release both P _i and P _o ;	
	Secondary nutrient supply	
Biochar	Improve soil conditions;	Preparation process is complex;
	Release P _i and P _o ;	Mixed reports on activation effect
	Good for microorganisms	
Zeolites and others	Reuse and recycle waste resources	Seldom used in soil;
		Non-indigenous in soil;
		May bring heavy metal to soil