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We study the hard-sphere fluid in contact with a planar hard wall. By combining the inhomogeneous
virial series with simulation results, we achieve a new benchmark of accuracy for the calculation of
surface thermodynamics properties such as surface adsorption Γ and the surface free energy (or surface
tension), γ. We briefly introduce the problem of choosing a position for the dividing surface and avoid
it by proposing the use of alternative functions to Γ and γ that are independent of the adopted frame of
reference. Finally, we present analytic expressions for the dependence of system surface thermody-
namic properties on packing fraction, ensuring the high accuracy of the parameterized functions for any
frame of reference. The proposed parametric expressions for both, Γ and γ, fit the accurate simulation
results within the statistical error. Published by AIP Publishing. https://doi.org/10.1063/1.5025332

I. INTRODUCTION

The hard sphere (HS) model is one of the simplest mod-
els for interparticle interactions. Over the last century, it
has played a key role in the development of physical con-
cepts concerning the condensed matter. Numerous investiga-
tions were developed on the basis of HS models: modeling
of gases, liquids, and solids as well as studies of conden-
sation, jamming, glass transition, crystallization, defects in
solids, and mixing, among others. Furthermore, HS models
were instrumental in the development of modern theo-
ries of fluids. In particular, inhomogeneous fluids are fre-
quently studied using HS as a reference system, for example,
using the formalism of classical Density Functional Theory
(DFT).1

Much effort has been dedicated over the decades to obtain
an accurate analytic expression of the HS fluid equation of
state (EOS), which describes the dependence of the bulk pres-
sure on density.2–11 In the context of integral equations, the
solution of the Percus-Yevick (PY) equation constitutes a
key contribution in this direction.12,13 Different approaches
to the EOS included the evaluation of virial coefficients to
obtain the analytic dependence at low density and simulation,
using both molecular-dynamics (MD) simulation9,10,14–17 and
Monte Carlo (MC) techniques.18

In addition to the interest in determining the bulk proper-
ties, the specific properties of confined HS fluids are drawing
increasing attention over time. In this case, the focus shifts to
the wall-fluid surface free-energy EOS, γ, and the adsorption
Γ. Seminal studies on virial series for γ began with Bellemans
and were continued by Sokołowski and Stecki.19–22 Recently,

a)iurrutia@cnea.gov.ar

numerical evaluation of higher-order virial coefficients was
done by Yang, Schultz, Errington, and Kofke (YSEK).18 The
behavior of γ along the complete range of densities up to
freezing was studied using MD simulation by Davidchack,
Laird, and Roth (DLR).23–27 Results obtained through differ-
ent techniques, such as virial series, MD, MC, DFT, and scaled
particle theories (SPT), have allowed for the development of
analytic expressions for the dependence of γ on density.25,28–31

However, there exist some discrepancies in recent results con-
cerning both the behavior of Γ and γ at a low density, which
was studied using virial series, and at higher densities, where
differences exist between different studies based on MD and
DFT.

In this work, we present new accurate calculations for the
surface free energy and adsorption of the HS fluid at a pla-
nar hard wall. We accomplish this using a two-fold approach
that combines the accurate evaluation of cluster integrals and
virial coefficients combined with the results from new high
resolution MD simulations. These techniques are comple-
mentary, allowing us to propose analytic expressions that
accurately describe the dependence of γ and Γ on density.
Results involve cluster integrals and virial coefficients up to
seventh-order and simulation data along the complete density
range of the HS fluid. In Sec. II, we describe the basic ther-
modynamic equations for the inhomogeneous planar systems
and the power-series (virial) representation of several prop-
erties in powers of activity and packing fraction. Section III
is devoted to the method used for the evaluation of cluster
integrals and virial coefficients, and in Sec. IV, we describe
the approach used to obtain through simulation the data of
surface thermodynamics properties γ and Γ. We present the
obtained results in Sec. V, where we focus on the surface
thermodynamics properties that are independent of the posi-
tion of the dividing surface, which allow us to obtain accurate
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parametric expressions for surface free energy and adsorption.
These expressions transform without loss of accuracy when the
position of the dividing surface changes. Finally, in Sec. VI, we
conclude.

II. SURFACE THERMODYNAMICS
AND ITS VIRIAL EXPANSION

At equilibrium, the free energy of a fluid confined by a
planar structureless wall at a given temperature T and chemical
potential µ is given by

Ω = Ωb + γ A, (1)

where Ωb = −PV is the bulk part of the grand potential (with
P as the bulk pressure and V as the system volume), A is the
surface area, and γ is the surface free energy. For this system,
because the substrate is structureless, γ is also equal to the
fluid-wall surface tension. Both terms, surface free energy and
surface tension, are used as synonyms in this work. The surface
adsorption, i.e., the excess in the number of particles per unit
area, is

Γ = A−1
∫

V

[
ρ(r) − ρ

]
dr. (2)

Here, ρ(r) is the density distribution and ρ represents the bulk
fluid density. The basic relation between γ and Γ is the Gibbs
adsorption equation, Γ = −∂γ/∂µ. Like in Eq. (1), the average
number of particles in the system (i.e., in V ), N, also splits into
bulk and surface contributions,

N = Nb + Γ A, (3)

with Nb = ρV. The quantity ν is the excess volume and is
defined by the relation

Γ = −ρ ν. (4)

Note that ν is the excess volume per unit area and, there-
fore, has units of length. From Eq. (4), ν is negative if Γ > 0.
Like Γ, the excess volume is related to γ through a differential
relation23

ν =

(
∂γ

∂P

)
T

. (5)

For this system, the excess quantities γ and Γ strongly
depend on the chosen position for the dividing surface that
defines the volume V of the adopted reference region. The
same applies to other excess quantities, such as ν. However,
we note that P and A are here independent of the adopted
convention for the dividing surface. For the wall-fluid HS sys-
tem, two different references are frequently adopted in the
literature. One consists of setting the surface where the exter-
nal potential drops from infinite to zero. The other centers
around the HS diameter, σ, fixing the surface at σ/2 inside the
region where the external potential is infinite. Here the surface
coincides with the position where the surface of a HS particle
contacts the external wall. We call each convention I and II,
respectively, and introduce the notation x̃ and x̄, for quantity
x according to I and II. Thus, the volumes corresponding to
these two references are related by

(
V − Ṽ

)
/A = σ/2. (6)

The changes in γ and Γ induced by the shift in the dividing
surface described in Eq. (6) can be obtained by substituting
Eq. (6) into Eqs. (1) and (2), respectively, giving

γ̃ = γ̄ − Pσ/2, (7)

Γ̃ = Γ̄ + ρσ/2. (8)

Equations (7) and (8) mix both bulk and surface thermody-
namic properties in the transformation law. The correspond-
ing transformation law for the excess volume per unit area
is

ν̃ = ν̄ − σ/2. (9)

An interesting characteristic of Eq. (9) is that the transforma-
tion between ν̃ and ν̄ represents a purely geometrical shift;
i.e., it is independent of the thermodynamic state of the sys-
tem. To obtain a quantity related to γ that also transforms with
a geometrical shift, we define α = γ/P; then

α̃ = ᾱ − σ/2. (10)

Equations (6)–(10) can be easily generalized. If we consider
other two positions for the dividing surface separated by a dis-
tance d, the relations Eqs. (6)–(10) are still valid if we replace
σ/2 with d. The value of d produces an offset, but is otherwise
irrelevant for ν and α. In this sense, we say that ν and α are
independent of the adopted reference up to an arbitrary con-
stant. The advantage of using ν and α in the place of Γ and γ
will be highlighted in Sec. V B.

For the wall-fluid HS system, it is convenient to express
γ, Γ, and other thermodynamic quantities in dimensionless
form: ρ∗ = ρσ3, Γ∗ = Γσ2, ν∗ = ν/σ, α∗ = α/σ, Ω∗ = βΩ, P∗

= βPσ3, γ∗ = βγσ2, and µ∗ = βµ, where β = 1/kBT is the
inverse temperature (where kB is the Boltzmann constant). In
what follows, we drop the star and assume that all quantities
are expressed in dimensionless form.

The thermodynamic properties of the confined fluid may
be expressed as power series in the fugacity z =Λ−3e−µ, where
Λ is the de Broglie thermal length, through31

Ω = −
∑
i≥1

τi

i!
zi, (11)

with τi as the order i cluster integral. In the bulk, we have
τi
i! = biV , P =

∑
i≥1bizi, and ρ =

∑
i≥1ibizi. Here, bi is the

volume component of τi. The coefficients bi are the cluster
integrals in the standard (bulk) Mayer and Montroll cluster
series theory.32–34 In the current case,

τi = i!Vbi − i!Aai, (12)

with ai as the planar-wall component of τi. Hence, in addition
to the above equations for the bulk properties, we have

γ =
∑
i≥1

aiz
i (13)

and

Γ =
∑
i≥1

iaiz
i. (14)
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TABLE I. Cluster integrals and virial coefficients of the bulk HS system up
to order eight. b4 and B4 are known exactly.11

i biv
i−1
o Bi/vo i biv

i−1
o Bi/vo

1 1 1 5 2168.001 435(4) 28.224 377(15)
2 �4 4 6 �22362.204 6(2) 39.815 23(10)
3 27 10 7 243676.514(4) 53.342(5)
4 �227.4549. . . 18.364 76. . . 8 �2764808.3(1) 68.528(3)

The coefficients bi are easily and accurately evaluated from
the known coefficients of the pressure virial series. In terms
of the packing fraction η = ρv0 (with v0 = π/6), this series
reads

P =
∑
i≥1

Biη
i. (15)

Both bi and Bi are given in Table I up to eighth-order.
On the other hand, the surface tension virial series is

γ =
∑
i≥1

Wiη
i. (16)

The coefficients W i are related to the cluster integrals ai

through standard inversion and composition of power series
[using Eq. (13) and ρ series, below Eq. (11)]. In addition, the
series representation of other surface excess properties such as
Γ and ν in powers of η can also be found by usual inversion
and composition of power series. Therefore, their coefficients
are easily evaluated once ai and W i are known.

III. SURFACE TERMS IN CLUSTER INTEGRALS

Cluster integrals play a key role in the statistical mechan-
ics of liquids. They provide an exact path to establish the
relationship between the interatomic potential and the struc-
tural and thermodynamic properties of bulk and homogeneous
fluids. Furthermore, cluster integrals appear naturally in sys-
tems with a fixed number of particles and confined in small
cavities, even for small N, which are far away from the ther-
modynamic limit.35,36 To date, the surface area components
of cluster integrals and the surface tension virial coefficients
are analytically known for n = 1, 2, 3. Here, we accu-
rately evaluate the integrals for a4 and a5 and complement
them with published data by YSEK to obtain more accu-
rate results than in the literature for a6 and a7. Also, these
results enable us to obtain virial coefficients Wn up to seventh-
order. To evaluate cluster integrals, we modify the method
used by YSEK18 for the activity expansion of the surface
tension.

Our approach, based on simple connected cluster decom-
position, is convenient because configurations compatible with
simple connected clusters are simpler to generate by MC than
those that are multiply connected and also because there are
very few simply connected clusters for small n. In fact for
n = 2, 3, 4, 5, 6, 7, their numbers are 1, 1, 2, 3, 6, 11, respec-
tively.37 We give a brief general description of the adopted
approach to calculate the area component of τn. We consider
the cluster integral of n particles τn defined as the sum of all
connected diagrams χn,k formed from n nodes joined by f

bonds, where f is the Mayer function f
(
rij

)
= exp

(
−βφij

)
−1

for particles i and j interacting through potential φij. Each node
represents the integration of the sphere coordinate ri over the
space and is weighted by a function g(ri) = gi = exp(−βϕi),
with ϕi being the external potential exerted on particle i. The
cluster integral is then

τn =

∫ ∑
k

χn,k

n∏
i=1

gi drn. (17)

As usual, Eq. (17) can be rearranged to give a smaller number
of terms. Therefore, we join all the equivalent diagrams replac-
ing them by a single diagram with a multiplicity factor. Also,
we identify all such clusters that are simply connected, i.e.,
have only a single path connecting every pair of nodes as χ(s)

n,k .
These are known as tree graphs. In addition, the non-simply
connected clusters can be seen as a simply connected one
with some extra f bonds. Therefore, we factorize the integrand
corresponding to each non-simply connected integral by fac-
toring out its simply connected part as χn,k = χ(s)

n,kFn,k (extra f
bonds are in Fn,k). We combine all the contributions with the
same simply connected part to organize the integrand, which
yields

τn =

∫ (s)∑
k

χ(s)
n,kF(s)

n,k

n∏
i=1

gi drn, (18)

where F(s)
n,k is the sum of Fn,k contributions corresponding to

the same χ(s)
n,k . Now it is possible to select one of the nodes

to play a special role and split
∏n

1 gi = g1 − g1G1 with
G1 = 1 −

∏n
2 gi. Thus, we obtain

τn =

∫
g1

(s)∑
k

χ(s)
n,kF(s)

n,k drn −

∫
g1G1

(s)∑
k

χ(s)
n,kF(s)

n,k drn. (19)

The first term on the right-hand side of Eq. (19) is related
with the bulk contribution. Here one particle is weighted by
g and the rest are unweighted. The second term concerns the
excess inhomogeneous contribution. This is as far as we can
go without introducing a dividing surface.

In the first row of Fig. 1, we present, for n = 4, the six topo-
logically different diagrams included in

∑
k χn,k at Eq. (17).

Here, the multiplicity factor for each diagram is explicitly
shown. Only the two graphs on the left are tree graphs; hence,
Eq. (18) only involves terms: χ(s)

4,1 and χ(s)
4,2. The term χ(s)

4,1F(s)
4,1

is drawn in the second row of Fig. 1 . There, χ(s)
4,1 is on the

left of the times symbol and F(s)
4,1 is on the right. We identify

the common node of the three bonds of χ(s)
4,1 with the particle

labeled as 1 to obtain the form in Eq. (19).

FIG. 1. A schematic representation of the cluster integrands in Eqs. (17)–(19).
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The second term in Eq. (19) can be simplified for the case
of a planar hard wall. We fix the normal vector ẑ pointing
to the fluid filled region. Functions of z take the following
values: if z ≥ 0, then ϕ(z) = 0 and gi(z) = 1, but if z < 0, then
ϕ(z) = +∞ and gi(z) = 0. On the other hand, G1 = 1 if zi < 0 for
at least one of the i = 2, . . ., n particles, but G1 = 0 otherwise.
We introduce a dividing surface at z = 0 to obtain

n!Aan = n!A
(s)∑
k

a(s)
n,k =

(s)∑
k

∫
g1G1 χ

(s)
n,kF(s)

n,k drn, (20)

where we define a(s)
n,k as the part of an related to χ(s)

n,k .
We employ the Mayer sampling algorithm to calculate

each a(s)
n,k and use the bulk simply connected cluster inte-

gral n!b(s)
n = ∫ χ

(s)
n,k drn−1 = n!(2b2)n−1 as a reference. The

first step in this approach is to fix the position of particle
1 at the origin. Next, the n − 1 positions ui are generated
by Metropolis Monte Carlo, each of them according to the
distribution π = | f |. For a given simply connected clus-
ter a(s)

n,k , we use the generated ui to build the n − 1 particle
positions ri according to the cluster geometry. Then, we eval-
uate the distances ri = |ri | and rij =

���ri − rj
���, the cluster

function χ(s)
n,kF(s)

n,k , the range of the allowed z positions for par-

ticle 1, and the length l(s)
n,k . Factor A in Eq. (20) comes from

the integration in dx1dy1 that we have left unevaluated. The
contribution related to the focused simple connected cluster
is

a(s)
n,k = b(s)

n

〈
l(s)
n,k χ

(s)
n,kF(s)

n,k/π
n−1

〉
πn−1〈

χ(s)
n,k/π

n−1
〉
πn−1

. (21)

Using the same set of generated positions ui, we build iter-
atively the particles positions ri for each a(s)

n,k and count its
contribution to the integral. We simplify the calculations by
noting that the denominator is the same for each k, and thus
we remove the index to obtain

an =
b(s)

n〈
χ(s)

n /πn−1
〉
πn−1

(s)∑
k

〈
l(s)
n,k χ

(s)
n,kF(s)

n,k/π
n−1

〉
πn−1 . (22)

In particular, for HS particles, b(s)
n = (4π/3)n−1 and〈

χ(s)
n /πn−1

〉
πn−1 = (−1)n−1.

IV. SIMULATION AND ANALYSIS

The hard-sphere fluid next to a planar wall was simu-
lated with molecular-dynamics using the algorithm of Rapa-
port.38 The hard spheres were placed between two hard walls
separated by a distance Lz along the z axis, with periodic
boundary conditions in the x and y directions. During long
simulation runs, we determined the density profile of an equi-
librated fluid, ρ(z), 0 ≤ z ≤ Lz/2, as a function of the distance
from the wall z, by measuring the average number of spheres
in bins of width ∆z = 0.02σ and then averaging the result
between the two walls. Between 50 and 100, statistically inde-
pendent measurements were collected for each system and
the statistical error determined from the variance in these
measurements.

The density profile oscillates near the wall, with oscilla-
tions decaying and the density profile values converging to the
bulk liquid density ρ sufficiently far from the wall. To deter-
mine the excess volume ν from the density profile ρ(z), we
calculate

ν(z) = z −
Lz/2 − z

∫
Lz/2

z ρ(z′)dz′

∫ z

0
ρ
(
z′
)
dz′ (23)

for increasing values of z until ν(z) stops oscillating and
reaches a plateau relative to the scale of the statistical errors.
The value of ν(z) at this plateau is used as the estimator of the
excess volume. At the same z, the expression

∫
Lz/2

z ρ(z′)dz′

Lz/2 − z
(24)

is used as the estimator of the bulk liquid density ρ.
In order to estimate and account for possible systematic

errors in our results due to the finite system size, we simulated
systems with Lx = Ly ≈ 10σ, 20σ, and 40σ, Lz ≈ 27σ and
28σ for η < 3.2, and Lz ≈ 46σ and 64σ for η > 3.2. We did not
observe statistically the significant dependence of the results
on Lz. Specifically, regression analysis with respect to L−1

z did
not reveal statistically significant dependence of the results on
this variable. In other words, the results obtained from the sys-
tems with the same Lx = Ly and different Lz were indistinguish-
able within the statistical confidence intervals for all densities.
In order to ensure that there was no influence of the walls on
one another, we used Lz values which were much larger than
the range of observed density profile oscillations (the distance
from the walls at which the oscillations become insignificant
compared to the statistical error is about 9σ at the packing
fraction η ≈ 0.32 and about 18σ at the largest simulated pack-
ing fraction η ≈ 0.49). This consideration proved sufficient to
ensure that any interactions between the walls were below sta-
tistical tolerance and that size effects with respect to Lz were
insignificant compared to the statistical errors, even for high
densities.

On the other hand, we did observe the dependence of
the results on the system size in x − y directions, but only
at low densities. Specifically, linear regression applied to the
results with the same Lz and three different values of Lx = Ly

revealed that the linear regression model with L−2
x as the inde-

pendent variable fits the data much better than the model with
the independent variable L−1

x . The magnitude of the slopes
of the regression lines with respect to L−2

x decreased with
increasing density so that the model did not demonstrate sta-
tistically the significant dependence on Lx for η & 0.1. In other
words, the results from systems with different Lx = Ly were
indistinguishable within the statistical confidence intervals for
η & 0.1.

Based on these observations, the results for ν reported in
this work were obtained by averaging the results with different
Lz, applying a linear regression model as a function of L−2

x
and extrapolating to L−2

x = 0 for η < 0.1 and averaging the
results with Lx = Ly ≈ 20σ and 40σ for η > 0.1 (we did not
extend the simulation of the system with Lx = Ly ≈ 10σ to high
densities).
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Once ν has been calculated, the surface free energy is
determined by integrating Eq. (5). Because pressure is not
controlled directly in the MD simulations, it is more conve-
nient to integrate with respect to the packing fraction η using
a modified integral version of Eq. (5),

γ(η) =
∫ η

0
ν(η ′)

(
∂P
∂η ′

)
dη ′. (25)

The derivative of the pressure with respect to η in Eq. (25) is
calculated using the Kolafa, Labı́k, and Malijevský (KLM)-
low hard-sphere fluid equation of state.3 This equation of state
is accurate to five decimal places over the full range of hard-
sphere fluid densities, and any errors generated by its use
are smaller than the statistical accuracy of the current sim-
ulations. In the simulations, values of ν are calculated at an
evenly spaced set of η values (∆η = 0.005 240). Because the
grid is evenly spaced, we use the extended Simpson’s rule
to numerically integrate Eq. (25). The values of γ at even
grid points are calculated using Simpson’s rule directly on
all points. For the odd grid points, the trapezoid rule is used to
calculate the first integral at η = 0.005 40, with Simpson’s rule
applied for all subsequent odd grid points. To further reduce the
numerical integration error, we subtract from the integrand in
Eq. (25) the integrand obtained by differentiating the approxi-
mate analytic expression for γ from the White Bear II (WBII)
DFT,39

γ =
η(2 + 3η − 2η2)

π(1 − η)2
−

ln(1 − η)
π

. (26)

After integration, the WBII expression for γ from Eq. (26)
is added back in to give the calculated value of γ. By sub-
tracting this analytical approximation from the integrand, we
lower the curvature of the integrand and increase the numeri-
cal accuracy of the integration scheme. In the previous work,25

we used the approximate expression for γ from Scaled Particle
theory in this process, but to ensure that the numerical integra-
tion error was smaller than the statistical error for the present
high-resolution data, the more accurate WBII expression was
necessary.

V. RESULTS
A. Cluster integrals and virial coefficients

We calculate the inhomogeneous cluster integrals ã4 and
ã5 with MC. Also, ã6 and ã7 are calculated by complementing
with partial results from YSEK.18 Using the exact values of ãi

for order i = 2, 3, the numerically obtained ãi up to i = 7 and bi

(see Table I), we evaluate the virial coefficients W̃i and W i for
i = 4, 5, 6, 7. In Table II are shown our results for the cluster inte-
grals and virial coefficients of the surface tension series using
convention I. We also include data from YSEK18 for compar-
ison. There one can observe small but significant differences
between results of the present work (PW) and those from the
previous literature. Notice that some of these small differences
correspond to the comparison with the exact results, for n = 2,
3. It is interesting to mention that most of the significant differ-
ences of W̃n between our results and those of YSEK disappear
when we consider the exact values of W̃2 and W̃3 and use MC
partial results in Ref. 18 to recalculate higher-order W̃n. In fact,

TABLE II. Coefficients of the power series for γ up to i = 7 employing
convention I for the dividing surface position. The two columns on the left
correspond to the series in powers of z, while those on the right correspond to
powers of packing fraction η (virial series). Besides, ã1 = W̃1 = 0.

n ãn PW ãn YSEK W̃n PW W̃n YSEK18

2a
�0.392 70. . . 0.392 69(1) �1.432 39. . . �1.432 29(7)

3b 2.414 53. . . �2.414 6(1) �6.097 91. . . �6.100 4(14)
4 �14.360 788(6) 14.354(2) �13.694 79(8) �13.720(12)
5 87.609 87(3) �87.60(3) �22.290(2) �22.412(8)
6 �548.818(4) 548.9(3) �32.01(19) �32.51(4)
7 3529.0(2) �3530(3) �63(17) �65(17)

aã2 = −π/8, W̃2 = −9/2π.
bã3 = 137π/560, W̃3 = −1341/70π.

this is the case for the first non-exactly known virial coefficient
producing W̃4 = 13.70(1). This integral was evaluated for the
first time forty years ago by Stecki and Sokołowski;21 they
obtained W̃4 = 14.045(72).

The virial series coefficients of the surface tension using
convention II are shown in Table III. We observe that improved
precision of the present work results for W4 and W5 and rel-
atively significant differences from the previously published
values. These small differences could be related to the small
inaccuracies of the YSEK results discussed in Table II. The
precision diminishes at sixth and seventh-order. A compari-
son between the approximate virial series coefficients using
both conventions I and II shows that absolute uncertainties are
the same because the error introduced by virial coefficients Bi

is much smaller.

B. MD and the analytic expressions
for the surface thermodynamics properties

Here, we present the simulation results for the surface
properties. Numerical data obtained using MD can be found in
the supplementary material. In addition, based on the obtained
virial series coefficients and the simulation results, we look
for analytic parameterized expressions that accurately describe
γ(η) andΓ(η). Before proceeding, we should fix the convention
for V (and consequently for the surface properties). Naturally,
once we adopt a convention and find analytic expressions
that fit the surface properties of the system, the thermody-
namic description becomes less universal because, given the

TABLE III. Coefficients of the surface tension series in powers of the packing
fraction. Here, the convention II for the position of the dividing surface is used.
PW results are in the second column while the third column corresponds to
YSEK and DLR.18,25

n Wn PW Wn YSEK-DLR

1a 0.954 93. . . 0.954 93. . .
2 2.387 32. . . 2.387 32. . .
3 3.451 39. . . 3.451 39. . .
4 3.842 27(8) 3.817(12)
5 4.662 2(3) 4.54(8)
6 6.01(19) 5.5(4)
7 �12(17) �14(17)

aW1 = 3/π, W2 = 15/2π, and W3 = 759/70π.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-005826
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approximate nature of the description, certain loss of accuracy
occurs when we transform to a different convention. This is
particularly problematic for the transformation of γ(η) which
adds a term proportional to P, a quantity that we only know
approximately. This means that a good fitting function under
a certain convention may transform into a worse one under
another.

In Ref. 31, this issue was dealt with the study of fit-
ting functions adopting both conventions I and II. Here, to
overcome the problem, we change the focus from γ(η) and
Γ(η) to quantities α(η) and ν(η), which transform trivially
by changing the ordinate at the origin but fixing its shape.
In other words, the shape of both α(η) and ν(η) is invari-
ant under a translation of the dividing surface, which is
not true for γ(η) and Γ(η). To obtain α (and also to trans-
form between different conventions), we use the KLM-low
EOS.3

For the excess volume, we propose the following expres-
sion based on a modified virial series:

ν =
1
2
−

3
2
η +

339
140

η2 + a1η
3 + a2η

4 + a3η
5

+ a4η
6
(

1
2
− η

)−1

+ a5H. (27)

Here, H = h− S3(h) and h =
(

1
2 − η

)
ln(1 − 2η), and also Si(h)

is the order i McLaurin series of h [i.e., S3(h) = −η+ η2 + 2
3η

3].
Equation (27) has the right terms up to order η2, and the
fitting coefficients have values a1 = −843/280, a2 = 111/35,
a3 = −121/84, a4 = −3/1120, and a5 = −283/1400. The coef-
ficients of the power series in η are shown in Table IV where
the zero abscissa value is omitted because it is irrelevant. The
excess volume ν is shown in Fig. 2 where we plot the MD
data and the analytic expression Eq. (27). Note that on the
scale of the graph, the curve fits the data very well. To ver-
ify the accuracy of Eq. (27), we plot in Fig. 3 the difference
between ν from diverse sources and the present work MD
results. For comparison, a selection of older MD data and exist-
ing analytic expressions are presented (taken from Refs. 25
and 31. See also Ref. 40). We observe that MD results in PW
(with statistical errors smaller than 10−4) are more accurate
than those published and are not followed by existing for-
mulae for ν. Meanwhile, Eq. (27) reproduces very well the
MD results within the statistical error. By construction, fitting
MD data for ν guarantee the accuracy of Eq. (27) times ρ in
fitting Γ. This point is analyzed in detail for the case of α
and γ.

TABLE IV. Virial coefficients of ν and α (i.e., those of their series represen-
tation in powers of η).

Ord ν Equation (27) α Equation (28)

1 �1.5 �1.5 �0.75 �0.75
2 �2.4214. . . �2.4214. . . �0.192 8. . . �0.1928. . .
3 �3.0537(2) �3.0107 1.100 85(4) 1.1137
4 3.620(7) 3.0366 �0.372(1) �0.52
5 �4.1(6) �1.6022 1.6(1) �1.0

FIG. 2. Excess volume (bottom) and α ratio (top) results. Circles denote the
MD data while continuous lines show the parametric representations forν and
α, Eqs. (27) and (28), respectively. The errors in the MD data are considerably
smaller than the symbols, as can be appreciated in Figs. 3 and 4.

For α, we find that the expression based on a modified
virial expansion

α =
1
2
−

3
4
η −

27
140

η2 + a1η
3 + a2η

4 + a3η
5
(

1
2
− η

)
+ H, (28)

describes accurately the MD data. Here H = h − S2(h),

h =

[
a4

(
1
2 − η

)
+ a5

(
1
2 − η

)2
]

ln(1 − 2η) and S2(h)

= −(a4 + a5/2)η + (a4 + 3a5/2)η2. Again, we reproduce terms
up to order η2, as can be seen in Table IV, while the order
η3 coefficient has an error of 1.5%. The fitting parameters are
a1 = 227/140, a2 = −369/1400, a3 = −177/112, a4 = −11/700,
and a5 = 731/980. In Fig. 2, the dependence of α on η is plot-
ted. There, the agreement between MD results and analytic
expression (28) is visible in the scale of the plot. To verify
the quality of our results, we plot in Fig. 4 the difference
between Eq. (28) and the MD data, where zero corresponds
to the reference (MD results) plotted with its statistical error.
We can note two features. First, the high accuracy of MD
data with error bars /10−5. Second, the points derived from
the fitting expression Eq. (28) describes adequately the MD
results (within the statistical uncertainty). In the inset, plotted

FIG. 3. Deviations of the previous simulation results and parameterizations
ofν from the PW high-precision MD results. Error bars in green show the sta-
tistical error of MD results in PW, and squares and diamonds show published
MD data. Circles correspond to Eq. (27), and lines correspond to previous
analytic expressions (see the text).
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FIG. 4. Deviation from simulation data for α. Error bars show the statistical
error of MD results, and circles correspond to Eq. (28). Other lines in the inset
are explained in the text.

in a smaller scale, we compare with different analytic expres-
sions. Those are the fitting expressions from Henderson and
Plischke29 (HP, dotted), Urrutia31 (U, dashed), DLR25 (dotted-
dashed), and the DFT-WBII based expression by Hansen-
Goos and Roth39 (HGR, dotted-dotted-dashed). Also, results
obtained by direct minimization of DFT-WBII by Deb et al.27

(DWWVB; from Table I, col. 3, therein) are drawn with tri-
angles. We note that the collected data for α from different
sources show a deviation much larger than the statistical error
of the highly accurate MD results, in particular, for η > 0.3.
By construction, the analytic expressions for the surface ten-
sion (adsorption) must be as accurate as the expression for
α (ν), i.e., if the expression for ∆α produces results that are
within the statistical error, then the same applies to surface
tension.

In Figs. 5 and 6 are shown the results for γ = αP in frames
of reference I and II, respectively. The errors of the plotted MD
data are smaller than 10−4. This would make them invisible in
the scale of the plots and thus error bars are not drawn. In both
cases, we observe that formulae based on Eqs. (28) and (10)
fit very well the simulation results.

To appreciate the precision of the new high-resolution MD
results and the goodness of the obtained expression for γ, we
draw in Fig. 7 the difference of several sources for γ, including
our analytic expression, from the presented MD results. Note
that ∆γ = ∆γ̃ = ∆γ̄. For comparison, previously published

FIG. 5. MD results and fitting function for γ̃, in circles and continuous line,
respectively.

FIG. 6. MD results and fitting function for γ̄.

FIG. 7. Deviation from simulation data for γ. Older MD results are taken
from Refs. 25 and 26 (squares and diamonds, respectively). Closed circles are
derived from Eq. (28). Open circles and lines are explained in the text.

MD data from DLR25,26 are also plotted.41 Closed circles are
based on Eq. (28). Data from the different analytic expression
for γ are presented with lines. They correspond to HP,29 dot-
ted, U,31 dashed, DLR,25 dotted-dashed, and the DFT-WBII
expression obtained by HGR,39 dotted-dotted-dashed, respec-
tively. Also, a different set of DFT-based results obtained by
DWWVB27 (see Table I, col. 3, therein) is drawn with open
circles. We note a large dispersion between different sources,
particularly for η & 0.4. In the inset, the large dispersion of
the different sources for γ is apparent also in the smaller
scale.

We note that the presented MD results are much more
precise than previous studies and that there are significant
differences between PW and those of Refs. 25 and 26. This
difference is mainly attributed to the high precision and the
small separation ∆η of the MD results for ν and also to the use
of the WBII expression to reduce the integration error. We ver-
ify that Eq. (28) reproduces quite well the MD results. Other
analytic expressions do not follow the new high accuracy MD
results for γ.

VI. CONCLUDING REMARKS

In this work, the system of a hard-sphere (HS) fluid
at a planar hard wall was studied and new high precision
results were presented. The results include cluster integrals
[solved by Monte Carlo (MC)], virial series coefficients, and
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Molecular-Dynamics (MD) simulation results for the sur-
face thermodynamic properties of the system. On one hand,
cluster integrals and virial series coefficients allow an ana-
lytic description of the low-density behavior of the system.
On the other hand, simulation results are important in order
to obtain accurate numerical results for the surface ther-
modynamics along the entire range of densities of the HS
fluid. The use of both virial series coefficients and simulation
results makes it possible to obtain very accurate parametric
expressions describing the properties of the fluid-wall inter-
face. We adopt a point of view independent of the reference
frame by parameterizing ν(η) (the excess surface volume) and
α(η) = γ/P in the place of adsorption and surface tension (or
surface free energy). This independence implies that a change
of reference only produces a trivial shift of the ordinate at the
origin, which ensures the high accuracy of fitting functions
for any frame of reference that could be adopted. This goal
extends to the derived expressions for adsorption and surface
tension.

With respect to the cluster integrals and virial coefficients,
a question about the possibility of obtaining an analytic value
for W̃4 (analogously W4 and ã4) still remains open given that
the bulk virial coefficient B4 is exactly known. The exact cal-
culation of W̃4 is a difficult task because it involves a nine-fold
integral. For comparison, we can mention that B4 involves a
six-fold integral, while B5, which is not analytically known, is
also a nine-fold integral. Another open question is the possi-
bility of direct calculation using MC of the sixth and seventh-
order coefficients, which surely would improve their accuracy.
To extend our approach to higher-orders, the decomposition
of ã6 and ã7 in terms of simply connected clusters must be
performed.

This study of the HS fluid in contact with a planar hard
wall, involving a very accurate description of fluid/wall ther-
modynamics properties, is a necessary first step for future
developments concerning the HS fluid in contact with curved
walls, in particular, for the search of an accurate description
of the curvature terms in its free energy.

SUPPLEMENTARY MATERIAL

See supplementary material for the table with the MD
results.
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