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emissions 15 
• Primary and secondary sources contribute in a seasonally variant and quantifiable way 16 
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• New particle formation was a significant contributor around midday to TNC in the 18 

Leicester urban atmosphere. 19 
• In the Leicester urban atmosphere ultrafine particles are predominantly formed from 20 

secondary sources.  21 
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Abstract 33 

Total particle number (TNC, ≥7 nm diameter), particulate matter (PM2.5), equivalent black 34 

carbon (eBC) and gaseous pollutants (NO, NO2, NOx, O3, CO) have been measured at an urban 35 

background site in Leicester over two years (2014 and 2015). A derived chemical climatology 36 

for the pollutants showed maximum concentrations for all pollutants during the cold period 37 

except O3 which peaked during spring. Quantification of primary and secondary sources of 38 

ultrafine particles (UFPs) was undertaken using eBC as a tracer for the primary particle number 39 

concentration in the Leicester urban area. At the urban background site, which is influenced by 40 

fresh vehicle exhaust emissions, TNC was segregated into two components, TNC = N1 + N2.  41 

The component N1 represents components directly emitted as particles and compounds which 42 

nucleate immediately after emission. The component N2 represents the particles formed during 43 

the dilution and cooling of vehicle exhaust emissions and by in situ new particle formation 44 

(NPF). The values of highest N1 (49%) were recorded during the morning rush hours (07:00-45 

09:00 h), correlating with NOx, while the maximum contribution of N2 to TNC was found at 46 

midday (11:00-14:00 h), at around 62%, correlated with O3. Generally, the percentage of N2 47 

(57%) was greater than the percentage of N1 (43%) for all days at the AURN site over the 48 

period of the study. For the first time the impact of wind speed and direction on N1 and N2 49 

was explored. The overall data analysis shows that there are two major sources contributing to 50 

TNC in Leicester: primary sources (traffic emissions) and secondary sources, with the majority 51 

of particles of secondary origin.  52 
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1. Introduction 63 

Ultrafine particles (UFPs, Dp < 100 nm) are ubiquitous in the urban environment (Kumar et 64 

al., 2014), and are of concern owing to their adverse effects on human health (Araujo et al., 65 

2008; Atkinson et al., 2010). UFPs vary from larger sized ambient particles in their potential 66 

for lung deposition and translocation to other parts of the body (HEI, 2013). Previous studies 67 

have shown that UFPs easily penetrate the respiratory system and transfer to the extra-68 

pulmonary organs such as the central nervous system (Elder et al., 2006; Elder and Oberdörster, 69 

2006; Oberdorster et al., 2004).  70 

Sources of UFPs in the urban atmosphere include primary emissions - from motor vehicles, 71 

coal-fired power plants, gas-fired facilities, and biomass burning in winter (Kumar et al., 2014; 72 

Morawska et al., 2008; Wehner et al., 2009; Zhu et al., 2002), and those formed as  new 73 

particles via nucleation (Brock et al., 2002; Holmes, 2007; Kulmala and Kerminen, 2008). The 74 

major source of primary UFPs in urban areas is combustion, with previous studies 75 

demonstrating that UFP particle numbers correlate with the local traffic activity, in particular 76 

in the morning and afternoon rush hours (Alam et al., 2003; Harrison and Jones, 2005). These 77 

particles can be produced in the engine or in the ambient air after emission from the vehicle 78 

tailpipe (Charron and Harrison, 2003; Shi et al., 1999). Primary UFPs associated with traffic 79 

are released during the dilution and cooling of vehicle exhaust (Charron and Harrison, 2003; 80 

Kittelson et al., 2006) or formed by fuel combustion as, for example, carbonaceous soot 81 

(Kittelson, 1998; Shi et al., 2000).  82 

Previous studies found that total particle number consists of 80-90% UFPs (Mejia et al., 2008; 83 

Rodríguez et al., 2007; Wehner and Wiedensohler, 2003).  Reche et al. (2011) have shown 84 

from the characterisation of total particle number concentrations in various European urban 85 

background sites that total particle number is a good representation of the UFPs in an urban 86 

area.  87 

Previous studies measuring UFPs in urban areas have measured particles larger than 7 nm 88 

(Harrison and Jones, 2005; Shi et al., 2001) and 3 nm (Shi et al., 1999). Many studies have 89 

indicated that the two main sources of UFPs in urban areas (Brines et al., 2015; Dunn et al., 90 

2004; Morawska et al., 2008; Reche et al., 2011; Rodríguez and Cuevas, 2007) are: 91 

• Vehicle exhausts emissions. These particles tend to exhibit bimodal size distribution, 92 

with a nucleation (<20 nm) and a carbonaceous mode (50-200 nm). The nucleation 93 

mode (<20 nm) particles are not produced directly from vehicle exhaust emissions, but 94 



 
 
 

are created through nucleation (gas-to-particle conversion). In urban areas this occurs 95 

after rapid cooling and dilution of exhaust emissions when the saturation ratio of 96 

gaseous mixtures of low volatility (i.e. sulphuric acid) reaches a maximum (Arnold et 97 

al., 2006; Burtscher, 2005; Charron and Harrison, 2003; Kittelson et al., 2006). The 98 

carbonaceous mode (50-200 nm) is mainly composed of soot (Casati et al., 2007; Rose 99 

et al., 2006). 100 

New particle formation in ambient air. This process may be caused by the 101 

photochemical reactions of naturally emitted gaseous precursors in ambient air by “in-102 

situ nucleation” happening after emission. This mechanism includes two main steps, 103 

with nucleation of an initial cluster (<1 nm) and the initiation of such cluster resulting 104 

in particle growth (Kulmala et al., 2004). It is considered that the nucleation of sulfuric 105 

acid gas molecules play a significant role in the formation of such stable clusters, and 106 

may also contribute in particle growth by condensation (Kulmala et al., 2006). Recent 107 

studies have shown that ammonium and highly oxidised organic molecules may also 108 

play an important role in nucleation (Ehn et al., 2014; Kirkby et al., 2011). 109 

A number of studies have reported quantifying the sources and processes that contribute to 110 

UFP in urban areas (Fernández-Camacho et al., 2010; González and Rodríguez, 2013; 111 

González et al., 2011; Kulmala et al., 2016; Reche et al., 2011; Rodríguez and Cuevas, 2007).  112 

However, no studies to date have reported the quantification of the sources and processes that 113 

contribute to UFP in UK cities. In this context, the main aim of this paper is to study the factors 114 

responsible for the variability of TNC, eBC, and the gaseous pollutants at a UK urban 115 

background site in Leicester.  A specific focus of the work is the relative contributions of 116 

primary and secondary sources to the observed total particle number concentrations. To our 117 

knowledge, this study represents the first that explores the variability of TNC and its sources 118 

in the UK urban background. 119 

The study was carried out between January 2014 and December 2015 over which time TNC 120 

was measured concurrently with eBC, nitrogen oxides concentration (NOX) and particle 121 

number size distributions (PNSD) at the AURN (Automatic Urban and Rural Network) site in 122 

Leicester (UK). This study was carried out as part of the JOint Air QUality INitiative 123 

(JOAQUIN, www.joaquin.eu), an INTERREG IVB funded European project, aimed at 124 

supporting health-oriented air quality policies in Europe (Cordell et al., 2016; Hama et al., 125 

2017b; Hama et al., 2017a; Hofman et al., 2016). 126 

http://www.joaquin.eu/
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2. Methods 128 

2.1 Measurement site 129 

Measurements were carried out at the University of Leicester urban background site (lat 130 

52°37′11.36ʺ N, long 1°07′38.32ʺ W) a permanent site which is part of both JOAQUIN UFP 131 

NWE observatory system and the national Defra Automatic Urban Rural Network (AURN). 132 

The site is located on the University of Leicester campus (http://uk 133 

air.defra.gov.uk/networks/site-info?uka_id=UKA00573) and is shown in Figure 1. The nearest 134 

road is University Road (20 m north-west) and the nearest main road is Welford Road (140 m 135 

south-south west). According to traffic counts by the Department for Transport, the traffic 136 

intensity on the Welford Road was about 22600 vehicles/day in 2014 137 

(http://www.dft.gov.uk/traffic-counts, count point 36549). For a detailed overview of the 138 

monitoring sites and the JOAQUIN project, the reader is referred to the final report (Joaquin, 139 

2015). 140 

 141 

2.2 Instrumentation 142 

Table 1 summarizes the availability of monitors for PNC, TNC, eBC, PM2.5 and the gaseous 143 

pollutants at the AURN site. Size-resolved particle number concentrations (PNC; # cm-3) were 144 

obtained using UFP Monitor (UFPM, TSI 3031). PNC were quantified in six size classes (20-145 

30, 30-50, 50-70, 70-100, 100-200 and > 200 nm), using an UFPM (see Table 1). For this study 146 

five channels (20-30, 30-50, 50-70, 70-100, 100-200 nm) were used and the size class (>200 147 

nm) was ignored owing to low number concentrations (Joaquin, 2015). The UFP monitor’s 148 

operation is based on electrical diffusion charging of the particles, size segregation by means 149 

of a DMA, followed by aerosol detection using a Faraday cup electrometer (Hofman et al., 150 

2016; Joaquin, 2015).  The performance of this instrument has been explored against other UFP 151 

measurement system in Hofman et al. (2016). The TNC was measured by a Water-Based 152 

Condensation Particle Counter (W-CPC, TSI Environmental Particle Counter (EPC) model 153 

3783 http://www.tsi.com/environmental-particle-counter-3783). 154 

The TSI instruments (UFP monitor and W-CPC) were connected to an environmental sampling 155 

system (TSI 3031200). The components of the TSI 3031200 are a PM10 inlet, sharp cut PM1 156 

cyclone, flow splitter and Nafion dryer (reduces humidity to less than 50% RH). 157 

 158 

http://www.dft.gov.uk/traffic-counts
http://www.tsi.com/environmental-particle-counter-3783


 
 
 

The mass concentration of equivalent black carbon (eBC) was measured by a Multi-angle 159 

Absorption Photometer (MAAP Thermo Scientific model 5012) for the whole period (Petzold 160 

et al., 2013). The MAAP determines particle light absorption due to the light transmission and 161 

backscattering at two angles of particles collected on the filter tape (glass fibre type GF10). 162 

The eBC mass concentration is calculated using a constant mass absorption cross section of 6.6 163 

g/m2.  164 

Nitrogen oxides were also measured by a Thermo 42i NO-NO2-NOx monitor. This monitor 165 

uses chemiluminescence technology to measure the concentration of nitrogen oxides in the air. 166 

It has a single chamber, single photomultiplier tube design that cycles between the NO and 167 

NOx mode. 168 

Meteorological data (temperature, relative humidity, solar radiation and wind speed and 169 

direction) were provided for 2014 by the Air Quality Group from the Leicester City Council. 170 

The station is located 4.9 km away from the AURN urban background monitoring site, and the 171 

meteorological data for 2015 were measured at the AURN site. 172 

 173 

 174 

2.3 Data processing and analysis 175 

The raw 10 min-data were validated by screening for irregularities and removing data collected 176 

during instrument errors and maintenance periods. All validated data were subsequently 177 

aggregated to 30 min intervals. Data analyses have been carried out using the Open-air software 178 

package (Carslaw, 2015; Carslaw and Ropkins, 2012) using R software (R Core Team, 2015).  179 

 180 
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3. Results and discussion     191 

3.1  Annual Variation 192 

Monthly particle TNC and PNC (five size classes), and other air quality parameters, such as 193 

eBC, NOx, PM2.5, O3, and CO are shown in Figure 2 and Figure S1. Figure 2 shows that higher 194 

values of TNC and PNC (except small sizes, 20-30 nm) were found in the cooler months. The 195 

TNC profiles show a peak in winter (November to January), which might be associated with 196 

factors such as an increase in wood burning for domestic heating (Cordell et al., 2016), reduced 197 

dispersion of local sources and a low mixing height in winter. In addition, TNC shows two 198 

peaks, one in March and the other in June (see Figure 2). This could be related to NPF since 199 

previous studies have demonstrated that NPF occurs in spring and summer at this site (Hama 200 

et al., 2017b; Hofman et al., 2016).  However, PNC (100-200nm) concentrations were observed 201 

to be highest in winter and lowest in summer. The observed seasonal cycle can be linked to the 202 

previously detailed reasons as well as metrological factors (dilution effect,  (see Hama et al., 203 

2017a)) that have a significant impact in seasonal variations. For example, UFP will be 204 

influenced by the temperature dependent volatility of the traffic-generated particles which 205 

produces high particle number concentrations during the cold period (Bigi and Harrison, 2010; 206 

Charron and Harrison, 2003; Hofman et al., 2016; Mishra et al., 2012) coupled to cold period 207 

boundary layer stability. Interestingly, high concentrations of PNC (small sizes, 20-30 nm) 208 

were found during the spring and summer months. In particular, this is clear for the small 209 

particles (20-30 nm) (see Figure 2). The observed increase in spring may be related to NPF 210 

which has been observed at this site (Hama et al., 2017b; Hama et al., 2017a; Hofman et al., 211 

2016).  212 

A summary of the pollutant concentrations at AURN site are given in Table S1. TNC and eBC 213 

concentrations observed were comparable to levels found in other European urban background 214 

sites (Hofman et al., 2016; Keuken et al., 2015; Reche et al., 2011). The mean annual TNC and 215 

eBC concentration were 8022 # cm−3 and 1.45 μg m−3, with a standard deviation of 5514 # 216 

cm−3 and 1.39 μg m−3, respectively.  The annual average PNC for the five size classes were:  i) 217 

1457 # cm-3 (20-30 nm), ii) 1704 # cm-3 (30-50 nm), iii) 1193 # cm-3 (50-70 nm), iv) 1059 # 218 

cm-3 (70-100 nm), v) 980 # cm-3 (100-200 nm). According to these results it can be concluded 219 

that ultrafine particles (particles < 100 nm) were the dominant particle size range. The annual 220 

average levels of the other pollutants as shown in Table S1 are comparable to concentrations 221 

reported in other European urban areas  (Hofman et al., 2016; Pérez et al., 2010 and references 222 



 
 
 

therein; Reche et al., 2011). The annual patterns of NOx, CO, eBC, and PM2.5 are comparable 223 

to one another, with the highest levels occurring in the cold season and the lowest in summer 224 

(see Figure S1). The cold period average concentrations were larger by a factor of 1.5, 1.3, 225 

1.35, and 1.3 with respect to the warm mean value for NOx, CO, eBC, and PM2.5, respectively. 226 

The highest levels of these constituents in the cold season are attributable to emissions from a 227 

variety of sources including traffic and an increase in domestic heating, for example from wood 228 

burning as reported in recent study at this site (Cordell et al., 2016), coupled to reduced 229 

dispersion (Harrison et al., 2012). The annual variations are also modulated by the annual 230 

variations in meteorological, dynamic and synoptic conditions (Barmpadimos et al., 2012; Bigi 231 

and Harrison, 2010; Reche et al., 2011; Ripoll et al., 2014). As would be expected, the O3 232 

annual variation shows a minimum in October and November and a maximum in spring, 233 

especially in May (Monks, 2000). The low O3 levels in autumn and winter are related to lower 234 

temperatures, less solar radiation, and also the chemical titration reaction with NO from the 235 

higher emissions of NOx associated with domestic heating in autumn and winter months 236 

leading to a decrease in O3, as observed in other studies (Lin et al., 2011; Lin et al., 2008).  237 

Finally, it is clear that the measured TNC and PNC (particularly small particles, 20-30nm) in 238 

cold period were similar to warm period (1.1 and 1.01 for TNC, and PNC20-30nm). It can be 239 

concluded that domestic heating and metrological conditions in cold months and NPF in the 240 

warm period have the greatest impact on seasonal variations of particle number concentrations 241 

in Leicester. 242 

 243 

3.2 Weekly and Daily variations 244 

The weekly cycle of TNC and PNC for 2014 at the AURN site are shown in Figure 3 and TNC 245 

for 2015 is shown in Figure S2. TNC average concentrations were slightly lower at the 246 

weekend (7500 # cm-3), than working days (8400 # cm-3) (see Figure 3), indicating that the 247 

pollutant levels were influenced not only by anthropogenic emissions (such as traffic 248 

emissions), but also could be associated with local or regional non-anthropogenic origin 249 

sources. Moreover, PNC size range concentrations showed a weekly cycle (see Figure 3), with 250 

the lowest average levels occurring during weekends and the highest on weekdays, especially 251 

on Mondays. The average concentrations of PNC20-30, PNC30-50, PNC50-70, PNC70-100, and 252 

PNC100-200 for working days are 1516, 1738, 1206, 1068, and 986 # cm-3 and for weekends are 253 

1363, 1664, 1143, 1017, 922 # cm-3, respectively. eBC also showed the highest  mean values 254 



 
 
 

(1.41 µg m-3) on working days (see Figure S2), and lower concentrations (1.1 µg m-3) during 255 

weekends. This is probably related to decreased traffic emissions during weekends. The weekly 256 

cycle of gaseous pollutants (NO, NO2, NOx, CO, O3), and PM2.5, concentrations at AURN site 257 

are shown in Figure S2 . All pollutants, except ozone, showed a similar pattern with a minimum 258 

at weekends, especially on Sundays. However, on Sundays O3 concentrations peaked, due to 259 

the so-called O3 weekend effect (Larsen et al., 2003). The observed behaviour is consistent 260 

with previous studies (Bigi and Harrison, 2010; Pérez et al., 2010; Ripoll et al., 2014; Yoo et 261 

al., 2015).  262 

The eBC diurnal patterns are shown in Figure 4. eBC shows the same profile as the traffic-263 

related gaseous pollutants in the morning owing to the morning rush hour (high traffic, low 264 

wind speed), but conversely to the gaseous pattern, the eBC concentrations decreased sharply 265 

after the morning rush hour until increasing again during evening rush hour. This might be 266 

associated to decreased traffic volume, increased wind speed (high dilution at midday), and 267 

increased mixing height. Similar results were found in other European urban background sites 268 

(Annual Report for the UK Black Carbon Network, 2014; Dall'Osto et al., 2013; Hofman et al., 269 

2016; Pérez et al., 2010; Reche et al., 2011; Rodríguez et al., 2008). The variation of the eBC 270 

in warmer months (May-Sep), however, shows a weaker diurnal pattern, with a stronger diurnal 271 

variation being observed during the cold period most likely caused by the synoptic condition, 272 

and may relate to the larger domestic heating emissions during the evening (Allan et al., 2010; 273 

Cordell et al., 2016) coupled to greater atmospheric stability.  274 

The daily variation of TNC was similar to that of eBC, suggesting it is also highly influenced 275 

by traffic emissions. The profiles matched well during the cold period, however, during the 276 

summer season the TNC peaks, showing especially a second peak that corresponds to the 277 

evening rush hour. This rush hour peak became less obvious or later in the colder months. 278 

These observations can be explained by comparison to the patterns observed in eBC 279 

concentration: during the night the TNC decreased owing to the low traffic volumes, which 280 

when combined with the decrease of the boundary layer height, favours lower ultrafine 281 

particles numbers owing to the condensation and coagulation processes (Minoura and 282 

Takekawa, 2005; Pérez et al., 2010). Interestingly, during the warm period another TNC peak 283 

was observed at noon (see Figure 4) which did not follow the eBC pattern. It can be concluded 284 

that the TNC peak cannot be from primary particle emissions from traffic. This extra TNC peak 285 

can be attributed to NPF resulting from photochemical nucleation reactions from gaseous 286 

precursors (Hama et al., 2017b; Hofman et al., 2016). The observed midday peak coincides 287 



 
 
 

with higher solar radiation, an increase in wind speed (not shown) and the growth of the mixing 288 

layer (Rodríguez et al., 2007). The detail of primary and secondary sources of TNC will be 289 

discussed in the section 3.3 and 3.4.  290 

The daily cycle of PNC (five size bins) showed a similar variation to the traffic related 291 

pollutants such as eBC and TNC as shown in Figure 5. During the cold period, the diurnal 292 

variation of PNC (mostly UFPs) had two peaks which followed the morning and afternoon 293 

traffic rush hours. However, like the other parameters measured during warm period the daily 294 

cycle was weaker and the evening peak was not clearly observed. There is a notable difference 295 

in the diurnal cycles of PNC20-30 (red line) during the warm season. PNC20-30 shows another 296 

peak at midday, as recorded for the TNC. Those particles can be attributed as the small particles 297 

from NPF (Hama et al., 2017b).  298 

Levels of the gaseous pollutants (NO, NO2, NOx, O3), monitored at the AURN site were 299 

predominantly influenced by vehicle traffic emission, evolution of the mixing layer, and 300 

meteorological conditions. Figure S3 shows the diurnal patterns of the atmospheric gaseous 301 

pollutants (NO, NO2, NOx, and O3) for the year 2015. It can be seen all the gaseous pollutant 302 

peaks (except O3) followed the diurnal variation of vehicular traffic emissions, with increasing 303 

levels of the gaseous pollutants measured in the morning rush hour (high traffic intensity, poor 304 

dispersion), which then decreased during the day, owing to atmospheric dilution effects, before 305 

increasing once more in the evening rush hour. Finally, it can be concluded that particle number 306 

concentrations are influenced by primary and secondary sources in Leicester (see Section 3.3 307 

for more detail). 308 

 309 

3.3  Exploring the Relationship between total particle number and 310 

black carbon concentrations  311 

Traffic emissions in the urban environment in Europe tend to drive the correlation between 312 

TNC and eBC (Fernández-Camacho et al., 2010; Pérez et al., 2010; Reche et al., 2011; 313 

Rodríguez and Cuevas, 2007; Rodríguez et al., 2007). The correlation between TNC and eBC 314 

has been analysed at the Leicester AURN site using the methodology described by Rodríguez 315 

and Cuevas (2007). The correlation between TNC and eBC for four different time periods of 316 

the day (07:00-09:00, 11:00-14:00, 17:00-20:00, and 00:00-04:00) is shown in Figure 6. The 317 

selection of these time ranges are based upon the diurnal variations of TNC and eBC, which 318 

are mostly governed by traffic emissions and atmospheric dynamics in the Leicester urban 319 



 
 
 

environment. At any time of the day, the TNC versus eBC scatter plots clearly showed two 320 

defined linear cut-offs with slopes S1 and S2, representing the minimum and maximum 321 

TNC/eBC ratios, respectively (see Figure 6). S1 represents the minimum TNC/eBC ratio, 322 

which is interpreted as representative of the primary particles, mostly from vehicle exhaust 323 

emissions. S2 is the maximum TNC/eBC ratio (see Figure S4), which is interpreted as arising 324 

predominately from secondary particles, mainly from NPF during the dilution and cooling of 325 

the vehicle exhaust emissions in the urban environment (Rodríguez and Cuevas, 2007). Table 326 

2 shows the values of slopes S1 and S2 found at different times of the day. During the morning 327 

rush hours (07:00-09:00), when the NOx peaks, owing to vehicle exhaust emissions, values of 328 

S1= 2.53×106 particles /ng eBC, and S2= 2.85×106 particles /ng eBC were obtained. The 329 

S1value found at the AURN site (see Table 3) was higher than values found in Hyytiälä and 330 

Nanjing. It is comparable to values found in some cities (London, Lugano, and Bern). However, 331 

the S1 value is lower than values obtained in Milan, Huelva, Santa Cruz de Tenerife, and 332 

Barcelona (see Table 3). It should be noted that the greater values of S1 in earlier studies were 333 

influenced by the selection of the CPC model used, as the higher the cut size of the CPC 334 

monitor the lower the N/BC ratio (Reche et al., 2011). Another variable is the distance of the 335 

sites from fresh traffic emissions. In addition, the size of the eBC cores might be smaller than 336 

that from regular from traffic emissions. This behaviour is observed when points occur below 337 

the line S1 as shown in Figure 6. The size of eBC is generally smaller from fresh traffic 338 

emissions compared with that from other primary particle sources (Bond et al., 2013). A small 339 

size of the eBC core in primary particle sources is likely to increase the S1 value (Kulmala et 340 

al., 2016). The diameter of eBC core can be found by application of Eq.1 assuming that the 341 

core is spherical:  342 

 343 

                                     DP = �6 (πS1ρ)� �
1
3�                      (1) 344 

 345 

Where 𝞺𝞺 is the core density. The density of non-volatile components of diesel soot is about 346 

1.7-1.8 gcm-3 (Park et al., 2004, Zhang et al., 2008). By using the core density and the value of 347 

S1 (07:00-09:00) in Table 2, the diameter of the eBC core was found to be in the range of 75-348 

96 nm at the AURN site. This result indicates that eBC and UFP are co-emitted by the vehicle 349 

fleet and they show a high degree of correlation. This shows that eBC and UFP are externally 350 



 
 
 

well mixed at this site in Leicester. This result is consistent with the general knowledge 351 

regarding eBC particle size at urban background sites (Schwarz et al., 2008). Finally, it can be 352 

concluded that the value of S1 may depend on the size of the eBC emitted by vehicular exhaust 353 

during this study at AURN site.  354 

 355 

3.4  Segregating the components contributing to UFPs 356 

By using the methodology described by Rodríguez and Cuevas (2007), the TNC measured at 357 

AURN site was segregated into two components, in order to identify the sources and processes 358 

influencing the particle number concentrations.  359 

 360 

                                       N1 = S1. eBC                               (2) 361 

 362 

                                       N2 = TNC − N1                          (3) 363 

 364 

Where, S1= 2.53×106 particles/ng eBC (see Table 2). N1 is the minimum primary emission of 365 

vehicle exhaust which includes “those components directly emitted in the particle phase” and 366 

“those compounds nucleating immediately after the vehicle exhaust emission” (Rodríguez and 367 

Cuevas, 2007). Component N2 represents the secondary particles formed in ambient air by 368 

nucleation, impact of atmosphere conditions on the ultrafine particle formation during the 369 

dilution and cooling of the vehicle exhaust emissions and other sources different from vehicle 370 

exhaust which contribute to TNC. 371 

These interpretations of source function are supported by the data as shown in Figure 7 and 372 

Figure 8. Figure 7 shows half-hourly average values of N1 and N2 with NOx, O3 and wind 373 

speed for every day of the week. The weekly evolution of N1 and N2 present two different 374 

patterns (Figure 7a). The N1 profile follows the NOx profile, with the maximum percentage of 375 

N1 during morning and evening rush hours on working days, when ultrafine particles are 376 

mainly associated with vehicle exhaust emissions, 49%, and 46%, respectively (Figure 7b and 377 

Table 4).  However, the N2 pattern follows the O3 daily evolution and wind speed (Figure 7c, 378 

with the maximum at midday (N2= 62%, Table 4). The daily pattern of N2 is significantly 379 

different from that of N1, as shown in Figure 7a, and also from the PM2.5 diurnal variation (see 380 



 
 
 

Figure S5). This behaviour of N2 might be linked to the NPF events at midday at AURN site 381 

(Hama et al., 2017b; Hofman et al., 2016). Moreover, the similar pattern of N2 and temperature 382 

(Figure 8a) may suggest an active role for the oxidation products of any VOCs. Furthermore, 383 

Figure 8b shows an inverse correlation between N2 and RH which supports that the NPF 384 

processes at midday occur at a lower RH. Generally, the percentage of N2 (57%) was greater 385 

than the percentage of N1 (43%) for all days at the AURN site for the whole study. The high 386 

percentage of N2 could be related to the primary sources from non-traffic emissions such as 387 

domestic heating (Cordell et al., 2016) and resuspension and biogenic and VOCs emissions in 388 

Leicester. Previous studies have reported that the high N2 is caused by the combination of high 389 

solar radiation and dilution of pollutants when the boundary layer increases, as well as SO2 390 

concentrations (not measured at AURN site) (Reche et al., 2011). Overall, this study 391 

demonstrated that secondary particle formation is the main contributor to particle number 392 

concentration in Leicester.  393 

 394 

3.5  Dependency on wind speed and direction 395 

The relationship between traffic-related pollutants (TNC, eBC, NOx) and wind conditions is 396 

shown in Figure 9(a-f). The plots show that concentrations of the three parameters were 397 

dominated by north and south-westerly wind directions. The bivariate polar plots (Figure 9a, 398 

c, and e) show how the parameters varied by wind direction and speed at AURN site. These 399 

plots are very useful for identifying and determining sources and direction of the pollutants 400 

(Carslaw and Ropkins, 2012). For TNC, Figure 9a shows that there is evidence of increasing 401 

TNC when the wind speed increases from the west, north-west, and south-west. Higher TNC 402 

was found at low wind speed (<2 m s-1) owing to local sources, mainly traffic emissions. In 403 

addition, at high wind speed (5-10 m s-1) high TNC was also found mostly from the north-west 404 

which indicates a potential contributor to TNC that may be East Midlands Airport (located ca. 405 

27 km north-west of AURN site). This behaviour has been observed in other European studies 406 

(Hofman et al., 2016; Keuken et al., 2015).  In the case of eBC, Figure 9c shows a similar 407 

pattern to TNC. The prevailing wind directions were from the north and north-west. The major 408 

eBC contribution came from these N-NW directions independent of wind speed. In addition, 409 

high eBC concentrations where categorised at high wind speed (10-12 m s-1) when the wind 410 

was blowing from the north-east.  For NOx, Figure 9e shows that the highest concentrations 411 

are associated with winds from north-west and south-west, at lower speeds (<2 m s-1) and also 412 



 
 
 

at higher wind speeds (4-8 m s-1). The most probable source of NOx is the vehicle exhaust 413 

emissions at this site. The highest concentrations of TNC, eBC, and NOx were observed with 414 

north and south-westerly winds and were mostly associated with the lower wind speeds (< 10m 415 

s-1). These observations support the outlook that urban background of these pollutant 416 

concentrations is dominated by local sources, rather than regional sources. The polar annulus 417 

plots for TNC, eBC, and NOx are presented in Figure 9b, d and f, respectively. The patterns 418 

for the three parameters are consistent with a main traffic contribution from the nearby roads 419 

(University Road and Welford Road), with the maximum concentrations occurring during 420 

morning and evening rush hours. These roads are located at around 50-140 m to the north and 421 

south west of AURN site (see section 2.1). Moreover, it is interesting to note that in Figure 9b 422 

(for TNC) the highest concentrations occurred around noon linked to the NPF at AURN site 423 

(described in detail in section 3.1).  To confirm this behaviour, the relationship between N1 424 

and N2 and wind conditions are presented in Figure 10 (a-b). Figure 10a shows the highest N1 425 

concentrations occur with winds from north-west. In addition, it can be seen high N2 426 

concentrations of N1 are observed during morning and evening rush hours (see Figure 10b). 427 

This behaviour indicates that N1 is affected by primary sources such as traffic emissions. In 428 

the case of N2 (Figure 10c and d) a different pattern in terms of wind direction and time of the 429 

day is observed: high N2 concentrations were found with the wind blowing from the south-430 

west (see Figure 10c). Interestingly, Figure 10d shows high N2 concentrations occuring around 431 

noon, correlating with the behaviour of TNC (Figure 9b) and could be related to NPF events at 432 

the AURN site. Lastly, it can be concluded that wind conditions have a significant impact on 433 

N1, and N2 at the AURN site. Furthermore, the effect of differing wind conditions on N1 and 434 

N2 also revealed that they are influenced by different sources in the Leicester urban area. 435 

The relationships between the TNC, eBC, and NOx with wind speed have also been analysed 436 

(not shown) and show that the highest concentrations of the parameters are observed at low 437 

wind speed (< 5 m s-1). This is a typical behaviour of urban background site and is comparable 438 

with other European studies (Charron and Harrison, 2003; Pérez et al., 2010; Voigtländer et 439 

al., 2006; von Bismarck-Osten et al., 2013; Weber et al., 2013; Wehner and Wiedensohler, 440 

2003). 441 

 442 

 443 

 444 



 
 
 

 445 

 446 

4. Conclusions 447 

This study shows the results of long-term measurements (2014-2015) and interpretation of the 448 

variability of TNC, PNC, PM2.5, eBC, and the gaseous pollutants at the AURN urban 449 

background site in Leicester. The results demonstrate that the temporal variations of TNC are 450 

not always solely caused by road traffic emissions, whereas eBC concentrations closely follow 451 

other road traffic related pollutants, such as NOx. The contributions of primary and secondary 452 

particle sources to the TNC were identified using the eBC concentration as a tracer for primary 453 

particles. By using the minimum slope found in the TNC versus eBC plot (2.53×106 454 

particles/ng eBC), TNC was segregated into two components, TNC = N1 + N2. The highest 455 

N1 (49%) were recorded during the morning rush hours (07:00-09:00 h), when maximum NOx 456 

levels were recorded. Component N2 shows a profile well differentiated from that of N1 and 457 

is associated to those processes leading to increase the TNC/BC ratio, i.e. enhancement in NPF 458 

rates owing to increased nucleation and/or growth rates to limit sizes (≥ 7 nm in our case). The 459 

maximum contribution of N2 to TNC was found around midday (11:00-14:00), where it was 460 

about 62%, when low eBC and high O3 levels were recorded. Moreover, the majority of 461 

particles were expected to be of secondary origin.  The impact of wind speed and direction also 462 

show different sources of N1 and N2. According to the bivariate polar plots, high N2 463 

concentrations were found around noon. Finally, this long-term study has shown that primary 464 

and secondary sources of UFPs at one urban background site in UK.  465 
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Table 1: Air quality instrumentation at Leicester AURN site during the sampling period. 722 

 723 

 724 

 725 

Table 2: Values of the slopes S1 and S2 found at AURN site. S1 and S2 are expressed as 106 726 

particles/ng eBC (for definitions see text). 727 

 728 

 729 

 730 

 731 

 732 

 733 

 734 

 735 

Air quality parameters Monitors 

 PNC (six size bins) UFP Monitor TSI 3031 (~20-200nm) 

TNC WCPC TSI Model 3783 (7-1000nm) 

NO, NO2, NOX  Teledyne API Model T200 Chemiluminescence 

NO/NO2/NOX Analyzer 

eBC  MAAP (Thermo Scientific 5012) with PM2.5 inlet 

PM2.5  TEOM-FDMS  

CO  Teledyne API Model T300U  Trace-level Gas Filter 

Correlation CO Analyzer (IR Absorption) 

O3  UV absorption 

  

Time of the day 
 

S1 S2 

All day 00.00-23:00 h 2.25 28.60 

Night 00:00-04:00 h 2.16 32.05 

Morning 07:00-09:00 h 2.53 18.15 

Midday 11:00-14:00 h 2.85 36.4 

Evening 17:00-20:00 h 2.75 24.35 



 
 
 

Table 3: Summary of S1 and S2 values found during rush hours in previous studies and this 736 

study. 737 

Location 
S1 (×106) 

(particles /ng eBC) 

S2 (×106) 

(particles /ng eBC) 
Study 

Milan 4.75 47 Rodriguez and Cuevas, 2007 

Huelva 6.9 148 Fernández-Camacho et al., 2010 

Santa Cruse de Tenerife 7.9 30.3 González et al., 2011 

London 2.9 6.3 Reche et al., 2011 

Lugano 3.1 20.9 Reche et al., 2011 

Bern 3.6 18.9 Reche et al., 2011 

Barcelona 5.1 24.5 Reche et al., 2011 

Hyytiälä 1.28 - Kulmala et al., 2016 

Nanjing 1.67 - Kulmala et al., 2016 

Leicester 2.53 18.15 This study 

 738 

Table 4: Total mean percentage of N1 and N2 for daily and midday-afternoon at the AURN 739 

site (2014-2015). 740 

 741 

 742 

Time of the day  N1% N2% 

All day 00.00-23:00 h 43 57 

Night 00:00-04:00 h 39 61 

Morning 07:00-09:00 h 49 51 

Midday 11:00-14:00 h 38 62 

Evening 17:00-20:00 h 46 54 
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 745 

 746 

Figure 1: Leicester and location of the sampling site (denoted AURN) 



 
 
 

 747 

Figure 2: Monthly variations in the median, 25/75th and 5/95th quantile values for PNC size classes, and TNC for 

2014 at AURN site. 



 
 
 

 748 

Figure 3: Daily variations in the median, 25/75th and 5/95th quantile values for PNC size classes, and TNC for 2014 

at the AURN site. 
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Figure 4: : Diurnal variations of eBC, and TNC concentrations for each month in 2015. 
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Figure 5: Diurnal variations of different size channel of PNC for each month in 2014. 
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Figure 6: Half-hourly mean values of TNC versus eBC concentrations at different times of the day in Leicester.  S1 

(106 particles per ng eBC). 
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Hour (Local time) 

a) 

b) 

c) 

Figure 7: Half-hourly mean values of N1, N2, the gaseous pollutants (NOx, O3, µg m-3) concentrations 

and the wind speed (m s-1) for every day of the week. 
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 785 

Hour (Local time) 

a) 

b) 

Figure 8: Half-hourly mean values of N2 (cm-3), the temperature (T, oC) and the relative humidity (RH, 

%) for every day of the week. 
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a) b) 

c) d) 

e) f) 

Figure 9: Bivariate polar plots of a) TNC, c) eBC, and e) NOx concentrations, respectively at the AURN site. The 

centre of each plot represents a wind speed of zero, which increases radially outward. The concentrations are shown 

by the colour scale. Polar annulus plots of b) TNC, d) eBC, and f) NOx concentrations, respectively at the AURN 

site. Inside of circle is 00:00-01:00 h running through the day to 23:00-24:00. 
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 788 

a) b) 

c) d) 

Figure 10: Bivariate polar plots of a) N1, and c) N2, concentrations, respectively at the AURN site. The centre of 

each plot represents a wind speed of zero, which increases radially outward. The concentrations are shown by the 

colour scale. Polar annulus plots of b) N1, and d) N2, concentrations, respectively at the AURN site. Inside of circle 

is 00:00-01:00 h running through the day to 23:00-24:00. 
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