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Smelting condition identification for a fused magnesium furnace based on an 1 

acoustic signal 2 

Abstract 3 

To promote energy efficiency during fused magnesium furnace smelting, four 4 

smelting states were introduced in the smelting stage: an unmelted state, semi–molten 5 

state, molten state, and overheating state. A smelting identification system to 6 

distinguish these smelting states was developed through the use of linear predictive 7 

coding and a principal component analysis algorithm. A new smelting condition 8 

identification system was obtained. Corresponding pilot productions were conducted 9 

to compare the differences between employing the method and not employing the 10 

method. All of the pilot production data showed that feeding raw materials over time 11 

during the overheating state and decreasing current injection in the molten state could 12 

reduce energy consumption as well as increase crystal purity. 13 

Keywords:  14 

Acoustic signal; Fused magnesium furnace; Linear predictive coding; Principal 15 

component analysis. 16 

1. Introduction  17 

Fused magnesia is an essential material that has been widely used in many 18 
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industries, such as the chemical industry, metallurgical industry, electric apparatus 1 

industry, and aerospace industry. High-purity fused magnesia is mainly produced by 2 

the unique three phase ac fused magnesium furnace (FMF). Fig. 1 shows a schematic 3 

diagram of FMF. It is well known that FMF smelts ore at a high temperature produced 4 

by arcs. However, loud noises are often produced, which are caused by the strong 5 

vibration of arcs inside the FMF. Moreover, the acoustic signal from these arcs 6 

contains a wealth of information regarding the FMF smelting condition. If analyzed 7 

properly, the acoustic signal can be used as a significant parameter to construct the 8 

next generation FMF intelligent control system. Drouet and Nadeau (1982) 9 

investigated the power of the arcs and time integral of the acoustic signal using an 10 

oscilloscope and demonstrated their remarkable correspondence. Lv et al. (2013) 11 

investigated the correlation between the arc sound signal and arc length by analyzing 12 

the characteristics of the arc sound during the welding process. Fu et al. (2015) found 13 

that the arc noise intensity of each characteristic frequency shows different 14 

distributions in different operation states of the FMF. Matschullat et al. (2012) 15 

proposed a sound-based control methodology for smelting and foaming slag. In recent 16 

years, the linear predictive coding (LPC) method and principal component analysis 17 

(PCA) have been widely used for acoustic signal recognition. Mohammed et al. 18 

(2012) used the LPC method in the identification of spoken language. Xie et al. (2012) 19 

applied PCA to reconstruct the power spectra of acoustic signals. 20 
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 1 

In general, the smelting process of FMF can be divided into 3 stages: the starting 2 

stage, smelting stage, and ending stage. The smelting stage consumes more than 3 

ninety percent of the total electric energy in the FMF smelting process. Obviously, it 4 

is the most significant stage in throughout FMF smelting. In this stage, raw materials 5 

are dumped into the FMF every ten to fifteen minutes by stove workers. The raw 6 

material feeding moment has an enormous influence on the production efficiency. The 7 

materials cannot be melted completely if the raw materials are added into the FMF too 8 

early. Conversely, the materials would be overheated and high temperature melts 9 

would spurt out of the furnace if raw materials were added to the FMF too late. 10 

During the last decade, numerous FMF control systems have been created by 11 

Northeastern University, China. Wu et al. (2008) proposed an intelligent optimal 12 

control strategy using case-based reasoning for fused magnesia production. Wu et al. 13 

(2009) proposed a control method for the FMF smelting process based on rules 14 

 

Fig. 1.  Schematic diagram of a fused magnesia furnace. 
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acquired from operational experience. Wu et al. (2011) applied a neural network 1 

controller in a magnesium plant to reduce energy consumption. Wu et al. (2012) 2 

developed an intelligent operation control system by combing rule-based reasoning 3 

and switching control methodology. Wu et al. (2015) presented a data-driven 4 

identification and self-healing control system to address the abnormal conditions of 5 

the FMF smelting process. Three-phase voltages and currents are the main parameters 6 

of the FMF control system. Arcs are submerged under materials during the FMF 7 

smelting stage. The arc current and arc voltage cannot be measured directly. The 8 

complicated interactions between the arcs and materials cannot be described by the 9 

three phase voltages and currents. The main function of the FMF control system 10 

during the smelting stage is to passively adjust the height of the three electrodes to 11 

maintain the balance of the three phase currents. The smelting conditions of the 12 

materials cannot be identified automatically. Stove workers must determine when to 13 

feed raw materials into the furnace according to their experience. The smelting stage 14 

usually lasts eight to nine hours, and the stove workers must feed tons of raw 15 

materials every ten to fifteen minutes. Consequently, manual feeding brings a number 16 

of uncertain factors into the production of fused magnesia. A smelting condition 17 

identification system must be developed for the fused magnesia production line to 18 

realize automatic feeding of FMF.  19 

In this investigation, an FMF smelting condition identification method based on 20 

the acoustical signal of arcs was proposed to improve the production efficiency of 21 
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fused magnesia. A significant characteristic of this method was that a sound track 1 

model of arcs was introduced to distinguish different smelting conditions during the 2 

FMF smelting stage. First, some vectors, which represent different smelting 3 

conditions, were extracted from the arc sound using linear predictive coding (LPC). 4 

Next, through PCA, the dimensions of these vectors were reduced. Subsequently, a 5 

status map of the arc sound signal was constructed to distinguish different FMF 6 

smelting conditions. Thus, an online FMF smelting condition identification system 7 

based on both LabVIEW and Matlab was developed. The proposed FMF smelting 8 

condition identification system can replace stove workers to determine when to feed 9 

raw materials into FMF during the smelting stage. Pilot production proved that 10 

arranging the feeding time properly with the proposed smelting condition 11 

identification method can both reduce the energy consumption per ton and promote 12 

the purity of MgO crystals. 13 

2. Sound track model of arcs 14 

The evidence from high-speed photographic studies proved that arcs exist 15 

between the graphite electrodes and molten materials during the smelting stage 16 

(Reynolds, 2011). The axial temperature produced by the arcs in the EAF is typically 17 

over 10 000 °C, thus causing the air around the arcs to ionize at high temperature 18 

(Zweben, 2002). Molecules are ionized into positive ions and electrons. Through the 19 

electric field, positive ions converge into ion flow, whereas the electrons converge 20 
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into electron flow. The arc is a type of plasma composed of neutral particles, positive 1 

ions, and electrons. The flow of plasma induces vibration of the surrounding medium. 2 

Thus, the vibration propagates in the form of sound waves both in and out of the FMF. 3 

As a result, it is envisaged that the whole FMF could be equivalent to a resonant 4 

cavity. The reciprocity between the arcs and the raw materials changes the arc length. 5 

Meanwhile, the characteristics of the arc track in the FMF change under different 6 

smelting conditions. Different smelting conditions of the FMF can be distinguished 7 

according to the characteristics of the arc sound track. Bi et al. (2011) considered the 8 

arc sound track as a distributed system and adopted an auto regression model to 9 

estimate the arc sound track: 10 

1

( )
( )

( )
1

P
k

k

k

s z G
H z

u z
a z



 


                       (1) 11 

where H(z) is the transfer function of a certain smelting condition, s(z) is the Z 12 

transformation of s(n), s(n) is the acoustic output signal sequence of FMF arc sound, 13 

u(z) is the Z transformation of u(n), u(n) is the excitation source of s(n), G is the gain 14 

factor, p is the order number of the full pole model, and a
k
 is the parameter of the 15 

model; each smelting condition corresponds to a certain set of parameters. If the order 16 

number of the model p and parameter a
k
 of each smelting conditions are known, then 17 

the computer can distinguish between different FMF smelting conditions instead of 18 

stove workers. 19 
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3. FMF sound track parameters estimation 1 

The parameters of the FMF sound track model were estimated using the LPC 2 

method. The calculation progress of LPC can be summarized in the following steps. 3 

First, the difference equation between s(n) and u(n) is induced according to 4 

equation (1): 5 

1

( ) ( ) ( )
p

k

k

s n a s n k Gu n


                     (2) 6 

Second, a predictor is defined as follows: 7 

1

ˆ( ) ( )
p

k

k

s n a s n k


                          (3) 8 

Third, the forecast error is calculated using the following formula: 9 

1

ˆ( ) ( ) ( ) ( ) ( )
p

k

k

e n s n s n s n a s n k


                   (4) 10 

To ensure the channel model describes the arc sound as precisely as possible, 11 

the mean square error of the forecast error should reach its minimum. Thus, the 12 

energy of the average forecast error is defined by the following formula: 13 

2 2 2

1

ˆ( ) [ ( ) ( )] [ ( ) ( )]
p

k

n n n k

E e n s n s n s n a s n k


               (5) 14 

To ensure E reaches its minimum, each parameter a
k
 should satisfy the following 15 

equation: 16 

1

2 ( ) ( ) 2 ( ) ( ) 0
p

k

n k nj

E
s n s n j a s n k s n j

a 


     


           (6) 17 

Next, a set of linear prediction equations was obtained: 18 
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1

( ) ( ) ( ) ( )      (1 )
p

k

n k n

s n s n j a s n k s n j j p


              (7) 1 

Further, a new operator Φ( j, k) is constructed for the convenience of calculation: 2 

( , ) ( ) ( )
n

Φ j k s n j s n k                         (8) 
3 

The linear prediction equations (7) can be represented as follows: 4 

1

( , ) ( ,0)      (1 )
p

j

k

a Φ j k Φ j j p


                      (9) 5 

Next, an autocorrelation function r( j) is defined as: 6 

( ) ( ) ( )
n

r j s n s n j                        (10) 
7 

It can be proved that the relationship between Φ( j, k) and r( j) is as follows: 8 

( , ) ( , ) ( )Φ j k Φ k j r j k                     (11) 9 

Thus, equation (9) can be represented as follows: 10 

1
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3
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     (12) 11 

The matrix on the left side of the equation (12) is named the correlation function 12 

matrix. In addition, it can be observed that the symmetric axis of this matrix is its 13 

primary diagonal. All of the elements on the primary diagonal are equal. All of the 14 

elements on any oblique stroke that are parallel to the primary diagonal are equal. 15 

This type of matrix is called a Toeplitz matrix. Equation (12) is called the Yule-Walker 16 

equation. To avoid a large number of calculations, the Levinson-Durbin recursive 17 

algorithm was used to obtain the coefficients a
1
, a

2
, …, a

p
. 18 
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The acoustic signal of FMF changes with time. LPC analysis of the signal is a 1 

short-time analysis. Computers cannot process infinite amounts of signal. Hence, it is 2 

necessary to use a window function to extract a set of data from the original acoustic 3 

signal. The rectangular window often causes frequency leakage, whereas, the 4 

Hamming window has a high frequency resolution and good performance for the arc 5 

sound frequency and can reduce the frequency leakage. The signal was windowed 6 

before the coefficients were solved. 7 

( ) ( ) ( )ws n s n w n                        (13) 8 

where w(n) is a window function and s
w
(n) is the windowed signal of s(n). 9 

4. Experimental setup 10 

The experimental setup of the FMF smelting condition identification system is 11 

shown in Fig. 2; the system included a microphone, tripod, SMB–BNC cable, 12 

dynamic signal acquisition module, lithium battery, Ethernet chassis, network cable, 13 

and industrial personal computer. The microphone was G.R.A.S. 40PH free field array 14 

microphone, which was fixed on a tripod with telescopic legs. The SMB–BNC cable 15 

connected the microphone and the dynamic signal acquisition module. The dynamic 16 

signal acquisition module that was used to perform the high accuracy audio frequency 17 

measurements was a NI 9234. The resolution of the module was 24 bits. The module 18 

was plugged into an Ethernet chassis (NI 9181). For the convenience of measurement 19 

in the smelting site, a 50 000 mAh lithium battery was used as the power supply of the 20 
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Ethernet chassis. A network cable was used to connect the Ethernet chassis and an 1 

industrial personal computer. Both FMF sound signal acquisition and sound track 2 

parameter estimation were realized with LabVIEW graphic coding. The industrial 3 

personal computer sent control instructions to the operating board of the FMF via a 4 

serial port. 5 

 6 

The position of the FMF sound measurement point is shown in Fig. 3. The 7 

microphone and tripod were placed at the measurement point. The telescopic legs of 8 

the tripod were adjusted to set the microphone 2 m above the furnace bottom. The 9 

FMF sound signal acquired at the measurement point in Fig. 3 contains the sound 10 

emitted from both the furnace top and furnace shell. Moreover, the FMF sound signal 11 

at that point could not be masked by the noise from the transformer (Haering et al, 12 

1979). In the present work, the newly built FMF with the power of 5 000 kVA was 13 

taken as the research object. The detail dimension of the FMF is shown in Table 1.  14 

Microphone

Tripod

Dynamic signal 

acquisition module

Ethernet chassis

Serial port 

Network cable

SMB-BNC

 cable

Industrial personal 

computer

Front panel

Lithium battery

 

Fig. 2.  Experimental setup for the FMF smelting condition identification system. 
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 1 

 2 

5. Experiments and analysis 3 

5.1 LPC waveform reconstruction 4 

According to the time–frequency characteristics of the FMF arc sound (Fu et al., 5 

2015), the pitch period of the FMF sound was identified to be 10 ms. In addition, the 6 

frame length was 24 ms, and the sample points of each frame was 1200. Next, a frame 7 

of FMF sound in the smelting stage was acquired. Afterwards, the acquired acoustic 8 

signal was multiplied by the Hamming window. Specifically, the Hamming window 9 

was implemented using a subroutine module in the LabVIEW Functions Tab. Next, 10 

Table 1  Dimensions of the fused magnesium furnace. 

Items Dimension (mm) 

Electrode diameter 350 

Diatance between electrodes 880 

Electrode operating depth 2 000 

Furnace shell diameter 2 500 

Furnace shell height 2 000 

 

Transformer
45°

5 m

Measurement point

Furnace shellWater-cooled bus Conductive arm

 

Fig. 3.  The position of the FMF sound measurement point. 
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the Levinson-Durbin recursive algorithm was adopted to obtain the coefficients a
1
, 1 

a
2
, …, a

p
. It is well known that higher a LPC order number leads to higher prediction 2 

accuracy. The calculation amount increases with the order number. In practical 3 

engineering application, a small order number can be used in the calculation as long 4 

as the mean forecast error meets the requirement. Bi et al. (2011) used a 10-order LPC 5 

model to estimate the arc sound track in metal inert gas welding and obtained 6 

satisfactory results. In this investigation, a 10-order LPC model was used to 7 

reconstruct the FMF sound signal. The LPC function in Matlab was used to calculate 8 

the LPC coefficients and to reconstruct the waveform. The LPC reconstructed 9 

waveform of a frame FMF sound signal during the smelting stage is illustrated in Fig. 10 

4. One can observe that the reconstructed signal waveform was consistent with the 11 

windowed signal waveform. Moreover, the relative tolerance of the reconstructed 12 

signal was generally smaller than 5%. Ten-order LPC analysis is found to be a 13 

reasonable estimate for the FMF sound track. 14 
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 1 

5.2 Feature vectors extract  2 

Four-thousand frames of the acoustic signals under four different smelting 3 

conditions were acquired, and the feature vectors of each frame was obtained using 4 

the following steps: 5 

(1) Record both the acoustic signal and smelting conditions in the FMF smelting 6 

stage of a smelting process. 7 

(2) Extract 100 frames of the acoustic signal from each smelting condition, with 8 

each frame consisting of 1200 sample points. 9 

(3) Filter each frame using the Hamming window. 10 

(4) Calculate the LPC parameters using Matlab. 11 

(5) Calculate the average LPC parameters value of each smelting condition. 12 

(6) Repeat Step (1) to Step (5) 10 times and obtain 10 sets of LPC parameters for 13 

each smelting condition. 14 

 

Fig. 4.  LPC reconstructed waveform of the FMF sound 

signal. 
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(7) Calculate the average LPC parameters value of each smelting condition in 1 

Step (6). 2 

The average value of the 10-order LPC parameters of each smelting condition 3 

are listed in Table 2. The LPC parameters of the FMF sound track model were used to 4 

develop the smelting condition feature vector during the smelting stage, (a
1
, a

2
, …, 5 

a
10

). 6 

 7 

The following 10D smelting condition feature vectors were used to predict the 8 

unmelted state, semi–molten state, molten state, and overheating state: 9 

1 ( 1.057,0.398, 0.391,0.504, 0.263,0.227, 0.035,0.195, 0.218,0.071)TA       (14) 10 

2 ( 1.317,0.649, 0.436,0.345, 0.238,0.276,0.050, 0.142,0.086, 0.046)TA       (15) 11 

3 ( 1.355,1.093, 0.826,0.728, 0.366,0.610, 0.462,0.081, 0.061,0.111)TA       (16) 12 

4 ( 0.864,0.371, 0.368,0.236, 0.184,0.182, 0.049,0.077, 0.073,0.024)TA       (17) 13 

Table 2  Average LPC parameters in diffenrent smelting states. 

State Unmelted  Semi–molten  Molten  Overheating  

a
1
 −1.057 −1.317 −1.355 −0.864 

a
2
 0.398 0.649 1.093 0.371 

a
3
 −0.391 −0.436 −0.826 −0.368 

a
4
 0.504 0.345 0.728 0.236 

a
5
 −0.263 −0.238 −0.366 −0.184 

a
6
 0.227 0.276 0.610 0.182 

a
7
 −0.035 0.050 −0.462 −0.049 

a
8
 0.195 −0.142 0.081 0.077 

a
9
 −0.218 0.086 −0.061 −0.073 

a
10

 0.071 −0.046 0.111 0.024 
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These four smelting condition feature vectors can be used to distinguish the 1 

different smelting states. The 10D smelting condition vector is inconvenient to 2 

graphically illustrate. There may be a relationship between the parameters of a certain 3 

smelting state. To reduce the correlation and redundancy between the parameters, the 4 

dimensions of the smelting condition feature vectors should be reduced. Theoretically, 5 

the smelting condition feature vectors are dependent on the conditions of the arc 6 

sound track inside the furnace. Different process parameters, such as the arc current, 7 

arc voltage and raw material feeding moment, cannot change the sound track 8 

characteristics of the electric arc furnace. These 4 smelting condition feature vectors 9 

that are suitable for all of the fused magnesium furnace smelting processes, with 10 

different process parameters for the same furnace. 11 

5.3 PCA dimension reduction 12 

High-dimensional feature vectors are difficult to understand and impossible to 13 

display on the computer screen. On the contrary, low-dimensional vectors, such as 14 

one-dimensional vectors and two-dimensional vectors, can be easily displayed on the 15 

screen and improve the system operation speed. The PCA method can be used to 16 

reduce the vector dimensions. The fundamental principle of PCA is to map 17 

high-dimensional feature vectors to a low-dimensional space. Low-dimensional 18 

vectors can represent the smelting state instead of high-dimensional vectors. The 19 

advantages of PCA dimensional reduction are reduced system resources and faster 20 
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processing of feature matching. The steps of PCA dimension reduction for the FMF 1 

sound signal are as follows: 2 

(1) Construct the matrix of the four smelting condition feature vectors. 3 

 1 2 3 4

11 12 13 14

21 22 23 24

1 2 3 4

  

p p p p

a a a a

a a a a

a a a a



 
 
 
 
 
  

A A A A A

                   (18) 4 

where p is the dimension of the smelting condition feature vector, p = 10. 5 

(2) Take each element in matrix A and subtract the mean value of all of the 6 

elements on its corresponding line. As a result, a new matrix is obtained: 7 

11 12 13 14

21 22 23 24

1 2 3 4p p p p

a a a a

a a a a

a a a a

   

   



   

 
 
 
 
 
  

A                   (19) 8 

4

1

1

4
ij ij ik

k

a a a



                               (20) 9 

(3) Calculate the covariance matrix of A
*
: 10 

1
( )T

p

 C A A                               (21) 11 

(4) Solve both the eigenvalues and eigenvectors of matrix C from the following 12 

equation: 13 

 I C 0                            (22) 14 

Sort these eigenvalues λ
i 
( i=1, 2, …, p) from large to small, λ

1
≥ λ

2
≥… ≥λ

p
. 15 

(5) Calculate the accumulative contribution rate of each eigenvalue and 16 

determine the dimensions of the feature vector after dimension reduction. 17 
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1

1

i

k

k

p

k

k













                               (23) 1 

The accumulative contribution rates of all of the eigenvalues are shown in Table 2 

3. The accumulative contribution rate of the first two eigenvalues was obviously 3 

greater than 95%. The principal components corresponding to the first two 4 

eigenvalues could be used to distinguish different smelting states instead of the 10D 5 

smelting condition feature vectors. 6 

 7 

(6) Use the eigenvectors t
1
 and t

2
 to construct a transform matrix T. Here, t

1
and t

2
 8 

correspond to the eigenvalues λ
1
 and λ

2
, respectively. 9 

 1 2

0.331 0.452

0.592 0.201

0.382 0.085

0.339 0.281

0.130 0.057

0.348 0.046

0.368 0.344

0.012 0.543

0.039 0.451

0.067 0.219

 
 


 
  
 
 
  

   
 
  
 
 
 
 
  

T t t                      (24) 10 

(7) Map the matrix of the four smelting condition feature vectors A to a new 2D 11 

Table 3  The accumulative contribution rate of each eigenvalue. 

 Eigenvalue Accumulative contribution rate (%) 

λ1 0.093 78.7 

λ2 0.020 95.8 

λ3 0.005 100 

λ4~λ10 0 100 

 



 

19 

 

space via the transform matrix T. 1 

B AT                         (25) 2 

B is a matrix with four rows and two columns. The elements on the same row are 3 

the principal components of a smelting state and correspond to a point in the 2D space. 4 

Table 4 shows the principal components of the four different smelting states. 5 

 6 

5.4 Smelting state identification 7 

Fig. 5 shows the positions of the four sets of principal components in rectangular 8 

coordinates. On this FMF smelting status map, Point 1 is the benchmark of the 9 

unmelted state, Point 2 is the benchmark of the semi–molten state, Point 3 is the 10 

benchmark of the molten state, and Point 4 is the benchmark of the overheating state. 11 

During both the unmelted state and overheating state, the drastic fluctuations of arcs 12 

cause the instability of the FMF sound. The sound track features of these two smelting 13 

states are very similar. Point 1 and Point 4 are found to be nearest to each other, 14 

whereas, in the molten state, the blazing arcs inside the FMF produce a large noise. 15 

The benchmark of the molten state is located far from the other three benchmarks.  16 

Table 4  The principal components of different smelting states. 

State b1 b2 

Unmelted 1.026 −0.125 

Semi-molten 1.214 −0.708 

Molten 2.092 −0.253 

Overheating 0.829 −0.252 
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 1 

The method to identify the smelting state with the FMF smelting status map can 2 

be described as follows: 3 

(1) Capture a frame of the acoustic signal in the smelting stage. 4 

(2) Filter the signal with a window function. 5 

(3) Obtain a new set of 10-order FMF sound track parameters via the LPC 6 

method and construct a 10D column vector As. 7 

(4) Multiply As with the transform matrix T and obtain a new 2D row vector Bs.  8 

s sB A T                           (26) 9 

(5) Mark the location of Bs on the FMF smelting status map. The point on this 10 

location is the current state point. 11 

(6) Calculate the distances from the current state point to Point 1, Point 2, Point 3, 12 

and Point 4. 13 

(7) Determine the shortest distance in step (6), and the corresponding state of the 14 

point in the smelting status map is considered to be the FMF smelting state. 15 

 

Fig. 5  FMF smelting status map. 
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The recognition rate was quite low when the online recognition program was 1 

developed based on the method described above. The following situations usually 2 

occurred. The current state point was close to the unmelted benchmark, whereas the 3 

FMF was in the molten state. The current state point was close to the overheating 4 

benchmark, whereas the FMF was in the semi–molten state. It can be proposed that 5 

the distribution areas of different smelting states were different in the FMF smelting 6 

status map. The smelting states could not be distinguished accurately only according 7 

to the distances from the current state point to the smelting state benchmark point. 8 

Step (6) and Step (7) must be improved. Four smelting state circles were defined 9 

around each smelting state benchmark point. First, the smelting state of each point 10 

obtained in Step (5) was judged manually by the stove workers at the beginning of the 11 

FMF smelting stage. In addition, the radius of each circle was determined by the 12 

distribution of the corresponding state points. Moreover, the position of the center of 13 

each circle was adjusted according to the distribution of the state points. Fig. 6 shows 14 

the LabVIEW block diagram of the FMF smelting condition identification program. 15 

Fig. 7 shows the LabVIEW front panel of the FMF smelting condition identification 16 

program. This program displayed the data acquisition channel number of the 17 

microphone, waveform of a recent windowed FMF acoustic signal frame, and 18 

movements of the smelting state point. At the bottom of the front panel, some slide 19 

controls can be used to adjust the smelting state circles online. All of the state points 20 

on the FMF status map were exported to DIAdem for statistics after the smelting stage. 21 
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DIAdem is an interactive software for data management, data analysis, and generating 1 

reports. The distribution of state points on the smelting status map is shown in Fig. 8. 2 

Meanwhile, Fig. 9 demonstrates the statistical analysis of the smelting states duration 3 

time. 4 

 5 

 

Fig. 6  LabVIEW block diagram of the FMF smelting condition identification 

program. 
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 1 

 2 

 3 

 

Fig. 9  Duration comparison of the four different FMF smelting states. 

 

Fig. 8  Distribution of the state points on the smelting status map. 

 

Fig. 7  LabVIEW front panel of the FMF smelting condition identification program. 
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6 Industrial pilot production 1 

6.1 Material feeding on energy consumption 2 

The relationship of the raw material feeding moment and energy consumption 3 

per ton in fused magnesia production via FMF has confused many technicians. In the 4 

overheating state, the raw materials were completely melted. Meanwhile, large 5 

quantities of heat were wasted without more crystal production. The existing process 6 

in Fig. 9 had a long overheating period. Thus, the overheating period in the smelting 7 

stage should be shortened. An effective solution is to adjust the raw material feeding 8 

time. Feeding raw material in the overheating state could force the FMF to enter the 9 

unmelted state. To prove the effectiveness of the process adjustment strategy above, 10 

stove workers were arranged to feed raw material into the FMF as soon as the 11 

program shown in Fig. 7 demonstrated that the FMF entered the overheating state. 12 

The feeding amount at each time was 1.2 t, which was consistent with previous 13 

processes. Afterwards, the electric energy was cut off when the total feeding amount 14 

of raw materials was up to 40 t. Meanwhile, the FMF entered the ending stage, and 15 

the smelting condition identification program calculated the duration of each state. 16 

Next, the molten lump was designated alphabetically and numerically. The cooling 17 

process of the lump took approximately one week. Afterwards, the cooled lump was 18 

crushed and sorted. Consequently, the yield and purity of the product were tabulated. 19 

Table 5 shows production data with the original process, whereas, the production data 20 
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with the improved feeding process are illustrated in Table 6. The durations of the four 1 

different FMF smelting states are shown in Fig. 10. It can be observed from Fig. 9 2 

and Fig. 10 that the duration of the overheating state can be shortened by the 3 

improved feeding process. Consequently, it can be concluded that feeding raw 4 

materials in time results in the decrease of energy consumption per ton. 5 

 6 

 7 

Table 6  Production data of the improved feeding process. 

Furnace No. Power consumption 

(kWh) 

Output 

(t) 

Energy consumption 

per ton (kWh/t) 

Crystal with a purity 

above 98% (%) 

B1 39 064 12.98 3 009.6 52.8 

B2 39 706 13.25 2 996.7 51.6 

B3 41 199 13.87 2 970.4 53.7 

B4 40 425 13.90 2 908.3 52.9 

B5 41 533 13.84 3 002.4 52.2 

Average 40 389 13.57 2 977.5 52.6 

 

 

Table 5  Production data of the original process. 

Furnace No. Power consumption 

(kWh) 

Output 

(t) 

Energy consumption 

per ton (kWh/t) 

Crystal with a purity 

above 98% (%) 

A1 43 440 12.88 3 372.7 52.5 

A2 43 500 14.34 3 033.5 52.7 

A3 41 618 13.72 3 033.4 55.6 

A4 40 943 13.50 3 032.8 53.3 

A5 43 524 14.35 3 033.0 52.8 

Average 42 605 13.76 3 101.1 53.4 
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 1 

6.2 Smelting state duration on product purity 2 

During the molten state, the flow velocity of the molten can reach 0.03 m/s. This 3 

electromagnetic stirring effect plays a key role in MgO crystallization (Wang et al., 4 

2014). Properly decreasing current injection after entering the molten state could 5 

prolong the duration of the molten state. The durations of the four different FMF 6 

smelting states of the improved current injection process are shown in Fig. 11. Table 7 

7 shows the production data with the improved feeding process. It can be deduced that 8 

decreasing the current injection could increase the duration of the molten state. 9 

Consequently, it can be concluded that a long molten state duration results in the 10 

increase of the high-purity MgO crystal yield. 11 

 

Fig. 10  Duration comparison of the four different FMF smelting states of the improved 

feeding process. 
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 1 

 2 

6.3 Process optimization 3 

A new FMF smelting process based on the acoustic signal was proposed by 4 

comprehensively using the two improved processes mentioned above. The detailed 5 

smelting process optimizations are as follows: 6 

(1) The smelting condition identification system monitored the smelting state on 7 

the status map during each smelting stage. 8 

(2) The identification system judged whether the FMF entered into the molten 9 

Table 7  Production data of the improved current injection process. 

Furnace No. Power consumption 

(kWh) 

Output 

(t) 

Energy consumption 

per ton (kWh/t) 

Crystal with a purity 

above 98% (%) 

C1 43 597 13.79 3 161.5 56.2 

C2 42 069 13.38 3 144.2 55.7 

C3 42 942 13.84 3 102.8 56.1 

C4 42 996 13.95 3 082.2 55.8 

C5 42 843 13.94 3 073.4 55.6 

Average 42 890 13.78 3 122.8 55.9 

 

 

 

Fig. 11  Duration comparison of the four different FMF smelting states of the improved current 

injection process. 
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state. The current injection decreased as soon as the FMF entered the molten state. 1 

(3) The identification system judged whether the FMF entered the overheating 2 

state. Raw materials were added when the FMF entered the overheating state. Thus, 3 

the FMF was forced to enter the next unmelted state. 4 

(4) The amount of the raw materials added into the FMF was recorded after each 5 

smelting stage. 6 

(5) The shutdown operation was performed when the total amount of raw 7 

materials added into the FMF reached 40 t. 8 

Fig. 12 shows the durations of the four different FMF smelting states with the 9 

improved process. In addition, the pilot production data of the improved process are 10 

shown in Table 8. It can be induced that both the energy efficiency and output of 11 

high-purity crystal are increased by using the improved smelting process. 12 

 13 

 

Fig. 12  Duration comparison of the four different FMF smelting states of the 

improved process. 
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 1 

7 Conclusions 2 

This paper focused on an online fused magnesium furnace smelting condition 3 

identification system. The experimental results showed that the system could identify 4 

the smelting states with a high accuracy rate. The system was found to be able to 5 

improve the energy efficiency during the whole smelting stage. The following 6 

conclusions were drawn: 7 

(1) Feeding raw materials as soon as the furnace enters into the overheating stage 8 

could effectively reduce the overheating time and reduce the energy consumption per 9 

ton during fused magnesia production.  10 

(2) Reducing current injection in the molten stage can prolong the smelting time 11 

and promote the purity of MgO crystals. 12 

Table 8  Production data of the improved smelting process. 

Furnace No. Power consumption 

(kWh) 

Output 

(t) 

Energy consumption 

per ton (kWh/t) 

Crystal with a purity 

above 98% (%) 

D1 39 787 13.26 3 000.5 54.9 

D2 42 248 14.18 2 979.4 55.3 

D3 40 539 13.58 2 985.2 55.0 

D4 41 043 13.72 2 991.5 56.0 

D5 42 376 14.23 2 977.9 55.8 

Average 41 198 13.79 2 986.9 55.4 
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Table 1  Dimensions of the fused magnesium furnace. 

Items Dimension (mm) 

Electrode diameter 350 

Diatance between electrodes 880 

Electrode operating depth 2 000 

Furnace shell diameter 2 500 

Furnace shell height 2 000 
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Table 2  Average LPC parameters in diffenrent smelting states. 

State Unmelted  Semi–molten  Molten  Overheating  

a
1

 −1.057 −1.317 −1.355 −0.864 

a
2

 0.398 0.649 1.093 0.371 

a
3

 −0.391 −0.436 −0.826 −0.368 

a
4

 0.504 0.345 0.728 0.236 

a
5

 −0.263 −0.238 −0.366 −0.184 

a
6

 0.227 0.276 0.610 0.182 

a
7

 −0.035 0.050 −0.462 −0.049 

a
8

 0.195 −0.142 0.081 0.077 

a
9

 −0.218 0.086 −0.061 −0.073 

a
10

 0.071 −0.046 0.111 0.024 
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Table 3  The accumulative contribution rate of each eigenvalue. 

 Eigenvalue Accumulative contribution rate (%) 

λ1 0.093 78.7 

λ2 0.020 95.8 

λ3 0.005 100 

λ4~λ10 0 100 
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Table 4  The principal components of different smelting states. 

State b1 b2 

Unmelted 1.026 −0.125 

Semi-molten 1.214 −0.708 

Molten 2.092 −0.253 

Overheating 0.829 −0.252 
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Table 5  Production data of the original process. 

Furnace No. Power consumption 

(kWh) 

Output 

(t) 

Energy consumption 

per ton (kWh/t) 

Crystal with a purity 

above 98% (%) 

A1 43 440 12.88 3 372.7 52.5 

A2 43 500 14.34 3 033.5 52.7 

A3 41 618 13.72 3 033.4 55.6 

A4 40 943 13.50 3 032.8 53.3 

A5 43 524 14.35 3 033.0 52.8 

Average 42 605 13.76 3 101.1 53.4 
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Table 6  Production data of the improved feeding process. 

Furnace No. Power consumption 

(kWh) 

Output 

(t) 

Energy consumption 

per ton (kWh/t) 

Crystal with a purity 

above 98% (%) 

B1 39 064 12.98 3 009.6 52.8 

B2 39 706 13.25 2 996.7 51.6 

B3 41 199 13.87 2 970.4 53.7 

B4 40 425 13.90 2 908.3 52.9 

B5 41 533 13.84 3 002.4 52.2 

Average 40 389 13.57 2 977.5 52.6 
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Table 7  Production data of the improved current injection process. 

Furnace No. Power consumption 

(kWh) 

Output 

(t) 

Energy consumption 

per ton (kWh/t) 

Crystal with a purity 

above 98% (%) 

C1 43 597 13.79 3 161.5 56.2 

C2 42 069 13.38 3 144.2 55.7 

C3 42 942 13.84 3 102.8 56.1 

C4 42 996 13.95 3 082.2 55.8 

C5 42 843 13.94 3 073.4 55.6 

Average 42 890 13.78 3 122.8 55.9 
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Table 8  Production data of the improved smelting process. 

Furnace No. Power consumption 

(kWh) 

Output 

(t) 

Energy consumption 

per ton (kWh/t) 

Crystal with a purity 

above 98% (%) 

D1 39 787 13.26 3 000.5 54.9 

D2 42 248 14.18 2 979.4 55.3 

D3 40 539 13.58 2 985.2 55.0 

D4 41 043 13.72 2 991.5 56.0 

D5 42 376 14.23 2 977.9 55.8 

Average 41 198 13.79 2 986.9 55.4 
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Fig. 1.  Schematic diagram of a fused magnesia furnace. 
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Fig. 2.  Experimental setup for the FMF smelting condition identification system. 
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Fig. 3.  The position of the FMF sound measurement point. 
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Fig. 4.  LPC reconstructed waveform of the FMF sound 

signal. 
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Fig. 5  FMF smelting status map. 
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Fig. 6  LabVIEW block diagram of the FMF smelting condition identification program. 
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Fig. 7  LabVIEW front panel of the FMF smelting condition identification program. 
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Fig. 8  Distribution of the state points on the smelting status map. 
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Fig. 9  Duration comparison of the four different FMF smelting states. 
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Fig. 10  Duration comparison of the four different FMF smelting states of the improved 

feeding process. 
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Fig. 11  Duration comparison of the four different FMF smelting states of the improved current 

injection process. 
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Fig. 12  Duration comparison of the four different FMF smelting states of the 

improved process. 


