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Abstract

The paper starts with an introduction to the basic mathematical model of
classical probability (CP), i.e. the Kolmogorov (1933) measure-theoretic
model. Its two basic interpretations are discussed: statistical and subjective.
We then present the probabilistic structure of quantum mechanics (QM) and
discuss the problem of interpretation of a quantum state and the correspond-
ing probability given by Born’s rule. Applications of quantum probability
(QP) to modeling of cognition and decision making (DM) suffer from the
same interpretational problems as QM. Here the situation is even more com-
plicated than in physics. We analyze advantages and disadvantages of the use
of subjective and statistical interpretations of QP. The subjective approach
to QP was formalized in the framework of Quantum Bayesianism (QBism)
as the result of efforts from C. Fuchs and his collaborators. The statistical
approach to QP was presented in a variety of interpretations of QM, both
in nonrealistic interpretations, e.g., the Copenhagen interpretation (with the
latest version due to A. Plotnitsky), and in realistic interpretations (e.g., the
recent Växjö interpretation). At present, we cannot make a definite choice
in favor of any of the interpretations. Thus, quantum-like DM confronts the
same interpretational problem as quantum physics does.
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1. Introduction

Recently the mathematical formalism of quantummechanics (‘QM’hence-
forth), especially the apparatus of quantum probability (‘QP’henceforth),
started to be widely used outside of physics for the modeling of cognition and
decision making (‘DM’henceforth) in psychology, psychophysics, economics,
finance, political science and the wider social sciences, see the basic mono-
graphs (Ezhov & Berman (2003); Khrennikov (2010); Busemeyer & Bruza
(2012); Bagarello (2012); Haven & Khrennikov (2013); Asano et al. (2015))
and the recent review articles (Busemeyer et al. (2014); Plotnitsky (2014))
and references therein; as well as a selection of some recent publications rel-
evant to probabilistic foundations (de Barros & Suppes (2009); de Barros
& Oas (2014); Atmanspacher & Filk (2014b)). Such models can be called
quantum-like to distinguish them from genuine quantum physical models. In
quantum-like models we explicitly do not refer to quantum physical processes
which (may) take place in biological systems, in particular, in the brains of
decision makers. Our modeling is based on the quantum-like paradigm (see
Khrennikov (2010)): the process of DM within bio-systems with a complex
information structure (e.g., by humans) is described by QP. This paradigm
has an empirical origin: there is plenty of probabilistic data available, e.g., in
cognitive psychology and psychophysics which exhibits the violation of the
basic laws of classical probability (‘CP’henceforth), e.g. the formula of total
probability (‘FTP’henceforth) (see, e.g., Khrennikov (2010); Busemeyer &
Bruza (2012)) or the Bell inequality (see, e.g., Khrennikov (2010); Conte et
al. (2008)). Violations of the laws of classical probability theory by quan-
tum physical systems were discussed by many authors (see, e.g., Feynman
& Hibbs (1965), or Khrennikov (2009)). This situation is well modeled by
QP based on Born’s rule connecting complex probability amplitudes (com-
plex state vectors, wave functions) with real probabilities. One could make
the argument that it could be useful to try to model similar violations of
classicality outside of physics with the aid of the same calculus. However,
this apparent similarity does surely not guarantee that the formalism which
worked so well in one domain of science, in physics, will work as well in other
domains. Its fruitfulness can be justified by successful applications. We re-
mark that the situation does not differ so much from physics. QM is held in
very high esteem because it works so well. On the other hand, the project
on the justification of the impossibility of its reduction to classical statistical
models (see, e.g., von Neumann (1955), or Bell (1987)), still has not been
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completed (Khrennikov (2008); Khrennikov (2010))1.
Applications of the quantum formalism and, in particular, QP to model

cognition and DM can be characterized as really successful (see Ezhov &
Berman (2003); Khrennikov (2010); Busemeyer & Bruza (2012); Bagarello
(2012); Haven & Khrennikov (2013); Asano et al. (2015); Busemeyer et al.
(2014); Plotnitsky (2014)) for various studies. At the same time one has
to be cautious. One can not expect that the whole body of QM would be
useful for such applications. Moreover, it may happen that some cognitive or
social phenomena would not be covered completely by the standard quantum
formalism (cf. Khrennikov et al. (2014a)). It may well be that more general
probabilistic models have to be developed (see Khrennikov (2010)).
We remark that although QM works very well, its theoretical and philo-

sophic justification is far from complete. In particular, QM suffers from the
problem of interpreting a quantum state (wave function) (see, for example,
Plotnitsky (2006); Plotnitsky (2009); Khrennikov (2009)). The present
situation is characterized by a huge diversity of interpretations and this can-
not be considered as acceptable. Since QM is about probabilities (it does
not predict the individual outputs of measurements), the problem of the in-
terpretation of a quantum state is very closely related to the problem of the
interpretation of a probability. In this paper we analyze the probability in-
terpretation dimension of QM in connection to DM and to applications of
QM’s cognitive psychology. Of course, the state interpretation problem is
not reduced to the interpretation of probability given by Born’s rule. Thus,
in this paper we shall treat the problem of an interpretation of QM only
partially.
In any scientific theory one has to distinguish the formalism and its in-

terpretation. The mathematical formalism of modern classical probability
theory is based on measure theory (see Kolmogorov (1933)). However, it is
interesting (and it is maybe not so well known) that Kolmogorov not only
developed the commonly used mathematical formalism of probability theory
(including purely mathematical contributions such as Kolmogorov’s theorem
on the existence of the probability measure for a stochastic process and the

1The von Neumann theorem was strongly criticized for its un-physical assumptions,
by Margenau, Bell and Ballentine. Experimental verification of a violation of Bell’s in-
equality is a very challenging project, since it is very diffi cult to perform the loophole free
experiment producing statistically acceptable data (see, e.g., Khrennikov et al. (2014b))
for analysis and Hensen et al. (2015) for the most recent success in this area.
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strong law of large numbers), but he also endowed his theory with a spe-
cial interpretation of probability, i.e. the Kolmogorov interpretation. Thus,
just as in any theory, in Kolmogorov’s theory one has to distinguish between
the mathematical formalism and its interpretation. Besides the genuine Kol-
mogorov interpretation, his formalism can be interpreted in different ways.
Among the huge variety of interpretations of probability, we point to two of
the most known and applicable interpretations:

• ST statistical interpretation (Kolmogorov (1933); von Mises (1957);
Feller (1968); Khrennikov (2009); Rocchi (2014); Plotnitsky (2009));

• SUB subjective (Ramsey (1931); de Finetti (1990); Savage (1954);
Bernardo & Smith (1994); Rocchi (2003); Rocchi (2014)).

ST: probability is a characteristic of a “mass phenomenon, or a repetitive
event, or simply a long sequence of observations (see von Mises (1957)). Here
probability cannot be assigned to an individual event. The condition of the
event’s repeatability (in theory infinite repeatability) is crucial. Numerically,
probability is defined as the limit of frequencies (in von Mises’theory this is
the definition of probability and in Kolmogorov’s theory it is a consequence
of the law of large numbers).
SUB: probability is assigned to an individual event A and it represents

the degree of the personal belief in the non/occurrence of A. Thus, such
probability is private and individual.
Now we want to couple the interpretations of a quantum state and the

corresponding probability given by Born’s rule. This coupling leads to two
important interpretations of a quantum state:

• STQ statistical (ensemble) interpretation (Bohr, Pauli, Dirac, von
Neumann, Einstein, Schrödinger, de Broglie, Bohm, Margenau, Bal-
lentine)2 (see, e.g., Plotnitsky (2006); Plotnitsky (2009); Khrennikov
(2009));

• QBism quantum Bayesian (subjective) interpretation (see, e.g., Fuchs
(2011); Fuchs & Schack (2013); Fuchs & Schack (2015)).

2It is interesting that very different interpretations of QM can keep the same inter-
pretation of probability. For example, both the Copenhagen interpretation and the de
Broglie-Bohm interpretation treat probability statistically
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STQ can be characterized by a diversity of ‘sub-interpretations’depend-
ing on whether the results of observations can be treated independently of the
measurement procedures or not (the problem of realism in QM).QBism was
created recently and it has yet just one version. As we can see from the STQ-
list, this interpretation dominates in the quantum community. In terms of
recent contributions to its development we can mention the Växjö interpreta-
tion (see Khrennikov (2002)); the realist contextual statistical interpretation;
the statistical Copenhagen interpretation invented by A. Plotnitsky3 and the
non-realist statistical interpretation. At the same time, the recent quantum
information revolution stimulated the dissemination of QBism. However, it
is still considered as an exotic ‘non-physical’interpretation of QM4.
Now, suppose one applies QP to model the DM-process, e.g., in psychol-

ogy, psychophysics or economics. She/he is immediately confronted with
the cognitive/mental version of the problem of the interpretation of quan-
tum states and probabilities: the problem which was not solved in quantum
physics and was ‘imported’from it to cognitive science, DM, psychology or
psychophysics. Moreover, novel applications induce novel interpretational is-
sues. Our aim is to analyze the specifics of the use of STQ and QBism to
model cognition and DM. The problem is very complex and at the moment
we are only able to present some reasons in favor of and against each of these
interpretations. We hope that our analysis will stimulate the further emer-
gence of foundational studies on the problem of the interpretations of mental
states (belief states) and the corresponding probabilities in QP-modeling of
DM and problem solving.

2. Classical probability

In the 19th century George Boole wrote the book “An Investigation of the
Laws of Thought on Which are Founded the Mathematical Theories of Logic
and Probabilities” (Boole (1958)). This was the first mathematical model
of the process of thinking based on the laws of reasoning which nowadays
are known as Boolean logic. This logic, also known as classical logic, plays

3It was presented in his talk at the conference “Quantum Theory: from Foundations
to Technologies”, Växjö -2015.

4QBism is often labeled as one of the neo-Copenhagen interpretations of QM. This is
a totally wrong viewpoint on QBism (see, for example, Mermin (2014)).
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a crucial role in information theory, DM, computer science and artificial
intelligence and digital electronics.
Boolean logic serves as the basis of modern probability theory (Kol-

mogorov (1933)), which is based on the representation of events by sets,
subsets of some set Ω, the sample space, or space of elementary events. The
system of sets representing events, say F , matches with the operations of
Boolean logics; F is a so-called σ-algebra of sets5. It is closed with respect
to the (Boolean) operations of (countable) union, intersection, and comple-
ment (or in logical terms ‘and, or, not’). Thus, by applying any theorem of
probability theory, e.g., the central limit theorem, we use classical Boolean
logic.

Mathematical formalism.
The set-theoretic model of probability was presented by Kolmogorov

(1933). It is based on the following two natural (from the viewpoint of
classical logic) axioms:

• AK1) events are represented as elements of a σ-algebra and operations
for events are described by Boolean logic;

• AK2) probability is represented as a probability measure.

For the convenience of the reader, we present the definition of a prob-
ability measure: p is a (countably) additive function on a σ-algebra F :
p(∪∞j=Aj) =

∑∞
j= p(Aj), for Aj ∈ F , Ai ∩ Aj = ∅, i 6= j, which is valued in

[0, 1] and normalized by 1. A triple P = (Ω,F , p) is called the (Kolmogorov)
probability space.
We also remind the definition of a random variable as a measurable func-

tion, a : Ω→ R. In applications of CP, e.g. to classical statistical physics and
thermodynamics or to cognitive modeling, psychology and psychophysics,
random variables represent observables.
We point out that modern probability theory is an axiomatic theory, in

the same way, as say geometry is. The history of the development of geometry
showed us that one can play with axiomatic systems and develop a variety
of geometric models.

Conditional probability and formula of total probability.

5Here the symbol σ encodes “countable”. In American terminology such systems of
subsets are called σ-fields.
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One of the basic laws of the Kolmogorovian model, the formula of total
probability (‘FTP’henceforth), will play a very important role in our further
considerations. Before we go to the FTP, we point to the exceptional role
which is played by conditional probability in the Kolmogorovian model. This
sort of probability is not derived in any way from the ‘usual probability’.
Conditional probability is per definition given by the Bayes formula:

P (B|C) = P (B ∩ C)/P (C), P (C) > 0. (1)

By Kolmogorov’s interpretation it is the probability of an event B to occur
under the condition that an event C has occurred. One can immediately see
that this formula is one of the strongest exhibitions of the Boolean structure
of the model: one cannot even assign conditional probability to an event with-
out using the Boolean operation of intersection. Let us consider a countable
family of disjoint sets Hk belonging to F such that their union is equal to Ω
and P (Hk) > 0, k = 1, .... Such a family is called a partition of the space Ω.

Theorem 1 Let {Hk} be a partition. Then, for every set B ∈ F , the
following formula of total probability holds

p(B) =
∑
k

p(Hk)p(B|Hk). (2)

This formula plays a crucial role in classical decision theory based on the
Bayesian procedure for probability updating (PU). The events Hk are treated
as hypotheses and the probabilities p(Hk) as prior probabilities. Especially
interesting for us is the case, where a partition is induced by a discrete random
variable a taking values {αk}. Here, Hk = {ω ∈ Ω : a(ω) = αk}. Let b be
another discrete random variable. It takes values {βj}. For any βj, we have
p(b = βj) =

∑
k p(a = αk)P (b = βj|a = αk). Here p(a = αk) = p(Hk).

Bell’s inequality in Wigner’s form.
We start with a trivial application of classical probability theory exploring

the additivity of probability and its non-negativity.
Consider three events A, B, C. It is convenient to use the notations

A ≡ A+, {A ≡ A−, B ≡ B+, {B ≡ B−, C ≡ C+, {C ≡ C−, (3)

where, for a set O, the symbol {O denotes its complement, i.e., {O = Ω\O =
{ω ∈ Ω : ω 6∈ O}.
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Theorem 2. (Bell-Wigner inequality) The following inequality holds:

P (A+ ∩B+) + P (B− ∩ C+) ≥ P (A+ ∩ C+). (4)

Proof. For each term of (4), we shall use the equality P (A) = P (A ∩
B) +P (A∩ {B). For the first term, the event A+ ∩B+ plays the role of A in
this equality and the event C+ plays the role of B. We have

P (A+ ∩B+) = P (A+ ∩B+ ∩ C+) + P (A+ ∩B+ ∩ C−). (5)

In the same way we obtain

P (B− ∩ C+) = P (B− ∩ C+ ∩ A+) + P (B− ∩ C+ ∩ A−), (6)

P (A+ ∩ C+) = P (A+ ∩ C+ ∩B+) + P (A+ ∩ C+ ∩B−). (7)

By adding the first two equalities we come to the expression

P (A+∩B+∩C+)+P (A+∩B+∩C−)+P (B−∩C+∩A+)+P (B−∩C+∩A−). (8)

Commutativity of the operation of intersection implies that P (A+ ∩ B+) +
P (B− ∩ C+) equals to P (A+ ∩ C+) plus a non-negative term. Hence, (4)
holds.

This inequality plays a fundamental role in modern quantum physics (in
spite of its mathematical triviality). It is one of the so called ‘Bell type’
inequalities. In QM it is derived from two basic physical assumptions: locality
and realism.
In the above considerations the assumption of realism R was encoded

in the possibility to represent events by subsets of some set Ω. This set-
representation provides objectivization of events; the events A,B,C exist
independently of measurements performed by an observer.
The assumption of locality L was encoded in the possibility to operate

with only three events, A,B,C (and their complements). In general one has
to start with indexes a, b, c determining experimental settings, orientations of
beam splitters. In the local model, the events are completely determined by
corresponding settings, A ≡ Aa, B ≡ Bb, C ≡ Cc. In the nonlocal model, in
the experiment with the pair of orientations (x, y) the events depend on this
pair of orientations, e.g., A(a,y), where y = b, c. In fact, in the Bell scheme
the physical space time is not present at all. Therefore, it is more natural
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to speak about (non)contextuality (see Khrennikov (2010); Dzhafarov &
Kujala (2013, 2014 a, b)).
Violation of ‘Bell type’ inequalities by QP is the main reason to reject

the so-called local realism and it led to the cardinal reconsideration of the
foundation of physics. One has to accept that either nature cannot be de-
scribed by a realist model or it is nonlocal: NR or NL. We remark that here
‘or’is non-exclusive. A part of the quantum community really believes that
nature combines NR and NL. However, the majority selected either NR and
L, e.g., Zeilinger (2010) , or R and NL, e.g., Gisin & Aspect (2014).
To derive Bell’s inequality (under the assumption of locality) as a conse-

quence of the use of the classical probability model (based on Kolmogorov
axiomatics), all events can be represented in the set-theoretic framework and
it is possible to set a single measure to define probabilities of all those events
and, hence, by the laws of Boolean algebra of their intersections. Thus, from
this viewpoint the violation of the ‘Bell type’inequalities is just a sign of the
impossibility to use Boolean algebra for some events and/or the impossibility
to define the probability measure serving for all such events. By exploring
this interpretation (NR and L) of the violation of ‘Bell type’ inequalities
in cognitive science and psychology one says that cognitive systems and, in
particular, humans use non-Boolean logic in the process of DM leading to
nonclassical probabilistic statistics. Another possibility is nonlocality (more
general contextuality) of brain’s functioning. Such a brain can proceed by
using classical Boolean logic and data processed by it can be represented in
Kolmogorov’s model. We remark that in this cognitive framework nonlocality
is not so mystical as in quantum physics. The brain is the very small physical
object comparing with the velocity of propagation of electromagnetic waves.
Its different areas, can actively communicate and create nonlocal probabilis-
tic settings. There is no need in action at a distance (cf. de Barros & Suppes
(2009)).

Statistical and subjective interpretations of probability.
Kolmogorov’s probability theory (as any scientific theory) consists of two

parts: the mathematical formalism and interpretation. Now we turn to its
interpretation:

“[. . . ] we may assume that to an event A, which may or may not occur
under conditions Σ, is assigned a real number P (A) which has the following
characteristics:

• (a) one can be practically certain that if the complex of conditions

9



Σ is repeated, a large number of times, N, then if n be the number
of occurrences of event A, the ratio n/N will differ very slightly from
P (A);

• (b) if P (A) is very small, one can be practically certain that when
conditions Σ are realized only once, the event A would not occur at
all.”

The (a)-part of this interpretation is nothing else than the frequency
interpretation of probability (see von Mises (1957)). This is the essence of
the ‘statistical interpretation of probability’which is mathematically justified
by the law of large numbers (a theorem in the Kolmogorov measure-theoretic
mathematical model).
The (b)-part is a more complicated statement. The referring to “to be

practically certain”that “the event A would not occur at all”can be treated
as a subjective element of Kolmogorov’s interpretation of probability (see also
the discussion below on Cournot’s principle and Bernoulli’s moral certainty).
Since “practically” depends on the viewpoint of a decision maker, this is
a step, although small (since here probability is treated objectively with
objectification through calculation of frequencies), towards the subjective
interpretation of probability by de Finetti (1990). For Kolmogorov, the
objectivity of statistical probability is encoded in the complex of conditions
(context) Σ, it is its objective property, determined by its repeatability.

Cournot’s principle.
The (b)-part of Kolmogorov’s interpretation of probability is also known

as Cournot’s principle. Its first version is due to J. Bernoulli (1713) who re-
lated mathematical probability to moral certainty/impossibility: “Something
is morally certain if its probability is so close to certainty that the shortfall
is imperceptible.” “Something is morally impossible if its probability is no
more than the amount by which moral certainty falls short of complete cer-
tainty.” In spite of our above remark that there is a subjective element in
the (b)- part of Kolmogorov’s interpretation (and Cournot’s principle) , -
setting the level of moral impossibility, those who used this principle treated
probability objectively. Subjectivists, as de Finetti, rejected it.

Contextuality of Kolmogorov theory.
This reference to Σ is very important for our further considerations. Kol-

mogorov pointed out that each probability space is determined by its own
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complex of conditions (context) Σ. For example, he definitely would not be
surprised by the violation of the Bell-type inequalities if the pairs of events oc-
cur under different contexts, e.g. the pair of events (A+, B+), (B−, C+), (A+, C+)
in the Bell-Wigner inequality occur for three different contexts Σj, j = 1, 2, 3.
In general, each of these contexts determines its own probability space PΣj =
(ΩΣj ,FΣj , pΣj). Since the Bell-Wigner inequality was proven by working in a
single Kolmogorov probability framework, the possibility of its violation in a
multi-space framework is not surprising.

3. Classical decision making through the Bayesian probability up-
date

The classical scheme of DM is based on the Bayesian probability update
(‘PU’henceforth). There is a set of states of nature Θ = {θ1, ..., θm} (or
‘states of mind’in applications to cognition and psychology); a random vari-
able A is given and it is taking values from the set X = {x1, ..., xm}; and for
each state of nature θ one can get the probability distribution π(x|θ), x ∈ X.
As a starting point, say Alice assigns the probabilities to possible states of

nature, π(θ). It can be considered as the probability distribution of a random
variable B.
Alice then measures the random variable and updates the prior probabil-

ity distribution on the basis of information gained from this concrete result
of measurement. The classical PU is based on the Bayes rule:

π(θ|x) =
π(x|θ)π(θ)

p(x)
, p(x) =

∑
θ

π(θ)π(x|θ), (9)

where the last equality is FTP (2).
In the formalism of PU and DM, instead of a collection Θ of states of

nature (mind), we can consider a collection of hypotheses (Hk) forming the
disjoint partition of the sample space Ω. The Bayesian PU can be used to
update the probabilities of these hypotheses as the evidence A = x appears:
π(Hk|x) = π(x|Hk)π(Hk)

p(x)
, p(x) =

∑
k π(Hk)π(x|Hk).

Subjective and frequentist interpretations of classical Bayesian
inference.
Bayesian inference is simple mathematically. However, its interpretation

reflects the diversity of interpretations of probability. Originally (by Bayes)
all probabilities in (9) were interpreted as subjective probabilities (see de

11



Finetti (1990)). The prior probabilities π(θ) represent Alice’s degrees of
belief that the real state of nature (mind) is θ, prior to the information
about the value x of A. The same is valid for the conditional probabilities
π(x|θ), likelihoods. These are degrees of Alice’s belief that A would take the
value x if the state θ were realized. The output π(θ|x) of PU (9) is the degree
of belief that the state of nature is θ, in light of the information that A = x.
This subjective probability viewpoint on the Bayesian PU is widely used and
is known as Bayesianism.
However, the mathematical formula (9) can be interpreted in a totally

different way, in the frequentist framework (see von Mises (1957), or Rocchi
(2003); Rocchi (2014)). Here probabilities are assigned not to individual
events, but they rather represent frequencies of realization of parameters in
a long series of experiments. The values of the prior probabilities π(θ) as
well as the likelihoods π(x|θ) are estimated on the basis of statistical data
available before the measurements of A. The output of (9), π(θ|x), gives the
probability that the state of nature is θ , conditioned on the result A = x,
i.e. in a long sequence of experiments, the frequency of realization of θ
conditioned on the value x of A approaches π(θ|x) (see von Mises (1957)).
For a subjective Bayesian, the probability distribution given by (9) reflects

knowledge about the present state of nature (mind) after collecting data.
For a frequentist, (9) does not reflect such knowledge: it is not about the
‘present state’, as this state is the only unknown parameter, and π(θ|x) is its
probability distribution.
The subjective approach can be used in DM to make an individual deci-

sion. Suppose that the parameter θ is dichotomous, θ = θ1, θ2. The odds in
favor of an event is given by the ratio of the probability that it will occur to
the probability that it will not; so one sets

O(θ1) =
π(θ1|x)

π(θ2|x)
=
π(x|θ1)π(θ1)

π(x|θ2)π(θ2)
. (10)

If
O(θ1) > 1 (11)

then Alice decides that the state θ = θ1. In the opposite case she takes θ = θ2.
The frequentist approach can be used in DM as well, but for decisions

which can be repeated for many trials (in theory for infinitely many tri-
als). Here the odds-function (10) is used not for the individual DM, but for
estimating the frequency of realization of the state of the world (mind) θ1
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compared to the state of the world (mind) θ2. Of course, not every DM can
be embedded into the frequentist framework.

Cromwell rule.
We point to one important feature of the classical PU and, hence, the

classical DM model. For some state of nature (including the mind): if a
decision maker, Alice, assigned to some state θ the prior probability zero,
then any PU would lead again to a zero posterior probability. In this case the
Bayesian PU simply idles. It can thus be argued that such PU excludes any
possibility to come to novel creative decisions. In the same way if π(θ) = 1,
then p(x) = π(x|θ) and π(θ|x) = 1. Here again, the Bayesian PU simply
idles. To escape Bayesian idling, one has to follow the so-called Cromwell
rule (see Lindley (1991)): “the use of prior probabilities of 0 or 1 should be
avoided, except when applied to statements that are logically true or false.”
Thus, all possibilities (even ‘practically impossible’) have to be taken into
account by assigning them, although very small but nevertheless, nonzero
probabilities ε > 0. However, the use of the Cromwell rule leads to huge lists
of possible states of nature (mind) which all have to be taken into account
in the process of PU. It generates incredible computational diffi culties. In
the situation when a decision has to be made as quickly as possible, the
applicability of the Bayesian PU is really questionable. Therefore, it would
be attractive to proceed without this rule and at the same time to escape
Bayesian idling. Such a possibility is provided by the quantum scheme of DM
which is based on a generalization of the Bayesian PU, see the next section.
Thus, a big enough state space is an important first step in the Bayesian

approach to DM. From the start, we have to account even for the most
inconceivable possibilities by considering the corresponding states of nature
(e.g., that the moon is made of green cheese (see Lindley (1991))). In the
quantum model, though, we are free to assign to them zero priors. Of course,
the invariance of the extreme probabilities, zero and one, with respect to the
Bayesian PU is just one of the symptoms of classical Boolean logic in the
process of DM when modeled with the aid of CP.
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4. Quantum states, observables, and probabilities

The state space of a quantum system is based on a complex Hilbert space6.
Denote it byH. This is a complex linear space endowed with a scalar product,
a positive-definite non-degenerate Hermitian form. Denote the latter by 〈·|·〉.
It determines the norm on H, ‖φ‖ =

√
〈φ|φ〉.

A reader who does not feel comfortable with the abstract framework
of functional analysis can simply proceed with the Hilbert space H = Cn,
where C is the set of complex numbers, and the scalar product 〈u|v〉 =∑

i uiv̄i, u = (u1, ..., un), v = (v1, ..., vn). Instead of linear operators, one can
consider matrices.
Pure quantum states are represented by normalized vectors, ψ ∈ H :

‖ψ‖ = 1.
In the standard QM (Dirac-von Neumann formalism) a quantum observ-

able A is represented by a Hermitian operator Â. Let there be given a state
ψ and a quantum observable with the spectral decomposition Â =

∑
i aiPi,

where ai are eigenvalues of Â , and Pi are orthogonal projectors onto the
corresponding eigen-subspaces. The system of mutually orthogonal projec-
tors (Pi) is known as the orthogonal partition of the unit operator :

∑
i Pi =

I, Pi ⊥ Pk, i 6= k.
We remark that by the spectral postulate of QM, in any measurement

of A, one can get only one of its eigenvalues ai. In many physical consid-
erations, the magnitudes of the eigenvalues of Â play the crucial role. For
example, they determine the energy levels of atoms and, hence, the spectrum
of radiation. However, in quantum information the magnitudes are not im-
portant. Here (ai) are just labels. The latter viewpoint is very useful for our
applications to DM, see section 5.
By the basic probabilistic law of QM, Born’s rule, the probability to get

the number ai as the result of a measurement is equal to

p(A = ai|ψ) = 〈Piψ|ψ〉 = ‖Piψ‖2. (12)

If after a measurement of the A-observable one plans to perform a mea-
surement of another observable B, represented by the Hermitian operator
B̂ =

∑
i biP

′
i , then one needs to know even the output state resulting from

the first measurement (through the feedback reaction of the measurement to

6However, it is not a total Hilbert space.
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the initial state): ψi = Piψ
‖Piψ‖ . This is nothing else than the quantum version

of the classical rule for a probability update. In QM it is known as the pro-
jection postulate and measurements inducing feedbacks of such a type are
called von Neumann-Lüders measurements.
For the B-measurement following the A-measurement, the state ψi plays

the same role as the state ψ has played for the A-measurement.
Observables of the von Neumann-Lüders class serve well into the gen-

eral quantum DM scheme which will be presented in section 5. It matches
well with statistical (ensemble) interpretations of QM. In principle, it can be
used even for the subjective interpretation. However, QBism (for its justifica-
tion) uses generalized observables given by positive operator valued measures
(POVMs) (see Khrennikov (2010); Khrennikov et al. (2014a) for a discus-
sion). This is not just a mathematical peculiarity. This is the crucial point of
QBism’s treatment of the Born rule (see, for example, Fuchs (2011), Fuchs
& Schack (2013)). Even for an observable A of the von Neumann-Lüders
class, to interpret the equality (12), QBists have to proceed with a POVM
determining a prior quantum state ρ.

5. Quantum decision making through update of the belief state

There is given a complex Hilbert space H representing belief states of
Alice. There are two given observables B = θ1, ..., θm and A = x1, ..., xm.
The first one corresponds to the determination of the state of nature (of
mind) and the second one to the collection of additional information (which
will be used for PU). Denote the corresponding Hermitian operators as Â and
B̂. Here, Â =

∑
x xE

a
x and B̂ =

∑
θ θE

b
θ, where (Eb

θ) and (Ea
x) are orthogonal

projectors corresponding to eigen-subspaces of these operators.
We consider the following PU-scheme. Alice creates an initial mental rep-

resentation of the situation given by a pure quantum state ψ0 ∈ H, a belief
state (thus here ‖ψ0‖ = 1). With the aid of this state, she assigns the subjec-
tive probability to the ‘states of nature’by performing direct measurements
of B and she gets the prior probabilities:

π(θ) = 〈Eb
θψ0|ψ0〉 = ‖Eb

θψ0‖2. (13)

This observation is a process of DM about possible probabilities for θ.

Remark. By introducing the prior probabilities we have to impose the
assumption that by performing ‘prior-measurement’Alice does not modify
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the initial belief state ψ0. It can be perfectly reproduced again to be used
for further mental measurements. In comparison to physics, this assump-
tion is natural. In physics it is always assumed that there is a preparation
procedure generating an ensemble of systems in the same state. Of course,
everybody understands that this is only a theoretical idealization and the real
experimental situation is more complicated. Thus, the mental analog of this
physical assumption on a state preparation procedure is that the brain which
is going to solve some concrete problem, is able to prepare the same belief
state (at least approximately (see Khrennikov et al. (2014a)) for a discussion
on the stability in the mental state preparation). However, for some mental
contexts this assumption may be very restrictive. In principle, it is possible
to proceed without it. The determination of the prior probabilities is just
a tool of the traditional Bayesian approach. It is really important to start
with an assignment of the prior probabilities, since they are explicitly present
in the update rule (9). The quantum scheme is about the updates of states
and not only probabilities. The state update leads to the posterior probabili-
ties. But the same quantum(-like) state encodes probability distributions for
outcomes of incompatible observables. Such distributions cannot be unified
without appealing to states since there is no joint probability distribution.
In principle we can proceed without the explicit assignment of the prior

probabilities π(θ) given by (13). Thus, the prior measurement of the B-
observable can be eliminated from the quantum scheme of PU. So, we can
start simply with the preparation of the initial belief state ψ0 and its up-
date resulting from gaining information with the aid of the A-observable, see
below.

Now Alice wants to update the probabilities of θ on the basis of additional
information from the measurement of A. By using the quantum rule for
conditional probabilities we get

π(θ|x) =
〈Eb

θE
a
xψ0|Ea

xψ0〉
‖Ea

xψ0‖2
. (14)

This is the basic quantum PU rule corresponding to observables of the von
Neumann-Lüders type.

In the formalism of quantum PU and DM, instead of a collection Θ of
states of nature (mind), we can consider a collection of hypotheses (Hk) which
are represented by projectors forming a mutually orthogonal partition of the
unit operator,

∑
kHk = I.

16



As for the classical PU, the probabilities in (14) can be interpreted either
as subjective or as frequency based, which leads to two basic interpretations
of the quantum state; i) the subjective one structured as QBism (section 7)
or ; ii) the statistical one represented by a variety of interpretations in the
‘spirit of Copenhagen’or in the spirit of the Einstein ensemble interpretation.
See section 6 below for the so-called Växjö interpretation.
By the subjective interpretation, ψ0 represents the belief state of Alice

(i.e., representing her private beliefs). She first updates this state by mea-
suring the A-variable (in general, this is a self-measurement performed un-
consciously) and on the basis of this update, she assign new degrees of belief
to the values of the parameter θ. We can speculate7 that Alice’s brain really
uses the quantum-like representation of probabilities and that she makes de-
cisions by using odds given by the quantum analog of the classical Bayesian
odds (again in the case of the dichotomous θ) :

O(θ1) =
π(θ1|x)

π(θ2|x)
=
〈Eb

θ1
Ea
xψ0|Ea

xψ0〉
〈Eb

θ2
Ea
xψ0|Ea

xψ0〉
. (15)

Thus, we can speculate that Alice’s brain really computes (unconsciously)
the quantity O(θ1) and if it is larger than 1, she makes the decision that
θ = θ1.
By the statistical interpretation, (14) is not about the internal structure

of the process of DM, but it describes the statistical distribution in a long
series of DM-experiments.
The use of the subjective interpretation, in particular, of QBism, is more

attractive from the viewpoint of modeling cognition. The statistical interpre-
tation can be used to model statistical data obtained in experimental studies
in psychology and psychophysics.

Proposition. Quantum PU coincides with classical Bayesian PU iff
operators representing observables commute.
Proof. a). Suppose that [Â, B̂] = 0. In general (regardless of commuta-

tivity) by using the quantum rule for conditional probabilities we get

p(x|θ) =
〈Ea

xE
b
θψ0|Eb

θψ0〉
‖Eb

θψ0‖2
; (16)

7But just speculate, because quantum-like modeling cannot provide us with deeper
insights on the brain’s functioning. The brain is treated as a black box.
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we also have
p(x) = 〈Ea

xψ0|ψ0〉 = ‖Ea
xψ0‖2. (17)

For the quantum PU commutativity of projectors implies:

π(θ|x)p(x) = 〈Eb
θE

a
xψ0|Ea

xψ0〉 = 〈Ea
xE

b
θE

a
xψ0|ψ0〉 = 〈Eb

θ(E
a
x)2ψ0|ψ0〉 = 〈Eb

θE
a
xψ0|ψ0〉.

(18)
In the same way

p(x|θ)p(θ) = 〈Ea
xE

b
θψ0|Eb

θψ0〉 = 〈Eb
θE

a
xE

b
θψ0|ψ0〉 = 〈Ea

x(Eb
θ)

2ψ0|ψ0〉 = 〈Ea
xE

b
θψ0|ψ0〉.

(19)
By using commutativity once again we obtain that π(θ|x)p(x) = p(x|θ)p(θ).
b). Suppose that, for any state ψ0, PU is given by the Bayes rule. This

means that
〈[Ea

x, E
b
θ]ψ0|ψ0〉 = 0 (20)

for any pure state ψ0. For a complex Hilbert space this necessarily implies
that [Ea

x, E
b
θ] = 0.

From the quantum PU rule (14), it is clear that this PU does not idle for
π(θ) = 0, 1. Thus, a quantum agent can ignore the Cromwell rule. This is a
very important feature of PU in the QP-framework. Quantum PU can lead
to novel creative decisions (as opposed to the classical PU which idles for
states θ with zero prior probability).

We remark that in the previous considerations, the initial belief state is
a pure state. This assumption is quite natural from the psychological view-
point: i.e. to start with a superposition of possibilities represented by a
pure state. However, the scheme works as well for any initial belief state
represented as a most general quantum state, a so-called mixed state, given
by a density operator ρ. Observables A and B also can be of the most gen-
eral form given by POVMs. Such generalization is especially important for
QBism, section 7, where the A-observable has to be an informationally com-
plete POVM.
A comparison of the classical Bayesian and quantum rules for PU is

a novel and interesting topic for experimental research (see Khrennikova
(2014); Basieva et al. (2016)) for the first steps in this direction.

6. Växjö interpretation: inter-relation of Born’s rule and FTP

This interpretation (see Khrennikov (2002)), was born out of an attempt
to combine consistently the views of Einstein and Bohr (see, for instance,
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Plotnitsky (2006); Plotnitsky (2009); Khrennikov (2009): realism and con-
textuality). It is the (ensemble) statistical interpretation. It was born from
the observation that, in fact, Bohr’s contextuality does not imply nonreal-
ism8. Thus, a theory can (but need not) be both contextual and realist.
Contextuality has to be treated statistically as contextuality of probabilities,
i.e. their dependence on experimental contexts. By the Växjö interpretation,
QM is a special mathematical formalism to work with contextual probabili-
ties for families of, in general, incompatible contexts. In particular, by this
interpretation the violation of Bell’s inequality is simply a consequence of
the contextuality of the experimental test (as in the psychological test pre-
sented by Conte et al. (2008)). The main distinguishing feature of QP is its
complex Hilbert space representation. All quantum contexts can be unified
with the aid of a quantum state ψ. Thus, QP is not simply a probability
model based on a family of Kolmogorov probability spaces labeled by con-
texts. It contains a ‘transcendental element’ψ whose interpretation is still
one of the main problems of modern quantum physics. We remark that cog-
nitive processes, in particular, DM are fundamentally contextual. Therefore,
contextual probability models (and not only QP) are very useful in applica-
tions which model cognition and DM (see, for example, Khrennikov (2010),
Dzhafarov & Kujala (2013, 2014a, b)).
The two-slit experiment (see, e.g. Khrennikov (2010) for a non-physicist

8In discussions on quantum foundations, the issues of reality and realism are very del-
icate. ‘Copenhageners’, Bohr, Heisenberg, Pauli, Dirac, von Neumann, Fock, and others
did not deny the reality of, e.g. atoms and electrons. They deny a possibility of a realist
description of quantum phenomena: a possibility to treat properties of quantum systems
independently of measurement devices. For them QM is complete, i.e. any deeper de-
scription of micro-phenomena than given by QM is impossible. This statement is known
as leading to the impossibility of introducing hidden variables. In applications of the
QM-methods to cognition, the claims about the impossibility of a deeper description than
the operational quantum-like one, have to be taken with caution. We cannot ignore the
presence of neurophysiological models of the brain functioning (i.e., the modeling by tools
from system biology). At this point in time, we are not (yet?) able to connect them
with the quantum-like model. However, it would be dangerous to reject a possibility
of establishing such connection completely. Therefore, the Växjö interpretation is really
useful for cognitive and psychological applications. In contrast to interpretations in the
spirit of Copenhagen (see Plotnitsky (2006); Plotnitsky (2009)), this interpretation is
not anti-realist (but the price for realism is contextuality). The same can be said about
quantum-like modeling in economics. One cannot simply deny the classical models of
economics. Here ‘hidden parameters’exist as well.
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friendly presentation) plays a fundamental role in QP, and it can be consid-
ered as a PU procedure. There are given prior probabilities that an electron
(photon) S passes each of the slits, p(i), i = 1, 2. Typically, it is assumed
that p(i) = 1/2 (the slit configuration which is symmetric with respect to
the source). There are also given transition probabilities q(x|i) that S is
detected at the point x of the registration screen under the assumption that
S passed the ith slit. The latter probabilities can be found in experimental
contexts Ci, i = 1, 2, when only the ith slit is open (we still follow Feynman
& Hibbs (1965) in straightforward fashion). Then, we want to predict the
probability q(x) that S is detected at the point x in context C12 (when both
slits are open). It is convenient to work with discrete observables, so let
x = j = 1, 2, .... (i.e. the registration screen is divided into discrete cells).
If the contexts C1, C2, C12 are probabilistically compatible, then classical

probability theory is applicable through FTP: q(j) =
∑

i p(i)q(j|i). However,
probabilities calculated with the aid of the quantum formalism do not match
with the classical FTP. And it is clear why: contexts Ci, i = 1, 2, and C12 are
incompatible. Their incompatibility is a consequence of complementarity, the
wave-particle duality. If we represent the probabilities in FTP by using the
Born rule, we can easily see that this formula is violated. The statistical data
from experiments with electrons and photons also violates FTP. Thus, the
classical FTP cannot be used in the quantum framework. Hence, it has to be
modified. What would be the most natural modification? It is an additive
perturbation of FTP of the form: q(j) =

∑
i p(i)q(j|i) + δ(j), where δ(j) is

a perturbation term - ‘interference term’. If δ(j) = 0, we obtain the classical
FTP. We remark that for real data it is more natural to speak, not about the
explicit equality to zero, but about the existence of a small ε > 0 such that
δ(j) < ε. In this way we smoothly transit from the classical case (compatible
contexts) to the nonclassical case (incompatible contexts). The magnitude
of δ(j) can be interpreted as a measure of deviation from classicality. In QM,
δ(j) has the meaning of the interference term. It can be positive: constructive
interference or it can be negative: destructive interference.
The two-slit experiment is just a special example of the quantum proba-

bility update via FTP with the interference term involving two incompatible
observables, A and B. In the two-slit experiment, A is the ‘what slit passing
observable’(expressing the position of S) and B gives the point of detection
on the photo-emulsion screen (expressing the momentum of S).
Let us now proceed in the abstract framework . To simplify considera-

tions, we restrict (for a moment) considerations to a dichotomous observable
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A. We also assume that both A and B are observables of the von Neumann-
Lüders type. Then, it is possible to show that quantum FTP has the following
form (see Khrennikov (2010)):

q(j) =
∑
i

p(i)q(j|i) + 2 cos θj

√∏
i

p(i)q(j|i), (21)

where θj indicates some angles combined of quantum phases. Thus, for ob-
servables of the von Neumann-Lüders type, the relative magnitude of the in-
terference term is characterized by the inequality: λ(j) = δ(j)

2
√∏

i p(i)q(j|i)
≤ 1.

We can say that for the von Neumann-Lüders observables, the deviation
from the classical FTP is relatively small. However, by considering gener-
alized quantum observables given by POVMs, we can obtain λ(j) > 1 (see
Khrennikov & Basieva (2014)). Thus, in the case of a dichotomous ob-
servable A, the quantum formalism covers violations of FTP for all possible
magnitudes. In this case, QM just describes all probability update schemes
violating FTP up to some degree (including the classical case where there
is no violation). This is a very simple and heuristically clear treatment of
QP as a generalization of the classical statistical inference. In the case of
non-dichotomous A, the mathematics is more complicated. However, the
heuristics are the same.

7. Subjective interpretation and decision making

The subjective interpretation of the quantum state and QP is the corner-
stone of QBism (see Fuchs & Schack (2013) (cf. Haven (2008)). Fuchs &
Schack (2015) (p. 3) mentioned that:

“The fundamental primitive of QBism is the concept of experience. According
to QBism, quantum mechanics is a theory that any agent can use to evaluate his
expectations for the content of his personal experience.

QBism adopts the personalist Bayesian probability theory pioneered by Ram-
sey (1931) and de Finetti (1990) and is put in modern form by Savage (1954) and
Bernardo & Smith (1994) among others. This means that QBism interprets all
probabilities, in particular those that occur in quantum mechanics, as an agent’s
personal, subjective degrees of belief. This includes the case of certainty - even
probabilities 0 or 1 are degrees of belief. .[..].. ”
Fuchs & Schack (2015) (p. 4) also mention that:
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“In QBism, a measurement is an action an agent takes to elicit an experience.
The measurement outcome is the experience so elicited. The measurement outcome
is thus personal to the agent who takes the measurement action. In this sense,
quantum mechanics, like probability theory, is a single user theory. A measurement
does not reveal a pre-existing value. Rather, the measurement outcome is created
in the measurement action.”
The subjective interpretation of probability corresponding to the quantum(-

like) representation of the mental state matches well the quantum(-like) mod-
eling of DM. A human being, say Alice, assigns subjective probabilities to
different alternatives in DM. These probabilities, as was emphasized by de
Finetti, “do not exist”, i.e., they do not have any objective value. They are
totally private and represent the degrees of Alice’s belief. By getting new
information, Alice updates the probabilities by using the ‘quantum Bayes
rule’. Here probabilities are assigned to individual decisions, e.g. to buy or
not to buy this concrete financial asset. This is a very consistent picture and
its applicability, not only to cognition modeling, psychology, psychophysics,
economics, but even to molecular biology was discussed in very much detail
by Asano et al. (2015).
We repeat that the use here of the nonclassical rule for PU is crucial.

One cannot approach this rule just by following a classical subjectivist line
of reasoning, e.g. by following de Finetti. We really have to combine, as was
proposed by Fuchs, de Finetti’s subjective probability with Born’s rule and by
exploring some mathematics of symmetric informationally complete positive
operator valued measures, to derive a new version of FTP, QBism’s FTP (see
Fuchs & Schack (2015)). Thus, Alice following Fuchs, makes PU and hence
her DM is different from Alice’s following de Finetti. Another important con-
tribution of the quantum formalism is that it describes not only probabilities
but also states. In the modeling of cognition and DM it is very natural to
associate these quantum-like states with belief-states (mental-states). The
private agent’s perspective advertised by QBism is again important for us.
Classical subjective probability does not say anything about the belief-states
of agents. They are expressed very roughly as subjective probabilities. The
main distinguishing feature of the quantum representation of states (both
in physics and cognition and DM modeling) is that they encode not only
probabilities for possible results of compatible observables, but even of in-
compatible observables.
We can conclude that, although QBism is not so widely accepted in the

quantum physical community and, in particular, it was criticized by Khren-
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nikov (2002), it seems to be a very natural candidate to interpret QP in
applications to cognition and DM.
As was pointed out, in spite of its tremendous success, nowadays QBism

also forms the subject of critiques from many top quantum physicists - those
who claim that they ‘do real physics’and do not meddle with private beliefs.
Some of them even treat QBism as a form of solipsism. We shall present some
arguments defending the use of the subjective probability interpretation in
physics. The coming discussion is not so important for applications of QBism
to cognition and DM.
The main question which is often asked about QBism by quantum physi-

cists is: Where does the subjective probability come from? As was remarked,
this question can be in principle ignored in applications of QBism to cogni-
tion. We also remark that this question is generally about subjective prob-
ability (without any classical/quantum distinction). In principle, it might
be discussed in section 3. But it became really actual and unescapable in
the quantum framework since subjective probability is not frequently used
in classical physics.
In quantum physics C. Fuchs tries to justify the private agent perspec-

tive with the aid of the objective indeterminism of nature (see James (1882,
1884)). Thus, although subjective probabilities are personal, they have some
degree of objectivity, as representing nature’s objective indeterminism. The
latter has some similarity with von Neumann’s concept of irreducible quan-
tum randomness. However, the concept of objective indeterminism is more
general. In particular, in contrast to irreducible quantum randomness, it has
no explicit relation to QM. James invented this concept in 1882 (or maybe
even earlier), long before physicists started to deal with the peculiarity (in
the form of acausality) of the randomness of outputs of quantum measure-
ments. For James, indeterminism is a general feature of nature, whether
physical or mental. In some sense Fuchs just wants to restrict the domain
of action of Jamesian indeterminism to the quantum world and in this way
he finds the objective justification of QBism. In some sense the domain of
action of objective indeterminism and hence Bayesianism is not restricted to
quantum physics: classical statistical physics also has to be treated from the
personal agent’s perspective.
We conclude that, in spite of the use of the subjective interpretation of the

quantum state and probability, QBism is not a form of solipsism. QBism’s
indeterminism is objective: the objectivity of nature is exhibited in its ability
to produce randomness (see again James (1882, 1884)).
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In this paper we are interested in applications of QBism to cognition and
DM and, as was mentioned, we can proceed without the objectification of
subjective probabilities which Alice assigns to possible decisions.

8. Statistical interpretation and decision making

By using the statistical interpretation, in general, we cannot associate
QP with the concrete mental state (belief state) of Alice. In QM we con-
sider an ensemble (and typically it is very large, say a few million photons)
of quantum systems prepared in the same state. Born’s rule then encodes
the prediction about the probabilities, treated statistically, of the results of
possible measurements. The application of this general statistical setting to
DM and problem solving gives us the following picture. Alice does not make
decisions by assigning probabilities in the concrete act of DM. The process
of selection of one of the possible alternatives in DM is not so straightfor-
ward. The quantum(-like) model does not provide a consistent picture of this
process. This is a purely operational model which describes probabilities for
decision-alternatives. Probabilities have the meaning of frequencies for an
ensemble of decision makers.
Although the above operational scheme is completely suffi cient for work-

ing with statistical data, one may dream for a deeper clarification of the
DM mechanism. Here we can proceed similarly to von Neumann (1955)
and assume that the concrete mental state of Alice encodes a kind of irre-
ducible quantum(-like) randomness. Thus, again by following von Neumann,
we can treat statistical probabilities-frequencies as simply the ensemble rep-
resentation of this intrinsic randomness. However, one has to extend von
Neumann’s thesis about such a randomness to the mental world. During the
1930’s-1990’s when the physical and mental worlds were considered (more
or less following Descartes’duality principle) as two totally different worlds,
such an extension would have been deemed to be unacceptable.
Another possibility is to follow C. Fuchs and explore James’objective

indeterminism, but combine it with von Neumann’s idea that QP represents
its statistical-frequency realization. Thus here, in the von Neumann-Fuchs
scheme, a decision has in general a nontrivial contribution of genuine mental
randomness, cf. section 7.
However, by keeping the statistical interpretation we do not have to be

coupled to this scheme, i.e. to take into account the genuine mental ran-
domness. In the more pragmatic version of the Copenhagen interpretation
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of QM due to Bohr, Pauli and recently Plotnitsky, one does not try to ‘ex-
plain’the origin of quantum randomness. It is considered as an empirical
fact that quantum probabilities, averages, and correlations are the result of
our inability to know some hidden parameters. In applications to cognition,
psychology and psychophysics, we can remain on the same position, and say
that empirical data demonstrated that such Statistical Copenhagen Interpre-
tation (SCI) provides the most consistent (at least for now) interpretation of
the use of QP in DM.
By using the Växjö interpretation one can proceed with hidden variables,

but they have to be of the contextual type, i.e. they cannot be assigned
to a system independently of the experimental context. Such a model can
be local, but contextuality also can lead to violation of Bell’s inequality. By
applying this interpretation to QP-DMwe come to the contextual probability
viewpoint of DM. As in SCI, there is no need for objective indeterminism,
irreducible quantum randomness, to explain deviations of QP-DM from CP-
DM.

9. Concluding remarks

Both in QBism and the Växjö interpretation, the quantum probabilistic
formalism is treated as PU machines. These machines are nonclassical (see
(21) for the FTP used in the Växjö interpretation and see (Fuchs & Schack
(2015)) for the corresponding FTP-like rule of QBism).
At present, it is diffi cult to select one concrete interpretation. However,

we hope that our analysis has clarified the problem of the interpretation of
probability in QP-DM and that it will stimulate other researchers to con-
tribute to this exciting and novel field of research: the foundations of the
quantum-like approach to DM.
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