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We report molecular-dynamics (MD) simulation results for the surface free energy of a hard-sphere
fluid at cylindrical and spherical hard walls of different radii. The precision of the results is much
higher than that in our previous study [B. B. Laird et al., Phys. Rev. E 86, 060602 (2012)], allowing
us to estimate the size of deviations from the predictions of Morphometric Thermodynamics (MT).
We compare our results to the analytical expressions for the surface energy as a function of wall
radius R and fluid density derived from the White Bear II variant of the density functional theory, as
well as to the leading terms of the virial expansion. For the cylindrical wall, we observe deviations
from MT proportional to R−2 and R−3, which are consistent with the available virial expressions.
For the spherical wall, while the precision is not sufficient to detect statistically significant deviations
from MT, the MD results indicate the range of densities for which the truncated virial expansions are
applicable. Published by AIP Publishing. https://doi.org/10.1063/1.5053929

I. INTRODUCTION

The curvature dependence of the solid-liquid interfacial
free energy is crucial to understanding the thermodynamics of
crystal nucleation from the melt or solution,1–4 as well as for
the solvation thermodynamics of nanoparticles.5–7

The solvation free energy of a particle with surface S
immersed in a fluid can be written in terms of bulk and surface
contributions

Fsolv = −PVS + γSAS, (1)

where P is the pressure of the surrounding fluid, VS and AS
are the volume and surface area corresponding to the par-
ticle, respectively, and γS is the surface free energy. Often
γ is approximated by its value for a planar surface; how-
ever, for nanometer scale particles, the contribution of sur-
face curvature to γ can be significant. In 3-dimensions, the
curvature of the surface can be characterized by specify-
ing the averaged mean and Gaussian curvatures, H̄ and K̄ ,
respectively,

H̄ =
1

2AS

∫
S

[
1

R1(~q)
+

1
R2(~q)

]
dS, (2)

K̄ =
1

AS

∫
S

[
1

R1(~q) · R2(~q)

]
dS, (3)

where R1(~q) and R2(~q) are the principal radii at each point
~q on the surface S. For example, for a sphere of radius R,
the averaged mean and Gaussian curvatures are 1/R and 1/R2,
respectively, while those for an infinite cylinder of the same
radius are 1/2R and 0, respectively.

To describe fluctuating membranes, Helfrich8 intro-
duced the so-called Helfrich Hamiltonian in which the free

a)Author to whom correspondence should be addressed: blaird@ku.edu

energy of the surface is expanded to quadratic order in
H̄ and to linear order in K̄ . This expression can be gen-
eralized, expressing the curvature dependence of the sur-
face free energy as a general Taylor series expansion in H̄
and K̄ ,

γS =
∞∑

i=0

∞∑
j=0

aijH̄
iK̄ j. (4)

In this work, we will be considering the low-order terms of
this expansion

γS = γ0 + hH̄ + κK̄ + kH̄2 + a11H̄K̄ + a30H̄3 + · · · , (5)

with coefficients defined to match the commonly used nota-
tions: γ0 = a00 is the surface free energy at a planar wall,
h = a10 is related to the usual Tolman coefficient δ (h = −δ/2),
and k = a20 and κ = a01 are the so-called bending rigidity and
Gaussian curvature rigidity, respectively.

For cylindrical and spherical walls, we can also expand γ
in powers of 1/R (instead of the curvature),

γS(R) =
∞∑

i=0

γSi
Ri

, (6)

where S = {cyl, sph} denotes the cylindrical or spherical
wall. For a cylindrical surface of radius R (H̄ = 1/2R,
K̄ = 0), this expansion is related to the Helfrich expansion as
follows:

γcyl(R) = γcyl
0 +

γ
cyl
1

R
+
γ

cyl
2

R2
+
γ

cyl
3

R3
+ O(R−4)

= γ0 +
h

2R
+

k

4R2
+

a30

8R3
+ O(R−4), (7)
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while for a spherical surface of radius R (H̄ = 1/R, K̄ = 1/R2),
we have

γsph(R) = γsph
0 +

γ
sph
1

R
+
γ

sph
2

R2
+
γ

sph
3

R3
+ O(R−4)

= γ0 +
h
R

+
k + κ

R2
+

a11 + a30

R3
+ O(R−4). (8)

Note that, for the spherical wall, expansion of γ in powers
of 1/R cannot distinguish k and κ independently because it
includes only their sum, γsph

2 = k + κ.
A much simpler form9 of the surface free energy of a fluid

at a curved wall is based on Hadwiger’s theorem from inte-
gral geometry.10 In this form, sometimes referred to as Mor-
phometric Thermodynamics (MT), γ only depends linearly
on the mean and Gaussian curvature, with no higher-order
terms,

γMT = γ0 + hH̄ + κK̄ . (9)

Comparing to the Helfrich expression [Eqs. (4) and (5)], the
MT expression assumes that all expansion coefficients other
than a00 = γ0, a10 = h, and a01 = κ vanish.

A central question in recent research has been the degree
to which MT can accurately describe the thermodynamics of
curved interfaces. Much of this work has been focused on the
standard reference system of a hard-sphere (HS) fluid at a
curved hard wall. Initial theoretical work on this system was
based on Scaled Particle Theory (SPT).6,11,12 For a hard-sphere
fluid at a spherical hard wall, SPT yields analytical expressions
for the curvature coefficients of γsph,

γSPT
0 (η) =

3η(2 + η)

2π(1 − η)2
, (10)

hSPT(η) =
3η

2π(1 − η)
, (11)

γSPT
2 (η) = −

ln(1 − η)
4π

, (12)

where η is the packing fraction, which is proportional to the
number density, ρ, η = πρσ3/6, where σ is the fluid sphere
diameter. The SPT expression for the sphere is consistent with
MT in that all terms beyond 1/R2 for the spherical wall are
identically zero. In these and all expressions that follow, we
use reduced units in which distances are measured in σ and
energies in units of kBT. Also note that, in defining γ for this
system, we are using a convention in which the dividing surface
is at the point of contact between the wall and the hard-sphere
particles, as opposed to another common definition in which
the dividing surface corresponds to the centers of the fluid
particles at contact. Transformations from one reference to
another are straightforward.13,14

Bryk et al.15 used classical Density Functional Theory
(cDFT), specifically Rosenfeld’s Fundamental Measure The-
ory (RFMT),16 to examine the curvature dependence of γ for a
hard-sphere fluid at spherical and cylindrical walls of varying
radii. Their results indicate that, within the approximations of
RFMT, the coefficient of the linear term in the Taylor series
expansion of γ in powers of 1/R for the spherical wall is exactly
twice (within the error bars) that for the cylindrical wall for
packing fractions η up to 0.42. This implies that h is the same
for both geometries, consistent with the assumptions of both

the Helfrich and MT expansions. In that work, systems with
packing fractions greater than 0.42 were not reported as no
solutions of the RFMT equations could be found above this
value. In a similar study, Jin et al.7 used cDFT to calculate
the solvation free energy of nanoscale hard objects of various
shapes (cube, cone, etc.) in a hard-sphere fluid. These DFT
results were shown to be consistent with MT to high accu-
racy over the range of hard-sphere packing fractions studied.
Reference 7 also compared their results with analytic expres-
sions for the spherical wall generated using the White Bear
II (WBII) modification of RFMT,17 which, using the cur-
rent wall convention, can be written in its bulk theory form17

as

γWBII
0 =

η(2 + 3η − 2η2)

π(1 − η)2
−

ln (1 − η)
π

, (13)

hWBII =
η(5 − η)

2π(1 − η)
+

ln (1 − η)
π

, (14)

γWBII
2 = −

ln (1 − η)
4π

. (15)

Note that the WBII bulk theory expression is, by construc-
tion, like the SPT expression, consistent with MT. Including
curvature terms beyond those included in the MT expres-
sion requires the consideration of additional scaled variables
beyond those included in RFMT and WBII.17

Laird et al.18 used molecular-dynamics (MD) simulation
coupled with Gibbs-Cahn integration19–22 to directly evaluate
the surface free energy of a hard-sphere fluid at cylindrical
and spherical hard walls—the same systems studied by Bryk
et al. with cDFT.15 The value of the excess volume and the
free energy were calculated for wall radii ranging from ∞
(planar wall) to 0.5σ (identical to the size of the fluid par-
ticles). The data for γ were fit to polynomial expansions in
powers of 1/R to one order greater than the MT prediction—
up to cubic terms for the spherical wall and quadratic terms
for the cylindrical wall. The results show that MT describes
the curvature dependence of the systems well up to a pack-
ing fraction of about 0.42; that is, the value of h for the
spherical and cylindrical walls are identical within the statis-
tical error and the first non-MT terms (quadratic and cubic
for the cylinder and sphere, respectively) are zero within
the error. For η > 0.42, however, deviations from MT are
seen to grow rapidly as the fluid approaches the freezing
transition.

Using cDFT or virial expansions, several groups have
recently reported theoretical results that predict deviations
from MT in hard-sphere fluid/curved wall systems even at rel-
atively low packing fractions. Blokhuis,23 using the RFMT
version of cDFT, indicated small deviations even for small
packing fractions (η < 0.1); however, the deviations seen
were on the order of the statistical error in the simulations,
so no conclusions as to the accuracy of the cDFT calcula-
tions relative to simulation could be reached. Similar results
were obtained by Reindl et al.14 using a cDFT based on
a second-virial expansion. By calculating virial coefficients
for the hard-sphere fluid at spherical and cylindrical walls,
Urrutia13 derived low-order expansions of h, κ, and the bend-
ing rigidity k in powers of the packing fraction η. Most
notable is the conclusion that the bending rigidity is small,
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but non-zero, even at low η—in direct contradiction of the
assumptions of MT. A similar conclusion was reached by
Hansen-Goos24 who also suggested possible modifications to
RFMT cDFT to include non-MT corrections. All of these
recent theoretical studies cannot be verified using the pre-
viously published simulation data18 because the predicted
deviations are on the order of the statistical error of the
simulations.

In this work, we perform a series of very high resolu-
tion MD simulations on a hard-sphere fluid at spherical and
cylindrical hard walls, which, coupled with Gibbs-Cahn inte-
gration, give values of the surface free energy γ with statistical
errors that are small enough to properly test the theoretical
predictions. We concentrate here on lower densities (η . 0.3)
because the deviations at higher packing fractions were well
resolved in our previous work18 and higher resolution data
would not change the conclusions. In Sec. II, we discuss the
current status of virial expansions for coefficients in Eqs. (7)
and (8). Section III presents the details of the MD simulation
and analysis methods followed by a discussion of the major
results of the study in Sec. IV. In Sec. V, we summarize and
conclude.

II. VIRIAL COEFFICIENTS FOR HARD-SPHERE
FLUIDS AT CURVED HARD WALLS

The coefficients in Eqs. (7) and (8) are all functions of the
fluid packing fraction η and can be expanded in a virial series
in powers of η with the generic form

α(η) =
∞∑

j=0

αjη
j, (16)

where αj are the virial coefficients for quantity α(η).
For the hard-sphere fluid at a curved wall, the first

few virial coefficients have been calculated independently by
Urrutia13 and Hansen-Goos,24

h =
3

2π


η + η2 + *

,

8
35

+
27
√

3
16π

+
-
η3


+ O(η4), (17)

κ =
1

4π

[
η − η2

]
+ O(η3), (18)

k =
3

8π
η2 + O(η3). (19)

The non-zero value of k in these expressions indicates that
there should be measurable deviations from MT even at low
density.

For completeness, the analytically known virial terms for
the planar wall are

γ0 =
3
π
η +

15
2π
η2 +

759
70π

η3 + O(η4), (20)

with the higher-order terms known numerically from Monte
Carlo evaluation of cluster integrals.25,28 Recalling Eqs. (7)
and (8) for the cylindrical and spherical geometries,
γ

cyl
0 = γ

sph
0 , first order terms γcyl

1 and γ
sph
1 are equal to h/2

and h, respectively, and the second order term for the cylin-
drical wall γcyl

2 = k/4. For other higher-order terms, Urrutia13

gives

γ
sph
2 = k + κ =

1
4π


η +

1
2
η2 + *

,

81
√

3
16π

−
289
105

+
-
η3


+ O(η4),

(21)

γ
cyl
3 =

1
8

a30 = −
3

64π
η2 + O(η3), (22)

γ
sph
3 = a30 + a11 =

9
√

3

160π2
η3 + O(η4). (23)

III. SIMULATION AND ANALYSIS METHODS

As in our previous work,18 we calculate the surface free
energy of a hard-sphere fluid at cylindrical and spherical walls
using the Gibbs-Cahn adsorption equation adapted for fluids
interacting with static walls,22(

∂γ

∂P

)
T
= vex, (24)

where vex is the excess surface volume defined as

vex =
1

A Nf

�����
V N
Vf Nf

�����
=

1
A

(
V − Vf

N
Nf

)
. (25)

In Eq. (25), A is the surface area of the cylinder or sphere, V
and N are the volume and number of particles, respectively, of
a region containing the interface, and V f and N f are the corre-
sponding quantities for a region entirely within the bulk fluid.22

The excess interfacial volume for cylindrical and spherical
walls of radius R can be related to the number density profile
ρ(r) by

vex =
1
Ri

∫ ∞
R

[
1 −

ρ(r)
ρf

]
ri dr, (26)

where i = 1 and 2 for the cylindrical and spherical geometries,
respectively, and ρf = N f /V f is the bulk fluid density.

Because the surface free energy vanishes in the limit of
zero pressure, Eq. (24) can be integrated to give

γ(P) =
∫ P

0
vex(P′) dP′. (27)

Because of the difficulty in performing hard-sphere MD simu-
lations efficiently at constant pressure, vex is calculated in our
simulations as a function of the packing fraction η = πρf /6 so
that

γ(η) =
∫ η

0
vex(η ′)

(
∂P
∂η ′

)
T

dη ′. (28)

The derivative in the integrand of Eq. (28) is calculated using
the Kolafa-Labı́k-Malejevskı́ (KLM)-low Equation of State
(EOS).27 This EOS reproduces simulation pressures to very
high precision, even at high pressures near the freezing den-
sity, and so its use introduces errors smaller than the statistical
errors of the present calculations.

The hard-sphere (HS) systems at different densities inter-
acting with a flat wall, as well as with cylindrical and spherical
walls of different radii, were simulated using the molecular-
dynamics algorithm of Rapaport,26 with suitable modifications
to include interactions with the curved walls. Density profiles
as functions of the distance from the wall were measured and
the excess volume, vex, was calculated from the density pro-
files as described in the supplementary material of Ref. 18. For
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the flat wall systems, the simulation setup and the results have
recently been published elsewhere.28

For the cylindrical wall system, we calculated results for
the wall radii R = 0.4, 0.5, 0.6, 0.7, 1.0, 1.5, 2.0, 5.0, and 10.0
in reduced units as defined earlier. The simulation box had
dimensions Lx, Ly, and Lz in the three Cartesian directions
and the cylindrical wall axis was set parallel to the x axis. Sys-
tems with Lx ≈ 10, 20, and 40 were simulated. We also used
different system sizes in the y and z directions: Ly − 2R = Lz

− 2R ≈ 18 and 26 for η < 0.06 and 26 and 38 for η > 0.06.
Periodic boundary conditions were applied in all directions.
We did not observe statistically significant dependence of the
results on Ly and Lz, so the reported results for vex are the
averages over these simulations. The reason for this is that
we used relatively large values of Ly = Lz in order to have a
large region of fluid away from the wall, where the density
profile oscillations due to the presence of the wall are insignif-
icant compared to the statistical error (which is at a distance
of about 7.5 from the wall for the highest packing fraction
η = 0.32 studied in this work). At the same time, we observed
a statistically significant dependence on Lx at low densities,
which decreased with increasing η and became statistically
insignificant for η > 0.06. To account for the observed size
dependence at η < 0.06, we calculated the weighted least-
squares best fit to a straight line as a function of L−1

x of the
results at Lx = 10, 20, and 40 and used the straight line inter-
cept with L−1

x = 0 for the reported results, together with the
corresponding estimated 95% confidence interval in the posi-
tion of the intercept. For η > 0.06, the reported results are
averages of the simulation results with Lx = 20 and 40 (we
did not extend the simulations of the system with Lx = 10 to
larger η).

For the spherical wall system, we calculated results for the
wall radii R = 1.0, 1.5, 2.0, 5.0, and 10. We used a cubic simula-
tion box with sizes Lx − 2R = Ly − 2R = Lz − 2R≈ 18 and 26 for
η < 0.1 and 26 and 38 for η > 0.1. We did not observe a statisti-
cally significant size dependence of the results, so the reported
results are averages of the results for systems with different
system sizes. As in our previous work,18 the excess volume
for the system with a spherical wall with R = 0.5 is calculated
by recognizing that the “wall particle” is the same size as the
fluid particles, so ρ(r) (and thus vex) can be determined from
the radial distribution function (RDF) of a simulation of the
bulk hard-sphere fluid. We simulated systems with dimensions
Lx = Ly = Lz ≈ 25 and 38. We did not observe a statistically sig-
nificant size dependence of the results, so the reported results
are averages of the results for systems with the two system
sizes.

Once vex for the cylindrical and spherical walls were
obtained as discussed above, γ was calculated by numeri-
cal integration using Eq. (28). Because the data are unevenly
spaced as a function of η, we use the trapezoidal rule. In
Ref. 18, we reduced the numerical error in the integration
by first subtracting from the integrand the SPT expression.
The exact SPT expression for γ was then added back in after
the numerical integration. This reduced the curvature of the
integrand so that the numerical integration error was smaller
than the estimated statistical error in γ. For the present cal-
culations, with a substantially smaller statistical error, this

is not sufficient. Instead, we subtract off a more accurate
analytical expression—namely, that derived from the WBII
bulk theory [Eqs. (13)–(15)]. Subtracting the expression for
∂γ/∂η generated from the WBII equations from the integrand
for both the spherical and cylindrical cases before integra-
tion lowers the magnitude and curvature of the integrand
so that an upper bound of the numerical integration error
is lower than the estimated statistical error. The value of γ
is then determined by adding back in the WBII expression
for γ(R, η).

IV. RESULTS AND DISCUSSION

The high-resolution simulation results for the excess vol-
ume for the hard-sphere fluid at both spherical and cylindrical
walls, plotted as a function of the packing fraction η for all
radii studied, are summarized in Fig. 1. The value at η = 0 was
obtained using the exact low density limit of ρ(R) resulting in

vex(R, η = 0) =



1
2 + 1

4R + 1
24R2 (spherical wall)

1
2 + 1

8R (cylindrical wall).

The error estimates for the data in Fig. 1 are significantly
smaller than in Ref. 18 and cannot be resolved visually in
the figure.

Using the data shown in Fig. 1 and Eq. (28), we cal-
culate γ(R, η) using the methods described in Sec. III. The
results are summarized in Fig. 2 as functions of wall radius R
and packing fraction η for both the spherical and cylindrical
walls. From these data, we see a strong curvature dependence
of γ, which increases with increasing curvature as measured
by the inverse radius 1/R. The numerical values of vex(R, η)
and γ(R, η) with error bars are tabulated in the supplementary
material.

To assess the validity of the MT expression [Eq. (9)],
which states that γ for the cylinder and the sphere should be
strictly linear and quadratic functions, respectively, of 1/R, the
data for γ(R, η) for both wall types were fit to a cubic poly-
nomial in 1/R using weighted least-squares linear regression
(also sometimes referred to as cubic regression).29 In Fig. 3,
the linear coefficient, h, as defined in Eq. (5), is plotted for
both the cylindrical and spherical walls. Consistent with Hel-
frich and MT expansions, the values of h for these two wall

FIG. 1. Excess volume, vex(R, η), for a hard-sphere fluid at cylindrical (left)
and spherical (right) hard walls as functions of the cylinder (sphere) radius,
R, and the packing fraction, η.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-035841
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-035841
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FIG. 2. The surface free energy γ(R, η) of a hard-sphere fluid at cylindrical
(left) and spherical (right) hard walls as a function of the wall radius R and of
packing fraction η.

types are equal within the error estimates for all η studied in
this work. To see this more clearly, the difference between
the two h values, hsph − hcyl, is plotted in the inset of Fig. 3.
Also plotted in Fig. 3 are the truncated virial expansion for h
from Eq. (17) and the expression in Eq. (14) from the WBII
bulk theory. The virial expression agrees with the simulation
well, up to about η ≈ 0.2, but even at η = 0.3, the devia-
tions are only a few percent. The WBII expression is even
closer.

The simulation results for the full set of MT coefficients
for the cylinder (hcyl) and the sphere (hsph and γsph

2 = k + κ)

are shown in Fig. 4. For the spherical wall, the value of γsph
2

is considerably smaller than the linear term h. Also, the virial
expression for γsph

2 [Eq. (21)] is in excellent agreement with
the simulation data over the range of packing fractions studied.
Figure 4 also shows the virial expansion result for κ alone
[Eq. (18)—obtained by subtracting the virial expansion for k
determined from the cylindrical geometry from that for γsph

2 ].
At low packing fractions (η < 0.1), the contributions of k to
γ

sph
2 are negligible on a relative scale (consistent with MT);

however, at the higher packing fractions, the contribution of

FIG. 3. The coefficient h for the hard-sphere fluid at spherical and cylindrical
walls as functions of packing fraction η determined from the simulation data
using least-squares cubic regression in 1/R. For comparison, also shown are
the truncated virial expansion expression for h from Eq. (17) and the WBII
expression from Eq. (14). Because the values for the spherical and cylindrical
walls appear the same at the resolution of this plot, the difference between
them is plotted in the inset.

FIG. 4. The MT coefficients for the hard-sphere fluid at spherical (hsph and

γ
sph
2 = k + κ) and cylindrical (hcyl) walls as functions of packing fraction
η determined from the simulation data using least-squares cubic regression
in 1/R. For comparison, also shown are the corresponding truncated virial
expansion expressions, including that for κ.

k to γ
sph
2 is much larger (up to 32% at the highest packing

fractions studied), indicating potentially significant deviations
from MT predictions when non-spherical geometries (such as
ellipsoids) are considered.

We now turn specifically to higher-order non-MT terms
for the cylindrical and spherical geometries. For the hard-
sphere fluid at a cylindrical wall, the first such term is the
quadratic coefficient γcyl

2 in Eq. (7), related to the bending

rigidity k in Helfrich’s expansion, Eq. (5), γcyl
2 = k/4. We

denote this bending rigidity kcyl, as this quantity is obtained
from the cylindrical wall data using weighted least-squares
linear regression in powers of 1/R at each value of η. The
results are shown in Fig. 5, where we plot the results obtained
both with the linear regression up to 1/R3 (weighted cubic fit)
and up to 1/R4 (weighted quartic fit). As we can see, the two
results differ somewhat, with the statistically significant dif-
ference (which we associate with the non-overlapping error

FIG. 5. The bending rigidity coefficient, kcyl, for the hard-sphere fluid at a
cylindrical wall as a function of packing fraction η. The solid black circles
and red squares are the results obtained from the cubic and quartic weighted
regression fit in powers of 1/R. The blue line is the truncated virial expression
in Eq. (19), the green line is the expression proposed by Urrutia,13 and the
black line is the RFMT cDFT result of Blokhuis.23
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bars) in the range 0.1 < η < 0.2. This indicates that within
the precision of our MD computations, we detect a relatively
small, but statistically significant, contribution from the 1/R4

term in the expansion in Eq. (7). For comparison, we show the
leading term of the virial expansion for the bending rigidity
in Eq. (19), which agrees with the simulation results only for
η < 0.02. At the same time, the empirical expression pro-
posed by Urrutia,13 k(η) = 3η2(1 − 3η)/(8π) and the RFMT
cDFT result of Blokhuis23 show very good agreement with the
simulation results.

The results for the cubic curvature coefficient for the cylin-
drical wall, γcyl

3 , are shown in Fig. 6. Again, we see somewhat
different results for the cubic and quartic weighted regression
fits, but both indicate that γcyl

3 is negative for most of the range
of η values studied in this work. This is consistent with the
first term of the virial expression, Eq. (22), which is also nega-
tive. (Note that Ref. 13 contains a typo in which the coefficient
γ

cyl
3 is reported as positive when it actually has the opposite

sign.30)
For the spherical wall, the first non-MT term is γsph

3 in the
expansion of γ in powers of 1/R, Eq. (8). The virial expression
for this term was given earlier in Eq. (23). The simulation data
for γsph

3 , obtained using weighted cubic regression in powers
of 1/R, are plotted in Fig. 7. Even with the high precision of the
current simulation results, γsph

3 cannot be distinguished from
zero within the statistical error. This is also verified by the
observation that the quadratic regression in powers of 1/R fits
the spherical wall simulation results for all η studied. As can be
seen in Fig. 7, the simulation data are consistent with the virial
expansion results up to about η = 0.05, with small deviations in
the region between packing fractions of 0.05 and 0.1. One can-
not rule out the possibility, though, that these deviations might
disappear when higher-order virial expansion coefficients are
considered.

In analogy to Eq. (5) for γ, we can also expand the excess
volume in a Helfrich expansion, or, similar to Eqs. (7) and (8),
in the series in powers of 1/R for the cylindrical and spherical
walls, respectively,

FIG. 6. The cubic curvature coefficient, γcyl
3 , for the hard-sphere fluid at a

cylindrical wall as a function of packing fraction η. The black circles and red
squares are the results obtained from the cubic and quartic weighted regression
fit in powers of 1/R. The blue solid line shows the truncated virial expansion
in Eq. (22).

FIG. 7. The cubic curvature coefficient, γsph
3 , for the hard-sphere fluid at a

spherical wall as a function of packing fraction η. The solid circles represent
the results for the current simulations. The blue line shows the virial expansion
up to third order in η. The inset shows the same data at low packing fractions.

vex = v0 + hvH̄ + κvK̄ + kvH̄
2 + · · · (29)

= v0 +
v1

R
+
v2

R2
+
v3

R3
+ · · · (30)

= v
cyl
0 +

hcyl
v

2R
+

kcyl
v

4R2
+
v

cyl
3

R3
+ · · · (cyl) (31)

= v
sph
0 +

hsph
v

R
+
κv + ksph

v

R2
+
v

sph
3

R3
+ · · · (sph). (32)

If MT holds for the excess volume, then we would have
hcyl
v = hsph

v , kcyl
v = ksph

v = 0, and zero for all coefficients of
order 1/R3 and higher. To assess this, we fit the simulation
results for vex shown in Fig. 1 for the cylindrical and spherical
walls to cubic and quartic polynomials in 1/R using weighted
least-squares linear regression. The linear term corresponding
to hv is plotted in Fig. 8 for both the spherical and the cylindri-
cal walls. As shown in the inset of Fig. 8, the values of hv for

FIG. 8. The coefficients hv for the hard-sphere fluid at spherical (hsph
v )

and cylindrical (hcyl
v ) walls as functions of packing fraction η obtained via

weighted cubic regression in powers of 1/R of the excess volume simulation
results for the spherical and cylindrical walls, respectively. For comparison,
also shown is the WBII expression for hv from Eq. (35) and the virial expan-
sion [Eq. (37)]. Because the values for the spherical and cylindrical walls
appear the same at the resolution of this plot, the difference between them is
plotted in the inset.
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both wall types are identical within the error bars, consistent
with the predictions of MT. Also shown in Fig. 8 is the expres-
sion for hv derived from the WBII expression for h [Eq. (14)]
and using the fact that

vex(η) =

(
∂γ

∂η

) / (
∂P
∂η

)
, (33)

where for P(η) we use the Carnahan-Starling (CS) equation of
state from which the WBII expression is derived

PCS =
6η(1 + η + η2 − η3)

π(1 − η)3
. (34)

The WBII-CS expression for hv is

hWBII-CS
v =

(1 − η)2(3 + η2)

12(1 + 4η + 4η2 − 4η3 + η4)
, (35)

which is seen to be in excellent agreement with the simulation
results.

The virial expression for hv can be determined from the
virial expansion for h, combined with Eq. (33) and the usual
virial expansion for the hard-sphere pressure,

P =
6
π
η +

24
π
η2 +

60
π
η3 + · · · , (36)

yielding

hv =
1
4
−

3
2
η + *

,

327
70

+
81
√

3
64π

+
-
η2 + · · · . (37)

This virial expansion is also plotted in Fig. 8 and we note that
the range of η values for which the virial series for hv agrees
with the simulation results is significantly smaller than that
for h.

In Fig. 9, we plot the simulation data for the excess-
volume expansion coefficient vsph

2 = ksph
v + κv for the hard-

sphere fluid at a spherical wall. Also shown are the WBII-CS
expression

(kv + κv)
WBII-CS =

(1 − η)3

24(1 + 4η + 4η2 − 4η3 + η4)
, (38)

FIG. 9. The curvature coefficient vsph
2 = ksph

v + κv for the excess volume as
a function of packing fraction η from the simulations (black circles). Also
shown are lines corresponding to the WBII and virial expansion expressions.

FIG. 10. The first non-MT term (kcyl
v ) for the excess volume of the hard-

sphere fluid at a cylindrical hard wall as a function of packing fraction η. The
solid (black) circles and (red) squares are the results obtained from the cubic
and quartic weighted regression fit in powers of 1/R, respectively. Also shown
is the first term, η/8, of the virial expansion.

derived in the same way as Eq. (35), and the virial expression,
given by

kv + κv =
1

24
−

7
24
η + *

,

207
280

+
81
√

3
128π

+
-
η2 + · · · . (39)

As with the results for hv , the WBII expression is in excellent
agreement with the simulation.

The first non-MT term for the excess volume for the cylin-
drical wall, kcyl

v , is shown in Fig. 10. This quantity does exhibit
a significant deviation from zero, even at low packing fractions.
The results obtained using weighted linear regression in pow-
ers of 1/R up to cubic and quartic terms are consistent within
the error bars. Also plotted is the first virial expansion term
for this quantity, which is η/8. Within the error bars, the sim-
ulation data in the linear regime at small η are consistent with
this first virial term. Higher-order virial coefficients would be
needed for comparisons with the simulation results at higher
packing fractions.

FIG. 11. The first non-MT term (vsph
3 ) from the simulations (filled circles) for

the excess volume of a hard-sphere fluid at a spherical hard wall as a function
of packing fraction η. Also shown is the leading term of the virial expansion
from Eq. (40).
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The first non-MT term from the simulations for the excess
volume for the spherical wall, vsph

3 , is shown in Fig. 11. Within
our error estimates, this term is not significantly different from
zero, so even at this high resolution simulation results for the
spherical wall, it is not possible to verify the existence of devi-
ations from MT. Also plotted is the first virial expansion term
for this quantity,

v
sph
3 =

9
√

3
320π

η2 + · · · . (40)

At low η, where this expression should be valid, it is consis-
tent with the simulation results; however, making any further
conclusions would require the accurate calculation of higher-
order virial coefficients and even higher precision simulation
data.

V. SUMMARY

We have performed a series of high-resolution molecular-
dynamics (MD) simulations to determine the excess volume,
vex, and surface free energy, γ, of a hard-sphere fluid at spher-
ical and cylindrical curved walls of varying radii. The moti-
vation for these high-precision simulations is to attempt to
resolve deviations at low-packing from the so-called Morpho-
metric Thermodynamics (MT), which predicts that the surface
free energy (and vex) can be written as a linear combination of
the average mean and Gaussian wall curvatures. In our previ-
ous work,18 our simulation identified strong deviations from
MT at high packing, but deviations at low packing fraction,
predicted by recent theoretical studies using classical Density
Functional Theories (cDFT)14,23 and virial expansion tech-
niques,13,24 were not resolvable within the statistical error of
those simulations. For the spherical (cylindrical) walls studied
here, MT predicts that all terms in a Taylor series for γ (or vex)
in powers of 1/R beyond the 1/R2 (1/R) term are identically
zero. By calculating γ as a function of both the packing frac-
tion η and the wall radius R for both spherical and cylindrical
walls and fitting the subsequent γ(R, η) [or vex(R, η)] to a cubic
or quartic polynomial in 1/R at each fixed η, we were able to
test the assumptions of MT and compare any deviations to the
recent theoretic predictions.

Our results show that, even with the higher resolution,
the MT coefficient linear in the mean curvature, h, for both
the spherical and cylindrical walls is identical within the sta-
tistical error, consistent with the predictions of MT (and the
more general Helfrich expansion). For the cylindrical system,
the non-MT coefficients of 1/R2 and 1/R3 for both γ and vex

are found to deviate from zero with statistical significance,
even at low packing fractions, and are consistent with the
virial coefficients of Urrutia,13 as well as the DFT calculations
of Blokhuis.23 For the spherical system, however, even these
very high precision results are insufficient to resolve devia-
tions from the MT predictions, with the calculated non-MT
higher order term (cubic in 1/R) being zero within the error
bars. Given the central role the hard-sphere fluid plays as a
reference system for more physically realistic systems, the
results obtained here imply that similar deviations from MT
are likely to be observed for more complex interactions as
well.

SUPPLEMENTARY MATERIAL

See supplementary material for files containing the
numerical data from the simulations for the surface free energy,
γ, and excess volume, vex, for the hard-sphere fluid at both
spherical and cylindrical curved walls.
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