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Abstract 10 

The comparison of the chemical composition of fossilized amber, copal, and resin is 11 

important for determining the botanic origin and original chemical composition of fossilized 12 

amber and copal, and for understanding the ecologic role of resin.  Here we use solid phase 13 

microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) to investigate the 14 

volatile and semi-volatile composition of amber, copal and resin from Africa and the 15 

Americas, produced by trees from the genus Hymenaea.  We found there are four subgroups 16 

of Hymenaea resin, copal, and amber, based upon age and chemical similarity: African 17 

amber, American amber, African resin/copal (which also includes Colombian copal), and 18 

American resin/copal.  This analysis allows us to narrow down the potential botanic origin of 19 

amber and copal samples, and also indicates that within this genus, resin similarity does not 20 

correspond closely with phylogenetic relationships.  Therefore, resin chemistry may have 21 

been controlled by ecologic pressures, such as defence against herbivores, wood borers, 22 
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humidity, diseases, etc. and the original chemical composition of amber and copal could 23 

potentially be used to understand the role of resin in plant-insect interactions through time.  24 

 25 
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 30 

1. Introduction 31 

 Trees in the genus Hymenaea (Fabaceae (=Leguminosae): Detarieae) (Fig. 1) have 32 

been prolific and important resin producers in Africa and the Americas for millions of years, 33 

producing extensive palaeontologically significant deposits of copal (semi-fossilized tree 34 

resin) and amber (fossilized tree resin) many of which contain exceptionally preserved 35 

fossils. The wealth of fossil and subfossil Hymenaea amber and copal is due primarily to the 36 

polylabdanoid macromolecular structure of the Hymenaea resin – which is characterized by 37 

ozic acid, ozol and enantio biformenes (Anderson et al., 1992) – that allows for rapid 38 

polymerization into amber and copal that is very durable over geologic time (Langenheim, 39 

1995). We have investigated the volatile and semi-volatile chemical composition of known 40 

Hymenaea amber, copal and resin from a variety of sites, all described in more detail below. 41 

The two most celebrated and best-studied deposits are the Miocene Dominican and 42 

Mexican Chiapas ambers (Penney, 2010; Solórzano Kraemer, 2010). Both contain diverse 43 

and abundant assemblages of exceptionally-preserved biological inclusions, providing a 44 

wealth of palaeobiological information about the small, soft-bodied, terrestrial fauna in a 45 

Miocene-age Neotropical forest ecosystem (Arillo and Ortuño, 2005; Penney, 2010; 46 

Solórzano Kraemer, 2010).  47 

Dominican amber in particular is notable for its unusually high-quality preservation 48 

(Grimaldi et al., 1994; Grimaldi and Engel, 2005; Penney, 2010; McCoy et al., 2017). For 49 

example, of the approximately five percent of the amber pieces which contain biological 50 

inclusions (Lambert et al., 1985), 93 percent of these, when examined with tomography or 51 

dissection have internal soft tissues preserved (Grimaldi et al., 1994; Stankiewicz et al., 1998; 52 
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Heethoff et al., 2009; Greco et al., 2011; Van et al., 2014; McCoy et al., 2017), including 53 

details such as muscle fibres, myofibrils, and mitochondria (Henwood, 1992; Grimaldi et al., 54 

1994; Labandeira, 2014).  Chemical analyses (FTIR, C13NMR, pyrolysis GC-MS) have 55 

highlighted similarities between Dominican amber and modern Hymenaea resin 56 

(Langenheim, 1969; Cunningham et al., 1983; Anderson et al., 1992; Langenheim, 1995; 57 

Martınez-Richa et al., 2000; Penney, 2010), and palaeobotanical investigations indicate that 58 

Dominican amber was produced by the extinct tree H. protera (Hueber and Langenheim, 59 

1986; Poinar, 1991; Langenheim, 1995; Penney, 2010), a close relative of the extant H. 60 

verrucosa (Poinar, 1991). Amber attributed to H. protera, is also known from Cuba, Haiti, 61 

Puerto Rico and Jamaica (Iturralde-Vinent, 2001), but with such low abundance that it has 62 

never been studied in detail. 63 

Mexican Chiapas amber, like Dominican amber, has exceptional soft tissue 64 

preservation of biological inclusions (Solórzano Kraemer, 2007, 2010) such that 55 percent 65 

of studied specimens have internal soft tissues (McCoy et al., 2017).  Mexican amber is 66 

approximately the same age as Dominican amber, and is chemically very similar, but in some 67 

deposits has undergone more extensive thermal degradation (Bryant, 1983; Lambert and 68 

Poinar, 2002; Solórzano Kraemer, 2007, 2010).  Chemical analyses (IR and C13NMR) of 69 

Mexican amber from Chiapas shows many similarities with Dominican amber and modern 70 

Hymenaea resins, but, in addition, subtle differences indicate that the Chiapas amber was 71 

produced by one or more extinct tree species in the genus Hymenaea (Langenheim, 1966; 72 

Lambert et al., 1989; Lambert and Poinar, 2002), most likely H. mexicana (Brown, 2002) and 73 

H. allendis (Calvillo-Canadell et al., 2010). 74 
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   Another amber produced by Hymenaea is the less well known and recently described 75 

Ethiopian amber. Schmidt et al. (2010) described abundant well preserved arthropod 76 

inclusions and considered it as early Late Cretaceous in age (Cenomanian, ~93–95 Ma) 77 

although they did not comment on the botanic origin of the amber. Later Perrichot et al. 78 

(2016) re-evaluated the site based on additional amber material and associated sediment, 79 

which provided compelling evidence that Ethiopian amber is Cenozoic, likely Miocene. 80 

Moreover, these additional samples indicated that the amber was produced by the genus 81 

Hymenaea, similar to East African copals and Miocene ambers from Mexico or Dominican 82 

Republic. 83 

In addition to the localities above we have also analysed samples from a recently 84 

discovered site in Venezuela which is of late Early Miocene to early Middle Miocene (Pérez 85 

et al., 2016) in age.  The botanic origin of this amber has never been studied. In contrast to 86 

Dominican and Chiapas amber, no biological inclusions have been identified in Venezuelan 87 

amber (Pérez et al., 2016), and its botanic origin has not been investigated.  88 

Copal deposits from, for example, Madagascar, Brazil, the Dominican Republic, 89 

Puerto Rico, and Colombia also offer abundant exceptionally preserved inclusions (Penney 90 

and Preziosi, 2010).  The assemblages in copal have received little attention from 91 

palaeontologists because they are so young, but they are still an important resource for 92 

understanding the current biodiversity crisis and biases of preservation in amber (Penney and 93 

Preziosi, 2010). These copal samples are assumed to be produced by a species of Hymenaea 94 

based on chemical analyses and considerations of the major resin-producing trees in these 95 

regions (Schlüter and Von Gnielinski, 1986; Fearnside, 1989; Poinar, 1992; Langenheim, 96 

1995; Clifford et al., 1997; Martınez-Richa et al., 2000; Lambert et al., 2002, 2005, 2014). 97 
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Hymenaea currently comprises 15 species, 14 of which are well distributed in the 98 

tropical and subtropical forests from Central America to Brazil and the West Indies. 99 

Hymenaea verrucosa is the sole species found in East Africa and Madagascar and is 100 

considered the most primitive species of the genus (Lee and Langenheim, 1975; Langenheim, 101 

2003; Fougère-Danezan et al., 2010). However, a complete phylogenetic and molecular study 102 

of all 15 species has not yet been carried out. 103 

Thus far, chemical analyses have been very successful at constraining the botanic 104 

origin of the amber and copal samples to the genus Hymenaea, but they have been less 105 

successful at constraining it further to the species level.  For example, some chemical 106 

analyses find Dominican amber is very similar to H. verrucosa resin (Cunningham et al., 107 

1983), although most highlight similarities with H. courbaril resin (Langenheim, 1969; 108 

Lambert et al., 1985, 2008, 2015).  Others studies find very little chemical difference between 109 

any Hymenaea species, both extant and extinct (Lambert et al., 2014). From the chemical 110 

analyses alone, it is not clear that Dominican amber is produced by an extinct tree; chemical 111 

differences with modern resin could be due to amberization (the chemical changes during 112 

fossilization to transform resin into copal and then amber) or intraspecific resin variability 113 

rather than to a different botanic origin.  Determining the botanic origin of copal or amber 114 

using chemical comparisons to modern resin requires either that the resin-producing species 115 

is still extant (and included in the analysis), or that chemical similarity indicates phylogenetic 116 

similarity. However, the chemical analyses to date do not consistently indicate whether 117 

chemical similarity indicates a close phylogenetic relationship between the botanic producers. 118 

Some analyses found that chemical similarity follows broad phylogenetic patterns (Lambert 119 

et al., 2005), but others suggest that resin chemistry is more strongly controlled by 120 
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environmental factors, and that resin chemical variation is more likely to be functionally 121 

rather than phylogenetically controlled (Langenheim, 1995).   122 

The ecologic role of resin is not fully understood, but it includes defence against 123 

insect herbivores, healing wounds (Langenheim, 1990, 1995, 2003; Pichersky and Raguso, 124 

2016) and to prevent bacterial and fungal infections, or infestations by wood-boring 125 

arthropods (McKellar et al., 2011; Beimforde et al., 2017). 126 

Plant-insect interactions are a product of hundreds of millions of years of antagonisms 127 

and co-evolution, and include some of the most complicated and important interactions in 128 

modern ecosystems (Bryant et al., 1991; Labandeira et al., 1994; Howe and Jander, 2008; 129 

War et al., 2012; Labandeira and Currano, 2013).  By characterizing the chemical 130 

components of amber, resin, and copal, and by precisely identifying the botanic producer, we 131 

can better understand these interactions through time from the modern day and in the fossil 132 

record. This is particularly interesting for amber fossil sites which preserve much of the 133 

original insect herbivore fauna as inclusions in amber (Penney, 2010; Solórzano Kraemer, 134 

2010; Labandeira, 2014; Peris et al., 2015), and also preserve some direct evidence of plant-135 

insect interactions in the form of leaves with herbivore damage (Labandeira, 2014).  136 

The goal of this research is to use headspace solid phase microextraction-gas 137 

chromatography-mass spectrometry (SPME-GC-MS) to elucidate the volatile and semi-138 

volatile components of various African and American resin, copal, and amber known to be 139 

produced by the genus Hymenaea.  Headspace SPME uses a coated fibre to extract 140 

compounds from the headspace of a sealed vial containing a sample and transfer them to a 141 

GC-MS for identification and quantification (Pawliszyn, 2011).  This method has previously 142 

been used to differentiate samples of modern resin (Hamm et al., 2003, 2005), identify small 143 
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amounts of resin in archaeological samples (Hamm et al., 2004), characterize the volatile 144 

components in Benzoin gum (Castel et al., 2006), identify two volatile degradation 145 

compounds of Baltic amber (Pastorelli, 2011), and differentiate Baltic and Romanian amber 146 

(van der Werf et al., 2014).  These previous studies have also involved extensive methods 147 

testing (Hamm et al., 2003), which has informed our selection of SPME fibre, incubation 148 

temperature and time, and sampling time.  Our analyses on Hymenaea resin, copal, and 149 

amber will provide a simplified, comparable chemical characterization of resin, copal, and 150 

amber that focuses on some of the most ecologically active compounds (Langenheim, 2003).  151 

This new source of chemical data from these samples will also complement previous 152 

analyses, to help better elucidate the botanic origin and ecologic role of these samples.  153 

 154 

 155 

2. Materials and Methods 156 

2.1. Samples 157 

 Samples of amber, copal, and resin were obtained from the Senckenberg Research 158 

Institute and Natural History Museum (SMF), from Alcaldía Municipio Urumaco, Colección 159 

Paleobotánica, Venezuela (AMU-PB) or collected from various locations around Africa and 160 

the Americas (table 1, Fig. 1): two samples of Ethiopian amber; two samples of Mexican 161 

Chiapas amber, one each from the Simojovel and Totolapa mines; one sample of Dominican 162 

amber; one sample comprised of various small pieces of Venezuelan amber, one sample of 163 

copal from the Dominican Republic; two samples of copal from Colombia; one sample of 164 

copal from either Puerto Rico or the Dominican Republic; nine samples of Hymenaea 165 

verrucosa resin, six of which were from the same tree; one sample of H. courbaril resin; one 166 
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sample of H. parvifolia resin; and two unknown samples, one from the collections of the 167 

Senckenberg Research Institute and Natural History Museum and one purchased from ebay 168 

under a listing for ‘Dominican amber.’  The pieces were selected to be homogenous and free 169 

of organic inclusions. Each sample was reduced to a fine powder using a ball mill, and 0.5 170 

grams were sealed into a 20 ml headspace vial with a PTFE septa and magnetic screw top 171 

caps.  Our sample sizes (0.5 g) are much larger than those used in previous SPME analyses of 172 

resin, copal, and amber, which range from 0.002 to 0.04 mg (Hamm et al., 2003; Hamm et 173 

al., 2004; Pastorelli, 2011). However, for headspace SPME, sample size is dependent upon 174 

headspace volume; we used 20 ml vials rather than the 2 ml vials used in the previous 175 

analyses (Hamm et al., 2003; Hamm et al., 2004; Pastorelli, 2011) and therefore increased 176 

our sample size accordingly.  Moreover, we tested our method with various sample sizes of 177 

Copaifera officinalis resin purchased from an online supplier and found the results were 178 

essentially identical for samples sizes ranging from 0.01 g to 1 g (Supplementary Figs. 1 and 179 

2).   180 

 181 

2.2 Headspace SPME-GC-MS 182 

  183 

The vials containing the powdered samples were randomly loaded in a Triplus RSH 184 

autosampler and placed in an agitator where they were equilibrated at 80°C for one hour.  185 

The SPME fibre, a 65 μm Polydimethylsiloxane/Divinylbenzene (PDMS/DVB) fibre initially 186 

conditioned at 250°C for 30 minutes per the manufacturer’s instructions, was automatically 187 

introduced and exposed to the head space for one hour. After sampling, the fibre was inserted 188 

into the injection port of a Thermo Scientific Trace 1310 GC, which had a Thermo TG-5MS 189 
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30 m column with 0.25 mm ID and 0.25 µm film thickness, coupled to an ISQ QD single 190 

quadrupole mass spectrometer, where it was desorbed for 2 minutes at 250°C. Splitless 191 

injection (1 minute) was used. The injector temperature and transfer line temperature were 192 

250°C, and the GC program had an initial temperature of 40°C, held for five minutes, that 193 

ramped up to 280°C at a rate of 10°C per minute, where it was held for 5 minutes.   A liquid 194 

injection of a standard mixture containing a series of n-alkanes was used to calibrate retention 195 

indices to aid in identifying the peaks.  196 

 197 

2.3 Peak identification 198 

 The chromatograms for each sample were imported into the program AMDIS, which 199 

automatically deconvolutes the data to extract the pure component spectra, allowing for more 200 

accurate identification.  The major peaks in each chromatogram were identified through a 201 

National Institute of Standards and Technology (NIST) MS database search, including 202 

information from both the MS fragmentation patterns and the retention indices.  We found 203 

126 compounds, which we compiled into a search library in AMDIS.  We then used the 204 

analysis function in AMDIS to automatically compare all peaks in each chromatogram to this 205 

search library, so that we had comparable data for each sample.   206 

  207 

2.4. Semi-quantitative analysis 208 

The relative amounts of each compound were calculated as the percent of the total 209 

peak area of the 126 selected compounds, and these data were analysed with principal 210 

components analysis (PCA) (following van der Werf et al., 2014) using the program R. These 211 

data quantitatively represent the SPME chromatograms, and therefore provide a way to 212 
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quantitatively compare the chromatograms.  However, the SPME chromatograms do not 213 

quantitatively represent the samples, because SPME extracts different compounds with 214 

differing levels of completeness (Hamm et al., 2003). Nonetheless, the results for identical 215 

samples are completely reproducible because the use of an autosampler results in exactly 216 

comparable timings and temperatures; these are two factors that play a major role in the 217 

efficiency of the equilibrium-based extraction.  Therefore, these analyses allow reproducible, 218 

semi-quantitative comparisons of the samples (van der Werf et al., 2014). 219 

 220 

3. Results 221 

 Components 1 and 2 of the PCA (which encompass ~ 49% of the variation in the 222 

dataset (Fig. 2)) indicate that the volatile and semi-volatile chemical constituents of resin, 223 

copal, and amber vary based on age and location (Fig. 3).  Components 3-6, although they 224 

together encompass another 31% of the variation, do not separate the samples in any 225 

meaningful way (Supplementary Fig. 3) and so are not considered. Component 1 (~38% of 226 

variation (Fig. 2)) separates the ancient amber from the recent resin/copal (Fig. 3). 227 

Component 2 (~11% of variation (Fig. 2)) separates the African samples from the American 228 

samples (Fig. 3).  The exception to this is Colombian copal, both samples of which group 229 

with the African resins, rather than with the other American samples (Fig. 3). Within these 230 

groups, we see large variation within species, and overlap between species.  The nine samples 231 

of H. verrucosa resin all cluster within the same group (the African resin/copal group) in the 232 

PCA, but they span the entire range of variation of that group, overlapping with the 233 

Colombian copal samples, which were almost certainly produced by one of the American 234 

Hymenaea species, rather than H. verrucosa which is restricted to Africa (Fig. 3). Multiple 235 
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samples from one H. verrucosa tree have a restricted chemical composition relative to the 236 

entire range of H. verrucosa, but they still show some variation (Fig. 3). Similarly, the two 237 

samples of Mexican amber from Chiapas (both produced by H. mexicana or H. allendis) fall 238 

within the American amber group in the PCA, but span the entire range of variation of the 239 

group and overlap with the Dominican amber sample (produced by H. protera).   240 

The four groups in the PCA (Fig. 3) are primarily determined on the basis of 12 of the 241 

126 chemical compounds (Fig. 4).  All of the ambers (in contrast to the resin and copal 242 

samples) have high amounts of 1,1,4,5,6-pentamethyl-2,3-dihydro-1H-indene, 4,8,11,11-243 

tetramethyl-tricyclo[7.2.0.0(3,8)]undec-4-ene, trimethylphenyl- butanone, caryophyllene 244 

isomer, and tetrahydro-tetramethyl-naphthalene (Figs. 4 and 5).  American amber (see 245 

Supplementary Fig. 4 for chromatograms) is distinguished from African amber (see 246 

Supplementary Fig. 5 for chromatograms) by the relative proportions of these compounds 247 

(Figs 4 and 5): American amber is dominated by1,1,4,5,6-Pentamethyl-2,3-dihydro-1H-248 

indene and African amber by the other four compounds.  All of the resin and copal samples 249 

have high abundances of 13-epimanool, caryophyllene, biformene, and α-curcumene.  250 

However, American resin/copal (Figs. 4 and 5, see Supplementary Fig. 6 for chromatograms) 251 

also has high amounts of humulene-1,2-epoxide, α-humulene, and β-bisbolene. Colombian 252 

copal (see Supplementary Fig. 7 for chromatograms) has relatively small amounts of these 253 

three compounds (Fig. 6) and so it clusters with the African resin/copal (see Supplementary 254 

Fig. 8 for chromatograms) in the PCA (Fig. 3).   255 

The analysis also includes two samples of unknown geographic and botanic origin 256 

(see Supplementary Fig. 9 for chromatograms). The first unknown was suspected to be H. 257 

courbaril resin from Mexico or Colombia. In our analysis, this sample (labelled ‘unknown’) 258 
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groups with the recent American resin/copal samples but not with the Colombian copal 259 

samples, suggesting it was not from Colombia (Fig. 3). However, there is not sufficient 260 

differentiation between different American resins and copals to discriminate any further the 261 

exact provenance of this sample.  The second unknown sample was purchased from ebay and 262 

was sold as Dominican Amber (labelled ‘Dominican amber?’) (Fig. 3).  Our analysis strongly 263 

suggests that this sample is from the Americas, however, it is more likely to be resin or copal 264 

than amber. 265 

 266 

4. Discussion  267 

Our results support four conclusions regarding the volatile/semi-volatile composition 268 

of known Hymenaea resin/copal/amber: (i) there is extensive intraspecific variation and 269 

interspecific overlap in resin chemistry; (ii) chemical similarity does not correspond to 270 

phylogenetic similarity at the species level, which has implications for using resin chemistry 271 

to determine the botanic origin of amber, copal, or an unknown resin sample; (iii) 272 

environmental factors might be important for controlling chemical composition; and (iv) 273 

resin chemistry changes during the process of amberization, but despite this it is may still be 274 

possible to gain some understanding of the original resin chemistry of an amber sample. 275 

 276 

4.1. Intra- and inter- specific variation 277 

Previous analyses of Hymenaea resin chemistry have encompassed both leaf/primary 278 

stem resin (Martin et al., 1971, 1974; Langenheim et al. 1978) and trunk resin (Lambert et al., 279 

1985, 1989; Cunningham et al., 1983; the current study). These two sources of resin vary 280 

because trunk resin has a polymeric macromolecular structure as well as volatile and semi-281 
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volatile components whereas leaf/primary stem resin lacks the polymeric structure 282 

(Langenheim, 1995). 283 

Previous studies of the macromolecular chemical composition of Hymenaea resin 284 

using C13 NMR and infrared (IR) spectroscopy have highlighted intraspecific resin variation 285 

(Martin et al., 1971, 1974; Langenheim et al., 1978). These studies primarily focused on H. 286 

courbaril, which is a highly variable species including multiple subspecies, and which may 287 

actually represent up to three species (Souza et al., 2014).  Our analyses focused on the 288 

variation within H. verrucosa resin, and yet still found extensive chemical variation (Fig. 3), 289 

suggesting that, regardless of whether a consensus phylogenetic grouping for H. courbaril is 290 

met, variable resin chemistry does occur within species and individuals of Hymenaea. 291 

Analyses of Dominican (Lambert et al., 1985) and Mexican amber (Lambert et al., 1989) also 292 

show significant chemical variation, suggesting intraspecific chemical variation within H. 293 

protera and H. mexicana/H. allendis resin.  294 

Previous studies comparing the resin chemistry of different species of Hymenaea have 295 

reached mixed conclusions. The most common comparison is between H. verrucosa and H. 296 

courbaril, which typically can be distinguished using C13 NMR and IR spectroscopy, which 297 

elucidates the macromolecular structure (Cunningham et al., 1983).  In contrast, analyses of 298 

the macromolecular structure of resin from multiple species of Hymenaea (including both H. 299 

verrucosa and H. courbaril), using C13, 1H and COSY NMR and IR find that they are 300 

chemically very similar (Martin et al., 1976; Lambert et al., 2014).  301 

Our results suggest that the volatile and semi-volatile compositions of Hymenaea 302 

resins follow the same broad patterns as the macromolecular structures of these resins: H. 303 

verrucosa and H. courbaril have very different volatile and semi-volatile compositions; but 304 
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there is also significant overlap between different Hymenaea resins. H. courbaril and H. 305 

parvifolia (as well as the tree(s) which produced most of our American copal samples) cannot 306 

be distinguished, and H. verrucosa and the Colombian copal tree cannot be distinguished.  307 

 308 

4.2. Phylogenetic similarity and botanic origin 309 

Large scale chemical analyses suggest that resin chemical groups do follow broad 310 

taxonomic patterns: resin chemistry can often be used to identify families, sometimes to 311 

identify genera, but rarely to identify species (Lambert et al., 2005; Sonibare et al., 2012). As 312 

such, chemical analyses are useful for identifying the botanic origin of an unknown sample 313 

(including amber samples) to higher taxonomic levels, but species-level identification of an 314 

amber-producing tree requires palaeobotanical investigation to supplement the chemical 315 

analyses.   316 

Our analyses, which are restricted to one genus, cannot address the utility of SPME-317 

GC-MS for family or genus level identification of the botanic source of an unknown sample. 318 

We have found that resin chemical similarity for species within the genus Hymenaea does not 319 

correlate to close phylogenetic similarity, and therefore, as with other analyses, is not 320 

sufficient for species-level identification of the botanic origin of a fossil sample or an 321 

unknown recent sample. As previous chemical analyses have suggested (Lambert et al., 322 

2015), the volatile and semi-volatile composition of Dominican amber is more similar to 323 

American resins and copal, such as H. courbaril resin, than to the more closely related H. 324 

verrucosa resin. Both samples of Colombian copal (which were almost certainly produced by 325 

one of the American Hymenaea species) fall within the range of variation of the less closely 326 

related African H. verrucosa resin.  However, Martı́nez-Richa et al. (2000) have also 327 
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previously noted that Colombian samples were very similar to African samples. Moreover, 328 

some modern species (H. courbaril and H. parvifolia; and H. verruscosa and the Colombian 329 

copal tree) overlap in the SPME-GC-MS PCA and therefore cannot be distinguished at all. 330 

These analyses can be used to rule out potential botanic producers of an unknown sample (for 331 

example if it clusters with the American resin/copal samples it was not produced by H. 332 

verrucosa), but cannot be used to identify it definitively to the species level.  333 

The sample of amber from Venezuela clusters nicely with the Chiapas and Dominican 334 

amber, confirming that the botanic origin of this newly discovered amber is very likely also a 335 

species of Hymenaea. An alternative hypothesis is that the Venezuelan amber samples are 336 

produced by a species of Copaifera. This genus also includes prolific resin producing trees, 337 

has a very similar distribution as Hymenaea in the Americas, and Copaifera resin has 338 

previously been very difficult to distinguish from Hymenaea resin using 13C, 1H, and COSY 339 

NMR spectroscopy (Lambert et al., 2009; Lambert et al., 2014).  However, all the Hymenaea 340 

samples in this analysis, and the Venezuelan amber samples, were clearly distinct from the 341 

Copaifera officinalis samples used for methods testing (Supplementary Fig. 2), suggesting 342 

that the Venezuelan amber samples were more likely produced by a species of Hymenaea.   343 

 344 

4.3. Environmental factors  345 

 SPME-GC-MS analysis separates known Hymenaea resin/copal/amber into four 346 

distinct subgroups on the basis of chemical similarity. As discussed above, these groups are 347 

not based upon phylogenetic similarity, which suggests chemical variation in Hymenaea resin 348 

is more strongly influenced by environmental variation (e.g. biotic factors such as herbivore 349 

pressures and abiotic factors such as temperature and aridity) than by phylogenetic 350 
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constraints. Most of the research on the ecologic role of resin (including for Hymenaea resin) 351 

focuses on leaf resins, which may have very different composition than the trunk resins, even 352 

from the same tree (Langenheim, 1995, 2003). However, some of the general conclusions 353 

about specific compounds are still applicable to trunk resin. The non-volatile compounds 354 

(which are not considered in this analysis) generally affect the viscosity and the 355 

polymerization of the resin, and provide physical defences such as trapping attackers and 356 

coating and sealing wounds (Langenheim, 2003; Martı́nez-Delclòs et al., 2004). The volatile 357 

compounds (which include those measured in this analysis) generally provide chemical 358 

defences (Langenheim, 2003). Some are directly toxic to herbivores or fungi (Langenheim et 359 

al., 1980; Arrhenius and Langenheim, 1983; Welker et al., 2007), and others attract predators 360 

or parasites of attacking herbivores (Dicke et al., 1990; Langenheim, 1994). Compositional 361 

variation in Hymenaea resin has been linked to selection in response to the types and 362 

quantities of attacking pests (Langenheim, 2003). However, the efficacy of a resin chemical 363 

compound against a specific attacking organism varies based on abiotic environmental 364 

factors suggesting that abiotic factors may have an indirect effect on resin chemical 365 

composition (Langenheim, 1995). 366 

 The two resin/copal subgroups defined in our study (the American resin group and the 367 

African resin group, Fig. 4) therefore most likely indicate two distinct biotic environmental 368 

pressure regimes, including attacks on the trees by herbivores, wood-infesting arthropods, 369 

pathogens, and fungi. Most of the seven compounds that distinguish these two groups have 370 

been linked to defensive functions, although they have only been investigated in a few tree 371 

species and against a few types of attackers (Table 3). African resins are characterized by 372 

four chemical compounds, of which three have been subject to an investigation of their 373 
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ecologic role: 13-epimanool is associated with resistance to vole browsing in the bark of larch 374 

trees (Sato et al., 2009; Seki et al., 2012);  caryophyllene in pine trees has been shown to 375 

inhibit complete needle destruction by caterpillars (although it is also associated with a higher 376 

frequency of caterpillar attacks) (Petrakis et al., 2005), and to discourage attacks by ants and 377 

fungi (Barnola et al., 1997), in Hymenaea to discourage ant, and caterpillar attacks 378 

(Langenheim et al., 1980; Hubbell et al., 1983), and in Dipterocarps to discourage termite 379 

attacks (Messer et al., 1990); α-curcumene has been found to repel whiteflies in tomatoes 380 

(Bleeker et al., 2011). Finally, the effects of biformene on attackers has not been investigated.  381 

The American resins and copals are defined on three compounds, two of which have been 382 

studied:  α-humulene discourages termites in dipterocarps (Messer et al., 1990) and insect 383 

herbivores in Hymenaea (Langenheim et al., 1980, 1986); humulene-1,2-epoxide deters 384 

caterpillar herbivores in Hymenaea (Langenheim et al., 1980); and β-bisabolene has not been 385 

studied. More research on the effects of these chemicals against a wider range of attackers, 386 

and which organisms typically attack the different Hymenaea species, is necessary to 387 

determine what selective pressures promote the production of one chemical compound over 388 

another, and therefore influence the chemical composition of Hymenaea resin.  However, it is 389 

interesting to note that the African resins have compounds that deter mammalian attackers 390 

and fungi as well as arthropods.  Moreover, in many analyses, caryophyllene (characterizing 391 

the African resins and copals) is identified as one of the most prominent and effective anti-392 

herbivore defence chemicals (Langenheim et al., 1980, 1986; Welker et al., 2007).  It may be 393 

that the African (and Colombian) species of Hymenaea are subject to attack by a more 394 

diverse and persistent fauna than the American species.  395 

 396 
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4.4. Amberization and original volatiles 397 

As resin fossilizes into copal or amber (‘amberization’), it undergoes a complex 398 

process of maturation including oxidation, oligomerization, and cross linking that changes the 399 

molecular structure (Grimalt et al., 1988; Anderson and Winans, 1991; Anderson et al., 1992; 400 

Anderson and Crelling, 1995; Tonidandel et al., 2008).  The SPME method used in this 401 

research only captures small molecular weight compounds and so we observe two particular 402 

consequences of amberization: a decrease in the original low molecular weight volatile and 403 

semi-volatile compounds (Tonidandel et al., 2008), and an increase in low molecular weight 404 

degradative compounds (Pastorelli, 2011). Although we did observe fewer peaks (which in 405 

this analysis all represent low molecular weight volatile and semi-volatile compounds) in the 406 

amber chromatograms than in the resin and copal chromatograms (Fig. 5), the amber was 407 

separated from the resin/copal in the PCA primarily by the presence of degradative 408 

compounds, which have aromatic rings and only very short side chains (Fig. 4). These 409 

variations allow us to distinguish amber samples from more recent resin/copal samples, 410 

which is useful for determining if unidentified samples are amber or not (Fig. 3). However, 411 

this analysis is not very precise, and could not be used to get relative ages for two samples 412 

unless they are very different in age: e.g. Chiapas amber and Dominican amber are very close 413 

in age (Penney, 2010; Solórzano Kraemer, 2010) but cover a wide range in component 1 in 414 

the PCA (Fig. 3), and we cannot distinguish between resins and copals (Fig. 3). Previous 415 

attempts to use NMR, FT-Raman spectroscopy, thermogravimetric analyses, and atmospheric 416 

pressure photoionization (Brody et al., 2001; Ragazzi et al., 2003; Kimura et al., 2006; 417 

Tonidandel et al., 2008; Lambert et al., 2015) have been more effective at determining the 418 
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age of a resin, copal or amber sample; for more recent samples, 14C dating can also be 419 

effective (Burleigh and Whalley, 1983).   420 

In order to understand the role of resin in plant insect interactions in the fossil record, 421 

it is necessary to know the chemical composition of the original resin, rather than the 422 

fossilized amber, which is often obscured by the amberization process. Based on our 423 

analyses, the amber does retain some of the original volatile compounds (e.g. Ethiopian 424 

amber 2 contains α-pinene). However, we can also make assumptions about the original 425 

volatile and semi-volatile composition based on similarities to modern resins.  For example, 426 

the Dominican and Chiapas amber samples clustered with the American resins/copals, and 427 

were therefore most likely originally characterized by 13-epimanool, α-curcumene, 428 

biformene, and caryophyllene. In contrast, the Ethiopian amber is most similar to the African 429 

resin and copal group, and therefore may have been originally characterized by α-humulene, 430 

humulene-1,2-epoxide, and β-bisabolene isomer.  431 

  432 

5. Conclusions 433 

SPME-GC-MS can distinguish four chemical subgroups within Hymenaea resin, 434 

copal and amber: American amber; African amber; American resin/copal; and African 435 

resin/copal (which also includes Colombian resin).  Both amber groups are defined based on 436 

degradative chemical compounds produced during the process of amberization, and the 437 

differences between the groups can be explained by different original chemical compounds 438 

(which are then influenced by amberization). The resin/copal groups are defined on the basis 439 

of original volatile and semi-volatile compounds that all play a role in defence against 440 

herbivores, fungi, and pathogens. Variations in the chemical composition of different 441 
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Hymenaea species do not follow phylogenetic patterns, and are most likely due to selection 442 

pressures from different herbivore fungi, and pathogen assemblages. More research is 443 

required to determine which herbivores, fungi or pathogens exert most selective pressure on 444 

the chemical composition of resin.  However, the current knowledge of the defensive role of 445 

the key volatile compounds suggests that the African resin/copal group is defined by more 446 

effective and more broadly applicable defensive chemicals, and therefore they may need to 447 

defend against a more diverse fauna.  The chemical similarity between the amber and resin, 448 

in combination with some remnants of original volatile compounds, may help infer the 449 

original volatile and semi-volatile composition of the amber samples. This, in combination 450 

with more research on the defensive role of specific resin chemicals and the preserved 451 

arthropod herbivore fauna in the amber fossil assemblages, may provide insights on the role 452 

of resin in plant-insect interactions through geologic time. 453 

 454 
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Figure Captions 469 

Figure 1: Resin in situ on a Hymenaea verrucosa tree in the northwest of Madagascar.  470 

Figure 2: The percent of variation that is controlled by each component of the PCA. 471 

Components 1 and 2 control ~ 49% of the variation. 472 

Figure 3: PCA of all samples of resin, copal, amber, including two unknowns. Red squares 473 

are amber samples, orange circles are copal samples, yellow stars (and the yellow polygon) 474 

are resin samples, and black plus signs are unknown samples.  Component 1 separates the 475 

ancient amber samples (on the negative side of dimension1) from the recent resin and copal 476 

samples (positive side of dimension 1).  Component 2 separates the American samples 477 

(positive side) from the African samples (negative side), with the exception of Colombian 478 

copal which clusters with the African resins. Each of the four groups is delineated by a 479 

convex hull polygon. 480 

Figure 4: Variable loadings for components 1 and 2 of the PCA.  The 12 specifically 481 

identified variables (chemical compounds) are most important for defining components 1 and 482 

2; the other 114 variables cluster near the origin.  The one variable identified with a grey star 483 

defines the American amber group, the four variables identified with green squares define the 484 

African amber group, the four variables identified with blue circles define the African 485 

resin/copal group, and the three variables identified with purple hexagons define the 486 

American amber/copal group. Key variable groupings are also indicated by convex hull 487 

polygons. 488 

Figure 5: Representative chromatograms from the African amber group (A,B), the African 489 

resin/copal group (C,D), the American amber group (E,F) and the American resin/copal 490 

group (G,H). (A,C,E,G) Full chromatographs. (B,D,F,H) Proportionate peak area for selected 491 
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compounds that are most important for defining the groups; colours and shapes are as in Fig. 492 

4. Peaks of selected compounds are labelled to identify the compounds, and correspond to the 493 

numbers in Fig. 4: 1 is 1,1,4,5,6-pentamethyl-2,3-dihydro-1H-indene; 2 is 4,8,11,11-494 

tetramethyl-tricyclo[7.2.0.0(3,8)]undec-4-ene; 3 is trimethylphenyl- butanone; 4 is 495 

caryophyllene isomer; 5 is tetrahydro-tetramethyl-naphthalene; 6 is 13-epimanool; 7 is 496 

caryophyllene; 8 is biformene; 9 is and α-curcumene.; 10 is α-humulene-1,2-epoxide; 11 is 497 

humulene; and 12 is β-bisabolene isomer.  498 

Figure 6: Figure 5: Colombian copal samples illustrated as in figure 5. Full chromatograms 499 

(A,C), and proportionate peak area for selected compounds that are most important for 500 

defining the groups (B,D); colours and shapes are as in Fig. 4. Peaks of selected compounds 501 

are labelled to identify the compounds, and correspond to the numbers in Fig. 4: 1 is 502 

1,1,4,5,6-Pentamethyl-2,3-dihydro-1H-indene; 2 is 4,8,11,11-tetramethyl-503 

tricyclo[7.2.0.0(3,8)]undec-4-ene; 3 is trimethylphenyl- butanone; 4 is caryophyllene isomer; 504 

5 is tetrahydro-tetramethyl-naphthalene; 6 is 13-epimanool; 7 is caryophyllene; 8 is 505 

biformene; 9 is and α-curcumene.; 10 is humulene-1,2-epoxide; 11 is α-humulene; and 12 is 506 

β-bisabolene isomer. Notice how the highest peaks of the selected compounds (B, D) 507 

correspond to those that are enriched in African resins. 508 

  509 
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