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We are concerned with the CFD simulation of annular rotor-stator cavities using the general purpose
second-order finite volume method (FVM) solver OpenFOAM® and Large Eddy Simulation (LES)
methods. Simulations of cavities with smooth surfaces are conducted at various Reynolds numbers,
and the properties of the mean turbulent flows are validated against experimental and numerical data
available in the literature. Comparisons show that second-order accurate FVM approaches can produce
high-fidelity simulations of rotor-stator cavities to an acceptable accuracy and are therefore a viable
alternative to the computationally intensive high-order methods. Our validated second-order FVM
model is then combined with the parametric force approach of Busse and Sandham [“Parametric
forcing approach to rough-wall turbulent channel flow,” J. Fluid Mech. 712, 169–202 (2012)] to
simulate cavities with a rough rotor surface. Detailed flow visualisations suggest that roughness-
induced disturbances propagate in the downstream direction of the rotor flow toward the outer wall
of the cavity. The outer wall subsequently provides a passage to transport said roughness effects from
the rough rotor layer to the smooth stator layer. We demonstrate that rotor-stator cavity flows are
sensitive to even small roughness levels on the rotor surface alone. Published by AIP Publishing.
https://doi.org/10.1063/1.5028209

I. INTRODUCTION

The flow inside a rotor-stator cavity is a topic of enduring
interest within the scientific community, not only because of
the rich and complicated flow structures found in its bound-
ary layers but also owing to its relevance to many engineering
applications. Common application areas include turbomachin-
ery, the internal flows of combustion engines, mixing devices,
computer storage and electronic devices, and machinery used
for crystal growth processes.

In rotor-stator cavities of finite extent [see Fig. 1(a)], the
flows over the rotor and stator elements are related but not
identical to the Ekman1 and Bödewadt2 boundary layers. In
particular, the lack of the radial pressure gradient causes a
radial outflow within the rotor layer and a radial inflow on the
stator layer, but shear layers are now observed on the outer
sidewall (at r2) and the inner rotor hub (at r1) which permit an
exchange of fluid between the rotor and stator layers. These
shear layers arise, of course, from the finite nature of the cav-
ity and lead to a deviation from the self-similar Ekman and
Bödewadt solutions (over infinite disks) close to the sidewall.
Investigations3 of the cylindrical cavity (r1 = 0) reveal that
the self-similar velocity profiles apply at radial positions away
from the outer wall with r < 0.87r2.

Daily and Nece4 identified four flow regimes in cavities,
the so-called regimes I–IV. Within their categorisation, the
aspect ratio of the cavity, G = h/(r2 − r1), is the prime fac-
tor in determining whether the boundary layers of the upper
and lower disks are merged (regimes I and III) or unmerged
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(regimes II and IV). The Reynolds number, Reω , (based on
the rotation rate) then defines whether the flow is laminar
(regime I and II) or turbulent (regime III and IV). In this current
paper, all cavities are assumed to operate in regime II or IV.
Furthermore, the cavities considered here are annular, that is,
r2 <∞ and r1 , 0. However, it is possible to extend our results
to cylindrical cavities.

Previous studies of transition to turbulence within rotor-
stator cavities are typically based on experimental and numer-
ical investigations. Sirivat5 conducted an experimental inves-
tigation of the stability of the stator boundary layer within
a rotor-stator cavity under different aspect ratios G = 0.014
–0.0475 and Reh values. Steady-state circular patterns were
observed within the boundary layer for high G values, but
when the aspect ratios reduce to G = 0.014, an alternative pat-
tern appears with non-steady spiral patterns showing negative
wave angles. These patterns are now known to correspond
to stationary and travelling modes of the Type II instabil-
ity that results from viscous effects including the streamline
curvature.6 The alternative Type I instability, which always
shows positive wave angles and results from inviscid cross-
flow effects, was detected at higher rotation speeds. Sirivat
concluded that the disturbances emerge from the side walls and
propagate inwards before collapsing. This then acts as the pri-
mary trigger for the appearance of turbulence. Gauthier et al.7

conducted additional experiments using a laser sheet visualisa-
tion technique. At a constant G = 0.048, the circular instability
patterns can be observed in the range of 70 < Reh < 140.
In the higher Reynolds number region of 140 < Reh < 200,
approximately 30 Type II spiral arms emerge, and eventu-
ally, beyond the Reynolds numbers of Reh > 200, turbulence
spots appear. Subsequently, Schouveiler et al.8 constructed a
detailed transition diagram that summarises the appearance of
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FIG. 1. The geometrical and mesh representations of the rotor-stator cavity: (a) side view of the finite rotor-stator cavity, (b) side view of the computational
mesh, (c) top view of the computational mesh for Reω = 4 × 105.

all observed instability patterns (circular waves, spiral waves,
solitary waves, and turbulent spots) at different combinations
of Reynolds numbers and aspect ratios.

Serre et al.9 conducted DNS investigations of a cylindri-
cal cavity (r1 = 0) with G = 0.2 and 0.33 and an annular cavity
(r1 , 0) with G = 0.2 and Rm = (r2 + r1)/(r2 − r1) = 4.5.
Observations of the stator boundary layer in both geometries
were always consistent with those of previous experiments.
However, eight travelling Type II waves were also observed
in the rotor boundary layer for sufficient Reω . More recently,
Séverac et al.10 investigated a rotor-stator cavity with G = 0.2
and Rm = 1.8 using Large Eddy Simulation (LES) techniques
for Reω = 1× 105–1× 106 and confirmed that the stator bound-
ary layers become turbulent at much lower Reω values than
the rotor boundary layers. At Reω = 1 × 106, the rotor bound-
ary layer consists of 19 spiral arms with an approximately
16◦ wave angle within the region 0.14 < r∗ < 0.61; these are
suggested to arise from the Type I instability. Either side of
this region, the flow becomes turbulent as a likely result of
the instability. Makino et al.11 conducted a similar numerical
investigation and, at Reω = 4 × 105, found the rotor boundary
layer to feature 16 spiral arms. These were suggested to be due
to a Type II instability—which is in contrast to the conclusions
of Séverac et al.

So far, all investigations discussed have implicitly
assumed smooth surfaces within the rotor-stator cavities, or
that the effects of the roughness on the flow field are neg-
ligible. However, in general, there may be situations where
the effects of roughness are no longer negligible. For exam-
ple, Zoueshtiagh et al.,12 and Harris et al.,13 Cooper et al.,14

and Garrett et al.15 conducted investigations into the transi-
tion of von Kármán-type boundary layers over rough rotating
disks. All investigations agree that surface roughness has only
a minor influence on the transition process up to a certain
level of roughness, but beyond this, the flow is significantly

stabilised via a reduction in the critical Reynolds number Rec

for the onset of the dominant Type I mode. The latter stud-
ies suggest that roughness effects likely cause a switch in
the dominant transition mechanism from the Type I mode to
the Type II mode. Alveroglu et al.16 generalised the rotating-
disk studies to the full BEK family and studied the convective
stability of these boundary layers against different types of
roughness (radial grooves, concentric grooves, and isotropic
roughness), finding consistent stabilising effects. The very
recent investigation of Özkan et al.17 conducted experimental
and numerical studies of rotor-stator cavities, paying partic-
ular attention to a comparative understanding of roughness-
induced and geometric-induced effects. They conclude that
the geometric and roughness properties impose similar effects
on the flow.

The content of this paper is twofold:

1. We determine the simulation conditions necessary to con-
duct rotor-stator cavity simulations using the open source
CFD library OpenFOAM®. This intends to demonstrate
that second-order accurate FVM approaches can pro-
duce high-fidelity simulations of rotor-stator cavities to
an acceptable accuracy. That is, this approach is a viable
alternative to high-order methods for many different
engineering rotor-stator flow simulations.

2. Using the parametric force model of Busse and Sand-
ham,18 on the rotor surface in combination with our
second-order accurate FVM LES approach, we investi-
gate the effects of rough wall rotor-stator cavities.

II. COMPUTATIONAL MODEL
A. Geometric model

The general rotor-stator cavity considered here is illus-
trated in Fig. 1(a). It consists of two concentric disks rotating
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about a shared axis of rotation and with vertical spacing h. It
is assumed that h is large enough to separate the two boundary
layers formed on the rotor (lower) and stator (upper) disks.
The inner radius r1 is the radius of the central hub wall (as
measured from the axis of rotation) that is directly connected
to the rotor. The outer radius r2 is the distance between the
axis of rotation and the periphery of the rotor where an outer
wall is placed and fixed to the stator. The hub and outer wall
are perpendicular to the rotor and stator. For an annular cavity
geometry, r1 , 0, and the effective radial extent of the cavity
is ∆r = r2 − r1. In the case that r1 = 0, the cavity becomes
cylindrical with radial extent r2.

The operational Reynolds number based on the rotor

periphery is taken as Reω =
ωr2

2

ν , and the local Reynolds num-

ber at any given point p on this rotor surface is Reω,local =
ωr2

ν ,
where r is the radial distance between point p and the axis of
rotation.

The physical assembly and machining of real rotor-stator
cavities require finite gaps between rotating and stationary
components of widths δ1 and δ2, as shown in Fig. 1(a). We
capture this in our geometrical model to avoid any potential
discrepancies with comparisons to experiments. The aspect
ratio G and curvature Rm, as defined in Eq. (1), are kept at the
same constant values used in previous investigations,10,11

G =
h

r2 − r1
= 0.2, Rm =

r2 + r1

r2 − r1
= 1.8. (1)

The commercial mesh generation software ANSYS ICEM
CFD® is used to generate a hexahedron computational mesh
within the cavity. The number of elements used to construct
the two configurations for the high and low Reynolds num-
ber cases is shown in Table I. Figures 1(b) and 1(c) show
the side and top views of the computational mesh used for
Reω = 4 × 105 simulations.

B. Numerical model

The governing equations for the fluid flow within the
cavity are the incompressible Navier–Stokes equations

∇ · u = 0, (2)

∂u
∂t

+ u · ∇u = −∇p + ∇2 · τ + Fb, (3)

where u = (ux, uy, uz), p is the specific pressure (p = P
ρ ),

and (∇ = ∂
∂x , ∂

∂y , ∂
∂z ), all in Cartesian coordinates. The term

Fb is the specific force term, which bears the dimensions of
acceleration (LT−2) and is such that Fb = 0 for all smooth wall
cases.

All simulations are conducted using the open source
CFD library OpenFOAM which uses a second-order

TABLE I. The mesh configurations used in LES simulations.

Reω r1 r2 h r × θ × z

1 × 105 140 40 20 220 × 180 × 140
4 × 105 280 80 40 256 × 600 × 180

accurate FVM-based segregated solver. Our problem is there-
fore implemented using a collocated FVM approach19 to dis-
cretise Eqs. (2) and (3) and a second-order accurate central
difference schema and implicit backward difference method to
determine the convective and temporal integrals, respectively.
The non-iterative PISO algorithm20 achieves the pressure-
velocity coupling for solving the Navier–Stokes equations.
The no-slip boundary condition applies at all walls, and the
rotating motion of the rotating disk is set through

urotor = ω(r − rcentre) × Iaxial . (4)

Here r and rcentre are the position vectors to a given point on the
rotor surface and the position vector of the centre of the disk,
respectively, and Iaxial = (0, 0, 1) is the axial directional vector.
Operational Reynolds numbers are achieved by adjusting the
rotation rate ω.

The turbulent stresses in Eq. (3) are resolved through
the LES approach. The sub-grid scale model is similar to
the Smagorinsky21 model, but the model constants are deter-
mined by following the systematic dynamic procedure sug-
gested by Germano et al.22 In particular, the scale separation
of the LES method is usually done through convoluting the
Navier–Stokes equations [Eqs. (2) and (3)] with a filter kernel,
K(r, ∆g), associated with the position vector r and the filter
width ∆g. However, in our simulation, a top-hat kernel with
a grid-based filter width ∆g =

3
√
δxδyδz has been used. Fur-

thermore, our dynamic Smagorinsky approach uses a test filter
width ∆t > ∆g (usually ∆t ≈ 2∆g) to refine test scale stresses,
which indeed are used to estimate the sub-grid scale stresses
τsgs. The implementation of the model used here is described
by Fureby et al.,23 (see model B) and the interested reader is
referred there for full details.

As mentioned by Inagaki et al.,24 the dynamic Smagorin-
sky model has been claimed to be less accurate than the
standard Smagorinsky model or the mixed-time scale sub-grid
scale model which was used in the previous investigation of
Makino et al. However, both of these models are static mod-
els that require heuristic inputs to operate; such inputs are
very much application specific and their determination for
the flow conditions likely to be present in rotor-stator cavi-
ties is prohibitively complicated. The degree of inaccuracy of
dynamic Smagorinsky models is often attributed to the aver-
aging process used in the homogeneous direction24 which is
important to achieve stable longer integration times for simula-
tions. In particular, the general purpose dynamic Smagorinsky
model implemented in OpenFOAM provides stable solutions
over a substantial integration time, but model constants no
longer represent the true local behavior due to the averaging
process over the entire domain. Global model constants are
not ideal in our situation as we expect locally laminar, transi-
tional, and turbulent regions in the cavity. As a solution, we
follow a local smoothing technique by refining the averaging
operation over the neighbouring cells of the mesh. This pro-
cess delivers a spectrum of model constants, each based on
the local conditions of the rotor-stator cavity. This practice is
expected to discount the disadvantages commonly linked to
dynamic Smagorinsky models and reap the benefit of a sim-
plistic sub-grid scale model which can adapt according to local
flow conditions.
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FIG. 2. The variation of the extent of numerical roughness layers at different
h∗r values.

The dynamic Smagorinsky model with this modifica-
tion allows the systematic calculation of the model constants,
which represent the local behavior of the flow field. We delib-
erately increased the mesh density near the wall areas [see
Fig. 1(b)], so there is no need to implement any damping
function near the wall areas, and, in all the cases, the near
wall resolution is maintained at z+

max < 1.0. The time step
size is based on the Courant number (Co) that is limited to
Co < 0.325 in our simulations.

C. Roughness model

Two possible approaches can be taken for simulating
the rough wall: direct simulation methods25–30 and rough-
ness modeling methods.18,31–35 Direct simulation methods are
the most precise; however, due to their significant computing
requirements, they are more suited to simple geometric con-
figurations. In the case of the rotor-stator cavities of interest
here, direct methods impose a significant computational bur-
den due to the increased number of mesh elements required
and the rotation near the rotor boundary. Roughness model-
ing methods are viable alternatives for such applications. In
fact, recent investigations of Chung et al.36 and Ishida et al.37

have shown that the roughness modeling methods coupled
with high-fidelity numerical simulations, such as DNS or
LES, could deliver results comparable to direct roughness

simulations. Nevertheless, roughness models typically require
the use of a thin numerical roughness layer near the wall
surface, within which the roughness parameters are defined.
Hence, these roughness models are not suitable for studying
the physics and dynamics of flow in the vicinity of the phys-
ical roughness element—this often limits these models to the
study of k-type roughnesses (as defined by Ref. 38).

The parametric force model of Busse and Sandham18 has
been chosen to model the rough rotor wall. The approach has
the advantage that it can represent k-type roughness as a body
force. In particular, we use a body force with the ith component
given by

Fi = −αiG(z, hr)(ui − ud,i)|ui − ud,i |, (5)

where i = 1, 2, 3 denotes the stream-wise, span-wise, and wall
normal directions. Furthermore, αi, G(z, hr), hr , ui, and ud ,i

are the roughness factor, shape function, roughness height,
local flow velocity, and local disk surface velocity, respec-
tively. The difference between the disk velocity and local fluid
velocity at the disk surface implies the local relative velocity.
The quadratic term in the right-hand side of Eq. (5),∼(ui − ud ,i)
|ui − ud ,i |, emulates drag effects arising from the rough wall.
Moreover, the roughness factor, α, is interpreted as the lin-
ear density of roughness elements. Different α values can be
associated with different roughness heights, hr , to simulate
many types of surface conditions. In Secs. III and IV, both
modeling parameters, α and hr , are presented as normalised
against the height of the cavity (disk separation) h so that one
can compare the effects of roughness regardless of the cavity
height.

For modeling purposes, the roughness factor is assumed
to be αi = β1/kr , where kr and β1 are the height of the
physical roughness element and a proportionality constant,
respectively. For a roughness element with kr = 100 µm, the
range β1 = 5 × 10−4 to 5 × 10−3 gives non-dimensioned
roughness factors of α∗ = hα = 0.1–1.0. This range is suf-
ficient to simulate wall roughness effects on the flow field and
is free from any shielding effects on the rough wall.38

The shape function defines the extent of the roughness
force in the wall normal direction and is usually associated
with hr . Busse and Sandham18 have defined several options
for shape functions, the simplest being the box profile.36 How-
ever, the discontinuity near the top of the box profile tends to

FIG. 3. An illustration of the differ-
ent numerical regions arising from the
use of the parametric model to impose
surface roughness on the lower rotor.
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TABLE II. The modeling and geometric parameters used in simulations.
Configurations with α∗ = 0 or h∗r = 0 represent smooth wall cases.

Reω α∗ h∗r Shape function h (mm)

1 × 105 0–1.0 0–0.025 Gaussian 20
4 × 105 0, 0.4 0, 0.001 25, 0.003 75 Gaussian 40

introduce abrupt inflection points in the radial and tangential
velocities. Gaussian shape functions, which can be considered
as equivalent to “smeared-out” box profiles,18 provide consid-
erably smoother velocity profiles and are the preferred choice.
Here, the values of the hr act as a mean roughness height,
and Eq. (6) determines the exact roughness-affected region.

The effects of hr are introduced through another auxiliary
parameter, η(hr), as defined in Eq. (7),

G(z, hr) = e−z2/η(hr )2
, (6)

η(hr) = hr
√
π. (7)

The current investigation accommodates a range of
h∗r =

hr
h values to evaluate the effects of roughness height on the

flow characteristics. Usually, the roughness height and physi-
cal roughness height relate as hr ∝ kr . Figure 2 shows the varia-
tion of G(z, hr) under the selected value range h∗r = 2.5× 10−3

to 2.5 × 10−2. As shown in Fig. 3, the physical implemen-
tation of the parametric force model divides the domain into
three regions.

FIG. 4. (a) Contours of Q for Reω = 1 × 105, (b) contours of Q for Reω = 4 × 105, (c) Q versus percentage of cells, (d) time series of the normalised tangential
fluctuation component, u′θ , at radial r∗ = 0.25, 0.50, and 0.75 and axial z∗ = 0.0125 locations, (e) vector plot of the smooth wall rotor-stator cavity in the r–z
plane, (e.1) at the rotor boundary and (e.2) at stator boundary.
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1. The disk surface (gray region): here the rotating
boundary conditions are set according to
Eq. (4).

2. Numerical roughness layer (yellow region): here the non-
zero force is imposed, with Eq. (6) determining the size
and the extent of the force.

3. Outside the roughness layer (blue region): here the force
in Eq. (6) is zero, and the governing equations are
equivalent to the smooth case.

Table II summarises all modeling and geometric config-
urations that will be used in Sec. III for the production of our
results.

III. RESULTS
A. Smooth rotor-stator cavity

This section discusses the validation of our model against
smooth rotor-stator cavities with Reω = 1 × 105 and 4 × 105.

FIG. 5. The axial distributions of mean
velocity fields for smooth cavities: (a)
radial velocity profiles at Reω = 1× 105,
(b) tangential velocity profiles at
Reω = 1 × 105, (c) radial velocity pro-
files at Reω = 4× 105, and (d) tangential
velocity profiles at Reω = 4 × 105.

FIG. 6. The mean tangential velocity
profiles in the turbulent boundary layer
at Reω = 4 × 105 for smooth cavities:
(a) rotor boundary layer and (b) stator
boundary layer. Note that subscripts on
the spatial variables indicate distances
from the rotor or stator.
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TABLE III. A comparison of different configurations of smooth rotor-stator cavities in previous numerical and
experimental investigations and the fitted κ and B values from the model in Eq. (8) for smooth turbulent rotor and
stator boundary layers.

Rotor Stator

Investigation Method Reω ,local G Rm κ�1 B κ�1 B

Present LES 2.2× 105 0.2 1.8 14.9 �5.5 13.5 �5.6
Itoh et al.43 Hot-wire 3.6× 105 0.08 1.0 12.7 �5.2 11.3 �3.7
Cheah et al.40 LDV 1.9× 105 0.12 1.0 15.4 �6.5 9.4 �0.1
Makino et al.11 LES 2.3× 105 0.2 1.8 12.4 �3.6 12.5 �4.8
Séverac et al.10 LES 4.1× 105 0.2 1.8 14.0 �5.5 15.0 �10.8

As discussed in Sec. II B, resolution and the quality of the
mesh are an important factor for a successful LES approach.
A finer mesh can directly resolve higher frequency structures,
and the finest mesh can resolve the smallest structures of
the problem, i.e., the Kolmogorov scales, in which LES is
almost in line with DNS (see Ref. 39). However, this prac-
tice is not always possible, as the resolution of the mesh is
often limited by the available computing resources. The con-
figurations and resolutions of meshes are carefully selected
to simulate rotor-stator cavities, and we define a parameter,
Q = k/ktotal, to evaluate the adequacy of the mesh resolution.
Here, ktotal = k + ksgs is the total turbulent kinetic energy

and k = 0.5(u′ru′r + u′θu′θ + u′zu′z) and ksgs = 1/2tr(τsgs) are
the resolved and sub-grid scale components of the turbulent
kinetic energy, with tr(·) giving the trace of a tensor. The
LES converges to DNS when Q→ 1.0. Figures 4(a) and 4(b)
show contours of Q in the midsection of the r–z plane, and
in both Reω = 1 × 105 and 4 × 105 cases, the most of the
regions in the cross section occupy Q values very close to unity.
Figure 4(c) presents the percentage of cells versus the Q value.
The histogram was constructed by considering the entire sim-
ulation domain and shows that a high percentage of cells in
the simulations is Q > 0.95 for both the lower and higher
Reω cases.

FIG. 7. The variation of turbulence
intensity distributions at Reω = 4 × 105

for smooth cavities: (a) tangential distri-
bution at the rotor, (b) tangential distri-
bution at the stator, (c) radial distribution
at the rotor, and (d) radial distribution at
the stator.
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Figure 4(d) shows a truncated time series for the
normalised tangential fluctuation component (u′θ ) at three
different radial positions of r∗ = 0.25, 0.50, 0.75 for
Reω = 4 × 105. These time series are captured after several
dozens of disk rotations, which is sufficient to pass the initial
transient state of the simulations. Regardless of the radial loca-
tion, u′θ tends to show a periodic behavior, but at higher radial
locations, fluctuations show high-frequency oscillations than
lower radial locations. This shows that the localised model
constants of the dynamic Smagorinsky model stabilise the
simulations by damping high-frequency modes so that the
computation can achieve a longer integration time. Further-
more, our modification of local smoothing on the turbulent
model does not produce under or over damping model con-
stants, which might result in the blow-up of the simulations or
relaminarisation of the flow field.

Figure 4(e) shows the vector plot of a typical rotor-stator
cavity simulation in the r–z plane. The near wall regions of
the cavity show three-dimensional behavior for both the rotor
and stator. The core region of the cavity separates the rotor
and stator boundary layers, and the velocity vectors here are
predominately in the tangential direction. The vector plot sug-
gests that the cavity is in regime II or IV (“unmerged regions”)
in the categorisation of Daily and Nece.4

For the presentation of the results, the radial and axial dis-
tances are non-dimensionalized with r∗ = r−r1

r2−r1
and z∗ = z

h ,
respectively. The mean radial and tangential velocity compo-
nents are both non-dimensionalized on the local rotor speed
as U∗r =

Ur
rω and U∗θ =

Uθ

rω . All axial plots are extracted at a
mid-radial position of the cavity, r∗ = 0.65. Here the influence
of the finite cavity is minimal.

Figure 5 shows the axial distributions of the mean radial
and tangential velocity profiles for Reω = 1 × 105 and 4 × 105.
Both radial velocity profiles show an inflection point at the
rotor layer, are zero in the core region, and become negative in
the vicinity of the stator boundary layer where another inflec-
tion point is seen. Both tangential velocity profiles achieve
their highest value at the rotor surface, decline toward the core
region, and become zero at the stator surface. The entrain-
ment coefficient, K = Uθ ,core/Uθ ,disk, describes the constant
tangential velocity of the core region of the cavity. The cur-
rent K values at the mid-section of the cavity are K ≈ 0.35
and 0.37 for Reω = 1 × 105 and 4 × 105, respectively. These
values agree well with the previous investigation of Séverac
et al.10 who obtained K ≈ 0.35 and 0.36 for identical Reω and
geometric configurations.

Figure 6 shows a comparison of the mean relative tangen-
tial velocity, uθ = rω − Uθ , in the rotor and stator boundary
layers for Reω = 4 × 105. Here both boundary layers are in a
relatively turbulent state compared to the lower Reω case. The
figure shows the velocities and wall distances normalised by
the friction velocity,

uτ =
(
(ν∂Uθ )/∂z)2

wall + ((ν∂Ur)/∂z)2
wall

) 1
4 .

This inner scaling of the velocity distributions allows
detailed comparisons of the laminar sublayer, buffer region,
and logarithmic layer of the velocity profiles. The laminar
sublayer is a linear layer, and the rotor boundary follows

strictly this linearity to z+
r = 5.0. It further extends with

approximate agreement to z+
r ≈ 8.0 but then the agreement

quickly deteriorates. In our simulations, the logarithmic layer
starts to emerge at z+

r = 10.0. The thin layer between the
laminar sublayer and logarithmic layer (z+

r ≈ 8.0−10.0) can
be identified as the buffer layer. The stator boundary layer
shows the same trend, but the laminar sublayer is found only
up to z+

s ≈ 5.0, with the logarithmic layer starting at about
z+

s = 10.0. The layer between these two regions defines
the buffer layer z+

s ≈ 5.0−10.0, which is broader than those
observed in the rotor boundary. A similar trend was observed
by Séverac et al. except that they did not observe a buffer
region in either boundary layers. The previous experimen-
tal results of Cheah et al.40 agree well within the laminar
sublayer and buffer regions, and the velocity distributions of
Makino et al. show excellent agreement throughout the lam-
inar sublayer and buffer region of the boundary layers. To
enable the quantitative comparison of our boundary-layer pro-
files with these experimental and numerical results, all profiles

FIG. 8. Top views of the normalised instantaneous tangential velocity con-
tours for the smooth cavity at Reω = 1 × 105: (a) near the rotor boundary
(z∗ = 0.025) and (b) near the stator boundary (z∗ = 0.95).
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are fitted to the well-known logarithmic velocity profile (see
Ref. 41),

u+
θ =

1
κ

log(z+) + B. (8)

Here κ is the von Kármán constant and B is the intersec-
tion, and the reference values of κ ≈ 0.4 and B = 5.5 can
be defined for a smooth-wall circular turbulent pipe flow.42

Table III shows a summary of configurations and a compari-
son of the gradient κ−1 and intersection values of the present
LES with previous investigations when their respective veloc-
ity profiles are fitted to Eq. (8). The fitted values are within an
acceptable range of both previous numerical and experimental
results. However, the peak values of the velocity profiles do
not agree well with either of the experimental investigations,
which indeed do not agree with each other. We believe that
this is due to subtly different configurations and operational

FIG. 9. Top views of the normalised instantaneous tangential velocity con-
tours for the smooth cavity at Reω = 4 × 105: (a) near the rotor boundary
(z∗ = 0.025) and (b) near the stator boundary (z∗ = 0.95).

conditions between the two experiments and as compared to
our system.

Figure 7 shows the radial and tangential turbulence inten-

sity components normalised using
√

Rθθ =

√
u′θu′θ
(rω)2 and

√
Rrr =

√
u′ru′r

(rω)2 . Note that axial distances are measured from

their respective boundary surfaces; e.g., z∗s = 0 is the stator
surface for the stator velocity plot, and vice versa. The axial
locations of the peaks of the tangential turbulence intensity
of the rotor and stator distributions are at z∗r = 0.013 and
z∗s = 0.018, respectively. Despite well-agreed peak locations,
the current LES overestimates the peak values by 13% in the
rotor boundary and 14% in the stator boundary, as compared to

FIG. 10. Top view of iso-surfaces of λ2 vortex structures near the rotor
boundary layer at (a) Reω = 1 × 105 and (b) Reω = 4 × 105 for smooth
cavities.
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the same investigation of Makino et al.11 Similarly, the peaks of
the radial intensity distributions are located inside the bound-
ary layers at z∗r = 0.019 and z∗s = 0.017 for the rotor and stator
boundary layers, respectively.

Figures 8 and 9 show instantaneous tangential velocity
contours near the rotor (z∗ = 0.025) and stator (z∗ = 0.95)
boundary layers; all velocity contours are normalised against
Uθ ,max = r2ω. The figures show that the higher Reynolds
number leads to turbulent behavior within both boundary lay-
ers. Regardless of the Reynolds number, both boundary layers
show intense behavior near the rotor hub, suggesting that the
rotor hub provides destabilising effects on both the rotor and
stator. It is known that the stator boundary layers become turbu-
lent at much lower Reynolds numbers than the rotor boundary
layers,10 and here contours near the stator boundary layers
show much higher turbulent activity. Even at Reω = 4 × 105,
the inner radial region of the rotor is not yet fully turbulent,
but there are axisymmetric elongated structures at larger radial
positions. These are indicative of a turbulent flow in the rotor
boundary layer.

Figure 10 gives an iso-surface representation of vortical
structures in the rotor boundary layer. The λ2 criterion,44 a
well-known vortex identification method, has been used to
extract these vortex structures. Note that the colour scheme
in the figure does not correspond to the strength of the

vortex cores, but represents the magnitude of the local tan-
gential velocity. At Reω = 1 × 105, some spiral patterns start
to emerge in the boundary layer, but there are no fine scale
structures toward the peripheral of the disk. At Reω = 4 × 105,
the boundary layer is populated with elongated spiral struc-
tures at the low Reω ,local regions of the cavity and, as the
local Reynolds number increases, these structures turn into an
array of spiral arms around the rotor disk. These spiral pat-
terns further breakdown into fine-scale turbulent structures at
high Reω ,local locations, indicative of a fully turbulent region.
We find approximately 14-15 spiral arms around the rotor
boundary layer, with an angle of inclination ε ≈ −18◦ to the
tangential direction. These observations are in close agreement
with previous investigations.10,11

The velocity contours and iso-surfaces of the rotor bound-
ary do not show any Type I spiral patterns (as would be identi-
fied by positive ε) which suggests that turbulent transition here
is not due to an inviscid cross-flow instability. This is consis-
tent with the findings of Makino et al.11 who suggested that
the structures are a result of the Type II streamline-curvature
instabilities first identified by Itoh.6 In particular, Makino et al.
suggested that the turbulent transition of the rotor-stator cavity
could be a result of interactions between the dominant Type
II modes and their secondary instability patterns, which is
denoted as “mechanism B” in the investigation of Faller.45

FIG. 11. A comparison of mean veloc-
ity profiles at the rotor boundary layer
for Reω = 1 × 105 for different model
parameters for rough wall cavities:
α∗ = 0.1–1.0 and h∗r = 0.005 for (a)
radial and (c) tangential profiles and
h∗r = 0.0025–0.025 and α∗ = 0.2 for (b)
radial and (d) tangential profiles.
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FIG. 12. A comparison of mean veloc-
ity profiles at the stator boundary layer
for Reω = 1 × 105 for different model
parameters for rough wall cavities:
α∗ = 0.1–1.0 and h∗r = 0.005 for (a)
radial and (c) tangential profiles and
h∗r = 0.0025–0.025 and α∗ = 0.2 for (b)
radial and (d) tangential profiles.

B. Rough wall rotor-stator cavity

This section presents test cases of Reω = 1 × 105 and
4 × 105 for rotor-stator cavities with rough rotor and smooth
stator walls. Initially the response of the mean velocity dis-
tributions to different model constants h∗r and α∗ is presented.
Subsequently, the turbulent flow properties and flow visualisa-
tions of the rough rotor and smooth stator boundary layers are
evaluated and compared with our smooth rotor-stator cavity

results from Sec. III A. It is important to remember that the
model constants h∗r and α∗ are not calibrated against physi-
cal roughness conditions and are merely empirical constants
within our simulations. However, these model constants do
enable the qualitative study of the relative effects of a rough
rotor wall by observing the shifts in the flow-field distributions
relative to our smooth rotor-stator simulations. In the future,
our model constants could be replaced with experimental or
DNS calibrated values to represent real-world rough surfaces.

FIG. 13. The variation of K with model
constants for rough wall cavities: (a) α∗

and (b) h∗r , at Reω = 1 × 105.
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FIG. 14. Influence of low and high
rotor boundary roughness on mean tan-
gential velocity profiles at Reω = 4
× 105 for rough wall cavities: (a) rotor
boundary layer and (b) stator boundary
layer.

Figure 11 shows the variations of tangential and radial
velocity profiles of the rotor boundary layer under different
model constant values. In particular, we consider α∗ = 0.1–1.0
at constant h∗r = 0.005 and h∗r = 0.0025–0.025 at constant
α∗ = 0.2. By observing these velocity plots, it is clear that
the height parameter h∗r has a significant effect on the mean
velocity profiles. Increasing the height parameter increases
the peak value of the radial profiles, and the profiles show an

outward shift compared to the smooth velocity profile. How-
ever, increasing α∗ tends to shift the velocity profiles inward
and leads to a marginal decrease in their peak values (except
for the highest α∗ values). The tangential velocity profiles tend
to shift in the outward direction and, as might be expected,
increasing the height parameter also has a significant impact on
the tangential velocity profiles. The simulations with numeri-
cal roughness layers higher than the model constants α∗ = 0.4

FIG. 15. Influence of rotor boundary
roughness on turbulence intensity pro-
files at Reω = 4 × 105 for rough wall
cavities: (a) radial intensity profile at the
rotor boundary, (b) tangential intensity
profile at the stator boundary, (c) radial
intensity profile at the rotor boundary
and (d) tangential intensity profile at the
stator boundary.
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FIG. 16. Influence of low and high
rotor boundary roughness on turbulent
kinetic energy distributions in the radial
direction for rough wall cavities in
Reω = 4 × 105: (a) at z∗ = 0.0125 and
(b) at z∗ = 0.04.

and h∗r = 0.005 have significant effects on the smooth stator
layer of the cavity. Figure 12 shows the corresponding tan-
gential and radial velocity distributions of the stator boundary
layer for the same model constant ranges shown in Fig. 11.
The velocity profiles suggest that intense roughness causes an
increase in the near-wall peak values. Under the higher rough-
ness values, the peaks are slightly relocated toward the stator
wall, but this is more pronounced in the simulations with higher
h∗r values.

The recent investigation of Özkan et al.17 imposed rough-
ness effects through a RANS rough wall function, and their tan-
gential velocity profiles show the same outward shifting trend
when the boundary layers are susceptible to increased rough-
ness effects. However, their radial velocity profiles tend to shift
inward and with diminished peak values. Alveroglu et al.16

imposed roughness effects using a partial slip approach within
the BEK boundary layer. In this approach, radial velocity pro-
files of azimuthally anisotropic roughness (radial grooves) in
the Ekman layer show the same tendency as the radial profiles
of Fig. 11. The disagreement with the radial profiles of Özkan
et al. could be due to the incompatibility of the type of the
roughness. The combined effects of h∗r , α∗i = (α∗r , α∗θ , α∗z ), and
the shape function are important factors to uniquely determine
the type of the roughness, and the different combinations pro-
vide a mechanism to simulate many different roughness types.
This sensitivity to the precise form of the roughness was also
demonstrated by Garrett et al.15

Figure 13 shows the variation in the entrainment coeffi-
cient under different α∗ and h∗r values. An increase in either
α∗ or h∗r shows an increase in K from K ≈ 0.35 for smooth
boundary layers.

Turbulent rotor boundary layers are achieved at
Reω = 4× 105, and two test cases low (h∗r = 0.001 25) and high
(h∗r = 0.003 75) have been simulated here for α∗ = 0.4. The
parameters are kept at moderate values, in comparison to the
previous test cases, so as to achieve an outer-layer similarity.38

Figure 14 shows mean turbulent velocity profiles represented
in the form of Eq. (8). The rotor boundary layer shows the effect
of roughness via velocity deflection effects, as also demon-
strated in previous investigations including those of Busse and
Sandham.18 However, the smooth stator boundary layer does

not show significant changes due to the low values of α∗ and
h∗r used over the rotor.

Figure 15 shows the tangential and radial turbulent inten-
sities in the rotor and stator boundary layers. The distribution
evident in the stator boundary confirms that the roughness
effects on the rotor side are confined within the inner region
of the rotor boundary. Increased roughness effects result in
a decrease in the near-wall peak of the turbulence intensity
profiles at the rotor boundary, and this may be due to the damp-
ing nature of the roughness term in the momentum equation.
A similar trend was observed in the previous experimental
investigations of Krogstad et al.46 and the DNS investiga-
tions of Orlandi et al.,47 Flores and Jiminez,33 and Busse and
Sandham.18 Busse and Sandham reported on the possibility
of peak relocation near the wall surfaces, but peaks of our
current distributions are located at nearly the same axial loca-
tion. The damping effects of the tangential turbulent intensities
are less intense compared to the equivalent radial turbulence

FIG. 17. A comparison between the normalised instantaneous axial velocity
contours across the r–z plane of the entire smooth and rough wall cavities for
Reω = 4 × 105: (a) smooth, (b) low, and (c) high.
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FIG. 18. A comparison between the normalised tangential velocity contours near the rotor boundary layer (z∗ = 0.04) for smooth and rough wall cavities at
Reω = 4 × 105. Instantaneous velocity contours: (a) smooth, (b) low, and (c) high and mean velocity contours: (d) smooth, (e) low, and (f) high.

FIG. 19. A comparison between the normalised tangential velocity contours near the stator boundary layer (z∗ = 0.975) for smooth and rough wall cavities at
Reω = 4 × 105. Instantaneous velocity contours: (a) smooth, (b) low, and (c) high and mean velocity contours: (d) smooth, (e) low, and (f) high.
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intensity distributions, and the tangential distribution of the
rotor side collapses at a much shorter axial distance than the
radial turbulence intensity distributions.

The mean and turbulent distributions are extracted from
the mid-section of the cavity and are less likely to reflect the
local Reynolds number dependency on the finite nature of the
rotor-stator cavities. The turbulent kinetic energy k is another
important parameter, which gives a quantitative understanding
of the mean kinetic energy associated with eddies in the tur-
bulent flow. For the sake of comparison, radial distributions of
the turbulent kinetic energy plots are constructed at two axial
distances, z∗ = 0.0125 and 0.04, from the rotor surface. These
distances are inside and just outside of the numerical rough-
ness layer, enabling us to investigate the behavior of turbulent
kinetic energy both inside and outside the numerical roughness
layer.

Figure 16 illustrates the kinetic energy distribution along
the radial direction, normalized by kdisk = 0.5(Uθ,max)2. There
is a clear reduction in the kinetic energy distributions in the
axial direction, and the effects of the rotor hub are more appar-
ent at smaller radial locations. In both cases, the magnitude of
the kinetic energy is fairly constant up to Reω ,local = 1.1 × 105,
and after this, there is a gradual increase in kinetic energy. The
damping effects at the rough walls are also apparent in these
kinetic energy plots. As the local Reynolds number increases,
the disparity between the distributions increases—this sug-
gests that the roughness effects are more pronounced at higher
Reynolds numbers. However, at about Reω ,local ≈ 2.6 × 105

–3.0 × 105, there is a sudden increase in kinetic energy in the
rough wall cases.

Figure 17 shows the axial velocity contours of rough
and smooth wall cases at the r–z plane. In these cases, there
are no significant differences between the magnitudes of the
axial velocity components. However, the inner regions of the
stator boundary layers of rough wall cavities are distributed
with more vortex structures compared to the smooth wall
cavity counterpart. In the rough wall cases, the structures in
the core region and the rotor boundary layers are vertically
elongated, and this is more apparent in the structures at the
mid-radial positions. Another difference is that the upper junc-
tion between the stator layer and outer wall is more disturbed
in rough wall cavities, which signals a plausible path for the
transportation of roughness effects to downstream regions (or
to the stator) even at these low roughness parameters.

Figure 18 illustrates the instantaneous and mean tan-
gential velocity contours close to the rotor boundary layer,
extracted at z∗ = 0.04. The instantaneous velocity contours of
rough wall cavities show more disturbed structures at higher
Reynolds number regions. Here the size of the structures grad-
ually increases with increased roughness effects. The mid
and low Reω ,local regions show the same tendency, but the
effects are less significant. The mean velocity contours show
the similar growth in structures at higher Reynolds numbers,
but velocity contours at mid and Reω ,local regions are almost
similar. This suggests that the structures in higher Reynolds
number regions are more persistent compared to the structures
at mid and low Reynolds number regions.

Figure 19 shows the resulting instantaneous and mean
tangential velocity contours on the stator boundary layer at

z∗ = 0.975. The instantaneous tangential velocity contours
on the stator show the same trend that was observed in the
rotor boundary layer: At higher Reynolds number regions, the
roughness effects become more intense as the roughness height
increases in the rotor boundary. These effects are also reflected
on the mean velocity contours, but, unlike in the rotor bound-
ary layer, the contours suggest that the disturbances spread
into the inner regions of the cavity. This is of no surprise as
the stator boundary layers promote radial flow into the cav-
ity because of the favourable pressure gradients in the inward
radial direction. This visual evidence suggests that the rotor-
stator cavities can be disturbed even for small roughnesses,
and disturbance patterns at large radial positions of the cavity
could be the result of a disturbance propagation mechanism.
This is explained in Fig. 17.

Figure 20 shows the λ2 iso-surface representation of some
arbitrary vortex structures at z∗ = 0.04. These structures are
captured at identical locations for both smooth and rough walls.
By a direct comparison of both cases, it is clear that some struc-
tures at the outer edge of the rough rotating wall are plumper
than their smooth-wall counterparts. A similar observation was
made in the investigation of Busse and Sandham.18 Moreover,
as shown in Fig. 21, a similar trend can been observed in the
stator boundary.

The rough wall simulations do not show a significant
difference in the turbulent transition properties of the rotor

FIG. 20. A comparison between the λ2 iso-surfaces of vortex structures near
the rotor boundary layer for smooth and rough wall cavities at Reω = 4 × 105

(z∗ = 0.04): (a) smooth and (b) high.
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FIG. 21. A comparison between the λ2 iso-surfaces of vortex structures near
the stator boundary layer for smooth and rough wall cavities at Reω = 4 × 105

(z∗ = 0.975): (a) smooth and (b) high.

boundary layers. This could be due to the small values of α∗

and h∗r used in our current simulations. Previous investiga-
tions12,13 of the rotating disk boundary layer have also found
only subtle changes in the transition Reynolds number, Rec,
for small relative roughness levels.

IV. DISCUSSION AND CONCLUSIONS

The first part of our investigation served to validate flows
within smooth rotor-stator cavities using a general purpose
CFD library, OpenFOAM. Simulations were conducted in two
widely used operational Reynolds numbers, Reω = 1 × 105

and 4 × 105, and a second-order accurate FVM and dynamic
Smagorinsky sub-grid scale model was used to solve
the Navier–Stokes equations and turbulent stresses. At
Reω = 1 × 105, the stator boundary is in the transitional tur-
bulent state, and the rotor boundary is mostly in the laminar
regime. At around Reω = 4 × 105, the stator boundary layer
becomes fully turbulent, and the rotor boundary layer is in the
transitional turbulent state.

The mean velocity profiles of both smooth-wall sim-
ulations have been validated against previous experimental

and numerical investigations. A similar approach has been
followed to validate turbulence intensity profiles at higher
Reynolds numbers. It is confirmed that the rotor boundary
layer is populated with 15 Type II spiral arms with orientation
angle ε ≈ −18◦ to the tangential direction. However, no Type I
instability has been observed on the rotor boundary layer. This
suggests that the transition could be initiated by the interaction
of Type II structures with secondary instabilities, as suggested
in the investigation of Faller.45

Our simulations delivered satisfactory results for both
operational Reynolds numbers and agreed with all previous
experimental and numerical investigations. This confirms that
second-order accurate FVM is accurate enough to simulate
rotor-stator cavities in high Reynolds numbers. The solvers,
turbulence models, and boundary conditions present in general
purpose CFD libraries, like OpenFOAM, are therefore viable
alternatives to the in-house higher-order CFD codes that were
primarily used in all previous investigations. General purpose
CFD libraries are important elements of a modern research
practice because of their quality and wide availability. The
second-order accuracy of these methods is a good balance
between robustness and accuracy and allows comparatively
simple numerical simulations using limited computational
resources.

The second part of our study involved the simulation of
rough wall rotor-stator cavities, using the parametric force
model of Busse and Sandham18 to simulate roughness effects
within our LES formulation. Appropriate modifications were
introduced to the original model, and, for simplicity, the rough-
ness effects were only applied to the rotor boundary layer. In
all cases, the mean tangential turbulent boundary layer over the
rotor showed an outward shift as roughness effects increase,
and the velocity profiles of rough wall boundary layers col-
lapse on to the smooth boundary layer profile after a certain
axial distance. The peak values of both radial and tangential
turbulent intensities of the rotor boundary decrease due to the
roughness force term. Both mean and turbulence intensity pro-
files of the stator boundary show no significant effects due to
the rotor roughness effects. The radial turbulent kinetic energy
distributions showed that turbulent kinetic energy at the mid-
section of the cavity was damped due to roughness effects.
However, the distributions suggest that the damping was less
significant at the outer walls of the rough wall simulations.

Detailed flow visualisations were performed to under-
stand the changes in flow structures of the cavity under the
influence of rotor roughness. The resulting structures were
visualised from different viewpoints within the cavity. The
side view showed that the upper junction between the stator
layer and outer wall is more disturbed in rough wall cavi-
ties. This observation could be explained by the radial kinetic
energy distributions at the outer walls of the cavity. The instan-
taneous tangential velocity contours at z∗ = 0.04 from the rotor
plane were extracted, and the rougher cases show intense dis-
turbance behavior. The mean velocity contours preserve the
same behavior, but the structures are more sustained in higher
Reω ,local regions. Similar velocity contours were extracted in a
plane near the stator boundary, and, as with the rotor boundary
layer, instantaneous tangential velocity contours show intense
structures near the outer wall regions. The mean tangential
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velocity contours show that the disturbances are propagating
inward from the outer walls of the cavity. These observations
suggest that the rough wall rotors have enhanced disturbance
propagation, and the bulk fluid streams at the end walls spread
these disturbances toward the downstream of the cavity. The
high Reω cases resulted in iso-surface visualisations near the
rotor boundary with enlarged vortex structures on rough wall
layers, but did not otherwise show any significant effects on
turbulent transition.

The current investigation successfully validated LES sim-
ulations of a rotor-stator cavity using a general purpose sec-
ond order accurate solver. The parametric force approach is
deemed to be a plausible method to model roughness effects
in DNS and LES methods. However, the current investiga-
tion only previews the potential of the parametric model by
selecting a few test cases under certain model constants. In
future, the model constants could be calibrated to represent
more realistic real-world roughness conditions by empirical
or direct simulation methods. More test cases can be accom-
modated to simulate different roughness shape functions, and
eventually this will allow the construction of a suitable map-
ping of parameters between other roughness models, such
as, for example, the partial slip model of Miklavčič and
Wang.48
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NOMENCLATURE

α roughness factor
β1 proportionality constant
κ von Kármán constant
ν fluid kinematic viscosity
ω disk rotation rate
ρ fluid density
√

Rθθ tangential turbulence intensity
√

Rrr radial turbulence intensity
τ fluid shear stresses
τsgs sub-grid scale stresses
Co Courant number
FB body forces
G aspect ratio of the cavity
h height of the cavity
hr roughness height
K entrainment coefficient
k turbulent kinetic energy
kr physical roughness height
kdisk kinetic energy at the disk surface
ksgs sub-grid scale kinetic energy
P static pressure
r local radial distance to a given point p
r1 radius of the rotor hub

r2 radius of the cavity
Rm curvature of the cavity
Reh Reynolds number based on cavity height
Reω ,local local Reynolds number
Reω Reynolds number based on rotation rate
u instantaneous velocity
uτ friction velocity
Uθ ,max maximum tangential velocity on the disk
Uθ mean tangential velocity
Ur mean radial velocity
z axial distance
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“On the stability of von Kármán rotating-disk boundary layers with radial
anisotropic surface roughness,” Phys. Fluids 28, 014104 (2016).

16B. Alveroglu, A. Segalini, and S. J. Garrett, “The effect of surface roughness
on the convective instability of the BEK family of boundary-layer flows,”
Eur. J. Mech.: B/Fluids 56, 178–187 (2016).
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