University of Leicester
Browse
MNRAS-2012-Cole-601-13.pdf (2.02 MB)

The mass distribution of the Fornax dSph: Constraints from its globular cluster distribution

Download (2.02 MB)
journal contribution
posted on 2012-10-24, 08:56 authored by D. R. Cole, W. Dehnen, M. I. Wilkinson, J. I. Read
Uniquely among the dwarf spheroidal (dSph) satellite galaxies of the Milky Way, Fornax hosts globular clusters. It remains a puzzle as to why dynamical friction has not yet dragged any of Fornax's five globular clusters to the centre, and also why there is no evidence that any similar star cluster has been in the past (for Fornax or any other tidally undisrupted dSph). We set up a suite of 2800 N-body simulations that sample the full range of globular cluster orbits and mass models consistent with all existing observational constraints for Fornax. In agreement with previous work, we find that if Fornax has a large dark matter core, then its globular clusters remain close to their currently observed locations for long times. Furthermore, we find previously unreported behaviour for clusters that start inside the core region. These are pushed out of the core and gain orbital energy, a process we call ‘dynamical buoyancy’. Thus, a cored mass distribution in Fornax will naturally lead to a shell-like globular cluster distribution near the core radius, independent of the initial conditions. By contrast, cold dark matter-type cusped mass distributions lead to the rapid infall of at least one cluster within Δt = 1–2 Gyr, except when picking unlikely initial conditions for the cluster orbits (∼2 per cent probability), and almost all clusters within Δt = 10 Gyr. Alternatively, if Fornax has only a weakly cusped mass distribution, then dynamical friction is much reduced. While over Δt = 10 Gyr this still leads to the infall of one to four clusters from their present orbits, the infall of any cluster within Δt = 1–2 Gyr is much less likely (with probability 0–70 per cent, depending on Δt and the strength of the cusp). Such a solution to the timing problem requires (in addition to a shallow dark matter cusp) that in the past the globular clusters were somewhat further from Fornax than today; they most likely did not form within Fornax, but were accreted.

History

Citation

Monthly Notices of the Royal Astronomical Society, 2012, 426 (1), pp. 601-613

Version

  • VoR (Version of Record)

Published in

Monthly Notices of the Royal Astronomical Society

Publisher

Royal Astronomical Society (RAS)

issn

0035-8711

eissn

1365-2966

Copyright date

2012

Available date

2012-10-24

Publisher version

http://mnras.oxfordjournals.org/content/426/1/601

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC